ceph-csi/vendor/github.com/google/cel-go/interpreter/runtimecost.go

242 lines
10 KiB
Go
Raw Permalink Normal View History

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package interpreter
import (
"math"
"github.com/google/cel-go/common"
"github.com/google/cel-go/common/overloads"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
)
// WARNING: Any changes to cost calculations in this file require a corresponding change in checker/cost.go
// ActualCostEstimator provides function call cost estimations at runtime
// CallCost returns an estimated cost for the function overload invocation with the given args, or nil if it has no
// estimate to provide. CEL attempts to provide reasonable estimates for its standard function library, so CallCost
// should typically not need to provide an estimate for CELs standard function.
type ActualCostEstimator interface {
CallCost(function, overloadID string, args []ref.Val, result ref.Val) *uint64
}
// CostObserver provides an observer that tracks runtime cost.
func CostObserver(tracker *CostTracker) EvalObserver {
observer := func(id int64, programStep interface{}, val ref.Val) {
switch t := programStep.(type) {
case ConstantQualifier:
// TODO: Push identifiers on to the stack before observing constant qualifiers that apply to them
// and enable the below pop. Once enabled this can case can be collapsed into the Qualifier case.
tracker.cost++
case InterpretableConst:
// zero cost
case InterpretableAttribute:
switch a := t.Attr().(type) {
case *conditionalAttribute:
// Ternary has no direct cost. All cost is from the conditional and the true/false branch expressions.
tracker.stack.drop(a.falsy.ID(), a.truthy.ID(), a.expr.ID())
default:
tracker.stack.drop(t.Attr().ID())
tracker.cost += common.SelectAndIdentCost
}
case *evalExhaustiveConditional:
// Ternary has no direct cost. All cost is from the conditional and the true/false branch expressions.
tracker.stack.drop(t.attr.falsy.ID(), t.attr.truthy.ID(), t.attr.expr.ID())
// While the field names are identical, the boolean operation eval structs do not share an interface and so
// must be handled individually.
case *evalOr:
tracker.stack.drop(t.rhs.ID(), t.lhs.ID())
case *evalAnd:
tracker.stack.drop(t.rhs.ID(), t.lhs.ID())
case *evalExhaustiveOr:
tracker.stack.drop(t.rhs.ID(), t.lhs.ID())
case *evalExhaustiveAnd:
tracker.stack.drop(t.rhs.ID(), t.lhs.ID())
case *evalFold:
tracker.stack.drop(t.iterRange.ID())
case Qualifier:
tracker.cost++
case InterpretableCall:
if argVals, ok := tracker.stack.dropArgs(t.Args()); ok {
tracker.cost += tracker.costCall(t, argVals, val)
}
case InterpretableConstructor:
tracker.stack.dropArgs(t.InitVals())
switch t.Type() {
case types.ListType:
tracker.cost += common.ListCreateBaseCost
case types.MapType:
tracker.cost += common.MapCreateBaseCost
default:
tracker.cost += common.StructCreateBaseCost
}
}
tracker.stack.push(val, id)
if tracker.Limit != nil && tracker.cost > *tracker.Limit {
panic(EvalCancelledError{Cause: CostLimitExceeded, Message: "operation cancelled: actual cost limit exceeded"})
}
}
return observer
}
// CostTracker represents the information needed for tacking runtime cost
type CostTracker struct {
Estimator ActualCostEstimator
Limit *uint64
cost uint64
stack refValStack
}
// ActualCost returns the runtime cost
func (c CostTracker) ActualCost() uint64 {
return c.cost
}
func (c CostTracker) costCall(call InterpretableCall, argValues []ref.Val, result ref.Val) uint64 {
var cost uint64
if c.Estimator != nil {
callCost := c.Estimator.CallCost(call.Function(), call.OverloadID(), argValues, result)
if callCost != nil {
cost += *callCost
return cost
}
}
// if user didn't specify, the default way of calculating runtime cost would be used.
// if user has their own implementation of ActualCostEstimator, make sure to cover the mapping between overloadId and cost calculation
switch call.OverloadID() {
// O(n) functions
case overloads.StartsWithString, overloads.EndsWithString, overloads.StringToBytes, overloads.BytesToString:
cost += uint64(math.Ceil(float64(c.actualSize(argValues[0])) * common.StringTraversalCostFactor))
case overloads.InList:
// If a list is composed entirely of constant values this is O(1), but we don't account for that here.
// We just assume all list containment checks are O(n).
cost += c.actualSize(argValues[1])
// O(min(m, n)) functions
case overloads.LessString, overloads.GreaterString, overloads.LessEqualsString, overloads.GreaterEqualsString,
overloads.LessBytes, overloads.GreaterBytes, overloads.LessEqualsBytes, overloads.GreaterEqualsBytes,
overloads.Equals, overloads.NotEquals:
// When we check the equality of 2 scalar values (e.g. 2 integers, 2 floating-point numbers, 2 booleans etc.),
// the CostTracker.actualSize() function by definition returns 1 for each operand, resulting in an overall cost
// of 1.
lhsSize := c.actualSize(argValues[0])
rhsSize := c.actualSize(argValues[1])
minSize := lhsSize
if rhsSize < minSize {
minSize = rhsSize
}
cost += uint64(math.Ceil(float64(minSize) * common.StringTraversalCostFactor))
// O(m+n) functions
case overloads.AddString, overloads.AddBytes:
// In the worst case scenario, we would need to reallocate a new backing store and copy both operands over.
cost += uint64(math.Ceil(float64(c.actualSize(argValues[0])+c.actualSize(argValues[1])) * common.StringTraversalCostFactor))
// O(nm) functions
case overloads.MatchesString:
// https://swtch.com/~rsc/regexp/regexp1.html applies to RE2 implementation supported by CEL
// Add one to string length for purposes of cost calculation to prevent product of string and regex to be 0
// in case where string is empty but regex is still expensive.
strCost := uint64(math.Ceil((1.0 + float64(c.actualSize(argValues[0]))) * common.StringTraversalCostFactor))
// We don't know how many expressions are in the regex, just the string length (a huge
// improvement here would be to somehow get a count the number of expressions in the regex or
// how many states are in the regex state machine and use that to measure regex cost).
// For now, we're making a guess that each expression in a regex is typically at least 4 chars
// in length.
regexCost := uint64(math.Ceil(float64(c.actualSize(argValues[1])) * common.RegexStringLengthCostFactor))
cost += strCost * regexCost
case overloads.ContainsString:
strCost := uint64(math.Ceil(float64(c.actualSize(argValues[0])) * common.StringTraversalCostFactor))
substrCost := uint64(math.Ceil(float64(c.actualSize(argValues[1])) * common.StringTraversalCostFactor))
cost += strCost * substrCost
default:
// The following operations are assumed to have O(1) complexity.
// - AddList due to the implementation. Index lookup can be O(c) the
// number of concatenated lists, but we don't track that is cost calculations.
// - Conversions, since none perform a traversal of a type of unbound length.
// - Computing the size of strings, byte sequences, lists and maps.
// - Logical operations and all operators on fixed width scalars (comparisons, equality)
// - Any functions that don't have a declared cost either here or in provided ActualCostEstimator.
cost++
}
return cost
}
// actualSize returns the size of value
func (c CostTracker) actualSize(value ref.Val) uint64 {
if sz, ok := value.(traits.Sizer); ok {
return uint64(sz.Size().(types.Int))
}
return 1
}
type stackVal struct {
Val ref.Val
ID int64
}
// refValStack keeps track of values of the stack for cost calculation purposes
type refValStack []stackVal
func (s *refValStack) push(val ref.Val, id int64) {
value := stackVal{Val: val, ID: id}
*s = append(*s, value)
}
// TODO: Allowing drop and dropArgs to remove stack items above the IDs they are provided is a workaround. drop and dropArgs
// should find and remove only the stack items matching the provided IDs once all attributes are properly pushed and popped from stack.
// drop searches the stack for each ID and removes the ID and all stack items above it.
// If none of the IDs are found, the stack is not modified.
// WARNING: It is possible for multiple expressions with the same ID to exist (due to how macros are implemented) so it's
// possible that a dropped ID will remain on the stack. They should be removed when IDs on the stack are popped.
func (s *refValStack) drop(ids ...int64) {
for _, id := range ids {
for idx := len(*s) - 1; idx >= 0; idx-- {
if (*s)[idx].ID == id {
*s = (*s)[:idx]
break
}
}
}
}
// dropArgs searches the stack for all the args by their IDs, accumulates their associated ref.Vals and drops any
// stack items above any of the arg IDs. If any of the IDs are not found the stack, false is returned.
// Args are assumed to be found in the stack in reverse order, i.e. the last arg is expected to be found highest in
// the stack.
// WARNING: It is possible for multiple expressions with the same ID to exist (due to how macros are implemented) so it's
// possible that a dropped ID will remain on the stack. They should be removed when IDs on the stack are popped.
func (s *refValStack) dropArgs(args []Interpretable) ([]ref.Val, bool) {
result := make([]ref.Val, len(args))
argloop:
for nIdx := len(args) - 1; nIdx >= 0; nIdx-- {
for idx := len(*s) - 1; idx >= 0; idx-- {
if (*s)[idx].ID == args[nIdx].ID() {
el := (*s)[idx]
*s = (*s)[:idx]
result[nIdx] = el.Val
continue argloop
}
}
return nil, false
}
return result, true
}