ceph-csi/vendor/github.com/google/cel-go/parser/helper.go

574 lines
19 KiB
Go
Raw Normal View History

// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package parser
import (
"sync"
antlr "github.com/antlr/antlr4/runtime/Go/antlr/v4"
"github.com/google/cel-go/common"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
)
type parserHelper struct {
source common.Source
nextID int64
positions map[int64]int32
macroCalls map[int64]*exprpb.Expr
}
func newParserHelper(source common.Source) *parserHelper {
return &parserHelper{
source: source,
nextID: 1,
positions: make(map[int64]int32),
macroCalls: make(map[int64]*exprpb.Expr),
}
}
func (p *parserHelper) getSourceInfo() *exprpb.SourceInfo {
return &exprpb.SourceInfo{
Location: p.source.Description(),
Positions: p.positions,
LineOffsets: p.source.LineOffsets(),
MacroCalls: p.macroCalls}
}
func (p *parserHelper) newLiteral(ctx any, value *exprpb.Constant) *exprpb.Expr {
exprNode := p.newExpr(ctx)
exprNode.ExprKind = &exprpb.Expr_ConstExpr{ConstExpr: value}
return exprNode
}
func (p *parserHelper) newLiteralBool(ctx any, value bool) *exprpb.Expr {
return p.newLiteral(ctx,
&exprpb.Constant{ConstantKind: &exprpb.Constant_BoolValue{BoolValue: value}})
}
func (p *parserHelper) newLiteralString(ctx any, value string) *exprpb.Expr {
return p.newLiteral(ctx,
&exprpb.Constant{ConstantKind: &exprpb.Constant_StringValue{StringValue: value}})
}
func (p *parserHelper) newLiteralBytes(ctx any, value []byte) *exprpb.Expr {
return p.newLiteral(ctx,
&exprpb.Constant{ConstantKind: &exprpb.Constant_BytesValue{BytesValue: value}})
}
func (p *parserHelper) newLiteralInt(ctx any, value int64) *exprpb.Expr {
return p.newLiteral(ctx,
&exprpb.Constant{ConstantKind: &exprpb.Constant_Int64Value{Int64Value: value}})
}
func (p *parserHelper) newLiteralUint(ctx any, value uint64) *exprpb.Expr {
return p.newLiteral(ctx, &exprpb.Constant{ConstantKind: &exprpb.Constant_Uint64Value{Uint64Value: value}})
}
func (p *parserHelper) newLiteralDouble(ctx any, value float64) *exprpb.Expr {
return p.newLiteral(ctx,
&exprpb.Constant{ConstantKind: &exprpb.Constant_DoubleValue{DoubleValue: value}})
}
func (p *parserHelper) newIdent(ctx any, name string) *exprpb.Expr {
exprNode := p.newExpr(ctx)
exprNode.ExprKind = &exprpb.Expr_IdentExpr{IdentExpr: &exprpb.Expr_Ident{Name: name}}
return exprNode
}
func (p *parserHelper) newSelect(ctx any, operand *exprpb.Expr, field string) *exprpb.Expr {
exprNode := p.newExpr(ctx)
exprNode.ExprKind = &exprpb.Expr_SelectExpr{
SelectExpr: &exprpb.Expr_Select{Operand: operand, Field: field}}
return exprNode
}
func (p *parserHelper) newPresenceTest(ctx any, operand *exprpb.Expr, field string) *exprpb.Expr {
exprNode := p.newExpr(ctx)
exprNode.ExprKind = &exprpb.Expr_SelectExpr{
SelectExpr: &exprpb.Expr_Select{Operand: operand, Field: field, TestOnly: true}}
return exprNode
}
func (p *parserHelper) newGlobalCall(ctx any, function string, args ...*exprpb.Expr) *exprpb.Expr {
exprNode := p.newExpr(ctx)
exprNode.ExprKind = &exprpb.Expr_CallExpr{
CallExpr: &exprpb.Expr_Call{Function: function, Args: args}}
return exprNode
}
func (p *parserHelper) newReceiverCall(ctx any, function string, target *exprpb.Expr, args ...*exprpb.Expr) *exprpb.Expr {
exprNode := p.newExpr(ctx)
exprNode.ExprKind = &exprpb.Expr_CallExpr{
CallExpr: &exprpb.Expr_Call{Function: function, Target: target, Args: args}}
return exprNode
}
func (p *parserHelper) newList(ctx any, elements []*exprpb.Expr, optionals ...int32) *exprpb.Expr {
exprNode := p.newExpr(ctx)
exprNode.ExprKind = &exprpb.Expr_ListExpr{
ListExpr: &exprpb.Expr_CreateList{
Elements: elements,
OptionalIndices: optionals,
}}
return exprNode
}
func (p *parserHelper) newMap(ctx any, entries ...*exprpb.Expr_CreateStruct_Entry) *exprpb.Expr {
exprNode := p.newExpr(ctx)
exprNode.ExprKind = &exprpb.Expr_StructExpr{
StructExpr: &exprpb.Expr_CreateStruct{Entries: entries}}
return exprNode
}
func (p *parserHelper) newMapEntry(entryID int64, key *exprpb.Expr, value *exprpb.Expr, optional bool) *exprpb.Expr_CreateStruct_Entry {
return &exprpb.Expr_CreateStruct_Entry{
Id: entryID,
KeyKind: &exprpb.Expr_CreateStruct_Entry_MapKey{MapKey: key},
Value: value,
OptionalEntry: optional,
}
}
func (p *parserHelper) newObject(ctx any, typeName string, entries ...*exprpb.Expr_CreateStruct_Entry) *exprpb.Expr {
exprNode := p.newExpr(ctx)
exprNode.ExprKind = &exprpb.Expr_StructExpr{
StructExpr: &exprpb.Expr_CreateStruct{
MessageName: typeName,
Entries: entries,
},
}
return exprNode
}
func (p *parserHelper) newObjectField(fieldID int64, field string, value *exprpb.Expr, optional bool) *exprpb.Expr_CreateStruct_Entry {
return &exprpb.Expr_CreateStruct_Entry{
Id: fieldID,
KeyKind: &exprpb.Expr_CreateStruct_Entry_FieldKey{FieldKey: field},
Value: value,
OptionalEntry: optional,
}
}
func (p *parserHelper) newComprehension(ctx any, iterVar string,
iterRange *exprpb.Expr,
accuVar string,
accuInit *exprpb.Expr,
condition *exprpb.Expr,
step *exprpb.Expr,
result *exprpb.Expr) *exprpb.Expr {
exprNode := p.newExpr(ctx)
exprNode.ExprKind = &exprpb.Expr_ComprehensionExpr{
ComprehensionExpr: &exprpb.Expr_Comprehension{
AccuVar: accuVar,
AccuInit: accuInit,
IterVar: iterVar,
IterRange: iterRange,
LoopCondition: condition,
LoopStep: step,
Result: result}}
return exprNode
}
func (p *parserHelper) newExpr(ctx any) *exprpb.Expr {
id, isID := ctx.(int64)
if isID {
return &exprpb.Expr{Id: id}
}
return &exprpb.Expr{Id: p.id(ctx)}
}
func (p *parserHelper) id(ctx any) int64 {
var location common.Location
switch ctx.(type) {
case antlr.ParserRuleContext:
token := (ctx.(antlr.ParserRuleContext)).GetStart()
location = p.source.NewLocation(token.GetLine(), token.GetColumn())
case antlr.Token:
token := ctx.(antlr.Token)
location = p.source.NewLocation(token.GetLine(), token.GetColumn())
case common.Location:
location = ctx.(common.Location)
default:
// This should only happen if the ctx is nil
return -1
}
id := p.nextID
p.positions[id], _ = p.source.LocationOffset(location)
p.nextID++
return id
}
func (p *parserHelper) getLocation(id int64) common.Location {
characterOffset := p.positions[id]
location, _ := p.source.OffsetLocation(characterOffset)
return location
}
// buildMacroCallArg iterates the expression and returns a new expression
// where all macros have been replaced by their IDs in MacroCalls
func (p *parserHelper) buildMacroCallArg(expr *exprpb.Expr) *exprpb.Expr {
if _, found := p.macroCalls[expr.GetId()]; found {
return &exprpb.Expr{Id: expr.GetId()}
}
switch expr.GetExprKind().(type) {
case *exprpb.Expr_CallExpr:
// Iterate the AST from `expr` recursively looking for macros. Because we are at most
// starting from the top level macro, this recursion is bounded by the size of the AST. This
// means that the depth check on the AST during parsing will catch recursion overflows
// before we get to here.
macroTarget := expr.GetCallExpr().GetTarget()
if macroTarget != nil {
macroTarget = p.buildMacroCallArg(macroTarget)
}
macroArgs := make([]*exprpb.Expr, len(expr.GetCallExpr().GetArgs()))
for index, arg := range expr.GetCallExpr().GetArgs() {
macroArgs[index] = p.buildMacroCallArg(arg)
}
return &exprpb.Expr{
Id: expr.GetId(),
ExprKind: &exprpb.Expr_CallExpr{
CallExpr: &exprpb.Expr_Call{
Target: macroTarget,
Function: expr.GetCallExpr().GetFunction(),
Args: macroArgs,
},
},
}
case *exprpb.Expr_ListExpr:
listExpr := expr.GetListExpr()
macroListArgs := make([]*exprpb.Expr, len(listExpr.GetElements()))
for i, elem := range listExpr.GetElements() {
macroListArgs[i] = p.buildMacroCallArg(elem)
}
return &exprpb.Expr{
Id: expr.GetId(),
ExprKind: &exprpb.Expr_ListExpr{
ListExpr: &exprpb.Expr_CreateList{
Elements: macroListArgs,
OptionalIndices: listExpr.GetOptionalIndices(),
},
},
}
}
return expr
}
// addMacroCall adds the macro the the MacroCalls map in source info. If a macro has args/subargs/target
// that are macros, their ID will be stored instead for later self-lookups.
func (p *parserHelper) addMacroCall(exprID int64, function string, target *exprpb.Expr, args ...*exprpb.Expr) {
macroTarget := target
if target != nil {
if _, found := p.macroCalls[target.GetId()]; found {
macroTarget = &exprpb.Expr{Id: target.GetId()}
} else {
macroTarget = p.buildMacroCallArg(target)
}
}
macroArgs := make([]*exprpb.Expr, len(args))
for index, arg := range args {
macroArgs[index] = p.buildMacroCallArg(arg)
}
p.macroCalls[exprID] = &exprpb.Expr{
ExprKind: &exprpb.Expr_CallExpr{
CallExpr: &exprpb.Expr_Call{
Target: macroTarget,
Function: function,
Args: macroArgs,
},
},
}
}
// balancer performs tree balancing on operators whose arguments are of equal precedence.
//
// The purpose of the balancer is to ensure a compact serialization format for the logical &&, ||
// operators which have a tendency to create long DAGs which are skewed in one direction. Since the
// operators are commutative re-ordering the terms *must not* affect the evaluation result.
//
// Re-balancing the terms is a safe, if somewhat controversial choice. A better solution would be
// to make these functions variadic and update both the checker and interpreter to understand this;
// however, this is a more complex change.
//
// TODO: Consider replacing tree-balancing with variadic logical &&, || within the parser, checker,
// and interpreter.
type balancer struct {
helper *parserHelper
function string
terms []*exprpb.Expr
ops []int64
}
// newBalancer creates a balancer instance bound to a specific function and its first term.
func newBalancer(h *parserHelper, function string, term *exprpb.Expr) *balancer {
return &balancer{
helper: h,
function: function,
terms: []*exprpb.Expr{term},
ops: []int64{},
}
}
// addTerm adds an operation identifier and term to the set of terms to be balanced.
func (b *balancer) addTerm(op int64, term *exprpb.Expr) {
b.terms = append(b.terms, term)
b.ops = append(b.ops, op)
}
// balance creates a balanced tree from the sub-terms and returns the final Expr value.
func (b *balancer) balance() *exprpb.Expr {
if len(b.terms) == 1 {
return b.terms[0]
}
return b.balancedTree(0, len(b.ops)-1)
}
// balancedTree recursively balances the terms provided to a commutative operator.
func (b *balancer) balancedTree(lo, hi int) *exprpb.Expr {
mid := (lo + hi + 1) / 2
var left *exprpb.Expr
if mid == lo {
left = b.terms[mid]
} else {
left = b.balancedTree(lo, mid-1)
}
var right *exprpb.Expr
if mid == hi {
right = b.terms[mid+1]
} else {
right = b.balancedTree(mid+1, hi)
}
return b.helper.newGlobalCall(b.ops[mid], b.function, left, right)
}
type exprHelper struct {
*parserHelper
id int64
}
func (e *exprHelper) nextMacroID() int64 {
return e.parserHelper.id(e.parserHelper.getLocation(e.id))
}
// Copy implements the ExprHelper interface method by producing a copy of the input Expr value
// with a fresh set of numeric identifiers the Expr and all its descendents.
func (e *exprHelper) Copy(expr *exprpb.Expr) *exprpb.Expr {
copy := e.parserHelper.newExpr(e.parserHelper.getLocation(expr.GetId()))
switch expr.GetExprKind().(type) {
case *exprpb.Expr_ConstExpr:
copy.ExprKind = &exprpb.Expr_ConstExpr{ConstExpr: expr.GetConstExpr()}
case *exprpb.Expr_IdentExpr:
copy.ExprKind = &exprpb.Expr_IdentExpr{IdentExpr: expr.GetIdentExpr()}
case *exprpb.Expr_SelectExpr:
op := expr.GetSelectExpr().GetOperand()
copy.ExprKind = &exprpb.Expr_SelectExpr{SelectExpr: &exprpb.Expr_Select{
Operand: e.Copy(op),
Field: expr.GetSelectExpr().GetField(),
TestOnly: expr.GetSelectExpr().GetTestOnly(),
}}
case *exprpb.Expr_CallExpr:
call := expr.GetCallExpr()
target := call.GetTarget()
if target != nil {
target = e.Copy(target)
}
args := call.GetArgs()
argsCopy := make([]*exprpb.Expr, len(args))
for i, arg := range args {
argsCopy[i] = e.Copy(arg)
}
copy.ExprKind = &exprpb.Expr_CallExpr{
CallExpr: &exprpb.Expr_Call{
Function: call.GetFunction(),
Target: target,
Args: argsCopy,
},
}
case *exprpb.Expr_ListExpr:
elems := expr.GetListExpr().GetElements()
elemsCopy := make([]*exprpb.Expr, len(elems))
for i, elem := range elems {
elemsCopy[i] = e.Copy(elem)
}
copy.ExprKind = &exprpb.Expr_ListExpr{
ListExpr: &exprpb.Expr_CreateList{Elements: elemsCopy},
}
case *exprpb.Expr_StructExpr:
entries := expr.GetStructExpr().GetEntries()
entriesCopy := make([]*exprpb.Expr_CreateStruct_Entry, len(entries))
for i, entry := range entries {
entryCopy := &exprpb.Expr_CreateStruct_Entry{}
entryCopy.Id = e.nextMacroID()
switch entry.GetKeyKind().(type) {
case *exprpb.Expr_CreateStruct_Entry_FieldKey:
entryCopy.KeyKind = &exprpb.Expr_CreateStruct_Entry_FieldKey{
FieldKey: entry.GetFieldKey(),
}
case *exprpb.Expr_CreateStruct_Entry_MapKey:
entryCopy.KeyKind = &exprpb.Expr_CreateStruct_Entry_MapKey{
MapKey: e.Copy(entry.GetMapKey()),
}
}
entryCopy.Value = e.Copy(entry.GetValue())
entriesCopy[i] = entryCopy
}
copy.ExprKind = &exprpb.Expr_StructExpr{
StructExpr: &exprpb.Expr_CreateStruct{
MessageName: expr.GetStructExpr().GetMessageName(),
Entries: entriesCopy,
},
}
case *exprpb.Expr_ComprehensionExpr:
iterRange := e.Copy(expr.GetComprehensionExpr().GetIterRange())
accuInit := e.Copy(expr.GetComprehensionExpr().GetAccuInit())
cond := e.Copy(expr.GetComprehensionExpr().GetLoopCondition())
step := e.Copy(expr.GetComprehensionExpr().GetLoopStep())
result := e.Copy(expr.GetComprehensionExpr().GetResult())
copy.ExprKind = &exprpb.Expr_ComprehensionExpr{
ComprehensionExpr: &exprpb.Expr_Comprehension{
IterRange: iterRange,
IterVar: expr.GetComprehensionExpr().GetIterVar(),
AccuInit: accuInit,
AccuVar: expr.GetComprehensionExpr().GetAccuVar(),
LoopCondition: cond,
LoopStep: step,
Result: result,
},
}
}
return copy
}
// LiteralBool implements the ExprHelper interface method.
func (e *exprHelper) LiteralBool(value bool) *exprpb.Expr {
return e.parserHelper.newLiteralBool(e.nextMacroID(), value)
}
// LiteralBytes implements the ExprHelper interface method.
func (e *exprHelper) LiteralBytes(value []byte) *exprpb.Expr {
return e.parserHelper.newLiteralBytes(e.nextMacroID(), value)
}
// LiteralDouble implements the ExprHelper interface method.
func (e *exprHelper) LiteralDouble(value float64) *exprpb.Expr {
return e.parserHelper.newLiteralDouble(e.nextMacroID(), value)
}
// LiteralInt implements the ExprHelper interface method.
func (e *exprHelper) LiteralInt(value int64) *exprpb.Expr {
return e.parserHelper.newLiteralInt(e.nextMacroID(), value)
}
// LiteralString implements the ExprHelper interface method.
func (e *exprHelper) LiteralString(value string) *exprpb.Expr {
return e.parserHelper.newLiteralString(e.nextMacroID(), value)
}
// LiteralUint implements the ExprHelper interface method.
func (e *exprHelper) LiteralUint(value uint64) *exprpb.Expr {
return e.parserHelper.newLiteralUint(e.nextMacroID(), value)
}
// NewList implements the ExprHelper interface method.
func (e *exprHelper) NewList(elems ...*exprpb.Expr) *exprpb.Expr {
return e.parserHelper.newList(e.nextMacroID(), elems)
}
// NewMap implements the ExprHelper interface method.
func (e *exprHelper) NewMap(entries ...*exprpb.Expr_CreateStruct_Entry) *exprpb.Expr {
return e.parserHelper.newMap(e.nextMacroID(), entries...)
}
// NewMapEntry implements the ExprHelper interface method.
func (e *exprHelper) NewMapEntry(key *exprpb.Expr, val *exprpb.Expr, optional bool) *exprpb.Expr_CreateStruct_Entry {
return e.parserHelper.newMapEntry(e.nextMacroID(), key, val, optional)
}
// NewObject implements the ExprHelper interface method.
func (e *exprHelper) NewObject(typeName string, fieldInits ...*exprpb.Expr_CreateStruct_Entry) *exprpb.Expr {
return e.parserHelper.newObject(e.nextMacroID(), typeName, fieldInits...)
}
// NewObjectFieldInit implements the ExprHelper interface method.
func (e *exprHelper) NewObjectFieldInit(field string, init *exprpb.Expr, optional bool) *exprpb.Expr_CreateStruct_Entry {
return e.parserHelper.newObjectField(e.nextMacroID(), field, init, optional)
}
// Fold implements the ExprHelper interface method.
func (e *exprHelper) Fold(iterVar string,
iterRange *exprpb.Expr,
accuVar string,
accuInit *exprpb.Expr,
condition *exprpb.Expr,
step *exprpb.Expr,
result *exprpb.Expr) *exprpb.Expr {
return e.parserHelper.newComprehension(
e.nextMacroID(), iterVar, iterRange, accuVar, accuInit, condition, step, result)
}
// Ident implements the ExprHelper interface method.
func (e *exprHelper) Ident(name string) *exprpb.Expr {
return e.parserHelper.newIdent(e.nextMacroID(), name)
}
// AccuIdent implements the ExprHelper interface method.
func (e *exprHelper) AccuIdent() *exprpb.Expr {
return e.parserHelper.newIdent(e.nextMacroID(), AccumulatorName)
}
// GlobalCall implements the ExprHelper interface method.
func (e *exprHelper) GlobalCall(function string, args ...*exprpb.Expr) *exprpb.Expr {
return e.parserHelper.newGlobalCall(e.nextMacroID(), function, args...)
}
// ReceiverCall implements the ExprHelper interface method.
func (e *exprHelper) ReceiverCall(function string,
target *exprpb.Expr, args ...*exprpb.Expr) *exprpb.Expr {
return e.parserHelper.newReceiverCall(e.nextMacroID(), function, target, args...)
}
// PresenceTest implements the ExprHelper interface method.
func (e *exprHelper) PresenceTest(operand *exprpb.Expr, field string) *exprpb.Expr {
return e.parserHelper.newPresenceTest(e.nextMacroID(), operand, field)
}
// Select implements the ExprHelper interface method.
func (e *exprHelper) Select(operand *exprpb.Expr, field string) *exprpb.Expr {
return e.parserHelper.newSelect(e.nextMacroID(), operand, field)
}
// OffsetLocation implements the ExprHelper interface method.
func (e *exprHelper) OffsetLocation(exprID int64) common.Location {
offset := e.parserHelper.positions[exprID]
location, _ := e.parserHelper.source.OffsetLocation(offset)
return location
}
var (
// Thread-safe pool of ExprHelper values to minimize alloc overhead of ExprHelper creations.
exprHelperPool = &sync.Pool{
New: func() any {
return &exprHelper{}
},
}
)