ceph-csi/vendor/honnef.co/go/tools/staticcheck/lint.go

3361 lines
88 KiB
Go
Raw Normal View History

// Package staticcheck contains a linter for Go source code.
package staticcheck // import "honnef.co/go/tools/staticcheck"
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
htmltemplate "html/template"
"net/http"
"reflect"
"regexp"
"regexp/syntax"
"sort"
"strconv"
"strings"
texttemplate "text/template"
"unicode"
. "honnef.co/go/tools/arg"
"honnef.co/go/tools/deprecated"
"honnef.co/go/tools/facts"
"honnef.co/go/tools/functions"
"honnef.co/go/tools/internal/passes/buildssa"
"honnef.co/go/tools/internal/sharedcheck"
"honnef.co/go/tools/lint"
. "honnef.co/go/tools/lint/lintdsl"
"honnef.co/go/tools/printf"
"honnef.co/go/tools/ssa"
"honnef.co/go/tools/ssautil"
"honnef.co/go/tools/staticcheck/vrp"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/go/types/typeutil"
)
func validRegexp(call *Call) {
arg := call.Args[0]
err := ValidateRegexp(arg.Value)
if err != nil {
arg.Invalid(err.Error())
}
}
type runeSlice []rune
func (rs runeSlice) Len() int { return len(rs) }
func (rs runeSlice) Less(i int, j int) bool { return rs[i] < rs[j] }
func (rs runeSlice) Swap(i int, j int) { rs[i], rs[j] = rs[j], rs[i] }
func utf8Cutset(call *Call) {
arg := call.Args[1]
if InvalidUTF8(arg.Value) {
arg.Invalid(MsgInvalidUTF8)
}
}
func uniqueCutset(call *Call) {
arg := call.Args[1]
if !UniqueStringCutset(arg.Value) {
arg.Invalid(MsgNonUniqueCutset)
}
}
func unmarshalPointer(name string, arg int) CallCheck {
return func(call *Call) {
if !Pointer(call.Args[arg].Value) {
call.Args[arg].Invalid(fmt.Sprintf("%s expects to unmarshal into a pointer, but the provided value is not a pointer", name))
}
}
}
func pointlessIntMath(call *Call) {
if ConvertedFromInt(call.Args[0].Value) {
call.Invalid(fmt.Sprintf("calling %s on a converted integer is pointless", CallName(call.Instr.Common())))
}
}
func checkValidHostPort(arg int) CallCheck {
return func(call *Call) {
if !ValidHostPort(call.Args[arg].Value) {
call.Args[arg].Invalid(MsgInvalidHostPort)
}
}
}
var (
checkRegexpRules = map[string]CallCheck{
"regexp.MustCompile": validRegexp,
"regexp.Compile": validRegexp,
"regexp.Match": validRegexp,
"regexp.MatchReader": validRegexp,
"regexp.MatchString": validRegexp,
}
checkTimeParseRules = map[string]CallCheck{
"time.Parse": func(call *Call) {
arg := call.Args[Arg("time.Parse.layout")]
err := ValidateTimeLayout(arg.Value)
if err != nil {
arg.Invalid(err.Error())
}
},
}
checkEncodingBinaryRules = map[string]CallCheck{
"encoding/binary.Write": func(call *Call) {
arg := call.Args[Arg("encoding/binary.Write.data")]
if !CanBinaryMarshal(call.Pass, arg.Value) {
arg.Invalid(fmt.Sprintf("value of type %s cannot be used with binary.Write", arg.Value.Value.Type()))
}
},
}
checkURLsRules = map[string]CallCheck{
"net/url.Parse": func(call *Call) {
arg := call.Args[Arg("net/url.Parse.rawurl")]
err := ValidateURL(arg.Value)
if err != nil {
arg.Invalid(err.Error())
}
},
}
checkSyncPoolValueRules = map[string]CallCheck{
"(*sync.Pool).Put": func(call *Call) {
arg := call.Args[Arg("(*sync.Pool).Put.x")]
typ := arg.Value.Value.Type()
if !IsPointerLike(typ) {
arg.Invalid("argument should be pointer-like to avoid allocations")
}
},
}
checkRegexpFindAllRules = map[string]CallCheck{
"(*regexp.Regexp).FindAll": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllIndex": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllString": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllStringIndex": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllStringSubmatch": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllStringSubmatchIndex": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllSubmatch": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllSubmatchIndex": RepeatZeroTimes("a FindAll method", 1),
}
checkUTF8CutsetRules = map[string]CallCheck{
"strings.IndexAny": utf8Cutset,
"strings.LastIndexAny": utf8Cutset,
"strings.ContainsAny": utf8Cutset,
"strings.Trim": utf8Cutset,
"strings.TrimLeft": utf8Cutset,
"strings.TrimRight": utf8Cutset,
}
checkUniqueCutsetRules = map[string]CallCheck{
"strings.Trim": uniqueCutset,
"strings.TrimLeft": uniqueCutset,
"strings.TrimRight": uniqueCutset,
}
checkUnmarshalPointerRules = map[string]CallCheck{
"encoding/xml.Unmarshal": unmarshalPointer("xml.Unmarshal", 1),
"(*encoding/xml.Decoder).Decode": unmarshalPointer("Decode", 0),
"(*encoding/xml.Decoder).DecodeElement": unmarshalPointer("DecodeElement", 0),
"encoding/json.Unmarshal": unmarshalPointer("json.Unmarshal", 1),
"(*encoding/json.Decoder).Decode": unmarshalPointer("Decode", 0),
}
checkUnbufferedSignalChanRules = map[string]CallCheck{
"os/signal.Notify": func(call *Call) {
arg := call.Args[Arg("os/signal.Notify.c")]
if UnbufferedChannel(arg.Value) {
arg.Invalid("the channel used with signal.Notify should be buffered")
}
},
}
checkMathIntRules = map[string]CallCheck{
"math.Ceil": pointlessIntMath,
"math.Floor": pointlessIntMath,
"math.IsNaN": pointlessIntMath,
"math.Trunc": pointlessIntMath,
"math.IsInf": pointlessIntMath,
}
checkStringsReplaceZeroRules = map[string]CallCheck{
"strings.Replace": RepeatZeroTimes("strings.Replace", 3),
"bytes.Replace": RepeatZeroTimes("bytes.Replace", 3),
}
checkListenAddressRules = map[string]CallCheck{
"net/http.ListenAndServe": checkValidHostPort(0),
"net/http.ListenAndServeTLS": checkValidHostPort(0),
}
checkBytesEqualIPRules = map[string]CallCheck{
"bytes.Equal": func(call *Call) {
if ConvertedFrom(call.Args[Arg("bytes.Equal.a")].Value, "net.IP") &&
ConvertedFrom(call.Args[Arg("bytes.Equal.b")].Value, "net.IP") {
call.Invalid("use net.IP.Equal to compare net.IPs, not bytes.Equal")
}
},
}
checkRegexpMatchLoopRules = map[string]CallCheck{
"regexp.Match": loopedRegexp("regexp.Match"),
"regexp.MatchReader": loopedRegexp("regexp.MatchReader"),
"regexp.MatchString": loopedRegexp("regexp.MatchString"),
}
checkNoopMarshal = map[string]CallCheck{
// TODO(dh): should we really flag XML? Even an empty struct
// produces a non-zero amount of data, namely its type name.
// Let's see if we encounter any false positives.
//
// Also, should we flag gob?
"encoding/json.Marshal": checkNoopMarshalImpl(Arg("json.Marshal.v"), "MarshalJSON", "MarshalText"),
"encoding/xml.Marshal": checkNoopMarshalImpl(Arg("xml.Marshal.v"), "MarshalXML", "MarshalText"),
"(*encoding/json.Encoder).Encode": checkNoopMarshalImpl(Arg("(*encoding/json.Encoder).Encode.v"), "MarshalJSON", "MarshalText"),
"(*encoding/xml.Encoder).Encode": checkNoopMarshalImpl(Arg("(*encoding/xml.Encoder).Encode.v"), "MarshalXML", "MarshalText"),
"encoding/json.Unmarshal": checkNoopMarshalImpl(Arg("json.Unmarshal.v"), "UnmarshalJSON", "UnmarshalText"),
"encoding/xml.Unmarshal": checkNoopMarshalImpl(Arg("xml.Unmarshal.v"), "UnmarshalXML", "UnmarshalText"),
"(*encoding/json.Decoder).Decode": checkNoopMarshalImpl(Arg("(*encoding/json.Decoder).Decode.v"), "UnmarshalJSON", "UnmarshalText"),
"(*encoding/xml.Decoder).Decode": checkNoopMarshalImpl(Arg("(*encoding/xml.Decoder).Decode.v"), "UnmarshalXML", "UnmarshalText"),
}
checkUnsupportedMarshal = map[string]CallCheck{
"encoding/json.Marshal": checkUnsupportedMarshalImpl(Arg("json.Marshal.v"), "json", "MarshalJSON", "MarshalText"),
"encoding/xml.Marshal": checkUnsupportedMarshalImpl(Arg("xml.Marshal.v"), "xml", "MarshalXML", "MarshalText"),
"(*encoding/json.Encoder).Encode": checkUnsupportedMarshalImpl(Arg("(*encoding/json.Encoder).Encode.v"), "json", "MarshalJSON", "MarshalText"),
"(*encoding/xml.Encoder).Encode": checkUnsupportedMarshalImpl(Arg("(*encoding/xml.Encoder).Encode.v"), "xml", "MarshalXML", "MarshalText"),
}
checkAtomicAlignment = map[string]CallCheck{
"sync/atomic.AddInt64": checkAtomicAlignmentImpl,
"sync/atomic.AddUint64": checkAtomicAlignmentImpl,
"sync/atomic.CompareAndSwapInt64": checkAtomicAlignmentImpl,
"sync/atomic.CompareAndSwapUint64": checkAtomicAlignmentImpl,
"sync/atomic.LoadInt64": checkAtomicAlignmentImpl,
"sync/atomic.LoadUint64": checkAtomicAlignmentImpl,
"sync/atomic.StoreInt64": checkAtomicAlignmentImpl,
"sync/atomic.StoreUint64": checkAtomicAlignmentImpl,
"sync/atomic.SwapInt64": checkAtomicAlignmentImpl,
"sync/atomic.SwapUint64": checkAtomicAlignmentImpl,
}
// TODO(dh): detect printf wrappers
checkPrintfRules = map[string]CallCheck{
"fmt.Errorf": func(call *Call) { checkPrintfCall(call, 0, 1) },
"fmt.Printf": func(call *Call) { checkPrintfCall(call, 0, 1) },
"fmt.Sprintf": func(call *Call) { checkPrintfCall(call, 0, 1) },
"fmt.Fprintf": func(call *Call) { checkPrintfCall(call, 1, 2) },
}
)
func checkPrintfCall(call *Call, fIdx, vIdx int) {
f := call.Args[fIdx]
var args []ssa.Value
switch v := call.Args[vIdx].Value.Value.(type) {
case *ssa.Slice:
var ok bool
args, ok = ssautil.Vararg(v)
if !ok {
// We don't know what the actual arguments to the function are
return
}
case *ssa.Const:
// nil, i.e. no arguments
default:
// We don't know what the actual arguments to the function are
return
}
checkPrintfCallImpl(call, f.Value.Value, args)
}
type verbFlag int
const (
isInt verbFlag = 1 << iota
isBool
isFP
isString
isPointer
isPseudoPointer
isSlice
isAny
noRecurse
)
var verbs = [...]verbFlag{
'b': isPseudoPointer | isInt | isFP,
'c': isInt,
'd': isPseudoPointer | isInt,
'e': isFP,
'E': isFP,
'f': isFP,
'F': isFP,
'g': isFP,
'G': isFP,
'o': isPseudoPointer | isInt,
'p': isSlice | isPointer | noRecurse,
'q': isInt | isString,
's': isString,
't': isBool,
'T': isAny,
'U': isInt,
'v': isAny,
'X': isPseudoPointer | isInt | isString,
'x': isPseudoPointer | isInt | isString,
}
func checkPrintfCallImpl(call *Call, f ssa.Value, args []ssa.Value) {
var msCache *typeutil.MethodSetCache
if f.Parent() != nil {
msCache = &f.Parent().Prog.MethodSets
}
elem := func(T types.Type, verb rune) ([]types.Type, bool) {
if verbs[verb]&noRecurse != 0 {
return []types.Type{T}, false
}
switch T := T.(type) {
case *types.Slice:
if verbs[verb]&isSlice != 0 {
return []types.Type{T}, false
}
if verbs[verb]&isString != 0 && IsType(T.Elem().Underlying(), "byte") {
return []types.Type{T}, false
}
return []types.Type{T.Elem()}, true
case *types.Map:
key := T.Key()
val := T.Elem()
return []types.Type{key, val}, true
case *types.Struct:
out := make([]types.Type, 0, T.NumFields())
for i := 0; i < T.NumFields(); i++ {
out = append(out, T.Field(i).Type())
}
return out, true
case *types.Array:
return []types.Type{T.Elem()}, true
default:
return []types.Type{T}, false
}
}
isInfo := func(T types.Type, info types.BasicInfo) bool {
basic, ok := T.Underlying().(*types.Basic)
return ok && basic.Info()&info != 0
}
isStringer := func(T types.Type, ms *types.MethodSet) bool {
sel := ms.Lookup(nil, "String")
if sel == nil {
return false
}
fn, ok := sel.Obj().(*types.Func)
if !ok {
// should be unreachable
return false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 0 {
return false
}
if sig.Results().Len() != 1 {
return false
}
if !IsType(sig.Results().At(0).Type(), "string") {
return false
}
return true
}
isError := func(T types.Type, ms *types.MethodSet) bool {
sel := ms.Lookup(nil, "Error")
if sel == nil {
return false
}
fn, ok := sel.Obj().(*types.Func)
if !ok {
// should be unreachable
return false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 0 {
return false
}
if sig.Results().Len() != 1 {
return false
}
if !IsType(sig.Results().At(0).Type(), "string") {
return false
}
return true
}
isFormatter := func(T types.Type, ms *types.MethodSet) bool {
sel := ms.Lookup(nil, "Format")
if sel == nil {
return false
}
fn, ok := sel.Obj().(*types.Func)
if !ok {
// should be unreachable
return false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 2 {
return false
}
// TODO(dh): check the types of the arguments for more
// precision
if sig.Results().Len() != 0 {
return false
}
return true
}
seen := map[types.Type]bool{}
var checkType func(verb rune, T types.Type, top bool) bool
checkType = func(verb rune, T types.Type, top bool) bool {
if top {
for k := range seen {
delete(seen, k)
}
}
if seen[T] {
return true
}
seen[T] = true
if int(verb) >= len(verbs) {
// Unknown verb
return true
}
flags := verbs[verb]
if flags == 0 {
// Unknown verb
return true
}
ms := msCache.MethodSet(T)
if isFormatter(T, ms) {
// the value is responsible for formatting itself
return true
}
if flags&isString != 0 && (isStringer(T, ms) || isError(T, ms)) {
// Check for stringer early because we're about to dereference
return true
}
T = T.Underlying()
if flags&(isPointer|isPseudoPointer) == 0 && top {
T = Dereference(T)
}
if flags&isPseudoPointer != 0 && top {
t := Dereference(T)
if _, ok := t.Underlying().(*types.Struct); ok {
T = t
}
}
if _, ok := T.(*types.Interface); ok {
// We don't know what's in the interface
return true
}
var info types.BasicInfo
if flags&isInt != 0 {
info |= types.IsInteger
}
if flags&isBool != 0 {
info |= types.IsBoolean
}
if flags&isFP != 0 {
info |= types.IsFloat | types.IsComplex
}
if flags&isString != 0 {
info |= types.IsString
}
if info != 0 && isInfo(T, info) {
return true
}
if flags&isString != 0 && (IsType(T, "[]byte") || isStringer(T, ms) || isError(T, ms)) {
return true
}
if flags&isPointer != 0 && IsPointerLike(T) {
return true
}
if flags&isPseudoPointer != 0 {
switch U := T.Underlying().(type) {
case *types.Pointer:
if !top {
return true
}
if _, ok := U.Elem().Underlying().(*types.Struct); !ok {
return true
}
case *types.Chan, *types.Signature:
return true
}
}
if flags&isSlice != 0 {
if _, ok := T.(*types.Slice); ok {
return true
}
}
if flags&isAny != 0 {
return true
}
elems, ok := elem(T.Underlying(), verb)
if !ok {
return false
}
for _, elem := range elems {
if !checkType(verb, elem, false) {
return false
}
}
return true
}
k, ok := f.(*ssa.Const)
if !ok {
return
}
actions, err := printf.Parse(constant.StringVal(k.Value))
if err != nil {
call.Invalid("couldn't parse format string")
return
}
ptr := 1
hasExplicit := false
checkStar := func(verb printf.Verb, star printf.Argument) bool {
if star, ok := star.(printf.Star); ok {
idx := 0
if star.Index == -1 {
idx = ptr
ptr++
} else {
hasExplicit = true
idx = star.Index
ptr = star.Index + 1
}
if idx == 0 {
call.Invalid(fmt.Sprintf("Printf format %s reads invalid arg 0; indices are 1-based", verb.Raw))
return false
}
if idx > len(args) {
call.Invalid(
fmt.Sprintf("Printf format %s reads arg #%d, but call has only %d args",
verb.Raw, idx, len(args)))
return false
}
if arg, ok := args[idx-1].(*ssa.MakeInterface); ok {
if !isInfo(arg.X.Type(), types.IsInteger) {
call.Invalid(fmt.Sprintf("Printf format %s reads non-int arg #%d as argument of *", verb.Raw, idx))
}
}
}
return true
}
// We only report one problem per format string. Making a
// mistake with an index tends to invalidate all future
// implicit indices.
for _, action := range actions {
verb, ok := action.(printf.Verb)
if !ok {
continue
}
if !checkStar(verb, verb.Width) || !checkStar(verb, verb.Precision) {
return
}
off := ptr
if verb.Value != -1 {
hasExplicit = true
off = verb.Value
}
if off > len(args) {
call.Invalid(
fmt.Sprintf("Printf format %s reads arg #%d, but call has only %d args",
verb.Raw, off, len(args)))
return
} else if verb.Value == 0 && verb.Letter != '%' {
call.Invalid(fmt.Sprintf("Printf format %s reads invalid arg 0; indices are 1-based", verb.Raw))
return
} else if off != 0 {
arg, ok := args[off-1].(*ssa.MakeInterface)
if ok {
if !checkType(verb.Letter, arg.X.Type(), true) {
call.Invalid(fmt.Sprintf("Printf format %s has arg #%d of wrong type %s",
verb.Raw, ptr, args[ptr-1].(*ssa.MakeInterface).X.Type()))
return
}
}
}
switch verb.Value {
case -1:
// Consume next argument
ptr++
case 0:
// Don't consume any arguments
default:
ptr = verb.Value + 1
}
}
if !hasExplicit && ptr <= len(args) {
call.Invalid(fmt.Sprintf("Printf call needs %d args but has %d args", ptr-1, len(args)))
}
}
func checkAtomicAlignmentImpl(call *Call) {
sizes := call.Pass.TypesSizes
if sizes.Sizeof(types.Typ[types.Uintptr]) != 4 {
// Not running on a 32-bit platform
return
}
v, ok := call.Args[0].Value.Value.(*ssa.FieldAddr)
if !ok {
// TODO(dh): also check indexing into arrays and slices
return
}
T := v.X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct)
fields := make([]*types.Var, 0, T.NumFields())
for i := 0; i < T.NumFields() && i <= v.Field; i++ {
fields = append(fields, T.Field(i))
}
off := sizes.Offsetsof(fields)[v.Field]
if off%8 != 0 {
msg := fmt.Sprintf("address of non 64-bit aligned field %s passed to %s",
T.Field(v.Field).Name(),
CallName(call.Instr.Common()))
call.Invalid(msg)
}
}
func checkNoopMarshalImpl(argN int, meths ...string) CallCheck {
return func(call *Call) {
if IsGenerated(call.Pass, call.Instr.Pos()) {
return
}
arg := call.Args[argN]
T := arg.Value.Value.Type()
Ts, ok := Dereference(T).Underlying().(*types.Struct)
if !ok {
return
}
if Ts.NumFields() == 0 {
return
}
fields := FlattenFields(Ts)
for _, field := range fields {
if field.Var.Exported() {
return
}
}
// OPT(dh): we could use a method set cache here
ms := call.Instr.Parent().Prog.MethodSets.MethodSet(T)
// TODO(dh): we're not checking the signature, which can cause false negatives.
// This isn't a huge problem, however, since vet complains about incorrect signatures.
for _, meth := range meths {
if ms.Lookup(nil, meth) != nil {
return
}
}
arg.Invalid("struct doesn't have any exported fields, nor custom marshaling")
}
}
func checkUnsupportedMarshalImpl(argN int, tag string, meths ...string) CallCheck {
// TODO(dh): flag slices and maps of unsupported types
return func(call *Call) {
msCache := &call.Instr.Parent().Prog.MethodSets
arg := call.Args[argN]
T := arg.Value.Value.Type()
Ts, ok := Dereference(T).Underlying().(*types.Struct)
if !ok {
return
}
ms := msCache.MethodSet(T)
// TODO(dh): we're not checking the signature, which can cause false negatives.
// This isn't a huge problem, however, since vet complains about incorrect signatures.
for _, meth := range meths {
if ms.Lookup(nil, meth) != nil {
return
}
}
fields := FlattenFields(Ts)
for _, field := range fields {
if !(field.Var.Exported()) {
continue
}
if reflect.StructTag(field.Tag).Get(tag) == "-" {
continue
}
ms := msCache.MethodSet(field.Var.Type())
// TODO(dh): we're not checking the signature, which can cause false negatives.
// This isn't a huge problem, however, since vet complains about incorrect signatures.
for _, meth := range meths {
if ms.Lookup(nil, meth) != nil {
return
}
}
switch field.Var.Type().Underlying().(type) {
case *types.Chan, *types.Signature:
arg.Invalid(fmt.Sprintf("trying to marshal chan or func value, field %s", fieldPath(T, field.Path)))
}
}
}
}
func fieldPath(start types.Type, indices []int) string {
p := start.String()
for _, idx := range indices {
field := Dereference(start).Underlying().(*types.Struct).Field(idx)
start = field.Type()
p += "." + field.Name()
}
return p
}
func isInLoop(b *ssa.BasicBlock) bool {
sets := functions.FindLoops(b.Parent())
for _, set := range sets {
if set.Has(b) {
return true
}
}
return false
}
func CheckUntrappableSignal(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
if !IsCallToAnyAST(pass, call,
"os/signal.Ignore", "os/signal.Notify", "os/signal.Reset") {
return
}
for _, arg := range call.Args {
if conv, ok := arg.(*ast.CallExpr); ok && isName(pass, conv.Fun, "os.Signal") {
arg = conv.Args[0]
}
if isName(pass, arg, "os.Kill") || isName(pass, arg, "syscall.SIGKILL") {
ReportNodef(pass, arg, "%s cannot be trapped (did you mean syscall.SIGTERM?)", Render(pass, arg))
}
if isName(pass, arg, "syscall.SIGSTOP") {
ReportNodef(pass, arg, "%s signal cannot be trapped", Render(pass, arg))
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func CheckTemplate(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
var kind string
if IsCallToAST(pass, call, "(*text/template.Template).Parse") {
kind = "text"
} else if IsCallToAST(pass, call, "(*html/template.Template).Parse") {
kind = "html"
} else {
return
}
sel := call.Fun.(*ast.SelectorExpr)
if !IsCallToAST(pass, sel.X, "text/template.New") &&
!IsCallToAST(pass, sel.X, "html/template.New") {
// TODO(dh): this is a cheap workaround for templates with
// different delims. A better solution with less false
// negatives would use data flow analysis to see where the
// template comes from and where it has been
return
}
s, ok := ExprToString(pass, call.Args[Arg("(*text/template.Template).Parse.text")])
if !ok {
return
}
var err error
switch kind {
case "text":
_, err = texttemplate.New("").Parse(s)
case "html":
_, err = htmltemplate.New("").Parse(s)
}
if err != nil {
// TODO(dominikh): whitelist other parse errors, if any
if strings.Contains(err.Error(), "unexpected") {
ReportNodef(pass, call.Args[Arg("(*text/template.Template).Parse.text")], "%s", err)
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func CheckTimeSleepConstant(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
if !IsCallToAST(pass, call, "time.Sleep") {
return
}
lit, ok := call.Args[Arg("time.Sleep.d")].(*ast.BasicLit)
if !ok {
return
}
n, err := strconv.Atoi(lit.Value)
if err != nil {
return
}
if n == 0 || n > 120 {
// time.Sleep(0) is a seldom used pattern in concurrency
// tests. >120 might be intentional. 120 was chosen
// because the user could've meant 2 minutes.
return
}
recommendation := "time.Sleep(time.Nanosecond)"
if n != 1 {
recommendation = fmt.Sprintf("time.Sleep(%d * time.Nanosecond)", n)
}
ReportNodef(pass, call.Args[Arg("time.Sleep.d")],
"sleeping for %d nanoseconds is probably a bug. Be explicit if it isn't: %s", n, recommendation)
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func CheckWaitgroupAdd(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
g := node.(*ast.GoStmt)
fun, ok := g.Call.Fun.(*ast.FuncLit)
if !ok {
return
}
if len(fun.Body.List) == 0 {
return
}
stmt, ok := fun.Body.List[0].(*ast.ExprStmt)
if !ok {
return
}
if IsCallToAST(pass, stmt.X, "(*sync.WaitGroup).Add") {
ReportNodef(pass, stmt, "should call %s before starting the goroutine to avoid a race",
Render(pass, stmt))
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.GoStmt)(nil)}, fn)
return nil, nil
}
func CheckInfiniteEmptyLoop(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
loop := node.(*ast.ForStmt)
if len(loop.Body.List) != 0 || loop.Post != nil {
return
}
if loop.Init != nil {
// TODO(dh): this isn't strictly necessary, it just makes
// the check easier.
return
}
// An empty loop is bad news in two cases: 1) The loop has no
// condition. In that case, it's just a loop that spins
// forever and as fast as it can, keeping a core busy. 2) The
// loop condition only consists of variable or field reads and
// operators on those. The only way those could change their
// value is with unsynchronised access, which constitutes a
// data race.
//
// If the condition contains any function calls, its behaviour
// is dynamic and the loop might terminate. Similarly for
// channel receives.
if loop.Cond != nil {
if hasSideEffects(loop.Cond) {
return
}
if ident, ok := loop.Cond.(*ast.Ident); ok {
if k, ok := pass.TypesInfo.ObjectOf(ident).(*types.Const); ok {
if !constant.BoolVal(k.Val()) {
// don't flag `for false {}` loops. They're a debug aid.
return
}
}
}
ReportNodef(pass, loop, "loop condition never changes or has a race condition")
}
ReportNodef(pass, loop, "this loop will spin, using 100%% CPU")
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.ForStmt)(nil)}, fn)
return nil, nil
}
func CheckDeferInInfiniteLoop(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
mightExit := false
var defers []ast.Stmt
loop := node.(*ast.ForStmt)
if loop.Cond != nil {
return
}
fn2 := func(node ast.Node) bool {
switch stmt := node.(type) {
case *ast.ReturnStmt:
mightExit = true
return false
case *ast.BranchStmt:
// TODO(dominikh): if this sees a break in a switch or
// select, it doesn't check if it breaks the loop or
// just the select/switch. This causes some false
// negatives.
if stmt.Tok == token.BREAK {
mightExit = true
return false
}
case *ast.DeferStmt:
defers = append(defers, stmt)
case *ast.FuncLit:
// Don't look into function bodies
return false
}
return true
}
ast.Inspect(loop.Body, fn2)
if mightExit {
return
}
for _, stmt := range defers {
ReportNodef(pass, stmt, "defers in this infinite loop will never run")
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.ForStmt)(nil)}, fn)
return nil, nil
}
func CheckDubiousDeferInChannelRangeLoop(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
loop := node.(*ast.RangeStmt)
typ := pass.TypesInfo.TypeOf(loop.X)
_, ok := typ.Underlying().(*types.Chan)
if !ok {
return
}
fn2 := func(node ast.Node) bool {
switch stmt := node.(type) {
case *ast.DeferStmt:
ReportNodef(pass, stmt, "defers in this range loop won't run unless the channel gets closed")
case *ast.FuncLit:
// Don't look into function bodies
return false
}
return true
}
ast.Inspect(loop.Body, fn2)
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.RangeStmt)(nil)}, fn)
return nil, nil
}
func CheckTestMainExit(pass *analysis.Pass) (interface{}, error) {
var (
fnmain ast.Node
callsExit bool
callsRun bool
arg types.Object
)
fn := func(node ast.Node, push bool) bool {
if !push {
if fnmain != nil && node == fnmain {
if !callsExit && callsRun {
ReportNodef(pass, fnmain, "TestMain should call os.Exit to set exit code")
}
fnmain = nil
callsExit = false
callsRun = false
arg = nil
}
return true
}
switch node := node.(type) {
case *ast.FuncDecl:
if fnmain != nil {
return true
}
if !isTestMain(pass, node) {
return false
}
fnmain = node
arg = pass.TypesInfo.ObjectOf(node.Type.Params.List[0].Names[0])
return true
case *ast.CallExpr:
if IsCallToAST(pass, node, "os.Exit") {
callsExit = true
return false
}
sel, ok := node.Fun.(*ast.SelectorExpr)
if !ok {
return true
}
ident, ok := sel.X.(*ast.Ident)
if !ok {
return true
}
if arg != pass.TypesInfo.ObjectOf(ident) {
return true
}
if sel.Sel.Name == "Run" {
callsRun = true
return false
}
return true
default:
// unreachable
return true
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Nodes([]ast.Node{(*ast.FuncDecl)(nil), (*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func isTestMain(pass *analysis.Pass, decl *ast.FuncDecl) bool {
if decl.Name.Name != "TestMain" {
return false
}
if len(decl.Type.Params.List) != 1 {
return false
}
arg := decl.Type.Params.List[0]
if len(arg.Names) != 1 {
return false
}
return IsOfType(pass, arg.Type, "*testing.M")
}
func CheckExec(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
if !IsCallToAST(pass, call, "os/exec.Command") {
return
}
val, ok := ExprToString(pass, call.Args[Arg("os/exec.Command.name")])
if !ok {
return
}
if !strings.Contains(val, " ") || strings.Contains(val, `\`) || strings.Contains(val, "/") {
return
}
ReportNodef(pass, call.Args[Arg("os/exec.Command.name")],
"first argument to exec.Command looks like a shell command, but a program name or path are expected")
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func CheckLoopEmptyDefault(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
loop := node.(*ast.ForStmt)
if len(loop.Body.List) != 1 || loop.Cond != nil || loop.Init != nil {
return
}
sel, ok := loop.Body.List[0].(*ast.SelectStmt)
if !ok {
return
}
for _, c := range sel.Body.List {
if comm, ok := c.(*ast.CommClause); ok && comm.Comm == nil && len(comm.Body) == 0 {
ReportNodef(pass, comm, "should not have an empty default case in a for+select loop. The loop will spin.")
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.ForStmt)(nil)}, fn)
return nil, nil
}
func CheckLhsRhsIdentical(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
op := node.(*ast.BinaryExpr)
switch op.Op {
case token.EQL, token.NEQ:
if basic, ok := pass.TypesInfo.TypeOf(op.X).Underlying().(*types.Basic); ok {
if kind := basic.Kind(); kind == types.Float32 || kind == types.Float64 {
// f == f and f != f might be used to check for NaN
return
}
}
case token.SUB, token.QUO, token.AND, token.REM, token.OR, token.XOR, token.AND_NOT,
token.LAND, token.LOR, token.LSS, token.GTR, token.LEQ, token.GEQ:
default:
// For some ops, such as + and *, it can make sense to
// have identical operands
return
}
if Render(pass, op.X) != Render(pass, op.Y) {
return
}
l1, ok1 := op.X.(*ast.BasicLit)
l2, ok2 := op.Y.(*ast.BasicLit)
if ok1 && ok2 && l1.Kind == token.INT && l2.Kind == l1.Kind && l1.Value == "0" && l2.Value == l1.Value && IsGenerated(pass, l1.Pos()) {
// cgo generates the following function call:
// _cgoCheckPointer(_cgoBase0, 0 == 0) it uses 0 == 0
// instead of true in case the user shadowed the
// identifier. Ideally we'd restrict this exception to
// calls of _cgoCheckPointer, but it's not worth the
// hassle of keeping track of the stack. <lit> <op> <lit>
// are very rare to begin with, and we're mostly checking
// for them to catch typos such as 1 == 1 where the user
// meant to type i == 1. The odds of a false negative for
// 0 == 0 are slim.
return
}
ReportNodef(pass, op, "identical expressions on the left and right side of the '%s' operator", op.Op)
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.BinaryExpr)(nil)}, fn)
return nil, nil
}
func CheckScopedBreak(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
var body *ast.BlockStmt
switch node := node.(type) {
case *ast.ForStmt:
body = node.Body
case *ast.RangeStmt:
body = node.Body
default:
panic(fmt.Sprintf("unreachable: %T", node))
}
for _, stmt := range body.List {
var blocks [][]ast.Stmt
switch stmt := stmt.(type) {
case *ast.SwitchStmt:
for _, c := range stmt.Body.List {
blocks = append(blocks, c.(*ast.CaseClause).Body)
}
case *ast.SelectStmt:
for _, c := range stmt.Body.List {
blocks = append(blocks, c.(*ast.CommClause).Body)
}
default:
continue
}
for _, body := range blocks {
if len(body) == 0 {
continue
}
lasts := []ast.Stmt{body[len(body)-1]}
// TODO(dh): unfold all levels of nested block
// statements, not just a single level if statement
if ifs, ok := lasts[0].(*ast.IfStmt); ok {
if len(ifs.Body.List) == 0 {
continue
}
lasts[0] = ifs.Body.List[len(ifs.Body.List)-1]
if block, ok := ifs.Else.(*ast.BlockStmt); ok {
if len(block.List) != 0 {
lasts = append(lasts, block.List[len(block.List)-1])
}
}
}
for _, last := range lasts {
branch, ok := last.(*ast.BranchStmt)
if !ok || branch.Tok != token.BREAK || branch.Label != nil {
continue
}
ReportNodef(pass, branch, "ineffective break statement. Did you mean to break out of the outer loop?")
}
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.ForStmt)(nil), (*ast.RangeStmt)(nil)}, fn)
return nil, nil
}
func CheckUnsafePrintf(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
var arg int
if IsCallToAnyAST(pass, call, "fmt.Printf", "fmt.Sprintf", "log.Printf") {
arg = Arg("fmt.Printf.format")
} else if IsCallToAnyAST(pass, call, "fmt.Fprintf") {
arg = Arg("fmt.Fprintf.format")
} else {
return
}
if len(call.Args) != arg+1 {
return
}
switch call.Args[arg].(type) {
case *ast.CallExpr, *ast.Ident:
default:
return
}
ReportNodef(pass, call.Args[arg],
"printf-style function with dynamic format string and no further arguments should use print-style function instead")
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func CheckEarlyDefer(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
block := node.(*ast.BlockStmt)
if len(block.List) < 2 {
return
}
for i, stmt := range block.List {
if i == len(block.List)-1 {
break
}
assign, ok := stmt.(*ast.AssignStmt)
if !ok {
continue
}
if len(assign.Rhs) != 1 {
continue
}
if len(assign.Lhs) < 2 {
continue
}
if lhs, ok := assign.Lhs[len(assign.Lhs)-1].(*ast.Ident); ok && lhs.Name == "_" {
continue
}
call, ok := assign.Rhs[0].(*ast.CallExpr)
if !ok {
continue
}
sig, ok := pass.TypesInfo.TypeOf(call.Fun).(*types.Signature)
if !ok {
continue
}
if sig.Results().Len() < 2 {
continue
}
last := sig.Results().At(sig.Results().Len() - 1)
// FIXME(dh): check that it's error from universe, not
// another type of the same name
if last.Type().String() != "error" {
continue
}
lhs, ok := assign.Lhs[0].(*ast.Ident)
if !ok {
continue
}
def, ok := block.List[i+1].(*ast.DeferStmt)
if !ok {
continue
}
sel, ok := def.Call.Fun.(*ast.SelectorExpr)
if !ok {
continue
}
ident, ok := selectorX(sel).(*ast.Ident)
if !ok {
continue
}
if ident.Obj != lhs.Obj {
continue
}
if sel.Sel.Name != "Close" {
continue
}
ReportNodef(pass, def, "should check returned error before deferring %s", Render(pass, def.Call))
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.BlockStmt)(nil)}, fn)
return nil, nil
}
func selectorX(sel *ast.SelectorExpr) ast.Node {
switch x := sel.X.(type) {
case *ast.SelectorExpr:
return selectorX(x)
default:
return x
}
}
func CheckEmptyCriticalSection(pass *analysis.Pass) (interface{}, error) {
// Initially it might seem like this check would be easier to
// implement in SSA. After all, we're only checking for two
// consecutive method calls. In reality, however, there may be any
// number of other instructions between the lock and unlock, while
// still constituting an empty critical section. For example,
// given `m.x().Lock(); m.x().Unlock()`, there will be a call to
// x(). In the AST-based approach, this has a tiny potential for a
// false positive (the second call to x might be doing work that
// is protected by the mutex). In an SSA-based approach, however,
// it would miss a lot of real bugs.
mutexParams := func(s ast.Stmt) (x ast.Expr, funcName string, ok bool) {
expr, ok := s.(*ast.ExprStmt)
if !ok {
return nil, "", false
}
call, ok := expr.X.(*ast.CallExpr)
if !ok {
return nil, "", false
}
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return nil, "", false
}
fn, ok := pass.TypesInfo.ObjectOf(sel.Sel).(*types.Func)
if !ok {
return nil, "", false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 0 || sig.Results().Len() != 0 {
return nil, "", false
}
return sel.X, fn.Name(), true
}
fn := func(node ast.Node) {
block := node.(*ast.BlockStmt)
if len(block.List) < 2 {
return
}
for i := range block.List[:len(block.List)-1] {
sel1, method1, ok1 := mutexParams(block.List[i])
sel2, method2, ok2 := mutexParams(block.List[i+1])
if !ok1 || !ok2 || Render(pass, sel1) != Render(pass, sel2) {
continue
}
if (method1 == "Lock" && method2 == "Unlock") ||
(method1 == "RLock" && method2 == "RUnlock") {
ReportNodef(pass, block.List[i+1], "empty critical section")
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.BlockStmt)(nil)}, fn)
return nil, nil
}
// cgo produces code like fn(&*_Cvar_kSomeCallbacks) which we don't
// want to flag.
var cgoIdent = regexp.MustCompile(`^_C(func|var)_.+$`)
func CheckIneffectiveCopy(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if unary, ok := node.(*ast.UnaryExpr); ok {
if star, ok := unary.X.(*ast.StarExpr); ok && unary.Op == token.AND {
ident, ok := star.X.(*ast.Ident)
if !ok || !cgoIdent.MatchString(ident.Name) {
ReportNodef(pass, unary, "&*x will be simplified to x. It will not copy x.")
}
}
}
if star, ok := node.(*ast.StarExpr); ok {
if unary, ok := star.X.(*ast.UnaryExpr); ok && unary.Op == token.AND {
ReportNodef(pass, star, "*&x will be simplified to x. It will not copy x.")
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.UnaryExpr)(nil), (*ast.StarExpr)(nil)}, fn)
return nil, nil
}
func CheckDiffSizeComparison(pass *analysis.Pass) (interface{}, error) {
ranges := pass.ResultOf[valueRangesAnalyzer].(map[*ssa.Function]vrp.Ranges)
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, b := range ssafn.Blocks {
for _, ins := range b.Instrs {
binop, ok := ins.(*ssa.BinOp)
if !ok {
continue
}
if binop.Op != token.EQL && binop.Op != token.NEQ {
continue
}
_, ok1 := binop.X.(*ssa.Slice)
_, ok2 := binop.Y.(*ssa.Slice)
if !ok1 && !ok2 {
continue
}
r := ranges[ssafn]
r1, ok1 := r.Get(binop.X).(vrp.StringInterval)
r2, ok2 := r.Get(binop.Y).(vrp.StringInterval)
if !ok1 || !ok2 {
continue
}
if r1.Length.Intersection(r2.Length).Empty() {
pass.Reportf(binop.Pos(), "comparing strings of different sizes for equality will always return false")
}
}
}
}
return nil, nil
}
func CheckCanonicalHeaderKey(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node, push bool) bool {
if !push {
return false
}
assign, ok := node.(*ast.AssignStmt)
if ok {
// TODO(dh): This risks missing some Header reads, for
// example in `h1["foo"] = h2["foo"]` these edge
// cases are probably rare enough to ignore for now.
for _, expr := range assign.Lhs {
op, ok := expr.(*ast.IndexExpr)
if !ok {
continue
}
if IsOfType(pass, op.X, "net/http.Header") {
return false
}
}
return true
}
op, ok := node.(*ast.IndexExpr)
if !ok {
return true
}
if !IsOfType(pass, op.X, "net/http.Header") {
return true
}
s, ok := ExprToString(pass, op.Index)
if !ok {
return true
}
if s == http.CanonicalHeaderKey(s) {
return true
}
ReportNodef(pass, op, "keys in http.Header are canonicalized, %q is not canonical; fix the constant or use http.CanonicalHeaderKey", s)
return true
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Nodes([]ast.Node{(*ast.AssignStmt)(nil), (*ast.IndexExpr)(nil)}, fn)
return nil, nil
}
func CheckBenchmarkN(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
assign := node.(*ast.AssignStmt)
if len(assign.Lhs) != 1 || len(assign.Rhs) != 1 {
return
}
sel, ok := assign.Lhs[0].(*ast.SelectorExpr)
if !ok {
return
}
if sel.Sel.Name != "N" {
return
}
if !IsOfType(pass, sel.X, "*testing.B") {
return
}
ReportNodef(pass, assign, "should not assign to %s", Render(pass, sel))
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.AssignStmt)(nil)}, fn)
return nil, nil
}
func CheckUnreadVariableValues(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
if IsExample(ssafn) {
continue
}
node := ssafn.Syntax()
if node == nil {
continue
}
if gen, ok := Generator(pass, node.Pos()); ok && gen == facts.Goyacc {
// Don't flag unused values in code generated by goyacc.
// There may be hundreds of those due to the way the state
// machine is constructed.
continue
}
switchTags := map[ssa.Value]struct{}{}
ast.Inspect(node, func(node ast.Node) bool {
s, ok := node.(*ast.SwitchStmt)
if !ok {
return true
}
v, _ := ssafn.ValueForExpr(s.Tag)
switchTags[v] = struct{}{}
return true
})
hasUse := func(v ssa.Value) bool {
if _, ok := switchTags[v]; ok {
return true
}
refs := v.Referrers()
if refs == nil {
// TODO investigate why refs can be nil
return true
}
return len(FilterDebug(*refs)) > 0
}
ast.Inspect(node, func(node ast.Node) bool {
assign, ok := node.(*ast.AssignStmt)
if !ok {
return true
}
if len(assign.Lhs) > 1 && len(assign.Rhs) == 1 {
// Either a function call with multiple return values,
// or a comma-ok assignment
val, _ := ssafn.ValueForExpr(assign.Rhs[0])
if val == nil {
return true
}
refs := val.Referrers()
if refs == nil {
return true
}
for _, ref := range *refs {
ex, ok := ref.(*ssa.Extract)
if !ok {
continue
}
if !hasUse(ex) {
lhs := assign.Lhs[ex.Index]
if ident, ok := lhs.(*ast.Ident); !ok || ok && ident.Name == "_" {
continue
}
ReportNodef(pass, lhs, "this value of %s is never used", lhs)
}
}
return true
}
for i, lhs := range assign.Lhs {
rhs := assign.Rhs[i]
if ident, ok := lhs.(*ast.Ident); !ok || ok && ident.Name == "_" {
continue
}
val, _ := ssafn.ValueForExpr(rhs)
if val == nil {
continue
}
if !hasUse(val) {
ReportNodef(pass, lhs, "this value of %s is never used", lhs)
}
}
return true
})
}
return nil, nil
}
func CheckPredeterminedBooleanExprs(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
ssabinop, ok := ins.(*ssa.BinOp)
if !ok {
continue
}
switch ssabinop.Op {
case token.GTR, token.LSS, token.EQL, token.NEQ, token.LEQ, token.GEQ:
default:
continue
}
xs, ok1 := consts(ssabinop.X, nil, nil)
ys, ok2 := consts(ssabinop.Y, nil, nil)
if !ok1 || !ok2 || len(xs) == 0 || len(ys) == 0 {
continue
}
trues := 0
for _, x := range xs {
for _, y := range ys {
if x.Value == nil {
if y.Value == nil {
trues++
}
continue
}
if constant.Compare(x.Value, ssabinop.Op, y.Value) {
trues++
}
}
}
b := trues != 0
if trues == 0 || trues == len(xs)*len(ys) {
pass.Reportf(ssabinop.Pos(), "binary expression is always %t for all possible values (%s %s %s)",
b, xs, ssabinop.Op, ys)
}
}
}
}
return nil, nil
}
func CheckNilMaps(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
mu, ok := ins.(*ssa.MapUpdate)
if !ok {
continue
}
c, ok := mu.Map.(*ssa.Const)
if !ok {
continue
}
if c.Value != nil {
continue
}
pass.Reportf(mu.Pos(), "assignment to nil map")
}
}
}
return nil, nil
}
func CheckExtremeComparison(pass *analysis.Pass) (interface{}, error) {
isobj := func(expr ast.Expr, name string) bool {
sel, ok := expr.(*ast.SelectorExpr)
if !ok {
return false
}
return IsObject(pass.TypesInfo.ObjectOf(sel.Sel), name)
}
fn := func(node ast.Node) {
expr := node.(*ast.BinaryExpr)
tx := pass.TypesInfo.TypeOf(expr.X)
basic, ok := tx.Underlying().(*types.Basic)
if !ok {
return
}
var max string
var min string
switch basic.Kind() {
case types.Uint8:
max = "math.MaxUint8"
case types.Uint16:
max = "math.MaxUint16"
case types.Uint32:
max = "math.MaxUint32"
case types.Uint64:
max = "math.MaxUint64"
case types.Uint:
max = "math.MaxUint64"
case types.Int8:
min = "math.MinInt8"
max = "math.MaxInt8"
case types.Int16:
min = "math.MinInt16"
max = "math.MaxInt16"
case types.Int32:
min = "math.MinInt32"
max = "math.MaxInt32"
case types.Int64:
min = "math.MinInt64"
max = "math.MaxInt64"
case types.Int:
min = "math.MinInt64"
max = "math.MaxInt64"
}
if (expr.Op == token.GTR || expr.Op == token.GEQ) && isobj(expr.Y, max) ||
(expr.Op == token.LSS || expr.Op == token.LEQ) && isobj(expr.X, max) {
ReportNodef(pass, expr, "no value of type %s is greater than %s", basic, max)
}
if expr.Op == token.LEQ && isobj(expr.Y, max) ||
expr.Op == token.GEQ && isobj(expr.X, max) {
ReportNodef(pass, expr, "every value of type %s is <= %s", basic, max)
}
if (basic.Info() & types.IsUnsigned) != 0 {
if (expr.Op == token.LSS || expr.Op == token.LEQ) && IsIntLiteral(expr.Y, "0") ||
(expr.Op == token.GTR || expr.Op == token.GEQ) && IsIntLiteral(expr.X, "0") {
ReportNodef(pass, expr, "no value of type %s is less than 0", basic)
}
if expr.Op == token.GEQ && IsIntLiteral(expr.Y, "0") ||
expr.Op == token.LEQ && IsIntLiteral(expr.X, "0") {
ReportNodef(pass, expr, "every value of type %s is >= 0", basic)
}
} else {
if (expr.Op == token.LSS || expr.Op == token.LEQ) && isobj(expr.Y, min) ||
(expr.Op == token.GTR || expr.Op == token.GEQ) && isobj(expr.X, min) {
ReportNodef(pass, expr, "no value of type %s is less than %s", basic, min)
}
if expr.Op == token.GEQ && isobj(expr.Y, min) ||
expr.Op == token.LEQ && isobj(expr.X, min) {
ReportNodef(pass, expr, "every value of type %s is >= %s", basic, min)
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.BinaryExpr)(nil)}, fn)
return nil, nil
}
func consts(val ssa.Value, out []*ssa.Const, visitedPhis map[string]bool) ([]*ssa.Const, bool) {
if visitedPhis == nil {
visitedPhis = map[string]bool{}
}
var ok bool
switch val := val.(type) {
case *ssa.Phi:
if visitedPhis[val.Name()] {
break
}
visitedPhis[val.Name()] = true
vals := val.Operands(nil)
for _, phival := range vals {
out, ok = consts(*phival, out, visitedPhis)
if !ok {
return nil, false
}
}
case *ssa.Const:
out = append(out, val)
case *ssa.Convert:
out, ok = consts(val.X, out, visitedPhis)
if !ok {
return nil, false
}
default:
return nil, false
}
if len(out) < 2 {
return out, true
}
uniq := []*ssa.Const{out[0]}
for _, val := range out[1:] {
if val.Value == uniq[len(uniq)-1].Value {
continue
}
uniq = append(uniq, val)
}
return uniq, true
}
func CheckLoopCondition(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
fn := func(node ast.Node) bool {
loop, ok := node.(*ast.ForStmt)
if !ok {
return true
}
if loop.Init == nil || loop.Cond == nil || loop.Post == nil {
return true
}
init, ok := loop.Init.(*ast.AssignStmt)
if !ok || len(init.Lhs) != 1 || len(init.Rhs) != 1 {
return true
}
cond, ok := loop.Cond.(*ast.BinaryExpr)
if !ok {
return true
}
x, ok := cond.X.(*ast.Ident)
if !ok {
return true
}
lhs, ok := init.Lhs[0].(*ast.Ident)
if !ok {
return true
}
if x.Obj != lhs.Obj {
return true
}
if _, ok := loop.Post.(*ast.IncDecStmt); !ok {
return true
}
v, isAddr := ssafn.ValueForExpr(cond.X)
if v == nil || isAddr {
return true
}
switch v := v.(type) {
case *ssa.Phi:
ops := v.Operands(nil)
if len(ops) != 2 {
return true
}
_, ok := (*ops[0]).(*ssa.Const)
if !ok {
return true
}
sigma, ok := (*ops[1]).(*ssa.Sigma)
if !ok {
return true
}
if sigma.X != v {
return true
}
case *ssa.UnOp:
return true
}
ReportNodef(pass, cond, "variable in loop condition never changes")
return true
}
Inspect(ssafn.Syntax(), fn)
}
return nil, nil
}
func CheckArgOverwritten(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
fn := func(node ast.Node) bool {
var typ *ast.FuncType
var body *ast.BlockStmt
switch fn := node.(type) {
case *ast.FuncDecl:
typ = fn.Type
body = fn.Body
case *ast.FuncLit:
typ = fn.Type
body = fn.Body
}
if body == nil {
return true
}
if len(typ.Params.List) == 0 {
return true
}
for _, field := range typ.Params.List {
for _, arg := range field.Names {
obj := pass.TypesInfo.ObjectOf(arg)
var ssaobj *ssa.Parameter
for _, param := range ssafn.Params {
if param.Object() == obj {
ssaobj = param
break
}
}
if ssaobj == nil {
continue
}
refs := ssaobj.Referrers()
if refs == nil {
continue
}
if len(FilterDebug(*refs)) != 0 {
continue
}
assigned := false
ast.Inspect(body, func(node ast.Node) bool {
assign, ok := node.(*ast.AssignStmt)
if !ok {
return true
}
for _, lhs := range assign.Lhs {
ident, ok := lhs.(*ast.Ident)
if !ok {
continue
}
if pass.TypesInfo.ObjectOf(ident) == obj {
assigned = true
return false
}
}
return true
})
if assigned {
ReportNodef(pass, arg, "argument %s is overwritten before first use", arg)
}
}
}
return true
}
Inspect(ssafn.Syntax(), fn)
}
return nil, nil
}
func CheckIneffectiveLoop(pass *analysis.Pass) (interface{}, error) {
// This check detects some, but not all unconditional loop exits.
// We give up in the following cases:
//
// - a goto anywhere in the loop. The goto might skip over our
// return, and we don't check that it doesn't.
//
// - any nested, unlabelled continue, even if it is in another
// loop or closure.
fn := func(node ast.Node) {
var body *ast.BlockStmt
switch fn := node.(type) {
case *ast.FuncDecl:
body = fn.Body
case *ast.FuncLit:
body = fn.Body
default:
panic(fmt.Sprintf("unreachable: %T", node))
}
if body == nil {
return
}
labels := map[*ast.Object]ast.Stmt{}
ast.Inspect(body, func(node ast.Node) bool {
label, ok := node.(*ast.LabeledStmt)
if !ok {
return true
}
labels[label.Label.Obj] = label.Stmt
return true
})
ast.Inspect(body, func(node ast.Node) bool {
var loop ast.Node
var body *ast.BlockStmt
switch node := node.(type) {
case *ast.ForStmt:
body = node.Body
loop = node
case *ast.RangeStmt:
typ := pass.TypesInfo.TypeOf(node.X)
if _, ok := typ.Underlying().(*types.Map); ok {
// looping once over a map is a valid pattern for
// getting an arbitrary element.
return true
}
body = node.Body
loop = node
default:
return true
}
if len(body.List) < 2 {
// avoid flagging the somewhat common pattern of using
// a range loop to get the first element in a slice,
// or the first rune in a string.
return true
}
var unconditionalExit ast.Node
hasBranching := false
for _, stmt := range body.List {
switch stmt := stmt.(type) {
case *ast.BranchStmt:
switch stmt.Tok {
case token.BREAK:
if stmt.Label == nil || labels[stmt.Label.Obj] == loop {
unconditionalExit = stmt
}
case token.CONTINUE:
if stmt.Label == nil || labels[stmt.Label.Obj] == loop {
unconditionalExit = nil
return false
}
}
case *ast.ReturnStmt:
unconditionalExit = stmt
case *ast.IfStmt, *ast.ForStmt, *ast.RangeStmt, *ast.SwitchStmt, *ast.SelectStmt:
hasBranching = true
}
}
if unconditionalExit == nil || !hasBranching {
return false
}
ast.Inspect(body, func(node ast.Node) bool {
if branch, ok := node.(*ast.BranchStmt); ok {
switch branch.Tok {
case token.GOTO:
unconditionalExit = nil
return false
case token.CONTINUE:
if branch.Label != nil && labels[branch.Label.Obj] != loop {
return true
}
unconditionalExit = nil
return false
}
}
return true
})
if unconditionalExit != nil {
ReportNodef(pass, unconditionalExit, "the surrounding loop is unconditionally terminated")
}
return true
})
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.FuncDecl)(nil), (*ast.FuncLit)(nil)}, fn)
return nil, nil
}
func CheckNilContext(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
if len(call.Args) == 0 {
return
}
if typ, ok := pass.TypesInfo.TypeOf(call.Args[0]).(*types.Basic); !ok || typ.Kind() != types.UntypedNil {
return
}
sig, ok := pass.TypesInfo.TypeOf(call.Fun).(*types.Signature)
if !ok {
return
}
if sig.Params().Len() == 0 {
return
}
if !IsType(sig.Params().At(0).Type(), "context.Context") {
return
}
ReportNodef(pass, call.Args[0],
"do not pass a nil Context, even if a function permits it; pass context.TODO if you are unsure about which Context to use")
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func CheckSeeker(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return
}
if sel.Sel.Name != "Seek" {
return
}
if len(call.Args) != 2 {
return
}
arg0, ok := call.Args[Arg("(io.Seeker).Seek.offset")].(*ast.SelectorExpr)
if !ok {
return
}
switch arg0.Sel.Name {
case "SeekStart", "SeekCurrent", "SeekEnd":
default:
return
}
pkg, ok := arg0.X.(*ast.Ident)
if !ok {
return
}
if pkg.Name != "io" {
return
}
ReportNodef(pass, call, "the first argument of io.Seeker is the offset, but an io.Seek* constant is being used instead")
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func CheckIneffectiveAppend(pass *analysis.Pass) (interface{}, error) {
isAppend := func(ins ssa.Value) bool {
call, ok := ins.(*ssa.Call)
if !ok {
return false
}
if call.Call.IsInvoke() {
return false
}
if builtin, ok := call.Call.Value.(*ssa.Builtin); !ok || builtin.Name() != "append" {
return false
}
return true
}
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
val, ok := ins.(ssa.Value)
if !ok || !isAppend(val) {
continue
}
isUsed := false
visited := map[ssa.Instruction]bool{}
var walkRefs func(refs []ssa.Instruction)
walkRefs = func(refs []ssa.Instruction) {
loop:
for _, ref := range refs {
if visited[ref] {
continue
}
visited[ref] = true
if _, ok := ref.(*ssa.DebugRef); ok {
continue
}
switch ref := ref.(type) {
case *ssa.Phi:
walkRefs(*ref.Referrers())
case *ssa.Sigma:
walkRefs(*ref.Referrers())
case ssa.Value:
if !isAppend(ref) {
isUsed = true
} else {
walkRefs(*ref.Referrers())
}
case ssa.Instruction:
isUsed = true
break loop
}
}
}
refs := val.Referrers()
if refs == nil {
continue
}
walkRefs(*refs)
if !isUsed {
pass.Reportf(ins.Pos(), "this result of append is never used, except maybe in other appends")
}
}
}
}
return nil, nil
}
func CheckConcurrentTesting(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
gostmt, ok := ins.(*ssa.Go)
if !ok {
continue
}
var fn *ssa.Function
switch val := gostmt.Call.Value.(type) {
case *ssa.Function:
fn = val
case *ssa.MakeClosure:
fn = val.Fn.(*ssa.Function)
default:
continue
}
if fn.Blocks == nil {
continue
}
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
call, ok := ins.(*ssa.Call)
if !ok {
continue
}
if call.Call.IsInvoke() {
continue
}
callee := call.Call.StaticCallee()
if callee == nil {
continue
}
recv := callee.Signature.Recv()
if recv == nil {
continue
}
if !IsType(recv.Type(), "*testing.common") {
continue
}
fn, ok := call.Call.StaticCallee().Object().(*types.Func)
if !ok {
continue
}
name := fn.Name()
switch name {
case "FailNow", "Fatal", "Fatalf", "SkipNow", "Skip", "Skipf":
default:
continue
}
pass.Reportf(gostmt.Pos(), "the goroutine calls T.%s, which must be called in the same goroutine as the test", name)
}
}
}
}
}
return nil, nil
}
func eachCall(ssafn *ssa.Function, fn func(caller *ssa.Function, site ssa.CallInstruction, callee *ssa.Function)) {
for _, b := range ssafn.Blocks {
for _, instr := range b.Instrs {
if site, ok := instr.(ssa.CallInstruction); ok {
if g := site.Common().StaticCallee(); g != nil {
fn(ssafn, site, g)
}
}
}
}
}
func CheckCyclicFinalizer(pass *analysis.Pass) (interface{}, error) {
fn := func(caller *ssa.Function, site ssa.CallInstruction, callee *ssa.Function) {
if callee.RelString(nil) != "runtime.SetFinalizer" {
return
}
arg0 := site.Common().Args[Arg("runtime.SetFinalizer.obj")]
if iface, ok := arg0.(*ssa.MakeInterface); ok {
arg0 = iface.X
}
unop, ok := arg0.(*ssa.UnOp)
if !ok {
return
}
v, ok := unop.X.(*ssa.Alloc)
if !ok {
return
}
arg1 := site.Common().Args[Arg("runtime.SetFinalizer.finalizer")]
if iface, ok := arg1.(*ssa.MakeInterface); ok {
arg1 = iface.X
}
mc, ok := arg1.(*ssa.MakeClosure)
if !ok {
return
}
for _, b := range mc.Bindings {
if b == v {
pos := lint.DisplayPosition(pass.Fset, mc.Fn.Pos())
pass.Reportf(site.Pos(), "the finalizer closes over the object, preventing the finalizer from ever running (at %s)", pos)
}
}
}
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
eachCall(ssafn, fn)
}
return nil, nil
}
/*
func CheckSliceOutOfBounds(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
ia, ok := ins.(*ssa.IndexAddr)
if !ok {
continue
}
if _, ok := ia.X.Type().Underlying().(*types.Slice); !ok {
continue
}
sr, ok1 := c.funcDescs.Get(ssafn).Ranges[ia.X].(vrp.SliceInterval)
idxr, ok2 := c.funcDescs.Get(ssafn).Ranges[ia.Index].(vrp.IntInterval)
if !ok1 || !ok2 || !sr.IsKnown() || !idxr.IsKnown() || sr.Length.Empty() || idxr.Empty() {
continue
}
if idxr.Lower.Cmp(sr.Length.Upper) >= 0 {
ReportNodef(pass, ia, "index out of bounds")
}
}
}
}
return nil, nil
}
*/
func CheckDeferLock(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, block := range ssafn.Blocks {
instrs := FilterDebug(block.Instrs)
if len(instrs) < 2 {
continue
}
for i, ins := range instrs[:len(instrs)-1] {
call, ok := ins.(*ssa.Call)
if !ok {
continue
}
if !IsCallTo(call.Common(), "(*sync.Mutex).Lock") && !IsCallTo(call.Common(), "(*sync.RWMutex).RLock") {
continue
}
nins, ok := instrs[i+1].(*ssa.Defer)
if !ok {
continue
}
if !IsCallTo(&nins.Call, "(*sync.Mutex).Lock") && !IsCallTo(&nins.Call, "(*sync.RWMutex).RLock") {
continue
}
if call.Common().Args[0] != nins.Call.Args[0] {
continue
}
name := shortCallName(call.Common())
alt := ""
switch name {
case "Lock":
alt = "Unlock"
case "RLock":
alt = "RUnlock"
}
pass.Reportf(nins.Pos(), "deferring %s right after having locked already; did you mean to defer %s?", name, alt)
}
}
}
return nil, nil
}
func CheckNaNComparison(pass *analysis.Pass) (interface{}, error) {
isNaN := func(v ssa.Value) bool {
call, ok := v.(*ssa.Call)
if !ok {
return false
}
return IsCallTo(call.Common(), "math.NaN")
}
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
ins, ok := ins.(*ssa.BinOp)
if !ok {
continue
}
if isNaN(ins.X) || isNaN(ins.Y) {
pass.Reportf(ins.Pos(), "no value is equal to NaN, not even NaN itself")
}
}
}
}
return nil, nil
}
func CheckInfiniteRecursion(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
eachCall(ssafn, func(caller *ssa.Function, site ssa.CallInstruction, callee *ssa.Function) {
if callee != ssafn {
return
}
if _, ok := site.(*ssa.Go); ok {
// Recursively spawning goroutines doesn't consume
// stack space infinitely, so don't flag it.
return
}
block := site.Block()
canReturn := false
for _, b := range ssafn.Blocks {
if block.Dominates(b) {
continue
}
if len(b.Instrs) == 0 {
continue
}
if _, ok := b.Instrs[len(b.Instrs)-1].(*ssa.Return); ok {
canReturn = true
break
}
}
if canReturn {
return
}
pass.Reportf(site.Pos(), "infinite recursive call")
})
}
return nil, nil
}
func objectName(obj types.Object) string {
if obj == nil {
return "<nil>"
}
var name string
if obj.Pkg() != nil && obj.Pkg().Scope().Lookup(obj.Name()) == obj {
s := obj.Pkg().Path()
if s != "" {
name += s + "."
}
}
name += obj.Name()
return name
}
func isName(pass *analysis.Pass, expr ast.Expr, name string) bool {
var obj types.Object
switch expr := expr.(type) {
case *ast.Ident:
obj = pass.TypesInfo.ObjectOf(expr)
case *ast.SelectorExpr:
obj = pass.TypesInfo.ObjectOf(expr.Sel)
}
return objectName(obj) == name
}
func CheckLeakyTimeTick(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
if IsInMain(pass, ssafn) || IsInTest(pass, ssafn) {
continue
}
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
call, ok := ins.(*ssa.Call)
if !ok || !IsCallTo(call.Common(), "time.Tick") {
continue
}
if !functions.Terminates(call.Parent()) {
continue
}
pass.Reportf(call.Pos(), "using time.Tick leaks the underlying ticker, consider using it only in endless functions, tests and the main package, and use time.NewTicker here")
}
}
}
return nil, nil
}
func CheckDoubleNegation(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
unary1 := node.(*ast.UnaryExpr)
unary2, ok := unary1.X.(*ast.UnaryExpr)
if !ok {
return
}
if unary1.Op != token.NOT || unary2.Op != token.NOT {
return
}
ReportNodef(pass, unary1, "negating a boolean twice has no effect; is this a typo?")
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.UnaryExpr)(nil)}, fn)
return nil, nil
}
func hasSideEffects(node ast.Node) bool {
dynamic := false
ast.Inspect(node, func(node ast.Node) bool {
switch node := node.(type) {
case *ast.CallExpr:
dynamic = true
return false
case *ast.UnaryExpr:
if node.Op == token.ARROW {
dynamic = true
return false
}
}
return true
})
return dynamic
}
func CheckRepeatedIfElse(pass *analysis.Pass) (interface{}, error) {
seen := map[ast.Node]bool{}
var collectConds func(ifstmt *ast.IfStmt, inits []ast.Stmt, conds []ast.Expr) ([]ast.Stmt, []ast.Expr)
collectConds = func(ifstmt *ast.IfStmt, inits []ast.Stmt, conds []ast.Expr) ([]ast.Stmt, []ast.Expr) {
seen[ifstmt] = true
if ifstmt.Init != nil {
inits = append(inits, ifstmt.Init)
}
conds = append(conds, ifstmt.Cond)
if elsestmt, ok := ifstmt.Else.(*ast.IfStmt); ok {
return collectConds(elsestmt, inits, conds)
}
return inits, conds
}
fn := func(node ast.Node) {
ifstmt := node.(*ast.IfStmt)
if seen[ifstmt] {
return
}
inits, conds := collectConds(ifstmt, nil, nil)
if len(inits) > 0 {
return
}
for _, cond := range conds {
if hasSideEffects(cond) {
return
}
}
counts := map[string]int{}
for _, cond := range conds {
s := Render(pass, cond)
counts[s]++
if counts[s] == 2 {
ReportNodef(pass, cond, "this condition occurs multiple times in this if/else if chain")
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.IfStmt)(nil)}, fn)
return nil, nil
}
func CheckSillyBitwiseOps(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
ins, ok := ins.(*ssa.BinOp)
if !ok {
continue
}
if c, ok := ins.Y.(*ssa.Const); !ok || c.Value == nil || c.Value.Kind() != constant.Int || c.Uint64() != 0 {
continue
}
switch ins.Op {
case token.AND, token.OR, token.XOR:
default:
// we do not flag shifts because too often, x<<0 is part
// of a pattern, x<<0, x<<8, x<<16, ...
continue
}
path, _ := astutil.PathEnclosingInterval(File(pass, ins), ins.Pos(), ins.Pos())
if len(path) == 0 {
continue
}
if node, ok := path[0].(*ast.BinaryExpr); !ok || !IsZero(node.Y) {
continue
}
switch ins.Op {
case token.AND:
pass.Reportf(ins.Pos(), "x & 0 always equals 0")
case token.OR, token.XOR:
pass.Reportf(ins.Pos(), "x %s 0 always equals x", ins.Op)
}
}
}
}
return nil, nil
}
func CheckNonOctalFileMode(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
sig, ok := pass.TypesInfo.TypeOf(call.Fun).(*types.Signature)
if !ok {
return
}
n := sig.Params().Len()
var args []int
for i := 0; i < n; i++ {
typ := sig.Params().At(i).Type()
if IsType(typ, "os.FileMode") {
args = append(args, i)
}
}
for _, i := range args {
lit, ok := call.Args[i].(*ast.BasicLit)
if !ok {
continue
}
if len(lit.Value) == 3 &&
lit.Value[0] != '0' &&
lit.Value[0] >= '0' && lit.Value[0] <= '7' &&
lit.Value[1] >= '0' && lit.Value[1] <= '7' &&
lit.Value[2] >= '0' && lit.Value[2] <= '7' {
v, err := strconv.ParseInt(lit.Value, 10, 64)
if err != nil {
continue
}
ReportNodef(pass, call.Args[i], "file mode '%s' evaluates to %#o; did you mean '0%s'?", lit.Value, v, lit.Value)
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func CheckPureFunctions(pass *analysis.Pass) (interface{}, error) {
pure := pass.ResultOf[facts.Purity].(facts.PurityResult)
fnLoop:
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
if IsInTest(pass, ssafn) {
params := ssafn.Signature.Params()
for i := 0; i < params.Len(); i++ {
param := params.At(i)
if IsType(param.Type(), "*testing.B") {
// Ignore discarded pure functions in code related
// to benchmarks. Instead of matching BenchmarkFoo
// functions, we match any function accepting a
// *testing.B. Benchmarks sometimes call generic
// functions for doing the actual work, and
// checking for the parameter is a lot easier and
// faster than analyzing call trees.
continue fnLoop
}
}
}
for _, b := range ssafn.Blocks {
for _, ins := range b.Instrs {
ins, ok := ins.(*ssa.Call)
if !ok {
continue
}
refs := ins.Referrers()
if refs == nil || len(FilterDebug(*refs)) > 0 {
continue
}
callee := ins.Common().StaticCallee()
if callee == nil {
continue
}
if callee.Object() == nil {
// TODO(dh): support anonymous functions
continue
}
if _, ok := pure[callee.Object().(*types.Func)]; ok {
pass.Reportf(ins.Pos(), "%s is a pure function but its return value is ignored", callee.Name())
continue
}
}
}
}
return nil, nil
}
func CheckDeprecated(pass *analysis.Pass) (interface{}, error) {
deprs := pass.ResultOf[facts.Deprecated].(facts.DeprecatedResult)
// Selectors can appear outside of function literals, e.g. when
// declaring package level variables.
var tfn types.Object
stack := 0
fn := func(node ast.Node, push bool) bool {
if !push {
stack--
return false
}
stack++
if stack == 1 {
tfn = nil
}
if fn, ok := node.(*ast.FuncDecl); ok {
tfn = pass.TypesInfo.ObjectOf(fn.Name)
}
sel, ok := node.(*ast.SelectorExpr)
if !ok {
return true
}
obj := pass.TypesInfo.ObjectOf(sel.Sel)
if obj.Pkg() == nil {
return true
}
if pass.Pkg == obj.Pkg() || obj.Pkg().Path()+"_test" == pass.Pkg.Path() {
// Don't flag stuff in our own package
return true
}
if depr, ok := deprs.Objects[obj]; ok {
// Look for the first available alternative, not the first
// version something was deprecated in. If a function was
// deprecated in Go 1.6, an alternative has been available
// already in 1.0, and we're targeting 1.2, it still
// makes sense to use the alternative from 1.0, to be
// future-proof.
minVersion := deprecated.Stdlib[SelectorName(pass, sel)].AlternativeAvailableSince
if !IsGoVersion(pass, minVersion) {
return true
}
if tfn != nil {
if _, ok := deprs.Objects[tfn]; ok {
// functions that are deprecated may use deprecated
// symbols
return true
}
}
ReportNodef(pass, sel, "%s is deprecated: %s", Render(pass, sel), depr.Msg)
return true
}
return true
}
imps := map[string]*types.Package{}
for _, imp := range pass.Pkg.Imports() {
imps[imp.Path()] = imp
}
fn2 := func(node ast.Node) {
spec := node.(*ast.ImportSpec)
p := spec.Path.Value
path := p[1 : len(p)-1]
imp := imps[path]
if depr, ok := deprs.Packages[imp]; ok {
ReportNodef(pass, spec, "Package %s is deprecated: %s", path, depr.Msg)
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Nodes(nil, fn)
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.ImportSpec)(nil)}, fn2)
return nil, nil
}
func callChecker(rules map[string]CallCheck) func(pass *analysis.Pass) (interface{}, error) {
return func(pass *analysis.Pass) (interface{}, error) {
return checkCalls(pass, rules)
}
}
func checkCalls(pass *analysis.Pass, rules map[string]CallCheck) (interface{}, error) {
ranges := pass.ResultOf[valueRangesAnalyzer].(map[*ssa.Function]vrp.Ranges)
fn := func(caller *ssa.Function, site ssa.CallInstruction, callee *ssa.Function) {
obj, ok := callee.Object().(*types.Func)
if !ok {
return
}
r, ok := rules[lint.FuncName(obj)]
if !ok {
return
}
var args []*Argument
ssaargs := site.Common().Args
if callee.Signature.Recv() != nil {
ssaargs = ssaargs[1:]
}
for _, arg := range ssaargs {
if iarg, ok := arg.(*ssa.MakeInterface); ok {
arg = iarg.X
}
vr := ranges[site.Parent()][arg]
args = append(args, &Argument{Value: Value{arg, vr}})
}
call := &Call{
Pass: pass,
Instr: site,
Args: args,
Parent: site.Parent(),
}
r(call)
for idx, arg := range call.Args {
_ = idx
for _, e := range arg.invalids {
// path, _ := astutil.PathEnclosingInterval(f.File, edge.Site.Pos(), edge.Site.Pos())
// if len(path) < 2 {
// continue
// }
// astcall, ok := path[0].(*ast.CallExpr)
// if !ok {
// continue
// }
// pass.Reportf(astcall.Args[idx], "%s", e)
pass.Reportf(site.Pos(), "%s", e)
}
}
for _, e := range call.invalids {
pass.Reportf(call.Instr.Common().Pos(), "%s", e)
}
}
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
eachCall(ssafn, fn)
}
return nil, nil
}
func shortCallName(call *ssa.CallCommon) string {
if call.IsInvoke() {
return ""
}
switch v := call.Value.(type) {
case *ssa.Function:
fn, ok := v.Object().(*types.Func)
if !ok {
return ""
}
return fn.Name()
case *ssa.Builtin:
return v.Name()
}
return ""
}
func CheckWriterBufferModified(pass *analysis.Pass) (interface{}, error) {
// TODO(dh): this might be a good candidate for taint analysis.
// Taint the argument as MUST_NOT_MODIFY, then propagate that
// through functions like bytes.Split
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
sig := ssafn.Signature
if ssafn.Name() != "Write" || sig.Recv() == nil || sig.Params().Len() != 1 || sig.Results().Len() != 2 {
continue
}
tArg, ok := sig.Params().At(0).Type().(*types.Slice)
if !ok {
continue
}
if basic, ok := tArg.Elem().(*types.Basic); !ok || basic.Kind() != types.Byte {
continue
}
if basic, ok := sig.Results().At(0).Type().(*types.Basic); !ok || basic.Kind() != types.Int {
continue
}
if named, ok := sig.Results().At(1).Type().(*types.Named); !ok || !IsType(named, "error") {
continue
}
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
switch ins := ins.(type) {
case *ssa.Store:
addr, ok := ins.Addr.(*ssa.IndexAddr)
if !ok {
continue
}
if addr.X != ssafn.Params[1] {
continue
}
pass.Reportf(ins.Pos(), "io.Writer.Write must not modify the provided buffer, not even temporarily")
case *ssa.Call:
if !IsCallTo(ins.Common(), "append") {
continue
}
if ins.Common().Args[0] != ssafn.Params[1] {
continue
}
pass.Reportf(ins.Pos(), "io.Writer.Write must not modify the provided buffer, not even temporarily")
}
}
}
}
return nil, nil
}
func loopedRegexp(name string) CallCheck {
return func(call *Call) {
if len(extractConsts(call.Args[0].Value.Value)) == 0 {
return
}
if !isInLoop(call.Instr.Block()) {
return
}
call.Invalid(fmt.Sprintf("calling %s in a loop has poor performance, consider using regexp.Compile", name))
}
}
func CheckEmptyBranch(pass *analysis.Pass) (interface{}, error) {
for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
if ssafn.Syntax() == nil {
continue
}
if IsExample(ssafn) {
continue
}
fn := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)
if !ok {
return true
}
if ifstmt.Else != nil {
b, ok := ifstmt.Else.(*ast.BlockStmt)
if !ok || len(b.List) != 0 {
return true
}
ReportfFG(pass, ifstmt.Else.Pos(), "empty branch")
}
if len(ifstmt.Body.List) != 0 {
return true
}
ReportfFG(pass, ifstmt.Pos(), "empty branch")
return true
}
Inspect(ssafn.Syntax(), fn)
}
return nil, nil
}
func CheckMapBytesKey(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, b := range fn.Blocks {
insLoop:
for _, ins := range b.Instrs {
// find []byte -> string conversions
conv, ok := ins.(*ssa.Convert)
if !ok || conv.Type() != types.Universe.Lookup("string").Type() {
continue
}
if s, ok := conv.X.Type().(*types.Slice); !ok || s.Elem() != types.Universe.Lookup("byte").Type() {
continue
}
refs := conv.Referrers()
// need at least two (DebugRef) references: the
// conversion and the *ast.Ident
if refs == nil || len(*refs) < 2 {
continue
}
ident := false
// skip first reference, that's the conversion itself
for _, ref := range (*refs)[1:] {
switch ref := ref.(type) {
case *ssa.DebugRef:
if _, ok := ref.Expr.(*ast.Ident); !ok {
// the string seems to be used somewhere
// unexpected; the default branch should
// catch this already, but be safe
continue insLoop
} else {
ident = true
}
case *ssa.Lookup:
default:
// the string is used somewhere else than a
// map lookup
continue insLoop
}
}
// the result of the conversion wasn't assigned to an
// identifier
if !ident {
continue
}
pass.Reportf(conv.Pos(), "m[string(key)] would be more efficient than k := string(key); m[k]")
}
}
}
return nil, nil
}
func CheckRangeStringRunes(pass *analysis.Pass) (interface{}, error) {
return sharedcheck.CheckRangeStringRunes(pass)
}
func CheckSelfAssignment(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
assign := node.(*ast.AssignStmt)
if assign.Tok != token.ASSIGN || len(assign.Lhs) != len(assign.Rhs) {
return
}
for i, stmt := range assign.Lhs {
rlh := Render(pass, stmt)
rrh := Render(pass, assign.Rhs[i])
if rlh == rrh {
ReportfFG(pass, assign.Pos(), "self-assignment of %s to %s", rrh, rlh)
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.AssignStmt)(nil)}, fn)
return nil, nil
}
func buildTagsIdentical(s1, s2 []string) bool {
if len(s1) != len(s2) {
return false
}
s1s := make([]string, len(s1))
copy(s1s, s1)
sort.Strings(s1s)
s2s := make([]string, len(s2))
copy(s2s, s2)
sort.Strings(s2s)
for i, s := range s1s {
if s != s2s[i] {
return false
}
}
return true
}
func CheckDuplicateBuildConstraints(pass *analysis.Pass) (interface{}, error) {
for _, f := range pass.Files {
constraints := buildTags(f)
for i, constraint1 := range constraints {
for j, constraint2 := range constraints {
if i >= j {
continue
}
if buildTagsIdentical(constraint1, constraint2) {
ReportfFG(pass, f.Pos(), "identical build constraints %q and %q",
strings.Join(constraint1, " "),
strings.Join(constraint2, " "))
}
}
}
}
return nil, nil
}
func CheckSillyRegexp(pass *analysis.Pass) (interface{}, error) {
// We could use the rule checking engine for this, but the
// arguments aren't really invalid.
for _, fn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, b := range fn.Blocks {
for _, ins := range b.Instrs {
call, ok := ins.(*ssa.Call)
if !ok {
continue
}
switch CallName(call.Common()) {
case "regexp.MustCompile", "regexp.Compile", "regexp.Match", "regexp.MatchReader", "regexp.MatchString":
default:
continue
}
c, ok := call.Common().Args[0].(*ssa.Const)
if !ok {
continue
}
s := constant.StringVal(c.Value)
re, err := syntax.Parse(s, 0)
if err != nil {
continue
}
if re.Op != syntax.OpLiteral && re.Op != syntax.OpEmptyMatch {
continue
}
pass.Reportf(call.Pos(), "regular expression does not contain any meta characters")
}
}
}
return nil, nil
}
func CheckMissingEnumTypesInDeclaration(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
decl := node.(*ast.GenDecl)
if !decl.Lparen.IsValid() {
return
}
if decl.Tok != token.CONST {
return
}
groups := GroupSpecs(pass.Fset, decl.Specs)
groupLoop:
for _, group := range groups {
if len(group) < 2 {
continue
}
if group[0].(*ast.ValueSpec).Type == nil {
// first constant doesn't have a type
continue groupLoop
}
for i, spec := range group {
spec := spec.(*ast.ValueSpec)
if len(spec.Names) != 1 || len(spec.Values) != 1 {
continue groupLoop
}
switch v := spec.Values[0].(type) {
case *ast.BasicLit:
case *ast.UnaryExpr:
if _, ok := v.X.(*ast.BasicLit); !ok {
continue groupLoop
}
default:
// if it's not a literal it might be typed, such as
// time.Microsecond = 1000 * Nanosecond
continue groupLoop
}
if i == 0 {
continue
}
if spec.Type != nil {
continue groupLoop
}
}
ReportNodef(pass, group[0], "only the first constant in this group has an explicit type")
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.GenDecl)(nil)}, fn)
return nil, nil
}
func CheckTimerResetReturnValue(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs {
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
call, ok := ins.(*ssa.Call)
if !ok {
continue
}
if !IsCallTo(call.Common(), "(*time.Timer).Reset") {
continue
}
refs := call.Referrers()
if refs == nil {
continue
}
for _, ref := range FilterDebug(*refs) {
ifstmt, ok := ref.(*ssa.If)
if !ok {
continue
}
found := false
for _, succ := range ifstmt.Block().Succs {
if len(succ.Preds) != 1 {
// Merge point, not a branch in the
// syntactical sense.
// FIXME(dh): this is broken for if
// statements a la "if x || y"
continue
}
ssautil.Walk(succ, func(b *ssa.BasicBlock) bool {
if !succ.Dominates(b) {
// We've reached the end of the branch
return false
}
for _, ins := range b.Instrs {
// TODO(dh): we should check that
// we're receiving from the channel of
// a time.Timer to further reduce
// false positives. Not a key
// priority, considering the rarity of
// Reset and the tiny likeliness of a
// false positive
if ins, ok := ins.(*ssa.UnOp); ok && ins.Op == token.ARROW && IsType(ins.X.Type(), "<-chan time.Time") {
found = true
return false
}
}
return true
})
}
if found {
pass.Reportf(call.Pos(), "it is not possible to use Reset's return value correctly, as there is a race condition between draining the channel and the new timer expiring")
}
}
}
}
}
return nil, nil
}
func CheckToLowerToUpperComparison(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
binExpr := node.(*ast.BinaryExpr)
var negative bool
switch binExpr.Op {
case token.EQL:
negative = false
case token.NEQ:
negative = true
default:
return
}
const (
lo = "strings.ToLower"
up = "strings.ToUpper"
)
var call string
if IsCallToAST(pass, binExpr.X, lo) && IsCallToAST(pass, binExpr.Y, lo) {
call = lo
} else if IsCallToAST(pass, binExpr.X, up) && IsCallToAST(pass, binExpr.Y, up) {
call = up
} else {
return
}
bang := ""
if negative {
bang = "!"
}
ReportNodef(pass, binExpr, "should use %sstrings.EqualFold(a, b) instead of %s(a) %s %s(b)", bang, call, binExpr.Op, call)
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.BinaryExpr)(nil)}, fn)
return nil, nil
}
func CheckUnreachableTypeCases(pass *analysis.Pass) (interface{}, error) {
// Check if T subsumes V in a type switch. T subsumes V if T is an interface and T's method set is a subset of V's method set.
subsumes := func(T, V types.Type) bool {
tIface, ok := T.Underlying().(*types.Interface)
if !ok {
return false
}
return types.Implements(V, tIface)
}
subsumesAny := func(Ts, Vs []types.Type) (types.Type, types.Type, bool) {
for _, T := range Ts {
for _, V := range Vs {
if subsumes(T, V) {
return T, V, true
}
}
}
return nil, nil, false
}
fn := func(node ast.Node) {
tsStmt := node.(*ast.TypeSwitchStmt)
type ccAndTypes struct {
cc *ast.CaseClause
types []types.Type
}
// All asserted types in the order of case clauses.
ccs := make([]ccAndTypes, 0, len(tsStmt.Body.List))
for _, stmt := range tsStmt.Body.List {
cc, _ := stmt.(*ast.CaseClause)
// Exclude the 'default' case.
if len(cc.List) == 0 {
continue
}
Ts := make([]types.Type, len(cc.List))
for i, expr := range cc.List {
Ts[i] = pass.TypesInfo.TypeOf(expr)
}
ccs = append(ccs, ccAndTypes{cc: cc, types: Ts})
}
if len(ccs) <= 1 {
// Zero or one case clauses, nothing to check.
return
}
// Check if case clauses following cc have types that are subsumed by cc.
for i, cc := range ccs[:len(ccs)-1] {
for _, next := range ccs[i+1:] {
if T, V, yes := subsumesAny(cc.types, next.types); yes {
ReportNodef(pass, next.cc, "unreachable case clause: %s will always match before %s", T.String(), V.String())
}
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.TypeSwitchStmt)(nil)}, fn)
return nil, nil
}
func CheckSingleArgAppend(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if !IsCallToAST(pass, node, "append") {
return
}
call := node.(*ast.CallExpr)
if len(call.Args) != 1 {
return
}
ReportfFG(pass, call.Pos(), "x = append(y) is equivalent to x = y")
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func CheckStructTags(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
for _, field := range node.(*ast.StructType).Fields.List {
if field.Tag == nil {
continue
}
tags, err := parseStructTag(field.Tag.Value[1 : len(field.Tag.Value)-1])
if err != nil {
ReportNodef(pass, field.Tag, "unparseable struct tag: %s", err)
continue
}
for k, v := range tags {
if len(v) > 1 {
ReportNodef(pass, field.Tag, "duplicate struct tag %q", k)
continue
}
switch k {
case "json":
checkJSONTag(pass, field, v[0])
case "xml":
checkXMLTag(pass, field, v[0])
}
}
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.StructType)(nil)}, fn)
return nil, nil
}
func checkJSONTag(pass *analysis.Pass, field *ast.Field, tag string) {
//lint:ignore SA9003 TODO(dh): should we flag empty tags?
if len(tag) == 0 {
}
fields := strings.Split(tag, ",")
for _, r := range fields[0] {
if !unicode.IsLetter(r) && !unicode.IsDigit(r) && !strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", r) {
ReportNodef(pass, field.Tag, "invalid JSON field name %q", fields[0])
}
}
var co, cs, ci int
for _, s := range fields[1:] {
switch s {
case "omitempty":
co++
case "":
// allow stuff like "-,"
case "string":
cs++
// only for string, floating point, integer and bool
T := Dereference(pass.TypesInfo.TypeOf(field.Type).Underlying()).Underlying()
basic, ok := T.(*types.Basic)
if !ok || (basic.Info()&(types.IsBoolean|types.IsInteger|types.IsFloat|types.IsString)) == 0 {
ReportNodef(pass, field.Tag, "the JSON string option only applies to fields of type string, floating point, integer or bool, or pointers to those")
}
case "inline":
ci++
default:
ReportNodef(pass, field.Tag, "unknown JSON option %q", s)
}
}
if co > 1 {
ReportNodef(pass, field.Tag, `duplicate JSON option "omitempty"`)
}
if cs > 1 {
ReportNodef(pass, field.Tag, `duplicate JSON option "string"`)
}
if ci > 1 {
ReportNodef(pass, field.Tag, `duplicate JSON option "inline"`)
}
}
func checkXMLTag(pass *analysis.Pass, field *ast.Field, tag string) {
//lint:ignore SA9003 TODO(dh): should we flag empty tags?
if len(tag) == 0 {
}
fields := strings.Split(tag, ",")
counts := map[string]int{}
var exclusives []string
for _, s := range fields[1:] {
switch s {
case "attr", "chardata", "cdata", "innerxml", "comment":
counts[s]++
if counts[s] == 1 {
exclusives = append(exclusives, s)
}
case "omitempty", "any":
counts[s]++
case "":
default:
ReportNodef(pass, field.Tag, "unknown XML option %q", s)
}
}
for k, v := range counts {
if v > 1 {
ReportNodef(pass, field.Tag, "duplicate XML option %q", k)
}
}
if len(exclusives) > 1 {
ReportNodef(pass, field.Tag, "XML options %s are mutually exclusive", strings.Join(exclusives, " and "))
}
}