mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-01-07 12:29:31 +00:00
366 lines
9.2 KiB
Go
366 lines
9.2 KiB
Go
|
// Copyright 2015 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package trace
|
||
|
|
||
|
// This file implements histogramming for RPC statistics collection.
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"fmt"
|
||
|
"html/template"
|
||
|
"log"
|
||
|
"math"
|
||
|
"sync"
|
||
|
|
||
|
"golang.org/x/net/internal/timeseries"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
bucketCount = 38
|
||
|
)
|
||
|
|
||
|
// histogram keeps counts of values in buckets that are spaced
|
||
|
// out in powers of 2: 0-1, 2-3, 4-7...
|
||
|
// histogram implements timeseries.Observable
|
||
|
type histogram struct {
|
||
|
sum int64 // running total of measurements
|
||
|
sumOfSquares float64 // square of running total
|
||
|
buckets []int64 // bucketed values for histogram
|
||
|
value int // holds a single value as an optimization
|
||
|
valueCount int64 // number of values recorded for single value
|
||
|
}
|
||
|
|
||
|
// AddMeasurement records a value measurement observation to the histogram.
|
||
|
func (h *histogram) addMeasurement(value int64) {
|
||
|
// TODO: assert invariant
|
||
|
h.sum += value
|
||
|
h.sumOfSquares += float64(value) * float64(value)
|
||
|
|
||
|
bucketIndex := getBucket(value)
|
||
|
|
||
|
if h.valueCount == 0 || (h.valueCount > 0 && h.value == bucketIndex) {
|
||
|
h.value = bucketIndex
|
||
|
h.valueCount++
|
||
|
} else {
|
||
|
h.allocateBuckets()
|
||
|
h.buckets[bucketIndex]++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (h *histogram) allocateBuckets() {
|
||
|
if h.buckets == nil {
|
||
|
h.buckets = make([]int64, bucketCount)
|
||
|
h.buckets[h.value] = h.valueCount
|
||
|
h.value = 0
|
||
|
h.valueCount = -1
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func log2(i int64) int {
|
||
|
n := 0
|
||
|
for ; i >= 0x100; i >>= 8 {
|
||
|
n += 8
|
||
|
}
|
||
|
for ; i > 0; i >>= 1 {
|
||
|
n += 1
|
||
|
}
|
||
|
return n
|
||
|
}
|
||
|
|
||
|
func getBucket(i int64) (index int) {
|
||
|
index = log2(i) - 1
|
||
|
if index < 0 {
|
||
|
index = 0
|
||
|
}
|
||
|
if index >= bucketCount {
|
||
|
index = bucketCount - 1
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Total returns the number of recorded observations.
|
||
|
func (h *histogram) total() (total int64) {
|
||
|
if h.valueCount >= 0 {
|
||
|
total = h.valueCount
|
||
|
}
|
||
|
for _, val := range h.buckets {
|
||
|
total += int64(val)
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Average returns the average value of recorded observations.
|
||
|
func (h *histogram) average() float64 {
|
||
|
t := h.total()
|
||
|
if t == 0 {
|
||
|
return 0
|
||
|
}
|
||
|
return float64(h.sum) / float64(t)
|
||
|
}
|
||
|
|
||
|
// Variance returns the variance of recorded observations.
|
||
|
func (h *histogram) variance() float64 {
|
||
|
t := float64(h.total())
|
||
|
if t == 0 {
|
||
|
return 0
|
||
|
}
|
||
|
s := float64(h.sum) / t
|
||
|
return h.sumOfSquares/t - s*s
|
||
|
}
|
||
|
|
||
|
// StandardDeviation returns the standard deviation of recorded observations.
|
||
|
func (h *histogram) standardDeviation() float64 {
|
||
|
return math.Sqrt(h.variance())
|
||
|
}
|
||
|
|
||
|
// PercentileBoundary estimates the value that the given fraction of recorded
|
||
|
// observations are less than.
|
||
|
func (h *histogram) percentileBoundary(percentile float64) int64 {
|
||
|
total := h.total()
|
||
|
|
||
|
// Corner cases (make sure result is strictly less than Total())
|
||
|
if total == 0 {
|
||
|
return 0
|
||
|
} else if total == 1 {
|
||
|
return int64(h.average())
|
||
|
}
|
||
|
|
||
|
percentOfTotal := round(float64(total) * percentile)
|
||
|
var runningTotal int64
|
||
|
|
||
|
for i := range h.buckets {
|
||
|
value := h.buckets[i]
|
||
|
runningTotal += value
|
||
|
if runningTotal == percentOfTotal {
|
||
|
// We hit an exact bucket boundary. If the next bucket has data, it is a
|
||
|
// good estimate of the value. If the bucket is empty, we interpolate the
|
||
|
// midpoint between the next bucket's boundary and the next non-zero
|
||
|
// bucket. If the remaining buckets are all empty, then we use the
|
||
|
// boundary for the next bucket as the estimate.
|
||
|
j := uint8(i + 1)
|
||
|
min := bucketBoundary(j)
|
||
|
if runningTotal < total {
|
||
|
for h.buckets[j] == 0 {
|
||
|
j++
|
||
|
}
|
||
|
}
|
||
|
max := bucketBoundary(j)
|
||
|
return min + round(float64(max-min)/2)
|
||
|
} else if runningTotal > percentOfTotal {
|
||
|
// The value is in this bucket. Interpolate the value.
|
||
|
delta := runningTotal - percentOfTotal
|
||
|
percentBucket := float64(value-delta) / float64(value)
|
||
|
bucketMin := bucketBoundary(uint8(i))
|
||
|
nextBucketMin := bucketBoundary(uint8(i + 1))
|
||
|
bucketSize := nextBucketMin - bucketMin
|
||
|
return bucketMin + round(percentBucket*float64(bucketSize))
|
||
|
}
|
||
|
}
|
||
|
return bucketBoundary(bucketCount - 1)
|
||
|
}
|
||
|
|
||
|
// Median returns the estimated median of the observed values.
|
||
|
func (h *histogram) median() int64 {
|
||
|
return h.percentileBoundary(0.5)
|
||
|
}
|
||
|
|
||
|
// Add adds other to h.
|
||
|
func (h *histogram) Add(other timeseries.Observable) {
|
||
|
o := other.(*histogram)
|
||
|
if o.valueCount == 0 {
|
||
|
// Other histogram is empty
|
||
|
} else if h.valueCount >= 0 && o.valueCount > 0 && h.value == o.value {
|
||
|
// Both have a single bucketed value, aggregate them
|
||
|
h.valueCount += o.valueCount
|
||
|
} else {
|
||
|
// Two different values necessitate buckets in this histogram
|
||
|
h.allocateBuckets()
|
||
|
if o.valueCount >= 0 {
|
||
|
h.buckets[o.value] += o.valueCount
|
||
|
} else {
|
||
|
for i := range h.buckets {
|
||
|
h.buckets[i] += o.buckets[i]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
h.sumOfSquares += o.sumOfSquares
|
||
|
h.sum += o.sum
|
||
|
}
|
||
|
|
||
|
// Clear resets the histogram to an empty state, removing all observed values.
|
||
|
func (h *histogram) Clear() {
|
||
|
h.buckets = nil
|
||
|
h.value = 0
|
||
|
h.valueCount = 0
|
||
|
h.sum = 0
|
||
|
h.sumOfSquares = 0
|
||
|
}
|
||
|
|
||
|
// CopyFrom copies from other, which must be a *histogram, into h.
|
||
|
func (h *histogram) CopyFrom(other timeseries.Observable) {
|
||
|
o := other.(*histogram)
|
||
|
if o.valueCount == -1 {
|
||
|
h.allocateBuckets()
|
||
|
copy(h.buckets, o.buckets)
|
||
|
}
|
||
|
h.sum = o.sum
|
||
|
h.sumOfSquares = o.sumOfSquares
|
||
|
h.value = o.value
|
||
|
h.valueCount = o.valueCount
|
||
|
}
|
||
|
|
||
|
// Multiply scales the histogram by the specified ratio.
|
||
|
func (h *histogram) Multiply(ratio float64) {
|
||
|
if h.valueCount == -1 {
|
||
|
for i := range h.buckets {
|
||
|
h.buckets[i] = int64(float64(h.buckets[i]) * ratio)
|
||
|
}
|
||
|
} else {
|
||
|
h.valueCount = int64(float64(h.valueCount) * ratio)
|
||
|
}
|
||
|
h.sum = int64(float64(h.sum) * ratio)
|
||
|
h.sumOfSquares = h.sumOfSquares * ratio
|
||
|
}
|
||
|
|
||
|
// New creates a new histogram.
|
||
|
func (h *histogram) New() timeseries.Observable {
|
||
|
r := new(histogram)
|
||
|
r.Clear()
|
||
|
return r
|
||
|
}
|
||
|
|
||
|
func (h *histogram) String() string {
|
||
|
return fmt.Sprintf("%d, %f, %d, %d, %v",
|
||
|
h.sum, h.sumOfSquares, h.value, h.valueCount, h.buckets)
|
||
|
}
|
||
|
|
||
|
// round returns the closest int64 to the argument
|
||
|
func round(in float64) int64 {
|
||
|
return int64(math.Floor(in + 0.5))
|
||
|
}
|
||
|
|
||
|
// bucketBoundary returns the first value in the bucket.
|
||
|
func bucketBoundary(bucket uint8) int64 {
|
||
|
if bucket == 0 {
|
||
|
return 0
|
||
|
}
|
||
|
return 1 << bucket
|
||
|
}
|
||
|
|
||
|
// bucketData holds data about a specific bucket for use in distTmpl.
|
||
|
type bucketData struct {
|
||
|
Lower, Upper int64
|
||
|
N int64
|
||
|
Pct, CumulativePct float64
|
||
|
GraphWidth int
|
||
|
}
|
||
|
|
||
|
// data holds data about a Distribution for use in distTmpl.
|
||
|
type data struct {
|
||
|
Buckets []*bucketData
|
||
|
Count, Median int64
|
||
|
Mean, StandardDeviation float64
|
||
|
}
|
||
|
|
||
|
// maxHTMLBarWidth is the maximum width of the HTML bar for visualizing buckets.
|
||
|
const maxHTMLBarWidth = 350.0
|
||
|
|
||
|
// newData returns data representing h for use in distTmpl.
|
||
|
func (h *histogram) newData() *data {
|
||
|
// Force the allocation of buckets to simplify the rendering implementation
|
||
|
h.allocateBuckets()
|
||
|
// We scale the bars on the right so that the largest bar is
|
||
|
// maxHTMLBarWidth pixels in width.
|
||
|
maxBucket := int64(0)
|
||
|
for _, n := range h.buckets {
|
||
|
if n > maxBucket {
|
||
|
maxBucket = n
|
||
|
}
|
||
|
}
|
||
|
total := h.total()
|
||
|
barsizeMult := maxHTMLBarWidth / float64(maxBucket)
|
||
|
var pctMult float64
|
||
|
if total == 0 {
|
||
|
pctMult = 1.0
|
||
|
} else {
|
||
|
pctMult = 100.0 / float64(total)
|
||
|
}
|
||
|
|
||
|
buckets := make([]*bucketData, len(h.buckets))
|
||
|
runningTotal := int64(0)
|
||
|
for i, n := range h.buckets {
|
||
|
if n == 0 {
|
||
|
continue
|
||
|
}
|
||
|
runningTotal += n
|
||
|
var upperBound int64
|
||
|
if i < bucketCount-1 {
|
||
|
upperBound = bucketBoundary(uint8(i + 1))
|
||
|
} else {
|
||
|
upperBound = math.MaxInt64
|
||
|
}
|
||
|
buckets[i] = &bucketData{
|
||
|
Lower: bucketBoundary(uint8(i)),
|
||
|
Upper: upperBound,
|
||
|
N: n,
|
||
|
Pct: float64(n) * pctMult,
|
||
|
CumulativePct: float64(runningTotal) * pctMult,
|
||
|
GraphWidth: int(float64(n) * barsizeMult),
|
||
|
}
|
||
|
}
|
||
|
return &data{
|
||
|
Buckets: buckets,
|
||
|
Count: total,
|
||
|
Median: h.median(),
|
||
|
Mean: h.average(),
|
||
|
StandardDeviation: h.standardDeviation(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (h *histogram) html() template.HTML {
|
||
|
buf := new(bytes.Buffer)
|
||
|
if err := distTmpl().Execute(buf, h.newData()); err != nil {
|
||
|
buf.Reset()
|
||
|
log.Printf("net/trace: couldn't execute template: %v", err)
|
||
|
}
|
||
|
return template.HTML(buf.String())
|
||
|
}
|
||
|
|
||
|
var distTmplCache *template.Template
|
||
|
var distTmplOnce sync.Once
|
||
|
|
||
|
func distTmpl() *template.Template {
|
||
|
distTmplOnce.Do(func() {
|
||
|
// Input: data
|
||
|
distTmplCache = template.Must(template.New("distTmpl").Parse(`
|
||
|
<table>
|
||
|
<tr>
|
||
|
<td style="padding:0.25em">Count: {{.Count}}</td>
|
||
|
<td style="padding:0.25em">Mean: {{printf "%.0f" .Mean}}</td>
|
||
|
<td style="padding:0.25em">StdDev: {{printf "%.0f" .StandardDeviation}}</td>
|
||
|
<td style="padding:0.25em">Median: {{.Median}}</td>
|
||
|
</tr>
|
||
|
</table>
|
||
|
<hr>
|
||
|
<table>
|
||
|
{{range $b := .Buckets}}
|
||
|
{{if $b}}
|
||
|
<tr>
|
||
|
<td style="padding:0 0 0 0.25em">[</td>
|
||
|
<td style="text-align:right;padding:0 0.25em">{{.Lower}},</td>
|
||
|
<td style="text-align:right;padding:0 0.25em">{{.Upper}})</td>
|
||
|
<td style="text-align:right;padding:0 0.25em">{{.N}}</td>
|
||
|
<td style="text-align:right;padding:0 0.25em">{{printf "%#.3f" .Pct}}%</td>
|
||
|
<td style="text-align:right;padding:0 0.25em">{{printf "%#.3f" .CumulativePct}}%</td>
|
||
|
<td><div style="background-color: blue; height: 1em; width: {{.GraphWidth}};"></div></td>
|
||
|
</tr>
|
||
|
{{end}}
|
||
|
{{end}}
|
||
|
</table>
|
||
|
`))
|
||
|
})
|
||
|
return distTmplCache
|
||
|
}
|