mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-01-11 22:39:31 +00:00
394 lines
18 KiB
Markdown
394 lines
18 KiB
Markdown
|
# A minimal logging API for Go
|
||
|
|
||
|
[![Go Reference](https://pkg.go.dev/badge/github.com/go-logr/logr.svg)](https://pkg.go.dev/github.com/go-logr/logr)
|
||
|
[![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/go-logr/logr/badge)](https://securityscorecards.dev/viewer/?platform=github.com&org=go-logr&repo=logr)
|
||
|
|
||
|
logr offers an(other) opinion on how Go programs and libraries can do logging
|
||
|
without becoming coupled to a particular logging implementation. This is not
|
||
|
an implementation of logging - it is an API. In fact it is two APIs with two
|
||
|
different sets of users.
|
||
|
|
||
|
The `Logger` type is intended for application and library authors. It provides
|
||
|
a relatively small API which can be used everywhere you want to emit logs. It
|
||
|
defers the actual act of writing logs (to files, to stdout, or whatever) to the
|
||
|
`LogSink` interface.
|
||
|
|
||
|
The `LogSink` interface is intended for logging library implementers. It is a
|
||
|
pure interface which can be implemented by logging frameworks to provide the actual logging
|
||
|
functionality.
|
||
|
|
||
|
This decoupling allows application and library developers to write code in
|
||
|
terms of `logr.Logger` (which has very low dependency fan-out) while the
|
||
|
implementation of logging is managed "up stack" (e.g. in or near `main()`.)
|
||
|
Application developers can then switch out implementations as necessary.
|
||
|
|
||
|
Many people assert that libraries should not be logging, and as such efforts
|
||
|
like this are pointless. Those people are welcome to convince the authors of
|
||
|
the tens-of-thousands of libraries that *DO* write logs that they are all
|
||
|
wrong. In the meantime, logr takes a more practical approach.
|
||
|
|
||
|
## Typical usage
|
||
|
|
||
|
Somewhere, early in an application's life, it will make a decision about which
|
||
|
logging library (implementation) it actually wants to use. Something like:
|
||
|
|
||
|
```
|
||
|
func main() {
|
||
|
// ... other setup code ...
|
||
|
|
||
|
// Create the "root" logger. We have chosen the "logimpl" implementation,
|
||
|
// which takes some initial parameters and returns a logr.Logger.
|
||
|
logger := logimpl.New(param1, param2)
|
||
|
|
||
|
// ... other setup code ...
|
||
|
```
|
||
|
|
||
|
Most apps will call into other libraries, create structures to govern the flow,
|
||
|
etc. The `logr.Logger` object can be passed to these other libraries, stored
|
||
|
in structs, or even used as a package-global variable, if needed. For example:
|
||
|
|
||
|
```
|
||
|
app := createTheAppObject(logger)
|
||
|
app.Run()
|
||
|
```
|
||
|
|
||
|
Outside of this early setup, no other packages need to know about the choice of
|
||
|
implementation. They write logs in terms of the `logr.Logger` that they
|
||
|
received:
|
||
|
|
||
|
```
|
||
|
type appObject struct {
|
||
|
// ... other fields ...
|
||
|
logger logr.Logger
|
||
|
// ... other fields ...
|
||
|
}
|
||
|
|
||
|
func (app *appObject) Run() {
|
||
|
app.logger.Info("starting up", "timestamp", time.Now())
|
||
|
|
||
|
// ... app code ...
|
||
|
```
|
||
|
|
||
|
## Background
|
||
|
|
||
|
If the Go standard library had defined an interface for logging, this project
|
||
|
probably would not be needed. Alas, here we are.
|
||
|
|
||
|
When the Go developers started developing such an interface with
|
||
|
[slog](https://github.com/golang/go/issues/56345), they adopted some of the
|
||
|
logr design but also left out some parts and changed others:
|
||
|
|
||
|
| Feature | logr | slog |
|
||
|
|---------|------|------|
|
||
|
| High-level API | `Logger` (passed by value) | `Logger` (passed by [pointer](https://github.com/golang/go/issues/59126)) |
|
||
|
| Low-level API | `LogSink` | `Handler` |
|
||
|
| Stack unwinding | done by `LogSink` | done by `Logger` |
|
||
|
| Skipping helper functions | `WithCallDepth`, `WithCallStackHelper` | [not supported by Logger](https://github.com/golang/go/issues/59145) |
|
||
|
| Generating a value for logging on demand | `Marshaler` | `LogValuer` |
|
||
|
| Log levels | >= 0, higher meaning "less important" | positive and negative, with 0 for "info" and higher meaning "more important" |
|
||
|
| Error log entries | always logged, don't have a verbosity level | normal log entries with level >= `LevelError` |
|
||
|
| Passing logger via context | `NewContext`, `FromContext` | no API |
|
||
|
| Adding a name to a logger | `WithName` | no API |
|
||
|
| Modify verbosity of log entries in a call chain | `V` | no API |
|
||
|
| Grouping of key/value pairs | not supported | `WithGroup`, `GroupValue` |
|
||
|
|
||
|
The high-level slog API is explicitly meant to be one of many different APIs
|
||
|
that can be layered on top of a shared `slog.Handler`. logr is one such
|
||
|
alternative API, with [interoperability](#slog-interoperability) provided by the [`slogr`](slogr)
|
||
|
package.
|
||
|
|
||
|
### Inspiration
|
||
|
|
||
|
Before you consider this package, please read [this blog post by the
|
||
|
inimitable Dave Cheney][warning-makes-no-sense]. We really appreciate what
|
||
|
he has to say, and it largely aligns with our own experiences.
|
||
|
|
||
|
### Differences from Dave's ideas
|
||
|
|
||
|
The main differences are:
|
||
|
|
||
|
1. Dave basically proposes doing away with the notion of a logging API in favor
|
||
|
of `fmt.Printf()`. We disagree, especially when you consider things like output
|
||
|
locations, timestamps, file and line decorations, and structured logging. This
|
||
|
package restricts the logging API to just 2 types of logs: info and error.
|
||
|
|
||
|
Info logs are things you want to tell the user which are not errors. Error
|
||
|
logs are, well, errors. If your code receives an `error` from a subordinate
|
||
|
function call and is logging that `error` *and not returning it*, use error
|
||
|
logs.
|
||
|
|
||
|
2. Verbosity-levels on info logs. This gives developers a chance to indicate
|
||
|
arbitrary grades of importance for info logs, without assigning names with
|
||
|
semantic meaning such as "warning", "trace", and "debug." Superficially this
|
||
|
may feel very similar, but the primary difference is the lack of semantics.
|
||
|
Because verbosity is a numerical value, it's safe to assume that an app running
|
||
|
with higher verbosity means more (and less important) logs will be generated.
|
||
|
|
||
|
## Implementations (non-exhaustive)
|
||
|
|
||
|
There are implementations for the following logging libraries:
|
||
|
|
||
|
- **a function** (can bridge to non-structured libraries): [funcr](https://github.com/go-logr/logr/tree/master/funcr)
|
||
|
- **a testing.T** (for use in Go tests, with JSON-like output): [testr](https://github.com/go-logr/logr/tree/master/testr)
|
||
|
- **github.com/google/glog**: [glogr](https://github.com/go-logr/glogr)
|
||
|
- **k8s.io/klog** (for Kubernetes): [klogr](https://git.k8s.io/klog/klogr)
|
||
|
- **a testing.T** (with klog-like text output): [ktesting](https://git.k8s.io/klog/ktesting)
|
||
|
- **go.uber.org/zap**: [zapr](https://github.com/go-logr/zapr)
|
||
|
- **log** (the Go standard library logger): [stdr](https://github.com/go-logr/stdr)
|
||
|
- **github.com/sirupsen/logrus**: [logrusr](https://github.com/bombsimon/logrusr)
|
||
|
- **github.com/wojas/genericr**: [genericr](https://github.com/wojas/genericr) (makes it easy to implement your own backend)
|
||
|
- **logfmt** (Heroku style [logging](https://www.brandur.org/logfmt)): [logfmtr](https://github.com/iand/logfmtr)
|
||
|
- **github.com/rs/zerolog**: [zerologr](https://github.com/go-logr/zerologr)
|
||
|
- **github.com/go-kit/log**: [gokitlogr](https://github.com/tonglil/gokitlogr) (also compatible with github.com/go-kit/kit/log since v0.12.0)
|
||
|
- **bytes.Buffer** (writing to a buffer): [bufrlogr](https://github.com/tonglil/buflogr) (useful for ensuring values were logged, like during testing)
|
||
|
|
||
|
## slog interoperability
|
||
|
|
||
|
Interoperability goes both ways, using the `logr.Logger` API with a `slog.Handler`
|
||
|
and using the `slog.Logger` API with a `logr.LogSink`. [slogr](./slogr) provides `NewLogr` and
|
||
|
`NewSlogHandler` API calls to convert between a `logr.Logger` and a `slog.Handler`.
|
||
|
As usual, `slog.New` can be used to wrap such a `slog.Handler` in the high-level
|
||
|
slog API. `slogr` itself leaves that to the caller.
|
||
|
|
||
|
## Using a `logr.Sink` as backend for slog
|
||
|
|
||
|
Ideally, a logr sink implementation should support both logr and slog by
|
||
|
implementing both the normal logr interface(s) and `slogr.SlogSink`. Because
|
||
|
of a conflict in the parameters of the common `Enabled` method, it is [not
|
||
|
possible to implement both slog.Handler and logr.Sink in the same
|
||
|
type](https://github.com/golang/go/issues/59110).
|
||
|
|
||
|
If both are supported, log calls can go from the high-level APIs to the backend
|
||
|
without the need to convert parameters. `NewLogr` and `NewSlogHandler` can
|
||
|
convert back and forth without adding additional wrappers, with one exception:
|
||
|
when `Logger.V` was used to adjust the verbosity for a `slog.Handler`, then
|
||
|
`NewSlogHandler` has to use a wrapper which adjusts the verbosity for future
|
||
|
log calls.
|
||
|
|
||
|
Such an implementation should also support values that implement specific
|
||
|
interfaces from both packages for logging (`logr.Marshaler`, `slog.LogValuer`,
|
||
|
`slog.GroupValue`). logr does not convert those.
|
||
|
|
||
|
Not supporting slog has several drawbacks:
|
||
|
- Recording source code locations works correctly if the handler gets called
|
||
|
through `slog.Logger`, but may be wrong in other cases. That's because a
|
||
|
`logr.Sink` does its own stack unwinding instead of using the program counter
|
||
|
provided by the high-level API.
|
||
|
- slog levels <= 0 can be mapped to logr levels by negating the level without a
|
||
|
loss of information. But all slog levels > 0 (e.g. `slog.LevelWarning` as
|
||
|
used by `slog.Logger.Warn`) must be mapped to 0 before calling the sink
|
||
|
because logr does not support "more important than info" levels.
|
||
|
- The slog group concept is supported by prefixing each key in a key/value
|
||
|
pair with the group names, separated by a dot. For structured output like
|
||
|
JSON it would be better to group the key/value pairs inside an object.
|
||
|
- Special slog values and interfaces don't work as expected.
|
||
|
- The overhead is likely to be higher.
|
||
|
|
||
|
These drawbacks are severe enough that applications using a mixture of slog and
|
||
|
logr should switch to a different backend.
|
||
|
|
||
|
## Using a `slog.Handler` as backend for logr
|
||
|
|
||
|
Using a plain `slog.Handler` without support for logr works better than the
|
||
|
other direction:
|
||
|
- All logr verbosity levels can be mapped 1:1 to their corresponding slog level
|
||
|
by negating them.
|
||
|
- Stack unwinding is done by the `slogr.SlogSink` and the resulting program
|
||
|
counter is passed to the `slog.Handler`.
|
||
|
- Names added via `Logger.WithName` are gathered and recorded in an additional
|
||
|
attribute with `logger` as key and the names separated by slash as value.
|
||
|
- `Logger.Error` is turned into a log record with `slog.LevelError` as level
|
||
|
and an additional attribute with `err` as key, if an error was provided.
|
||
|
|
||
|
The main drawback is that `logr.Marshaler` will not be supported. Types should
|
||
|
ideally support both `logr.Marshaler` and `slog.Valuer`. If compatibility
|
||
|
with logr implementations without slog support is not important, then
|
||
|
`slog.Valuer` is sufficient.
|
||
|
|
||
|
## Context support for slog
|
||
|
|
||
|
Storing a logger in a `context.Context` is not supported by
|
||
|
slog. `logr.NewContext` and `logr.FromContext` can be used with slog like this
|
||
|
to fill this gap:
|
||
|
|
||
|
func HandlerFromContext(ctx context.Context) slog.Handler {
|
||
|
logger, err := logr.FromContext(ctx)
|
||
|
if err == nil {
|
||
|
return slogr.NewSlogHandler(logger)
|
||
|
}
|
||
|
return slog.Default().Handler()
|
||
|
}
|
||
|
|
||
|
func ContextWithHandler(ctx context.Context, handler slog.Handler) context.Context {
|
||
|
return logr.NewContext(ctx, slogr.NewLogr(handler))
|
||
|
}
|
||
|
|
||
|
The downside is that storing and retrieving a `slog.Handler` needs more
|
||
|
allocations compared to using a `logr.Logger`. Therefore the recommendation is
|
||
|
to use the `logr.Logger` API in code which uses contextual logging.
|
||
|
|
||
|
## FAQ
|
||
|
|
||
|
### Conceptual
|
||
|
|
||
|
#### Why structured logging?
|
||
|
|
||
|
- **Structured logs are more easily queryable**: Since you've got
|
||
|
key-value pairs, it's much easier to query your structured logs for
|
||
|
particular values by filtering on the contents of a particular key --
|
||
|
think searching request logs for error codes, Kubernetes reconcilers for
|
||
|
the name and namespace of the reconciled object, etc.
|
||
|
|
||
|
- **Structured logging makes it easier to have cross-referenceable logs**:
|
||
|
Similarly to searchability, if you maintain conventions around your
|
||
|
keys, it becomes easy to gather all log lines related to a particular
|
||
|
concept.
|
||
|
|
||
|
- **Structured logs allow better dimensions of filtering**: if you have
|
||
|
structure to your logs, you've got more precise control over how much
|
||
|
information is logged -- you might choose in a particular configuration
|
||
|
to log certain keys but not others, only log lines where a certain key
|
||
|
matches a certain value, etc., instead of just having v-levels and names
|
||
|
to key off of.
|
||
|
|
||
|
- **Structured logs better represent structured data**: sometimes, the
|
||
|
data that you want to log is inherently structured (think tuple-link
|
||
|
objects.) Structured logs allow you to preserve that structure when
|
||
|
outputting.
|
||
|
|
||
|
#### Why V-levels?
|
||
|
|
||
|
**V-levels give operators an easy way to control the chattiness of log
|
||
|
operations**. V-levels provide a way for a given package to distinguish
|
||
|
the relative importance or verbosity of a given log message. Then, if
|
||
|
a particular logger or package is logging too many messages, the user
|
||
|
of the package can simply change the v-levels for that library.
|
||
|
|
||
|
#### Why not named levels, like Info/Warning/Error?
|
||
|
|
||
|
Read [Dave Cheney's post][warning-makes-no-sense]. Then read [Differences
|
||
|
from Dave's ideas](#differences-from-daves-ideas).
|
||
|
|
||
|
#### Why not allow format strings, too?
|
||
|
|
||
|
**Format strings negate many of the benefits of structured logs**:
|
||
|
|
||
|
- They're not easily searchable without resorting to fuzzy searching,
|
||
|
regular expressions, etc.
|
||
|
|
||
|
- They don't store structured data well, since contents are flattened into
|
||
|
a string.
|
||
|
|
||
|
- They're not cross-referenceable.
|
||
|
|
||
|
- They don't compress easily, since the message is not constant.
|
||
|
|
||
|
(Unless you turn positional parameters into key-value pairs with numerical
|
||
|
keys, at which point you've gotten key-value logging with meaningless
|
||
|
keys.)
|
||
|
|
||
|
### Practical
|
||
|
|
||
|
#### Why key-value pairs, and not a map?
|
||
|
|
||
|
Key-value pairs are *much* easier to optimize, especially around
|
||
|
allocations. Zap (a structured logger that inspired logr's interface) has
|
||
|
[performance measurements](https://github.com/uber-go/zap#performance)
|
||
|
that show this quite nicely.
|
||
|
|
||
|
While the interface ends up being a little less obvious, you get
|
||
|
potentially better performance, plus avoid making users type
|
||
|
`map[string]string{}` every time they want to log.
|
||
|
|
||
|
#### What if my V-levels differ between libraries?
|
||
|
|
||
|
That's fine. Control your V-levels on a per-logger basis, and use the
|
||
|
`WithName` method to pass different loggers to different libraries.
|
||
|
|
||
|
Generally, you should take care to ensure that you have relatively
|
||
|
consistent V-levels within a given logger, however, as this makes deciding
|
||
|
on what verbosity of logs to request easier.
|
||
|
|
||
|
#### But I really want to use a format string!
|
||
|
|
||
|
That's not actually a question. Assuming your question is "how do
|
||
|
I convert my mental model of logging with format strings to logging with
|
||
|
constant messages":
|
||
|
|
||
|
1. Figure out what the error actually is, as you'd write in a TL;DR style,
|
||
|
and use that as a message.
|
||
|
|
||
|
2. For every place you'd write a format specifier, look to the word before
|
||
|
it, and add that as a key value pair.
|
||
|
|
||
|
For instance, consider the following examples (all taken from spots in the
|
||
|
Kubernetes codebase):
|
||
|
|
||
|
- `klog.V(4).Infof("Client is returning errors: code %v, error %v",
|
||
|
responseCode, err)` becomes `logger.Error(err, "client returned an
|
||
|
error", "code", responseCode)`
|
||
|
|
||
|
- `klog.V(4).Infof("Got a Retry-After %ds response for attempt %d to %v",
|
||
|
seconds, retries, url)` becomes `logger.V(4).Info("got a retry-after
|
||
|
response when requesting url", "attempt", retries, "after
|
||
|
seconds", seconds, "url", url)`
|
||
|
|
||
|
If you *really* must use a format string, use it in a key's value, and
|
||
|
call `fmt.Sprintf` yourself. For instance: `log.Printf("unable to
|
||
|
reflect over type %T")` becomes `logger.Info("unable to reflect over
|
||
|
type", "type", fmt.Sprintf("%T"))`. In general though, the cases where
|
||
|
this is necessary should be few and far between.
|
||
|
|
||
|
#### How do I choose my V-levels?
|
||
|
|
||
|
This is basically the only hard constraint: increase V-levels to denote
|
||
|
more verbose or more debug-y logs.
|
||
|
|
||
|
Otherwise, you can start out with `0` as "you always want to see this",
|
||
|
`1` as "common logging that you might *possibly* want to turn off", and
|
||
|
`10` as "I would like to performance-test your log collection stack."
|
||
|
|
||
|
Then gradually choose levels in between as you need them, working your way
|
||
|
down from 10 (for debug and trace style logs) and up from 1 (for chattier
|
||
|
info-type logs). For reference, slog pre-defines -4 for debug logs
|
||
|
(corresponds to 4 in logr), which matches what is
|
||
|
[recommended for Kubernetes](https://github.com/kubernetes/community/blob/master/contributors/devel/sig-instrumentation/logging.md#what-method-to-use).
|
||
|
|
||
|
#### How do I choose my keys?
|
||
|
|
||
|
Keys are fairly flexible, and can hold more or less any string
|
||
|
value. For best compatibility with implementations and consistency
|
||
|
with existing code in other projects, there are a few conventions you
|
||
|
should consider.
|
||
|
|
||
|
- Make your keys human-readable.
|
||
|
- Constant keys are generally a good idea.
|
||
|
- Be consistent across your codebase.
|
||
|
- Keys should naturally match parts of the message string.
|
||
|
- Use lower case for simple keys and
|
||
|
[lowerCamelCase](https://en.wiktionary.org/wiki/lowerCamelCase) for
|
||
|
more complex ones. Kubernetes is one example of a project that has
|
||
|
[adopted that
|
||
|
convention](https://github.com/kubernetes/community/blob/HEAD/contributors/devel/sig-instrumentation/migration-to-structured-logging.md#name-arguments).
|
||
|
|
||
|
While key names are mostly unrestricted (and spaces are acceptable),
|
||
|
it's generally a good idea to stick to printable ascii characters, or at
|
||
|
least match the general character set of your log lines.
|
||
|
|
||
|
#### Why should keys be constant values?
|
||
|
|
||
|
The point of structured logging is to make later log processing easier. Your
|
||
|
keys are, effectively, the schema of each log message. If you use different
|
||
|
keys across instances of the same log line, you will make your structured logs
|
||
|
much harder to use. `Sprintf()` is for values, not for keys!
|
||
|
|
||
|
#### Why is this not a pure interface?
|
||
|
|
||
|
The Logger type is implemented as a struct in order to allow the Go compiler to
|
||
|
optimize things like high-V `Info` logs that are not triggered. Not all of
|
||
|
these implementations are implemented yet, but this structure was suggested as
|
||
|
a way to ensure they *can* be implemented. All of the real work is behind the
|
||
|
`LogSink` interface.
|
||
|
|
||
|
[warning-makes-no-sense]: http://dave.cheney.net/2015/11/05/lets-talk-about-logging
|