mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-01-07 12:29:31 +00:00
228 lines
5.5 KiB
Go
228 lines
5.5 KiB
Go
|
/*
|
||
|
Copyright 2022 The Kubernetes Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
*/
|
||
|
|
||
|
package sets
|
||
|
|
||
|
import (
|
||
|
"sort"
|
||
|
)
|
||
|
|
||
|
// Set is a set of the same type elements, implemented via map[comparable]struct{} for minimal memory consumption.
|
||
|
type Set[T comparable] map[T]Empty
|
||
|
|
||
|
// cast transforms specified set to generic Set[T].
|
||
|
func cast[T comparable](s map[T]Empty) Set[T] { return s }
|
||
|
|
||
|
// New creates a Set from a list of values.
|
||
|
// NOTE: type param must be explicitly instantiated if given items are empty.
|
||
|
func New[T comparable](items ...T) Set[T] {
|
||
|
ss := make(Set[T], len(items))
|
||
|
ss.Insert(items...)
|
||
|
return ss
|
||
|
}
|
||
|
|
||
|
// KeySet creates a Set from a keys of a map[comparable](? extends interface{}).
|
||
|
// If the value passed in is not actually a map, this will panic.
|
||
|
func KeySet[T comparable, V any](theMap map[T]V) Set[T] {
|
||
|
ret := Set[T]{}
|
||
|
for keyValue := range theMap {
|
||
|
ret.Insert(keyValue)
|
||
|
}
|
||
|
return ret
|
||
|
}
|
||
|
|
||
|
// Insert adds items to the set.
|
||
|
func (s Set[T]) Insert(items ...T) Set[T] {
|
||
|
for _, item := range items {
|
||
|
s[item] = Empty{}
|
||
|
}
|
||
|
return s
|
||
|
}
|
||
|
|
||
|
func Insert[T comparable](set Set[T], items ...T) Set[T] {
|
||
|
return set.Insert(items...)
|
||
|
}
|
||
|
|
||
|
// Delete removes all items from the set.
|
||
|
func (s Set[T]) Delete(items ...T) Set[T] {
|
||
|
for _, item := range items {
|
||
|
delete(s, item)
|
||
|
}
|
||
|
return s
|
||
|
}
|
||
|
|
||
|
// Has returns true if and only if item is contained in the set.
|
||
|
func (s Set[T]) Has(item T) bool {
|
||
|
_, contained := s[item]
|
||
|
return contained
|
||
|
}
|
||
|
|
||
|
// HasAll returns true if and only if all items are contained in the set.
|
||
|
func (s Set[T]) HasAll(items ...T) bool {
|
||
|
for _, item := range items {
|
||
|
if !s.Has(item) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// HasAny returns true if any items are contained in the set.
|
||
|
func (s Set[T]) HasAny(items ...T) bool {
|
||
|
for _, item := range items {
|
||
|
if s.Has(item) {
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Clone returns a new set which is a copy of the current set.
|
||
|
func (s Set[T]) Clone() Set[T] {
|
||
|
result := make(Set[T], len(s))
|
||
|
for key := range s {
|
||
|
result.Insert(key)
|
||
|
}
|
||
|
return result
|
||
|
}
|
||
|
|
||
|
// Difference returns a set of objects that are not in s2.
|
||
|
// For example:
|
||
|
// s1 = {a1, a2, a3}
|
||
|
// s2 = {a1, a2, a4, a5}
|
||
|
// s1.Difference(s2) = {a3}
|
||
|
// s2.Difference(s1) = {a4, a5}
|
||
|
func (s1 Set[T]) Difference(s2 Set[T]) Set[T] {
|
||
|
result := New[T]()
|
||
|
for key := range s1 {
|
||
|
if !s2.Has(key) {
|
||
|
result.Insert(key)
|
||
|
}
|
||
|
}
|
||
|
return result
|
||
|
}
|
||
|
|
||
|
// SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection.
|
||
|
// For example:
|
||
|
// s1 = {a1, a2, a3}
|
||
|
// s2 = {a1, a2, a4, a5}
|
||
|
// s1.SymmetricDifference(s2) = {a3, a4, a5}
|
||
|
// s2.SymmetricDifference(s1) = {a3, a4, a5}
|
||
|
func (s1 Set[T]) SymmetricDifference(s2 Set[T]) Set[T] {
|
||
|
return s1.Difference(s2).Union(s2.Difference(s1))
|
||
|
}
|
||
|
|
||
|
// Union returns a new set which includes items in either s1 or s2.
|
||
|
// For example:
|
||
|
// s1 = {a1, a2}
|
||
|
// s2 = {a3, a4}
|
||
|
// s1.Union(s2) = {a1, a2, a3, a4}
|
||
|
// s2.Union(s1) = {a1, a2, a3, a4}
|
||
|
func (s1 Set[T]) Union(s2 Set[T]) Set[T] {
|
||
|
result := s1.Clone()
|
||
|
for key := range s2 {
|
||
|
result.Insert(key)
|
||
|
}
|
||
|
return result
|
||
|
}
|
||
|
|
||
|
// Intersection returns a new set which includes the item in BOTH s1 and s2
|
||
|
// For example:
|
||
|
// s1 = {a1, a2}
|
||
|
// s2 = {a2, a3}
|
||
|
// s1.Intersection(s2) = {a2}
|
||
|
func (s1 Set[T]) Intersection(s2 Set[T]) Set[T] {
|
||
|
var walk, other Set[T]
|
||
|
result := New[T]()
|
||
|
if s1.Len() < s2.Len() {
|
||
|
walk = s1
|
||
|
other = s2
|
||
|
} else {
|
||
|
walk = s2
|
||
|
other = s1
|
||
|
}
|
||
|
for key := range walk {
|
||
|
if other.Has(key) {
|
||
|
result.Insert(key)
|
||
|
}
|
||
|
}
|
||
|
return result
|
||
|
}
|
||
|
|
||
|
// IsSuperset returns true if and only if s1 is a superset of s2.
|
||
|
func (s1 Set[T]) IsSuperset(s2 Set[T]) bool {
|
||
|
for item := range s2 {
|
||
|
if !s1.Has(item) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// Equal returns true if and only if s1 is equal (as a set) to s2.
|
||
|
// Two sets are equal if their membership is identical.
|
||
|
// (In practice, this means same elements, order doesn't matter)
|
||
|
func (s1 Set[T]) Equal(s2 Set[T]) bool {
|
||
|
return len(s1) == len(s2) && s1.IsSuperset(s2)
|
||
|
}
|
||
|
|
||
|
type sortableSliceOfGeneric[T ordered] []T
|
||
|
|
||
|
func (g sortableSliceOfGeneric[T]) Len() int { return len(g) }
|
||
|
func (g sortableSliceOfGeneric[T]) Less(i, j int) bool { return less[T](g[i], g[j]) }
|
||
|
func (g sortableSliceOfGeneric[T]) Swap(i, j int) { g[i], g[j] = g[j], g[i] }
|
||
|
|
||
|
// List returns the contents as a sorted T slice.
|
||
|
//
|
||
|
// This is a separate function and not a method because not all types supported
|
||
|
// by Generic are ordered and only those can be sorted.
|
||
|
func List[T ordered](s Set[T]) []T {
|
||
|
res := make(sortableSliceOfGeneric[T], 0, len(s))
|
||
|
for key := range s {
|
||
|
res = append(res, key)
|
||
|
}
|
||
|
sort.Sort(res)
|
||
|
return res
|
||
|
}
|
||
|
|
||
|
// UnsortedList returns the slice with contents in random order.
|
||
|
func (s Set[T]) UnsortedList() []T {
|
||
|
res := make([]T, 0, len(s))
|
||
|
for key := range s {
|
||
|
res = append(res, key)
|
||
|
}
|
||
|
return res
|
||
|
}
|
||
|
|
||
|
// PopAny returns a single element from the set.
|
||
|
func (s Set[T]) PopAny() (T, bool) {
|
||
|
for key := range s {
|
||
|
s.Delete(key)
|
||
|
return key, true
|
||
|
}
|
||
|
var zeroValue T
|
||
|
return zeroValue, false
|
||
|
}
|
||
|
|
||
|
// Len returns the size of the set.
|
||
|
func (s Set[T]) Len() int {
|
||
|
return len(s)
|
||
|
}
|
||
|
|
||
|
func less[T ordered](lhs, rhs T) bool {
|
||
|
return lhs < rhs
|
||
|
}
|