2024-08-20 13:34:46 +00:00
|
|
|
package fse
|
|
|
|
|
|
|
|
import (
|
|
|
|
"errors"
|
|
|
|
"fmt"
|
|
|
|
)
|
|
|
|
|
|
|
|
const (
|
|
|
|
tablelogAbsoluteMax = 15
|
|
|
|
)
|
|
|
|
|
|
|
|
// Decompress a block of data.
|
|
|
|
// You can provide a scratch buffer to avoid allocations.
|
|
|
|
// If nil is provided a temporary one will be allocated.
|
|
|
|
// It is possible, but by no way guaranteed that corrupt data will
|
|
|
|
// return an error.
|
|
|
|
// It is up to the caller to verify integrity of the returned data.
|
2024-12-23 20:41:42 +00:00
|
|
|
// Use a predefined Scratch to set maximum acceptable output size.
|
2024-08-20 13:34:46 +00:00
|
|
|
func Decompress(b []byte, s *Scratch) ([]byte, error) {
|
|
|
|
s, err := s.prepare(b)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
s.Out = s.Out[:0]
|
|
|
|
err = s.readNCount()
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
err = s.buildDtable()
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
err = s.decompress()
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
return s.Out, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// readNCount will read the symbol distribution so decoding tables can be constructed.
|
|
|
|
func (s *Scratch) readNCount() error {
|
|
|
|
var (
|
|
|
|
charnum uint16
|
|
|
|
previous0 bool
|
|
|
|
b = &s.br
|
|
|
|
)
|
|
|
|
iend := b.remain()
|
|
|
|
if iend < 4 {
|
|
|
|
return errors.New("input too small")
|
|
|
|
}
|
|
|
|
bitStream := b.Uint32()
|
|
|
|
nbBits := uint((bitStream & 0xF) + minTablelog) // extract tableLog
|
|
|
|
if nbBits > tablelogAbsoluteMax {
|
|
|
|
return errors.New("tableLog too large")
|
|
|
|
}
|
|
|
|
bitStream >>= 4
|
|
|
|
bitCount := uint(4)
|
|
|
|
|
|
|
|
s.actualTableLog = uint8(nbBits)
|
|
|
|
remaining := int32((1 << nbBits) + 1)
|
|
|
|
threshold := int32(1 << nbBits)
|
|
|
|
gotTotal := int32(0)
|
|
|
|
nbBits++
|
|
|
|
|
|
|
|
for remaining > 1 {
|
|
|
|
if previous0 {
|
|
|
|
n0 := charnum
|
|
|
|
for (bitStream & 0xFFFF) == 0xFFFF {
|
|
|
|
n0 += 24
|
|
|
|
if b.off < iend-5 {
|
|
|
|
b.advance(2)
|
|
|
|
bitStream = b.Uint32() >> bitCount
|
|
|
|
} else {
|
|
|
|
bitStream >>= 16
|
|
|
|
bitCount += 16
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (bitStream & 3) == 3 {
|
|
|
|
n0 += 3
|
|
|
|
bitStream >>= 2
|
|
|
|
bitCount += 2
|
|
|
|
}
|
|
|
|
n0 += uint16(bitStream & 3)
|
|
|
|
bitCount += 2
|
|
|
|
if n0 > maxSymbolValue {
|
|
|
|
return errors.New("maxSymbolValue too small")
|
|
|
|
}
|
|
|
|
for charnum < n0 {
|
|
|
|
s.norm[charnum&0xff] = 0
|
|
|
|
charnum++
|
|
|
|
}
|
|
|
|
|
|
|
|
if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 {
|
|
|
|
b.advance(bitCount >> 3)
|
|
|
|
bitCount &= 7
|
|
|
|
bitStream = b.Uint32() >> bitCount
|
|
|
|
} else {
|
|
|
|
bitStream >>= 2
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
max := (2*(threshold) - 1) - (remaining)
|
|
|
|
var count int32
|
|
|
|
|
|
|
|
if (int32(bitStream) & (threshold - 1)) < max {
|
|
|
|
count = int32(bitStream) & (threshold - 1)
|
|
|
|
bitCount += nbBits - 1
|
|
|
|
} else {
|
|
|
|
count = int32(bitStream) & (2*threshold - 1)
|
|
|
|
if count >= threshold {
|
|
|
|
count -= max
|
|
|
|
}
|
|
|
|
bitCount += nbBits
|
|
|
|
}
|
|
|
|
|
|
|
|
count-- // extra accuracy
|
|
|
|
if count < 0 {
|
|
|
|
// -1 means +1
|
|
|
|
remaining += count
|
|
|
|
gotTotal -= count
|
|
|
|
} else {
|
|
|
|
remaining -= count
|
|
|
|
gotTotal += count
|
|
|
|
}
|
|
|
|
s.norm[charnum&0xff] = int16(count)
|
|
|
|
charnum++
|
|
|
|
previous0 = count == 0
|
|
|
|
for remaining < threshold {
|
|
|
|
nbBits--
|
|
|
|
threshold >>= 1
|
|
|
|
}
|
|
|
|
if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 {
|
|
|
|
b.advance(bitCount >> 3)
|
|
|
|
bitCount &= 7
|
|
|
|
} else {
|
|
|
|
bitCount -= (uint)(8 * (len(b.b) - 4 - b.off))
|
|
|
|
b.off = len(b.b) - 4
|
|
|
|
}
|
|
|
|
bitStream = b.Uint32() >> (bitCount & 31)
|
|
|
|
}
|
|
|
|
s.symbolLen = charnum
|
|
|
|
|
|
|
|
if s.symbolLen <= 1 {
|
|
|
|
return fmt.Errorf("symbolLen (%d) too small", s.symbolLen)
|
|
|
|
}
|
|
|
|
if s.symbolLen > maxSymbolValue+1 {
|
|
|
|
return fmt.Errorf("symbolLen (%d) too big", s.symbolLen)
|
|
|
|
}
|
|
|
|
if remaining != 1 {
|
|
|
|
return fmt.Errorf("corruption detected (remaining %d != 1)", remaining)
|
|
|
|
}
|
|
|
|
if bitCount > 32 {
|
|
|
|
return fmt.Errorf("corruption detected (bitCount %d > 32)", bitCount)
|
|
|
|
}
|
|
|
|
if gotTotal != 1<<s.actualTableLog {
|
|
|
|
return fmt.Errorf("corruption detected (total %d != %d)", gotTotal, 1<<s.actualTableLog)
|
|
|
|
}
|
|
|
|
b.advance((bitCount + 7) >> 3)
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// decSymbol contains information about a state entry,
|
|
|
|
// Including the state offset base, the output symbol and
|
|
|
|
// the number of bits to read for the low part of the destination state.
|
|
|
|
type decSymbol struct {
|
|
|
|
newState uint16
|
|
|
|
symbol uint8
|
|
|
|
nbBits uint8
|
|
|
|
}
|
|
|
|
|
|
|
|
// allocDtable will allocate decoding tables if they are not big enough.
|
|
|
|
func (s *Scratch) allocDtable() {
|
|
|
|
tableSize := 1 << s.actualTableLog
|
|
|
|
if cap(s.decTable) < tableSize {
|
|
|
|
s.decTable = make([]decSymbol, tableSize)
|
|
|
|
}
|
|
|
|
s.decTable = s.decTable[:tableSize]
|
|
|
|
|
|
|
|
if cap(s.ct.tableSymbol) < 256 {
|
|
|
|
s.ct.tableSymbol = make([]byte, 256)
|
|
|
|
}
|
|
|
|
s.ct.tableSymbol = s.ct.tableSymbol[:256]
|
|
|
|
|
|
|
|
if cap(s.ct.stateTable) < 256 {
|
|
|
|
s.ct.stateTable = make([]uint16, 256)
|
|
|
|
}
|
|
|
|
s.ct.stateTable = s.ct.stateTable[:256]
|
|
|
|
}
|
|
|
|
|
|
|
|
// buildDtable will build the decoding table.
|
|
|
|
func (s *Scratch) buildDtable() error {
|
|
|
|
tableSize := uint32(1 << s.actualTableLog)
|
|
|
|
highThreshold := tableSize - 1
|
|
|
|
s.allocDtable()
|
|
|
|
symbolNext := s.ct.stateTable[:256]
|
|
|
|
|
|
|
|
// Init, lay down lowprob symbols
|
|
|
|
s.zeroBits = false
|
|
|
|
{
|
|
|
|
largeLimit := int16(1 << (s.actualTableLog - 1))
|
|
|
|
for i, v := range s.norm[:s.symbolLen] {
|
|
|
|
if v == -1 {
|
|
|
|
s.decTable[highThreshold].symbol = uint8(i)
|
|
|
|
highThreshold--
|
|
|
|
symbolNext[i] = 1
|
|
|
|
} else {
|
|
|
|
if v >= largeLimit {
|
|
|
|
s.zeroBits = true
|
|
|
|
}
|
|
|
|
symbolNext[i] = uint16(v)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Spread symbols
|
|
|
|
{
|
|
|
|
tableMask := tableSize - 1
|
|
|
|
step := tableStep(tableSize)
|
|
|
|
position := uint32(0)
|
|
|
|
for ss, v := range s.norm[:s.symbolLen] {
|
|
|
|
for i := 0; i < int(v); i++ {
|
|
|
|
s.decTable[position].symbol = uint8(ss)
|
|
|
|
position = (position + step) & tableMask
|
|
|
|
for position > highThreshold {
|
|
|
|
// lowprob area
|
|
|
|
position = (position + step) & tableMask
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if position != 0 {
|
|
|
|
// position must reach all cells once, otherwise normalizedCounter is incorrect
|
|
|
|
return errors.New("corrupted input (position != 0)")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Build Decoding table
|
|
|
|
{
|
|
|
|
tableSize := uint16(1 << s.actualTableLog)
|
|
|
|
for u, v := range s.decTable {
|
|
|
|
symbol := v.symbol
|
|
|
|
nextState := symbolNext[symbol]
|
|
|
|
symbolNext[symbol] = nextState + 1
|
|
|
|
nBits := s.actualTableLog - byte(highBits(uint32(nextState)))
|
|
|
|
s.decTable[u].nbBits = nBits
|
|
|
|
newState := (nextState << nBits) - tableSize
|
|
|
|
if newState >= tableSize {
|
|
|
|
return fmt.Errorf("newState (%d) outside table size (%d)", newState, tableSize)
|
|
|
|
}
|
|
|
|
if newState == uint16(u) && nBits == 0 {
|
|
|
|
// Seems weird that this is possible with nbits > 0.
|
|
|
|
return fmt.Errorf("newState (%d) == oldState (%d) and no bits", newState, u)
|
|
|
|
}
|
|
|
|
s.decTable[u].newState = newState
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// decompress will decompress the bitstream.
|
|
|
|
// If the buffer is over-read an error is returned.
|
|
|
|
func (s *Scratch) decompress() error {
|
|
|
|
br := &s.bits
|
|
|
|
if err := br.init(s.br.unread()); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
|
|
|
var s1, s2 decoder
|
|
|
|
// Initialize and decode first state and symbol.
|
|
|
|
s1.init(br, s.decTable, s.actualTableLog)
|
|
|
|
s2.init(br, s.decTable, s.actualTableLog)
|
|
|
|
|
|
|
|
// Use temp table to avoid bound checks/append penalty.
|
|
|
|
var tmp = s.ct.tableSymbol[:256]
|
|
|
|
var off uint8
|
|
|
|
|
|
|
|
// Main part
|
|
|
|
if !s.zeroBits {
|
|
|
|
for br.off >= 8 {
|
|
|
|
br.fillFast()
|
|
|
|
tmp[off+0] = s1.nextFast()
|
|
|
|
tmp[off+1] = s2.nextFast()
|
|
|
|
br.fillFast()
|
|
|
|
tmp[off+2] = s1.nextFast()
|
|
|
|
tmp[off+3] = s2.nextFast()
|
|
|
|
off += 4
|
|
|
|
// When off is 0, we have overflowed and should write.
|
|
|
|
if off == 0 {
|
|
|
|
s.Out = append(s.Out, tmp...)
|
|
|
|
if len(s.Out) >= s.DecompressLimit {
|
|
|
|
return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for br.off >= 8 {
|
|
|
|
br.fillFast()
|
|
|
|
tmp[off+0] = s1.next()
|
|
|
|
tmp[off+1] = s2.next()
|
|
|
|
br.fillFast()
|
|
|
|
tmp[off+2] = s1.next()
|
|
|
|
tmp[off+3] = s2.next()
|
|
|
|
off += 4
|
|
|
|
if off == 0 {
|
|
|
|
s.Out = append(s.Out, tmp...)
|
|
|
|
// When off is 0, we have overflowed and should write.
|
|
|
|
if len(s.Out) >= s.DecompressLimit {
|
|
|
|
return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
s.Out = append(s.Out, tmp[:off]...)
|
|
|
|
|
|
|
|
// Final bits, a bit more expensive check
|
|
|
|
for {
|
|
|
|
if s1.finished() {
|
|
|
|
s.Out = append(s.Out, s1.final(), s2.final())
|
|
|
|
break
|
|
|
|
}
|
|
|
|
br.fill()
|
|
|
|
s.Out = append(s.Out, s1.next())
|
|
|
|
if s2.finished() {
|
|
|
|
s.Out = append(s.Out, s2.final(), s1.final())
|
|
|
|
break
|
|
|
|
}
|
|
|
|
s.Out = append(s.Out, s2.next())
|
|
|
|
if len(s.Out) >= s.DecompressLimit {
|
|
|
|
return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return br.close()
|
|
|
|
}
|
|
|
|
|
|
|
|
// decoder keeps track of the current state and updates it from the bitstream.
|
|
|
|
type decoder struct {
|
|
|
|
state uint16
|
|
|
|
br *bitReader
|
|
|
|
dt []decSymbol
|
|
|
|
}
|
|
|
|
|
|
|
|
// init will initialize the decoder and read the first state from the stream.
|
|
|
|
func (d *decoder) init(in *bitReader, dt []decSymbol, tableLog uint8) {
|
|
|
|
d.dt = dt
|
|
|
|
d.br = in
|
|
|
|
d.state = in.getBits(tableLog)
|
|
|
|
}
|
|
|
|
|
|
|
|
// next returns the next symbol and sets the next state.
|
|
|
|
// At least tablelog bits must be available in the bit reader.
|
|
|
|
func (d *decoder) next() uint8 {
|
|
|
|
n := &d.dt[d.state]
|
|
|
|
lowBits := d.br.getBits(n.nbBits)
|
|
|
|
d.state = n.newState + lowBits
|
|
|
|
return n.symbol
|
|
|
|
}
|
|
|
|
|
|
|
|
// finished returns true if all bits have been read from the bitstream
|
|
|
|
// and the next state would require reading bits from the input.
|
|
|
|
func (d *decoder) finished() bool {
|
|
|
|
return d.br.finished() && d.dt[d.state].nbBits > 0
|
|
|
|
}
|
|
|
|
|
|
|
|
// final returns the current state symbol without decoding the next.
|
|
|
|
func (d *decoder) final() uint8 {
|
|
|
|
return d.dt[d.state].symbol
|
|
|
|
}
|
|
|
|
|
|
|
|
// nextFast returns the next symbol and sets the next state.
|
|
|
|
// This can only be used if no symbols are 0 bits.
|
|
|
|
// At least tablelog bits must be available in the bit reader.
|
|
|
|
func (d *decoder) nextFast() uint8 {
|
|
|
|
n := d.dt[d.state]
|
|
|
|
lowBits := d.br.getBitsFast(n.nbBits)
|
|
|
|
d.state = n.newState + lowBits
|
|
|
|
return n.symbol
|
|
|
|
}
|