ceph-csi/vendor/github.com/google/cel-go/interpreter/attribute_patterns.go

400 lines
15 KiB
Go
Raw Permalink Normal View History

// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package interpreter
import (
"fmt"
"github.com/google/cel-go/common/containers"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
)
// AttributePattern represents a top-level variable with an optional set of qualifier patterns.
//
// When using a CEL expression within a container, e.g. a package or namespace, the variable name
// in the pattern must match the qualified name produced during the variable namespace resolution.
// For example, if variable `c` appears in an expression whose container is `a.b`, the variable
// name supplied to the pattern must be `a.b.c`
//
// The qualifier patterns for attribute matching must be one of the following:
//
// - valid map key type: string, int, uint, bool
// - wildcard (*)
//
// Examples:
//
// 1. ns.myvar["complex-value"]
// 2. ns.myvar["complex-value"][0]
// 3. ns.myvar["complex-value"].*.name
//
// The first example is simple: match an attribute where the variable is 'ns.myvar' with a
// field access on 'complex-value'. The second example expands the match to indicate that only
// a specific index `0` should match. And lastly, the third example matches any indexed access
// that later selects the 'name' field.
type AttributePattern struct {
variable string
qualifierPatterns []*AttributeQualifierPattern
}
// NewAttributePattern produces a new mutable AttributePattern based on a variable name.
func NewAttributePattern(variable string) *AttributePattern {
return &AttributePattern{
variable: variable,
qualifierPatterns: []*AttributeQualifierPattern{},
}
}
// QualString adds a string qualifier pattern to the AttributePattern. The string may be a valid
// identifier, or string map key including empty string.
func (apat *AttributePattern) QualString(pattern string) *AttributePattern {
apat.qualifierPatterns = append(apat.qualifierPatterns,
&AttributeQualifierPattern{value: pattern})
return apat
}
// QualInt adds an int qualifier pattern to the AttributePattern. The index may be either a map or
// list index.
func (apat *AttributePattern) QualInt(pattern int64) *AttributePattern {
apat.qualifierPatterns = append(apat.qualifierPatterns,
&AttributeQualifierPattern{value: pattern})
return apat
}
// QualUint adds an uint qualifier pattern for a map index operation to the AttributePattern.
func (apat *AttributePattern) QualUint(pattern uint64) *AttributePattern {
apat.qualifierPatterns = append(apat.qualifierPatterns,
&AttributeQualifierPattern{value: pattern})
return apat
}
// QualBool adds a bool qualifier pattern for a map index operation to the AttributePattern.
func (apat *AttributePattern) QualBool(pattern bool) *AttributePattern {
apat.qualifierPatterns = append(apat.qualifierPatterns,
&AttributeQualifierPattern{value: pattern})
return apat
}
// Wildcard adds a special sentinel qualifier pattern that will match any single qualifier.
func (apat *AttributePattern) Wildcard() *AttributePattern {
apat.qualifierPatterns = append(apat.qualifierPatterns,
&AttributeQualifierPattern{wildcard: true})
return apat
}
// VariableMatches returns true if the fully qualified variable matches the AttributePattern
// fully qualified variable name.
func (apat *AttributePattern) VariableMatches(variable string) bool {
return apat.variable == variable
}
// QualifierPatterns returns the set of AttributeQualifierPattern values on the AttributePattern.
func (apat *AttributePattern) QualifierPatterns() []*AttributeQualifierPattern {
return apat.qualifierPatterns
}
// AttributeQualifierPattern holds a wildcard or valued qualifier pattern.
type AttributeQualifierPattern struct {
wildcard bool
value any
}
// Matches returns true if the qualifier pattern is a wildcard, or the Qualifier implements the
// qualifierValueEquator interface and its IsValueEqualTo returns true for the qualifier pattern.
func (qpat *AttributeQualifierPattern) Matches(q Qualifier) bool {
if qpat.wildcard {
return true
}
qve, ok := q.(qualifierValueEquator)
return ok && qve.QualifierValueEquals(qpat.value)
}
// qualifierValueEquator defines an interface for determining if an input value, of valid map key
// type, is equal to the value held in the Qualifier. This interface is used by the
// AttributeQualifierPattern to determine pattern matches for non-wildcard qualifier patterns.
//
// Note: Attribute values are also Qualifier values; however, Attributes are resolved before
// qualification happens. This is an implementation detail, but one relevant to why the Attribute
// types do not surface in the list of implementations.
//
// See: partialAttributeFactory.matchesUnknownPatterns for more details on how this interface is
// used.
type qualifierValueEquator interface {
// QualifierValueEquals returns true if the input value is equal to the value held in the
// Qualifier.
QualifierValueEquals(value any) bool
}
// QualifierValueEquals implementation for boolean qualifiers.
func (q *boolQualifier) QualifierValueEquals(value any) bool {
bval, ok := value.(bool)
return ok && q.value == bval
}
// QualifierValueEquals implementation for field qualifiers.
func (q *fieldQualifier) QualifierValueEquals(value any) bool {
sval, ok := value.(string)
return ok && q.Name == sval
}
// QualifierValueEquals implementation for string qualifiers.
func (q *stringQualifier) QualifierValueEquals(value any) bool {
sval, ok := value.(string)
return ok && q.value == sval
}
// QualifierValueEquals implementation for int qualifiers.
func (q *intQualifier) QualifierValueEquals(value any) bool {
return numericValueEquals(value, q.celValue)
}
// QualifierValueEquals implementation for uint qualifiers.
func (q *uintQualifier) QualifierValueEquals(value any) bool {
return numericValueEquals(value, q.celValue)
}
// QualifierValueEquals implementation for double qualifiers.
func (q *doubleQualifier) QualifierValueEquals(value any) bool {
return numericValueEquals(value, q.celValue)
}
// numericValueEquals uses CEL equality to determine whether two number values are
func numericValueEquals(value any, celValue ref.Val) bool {
val := types.DefaultTypeAdapter.NativeToValue(value)
return celValue.Equal(val) == types.True
}
// NewPartialAttributeFactory returns an AttributeFactory implementation capable of performing
// AttributePattern matches with PartialActivation inputs.
func NewPartialAttributeFactory(container *containers.Container,
adapter types.Adapter,
provider types.Provider) AttributeFactory {
fac := NewAttributeFactory(container, adapter, provider)
return &partialAttributeFactory{
AttributeFactory: fac,
container: container,
adapter: adapter,
provider: provider,
}
}
type partialAttributeFactory struct {
AttributeFactory
container *containers.Container
adapter types.Adapter
provider types.Provider
}
// AbsoluteAttribute implementation of the AttributeFactory interface which wraps the
// NamespacedAttribute resolution in an internal attributeMatcher object to dynamically match
// unknown patterns from PartialActivation inputs if given.
func (fac *partialAttributeFactory) AbsoluteAttribute(id int64, names ...string) NamespacedAttribute {
attr := fac.AttributeFactory.AbsoluteAttribute(id, names...)
return &attributeMatcher{fac: fac, NamespacedAttribute: attr}
}
// MaybeAttribute implementation of the AttributeFactory interface which ensure that the set of
// 'maybe' NamespacedAttribute values are produced using the partialAttributeFactory rather than
// the base AttributeFactory implementation.
func (fac *partialAttributeFactory) MaybeAttribute(id int64, name string) Attribute {
return &maybeAttribute{
id: id,
attrs: []NamespacedAttribute{
fac.AbsoluteAttribute(id, fac.container.ResolveCandidateNames(name)...),
},
adapter: fac.adapter,
provider: fac.provider,
fac: fac,
}
}
// matchesUnknownPatterns returns true if the variable names and qualifiers for a given
// Attribute value match any of the ActivationPattern objects in the set of unknown activation
// patterns on the given PartialActivation.
//
// For example, in the expression `a.b`, the Attribute is composed of variable `a`, with string
// qualifier `b`. When a PartialActivation is supplied, it indicates that some or all of the data
// provided in the input is unknown by specifying unknown AttributePatterns. An AttributePattern
// that refers to variable `a` with a string qualifier of `c` will not match `a.b`; however, any
// of the following patterns will match Attribute `a.b`:
//
// - `AttributePattern("a")`
// - `AttributePattern("a").Wildcard()`
// - `AttributePattern("a").QualString("b")`
// - `AttributePattern("a").QualString("b").QualInt(0)`
//
// Any AttributePattern which overlaps an Attribute or vice-versa will produce an Unknown result
// for the last pattern matched variable or qualifier in the Attribute. In the first matching
// example, the expression id representing variable `a` would be listed in the Unknown result,
// whereas in the other pattern examples, the qualifier `b` would be returned as the Unknown.
func (fac *partialAttributeFactory) matchesUnknownPatterns(
vars PartialActivation,
attrID int64,
variableNames []string,
qualifiers []Qualifier) (*types.Unknown, error) {
patterns := vars.UnknownAttributePatterns()
candidateIndices := map[int]struct{}{}
for _, variable := range variableNames {
for i, pat := range patterns {
if pat.VariableMatches(variable) {
if len(qualifiers) == 0 {
return types.NewUnknown(attrID, types.NewAttributeTrail(variable)), nil
}
candidateIndices[i] = struct{}{}
}
}
}
// Determine whether to return early if there are no candidate unknown patterns.
if len(candidateIndices) == 0 {
return nil, nil
}
// Resolve the attribute qualifiers into a static set. This prevents more dynamic
// Attribute resolutions than necessary when there are multiple unknown patterns
// that traverse the same Attribute-based qualifier field.
newQuals := make([]Qualifier, len(qualifiers))
for i, qual := range qualifiers {
attr, isAttr := qual.(Attribute)
if isAttr {
val, err := attr.Resolve(vars)
if err != nil {
return nil, err
}
// If this resolution behavior ever changes, new implementations of the
// qualifierValueEquator may be required to handle proper resolution.
qual, err = fac.NewQualifier(nil, qual.ID(), val, attr.IsOptional())
if err != nil {
return nil, err
}
}
newQuals[i] = qual
}
// Determine whether any of the unknown patterns match.
for patIdx := range candidateIndices {
pat := patterns[patIdx]
isUnk := true
matchExprID := attrID
qualPats := pat.QualifierPatterns()
for i, qual := range newQuals {
if i >= len(qualPats) {
break
}
matchExprID = qual.ID()
qualPat := qualPats[i]
// Note, the AttributeQualifierPattern relies on the input Qualifier not being an
// Attribute, since there is no way to resolve the Attribute with the information
// provided to the Matches call.
if !qualPat.Matches(qual) {
isUnk = false
break
}
}
if isUnk {
attr := types.NewAttributeTrail(pat.variable)
for i := 0; i < len(qualPats) && i < len(newQuals); i++ {
if qual, ok := newQuals[i].(ConstantQualifier); ok {
switch v := qual.Value().Value().(type) {
case bool:
types.QualifyAttribute[bool](attr, v)
case float64:
types.QualifyAttribute[int64](attr, int64(v))
case int64:
types.QualifyAttribute[int64](attr, v)
case string:
types.QualifyAttribute[string](attr, v)
case uint64:
types.QualifyAttribute[uint64](attr, v)
default:
types.QualifyAttribute[string](attr, fmt.Sprintf("%v", v))
}
} else {
types.QualifyAttribute[string](attr, "*")
}
}
return types.NewUnknown(matchExprID, attr), nil
}
}
return nil, nil
}
// attributeMatcher embeds the NamespacedAttribute interface which allows it to participate in
// AttributePattern matching against Attribute values without having to modify the code paths that
// identify Attributes in expressions.
type attributeMatcher struct {
NamespacedAttribute
qualifiers []Qualifier
fac *partialAttributeFactory
}
// AddQualifier implements the Attribute interface method.
func (m *attributeMatcher) AddQualifier(qual Qualifier) (Attribute, error) {
// Add the qualifier to the embedded NamespacedAttribute. If the input to the Resolve
// method is not a PartialActivation, or does not match an unknown attribute pattern, the
// Resolve method is directly invoked on the underlying NamespacedAttribute.
_, err := m.NamespacedAttribute.AddQualifier(qual)
if err != nil {
return nil, err
}
// The attributeMatcher overloads TryResolve and will attempt to match unknown patterns against
// the variable name and qualifier set contained within the Attribute. These values are not
// directly inspectable on the top-level NamespacedAttribute interface and so are tracked within
// the attributeMatcher.
m.qualifiers = append(m.qualifiers, qual)
return m, nil
}
// Resolve is an implementation of the NamespacedAttribute interface method which tests
// for matching unknown attribute patterns and returns types.Unknown if present. Otherwise,
// the standard Resolve logic applies.
func (m *attributeMatcher) Resolve(vars Activation) (any, error) {
id := m.NamespacedAttribute.ID()
// Bug in how partial activation is resolved, should search parents as well.
partial, isPartial := toPartialActivation(vars)
if isPartial {
unk, err := m.fac.matchesUnknownPatterns(
partial,
id,
m.CandidateVariableNames(),
m.qualifiers)
if err != nil {
return nil, err
}
if unk != nil {
return unk, nil
}
}
return m.NamespacedAttribute.Resolve(vars)
}
// Qualify is an implementation of the Qualifier interface method.
func (m *attributeMatcher) Qualify(vars Activation, obj any) (any, error) {
return attrQualify(m.fac, vars, obj, m)
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (m *attributeMatcher) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return attrQualifyIfPresent(m.fac, vars, obj, m, presenceOnly)
}
func toPartialActivation(vars Activation) (PartialActivation, bool) {
pv, ok := vars.(PartialActivation)
if ok {
return pv, true
}
if vars.Parent() != nil {
return toPartialActivation(vars.Parent())
}
return nil, false
}