mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-06-13 02:33:34 +00:00
rebase: bump k8s.io/kubernetes from 1.26.2 to 1.27.2
Bumps [k8s.io/kubernetes](https://github.com/kubernetes/kubernetes) from 1.26.2 to 1.27.2. - [Release notes](https://github.com/kubernetes/kubernetes/releases) - [Commits](https://github.com/kubernetes/kubernetes/compare/v1.26.2...v1.27.2) --- updated-dependencies: - dependency-name: k8s.io/kubernetes dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] <support@github.com>
This commit is contained in:
committed by
mergify[bot]
parent
0e79135419
commit
07b05616a0
627
vendor/github.com/google/cel-go/checker/cost.go
generated
vendored
Normal file
627
vendor/github.com/google/cel-go/checker/cost.go
generated
vendored
Normal file
@ -0,0 +1,627 @@
|
||||
// Copyright 2022 Google LLC
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package checker
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/google/cel-go/common"
|
||||
"github.com/google/cel-go/common/overloads"
|
||||
"github.com/google/cel-go/parser"
|
||||
|
||||
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
|
||||
)
|
||||
|
||||
// WARNING: Any changes to cost calculations in this file require a corresponding change in interpreter/runtimecost.go
|
||||
|
||||
// CostEstimator estimates the sizes of variable length input data and the costs of functions.
|
||||
type CostEstimator interface {
|
||||
// EstimateSize returns a SizeEstimate for the given AstNode, or nil if
|
||||
// the estimator has no estimate to provide. The size is equivalent to the result of the CEL `size()` function:
|
||||
// length of strings and bytes, number of map entries or number of list items.
|
||||
// EstimateSize is only called for AstNodes where
|
||||
// CEL does not know the size; EstimateSize is not called for values defined inline in CEL where the size
|
||||
// is already obvious to CEL.
|
||||
EstimateSize(element AstNode) *SizeEstimate
|
||||
// EstimateCallCost returns the estimated cost of an invocation, or nil if
|
||||
// the estimator has no estimate to provide.
|
||||
EstimateCallCost(function, overloadID string, target *AstNode, args []AstNode) *CallEstimate
|
||||
}
|
||||
|
||||
// CallEstimate includes a CostEstimate for the call, and an optional estimate of the result object size.
|
||||
// The ResultSize should only be provided if the call results in a map, list, string or bytes.
|
||||
type CallEstimate struct {
|
||||
CostEstimate
|
||||
ResultSize *SizeEstimate
|
||||
}
|
||||
|
||||
// AstNode represents an AST node for the purpose of cost estimations.
|
||||
type AstNode interface {
|
||||
// Path returns a field path through the provided type declarations to the type of the AstNode, or nil if the AstNode does not
|
||||
// represent type directly reachable from the provided type declarations.
|
||||
// The first path element is a variable. All subsequent path elements are one of: field name, '@items', '@keys', '@values'.
|
||||
Path() []string
|
||||
// Type returns the deduced type of the AstNode.
|
||||
Type() *exprpb.Type
|
||||
// Expr returns the expression of the AstNode.
|
||||
Expr() *exprpb.Expr
|
||||
// ComputedSize returns a size estimate of the AstNode derived from information available in the CEL expression.
|
||||
// For constants and inline list and map declarations, the exact size is returned. For concatenated list, strings
|
||||
// and bytes, the size is derived from the size estimates of the operands. nil is returned if there is no
|
||||
// computed size available.
|
||||
ComputedSize() *SizeEstimate
|
||||
}
|
||||
|
||||
type astNode struct {
|
||||
path []string
|
||||
t *exprpb.Type
|
||||
expr *exprpb.Expr
|
||||
derivedSize *SizeEstimate
|
||||
}
|
||||
|
||||
func (e astNode) Path() []string {
|
||||
return e.path
|
||||
}
|
||||
|
||||
func (e astNode) Type() *exprpb.Type {
|
||||
return e.t
|
||||
}
|
||||
|
||||
func (e astNode) Expr() *exprpb.Expr {
|
||||
return e.expr
|
||||
}
|
||||
|
||||
func (e astNode) ComputedSize() *SizeEstimate {
|
||||
if e.derivedSize != nil {
|
||||
return e.derivedSize
|
||||
}
|
||||
var v uint64
|
||||
switch ek := e.expr.GetExprKind().(type) {
|
||||
case *exprpb.Expr_ConstExpr:
|
||||
switch ck := ek.ConstExpr.GetConstantKind().(type) {
|
||||
case *exprpb.Constant_StringValue:
|
||||
v = uint64(len(ck.StringValue))
|
||||
case *exprpb.Constant_BytesValue:
|
||||
v = uint64(len(ck.BytesValue))
|
||||
case *exprpb.Constant_BoolValue, *exprpb.Constant_DoubleValue, *exprpb.Constant_DurationValue,
|
||||
*exprpb.Constant_Int64Value, *exprpb.Constant_TimestampValue, *exprpb.Constant_Uint64Value,
|
||||
*exprpb.Constant_NullValue:
|
||||
v = uint64(1)
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
case *exprpb.Expr_ListExpr:
|
||||
v = uint64(len(ek.ListExpr.GetElements()))
|
||||
case *exprpb.Expr_StructExpr:
|
||||
if ek.StructExpr.GetMessageName() == "" {
|
||||
v = uint64(len(ek.StructExpr.GetEntries()))
|
||||
}
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
|
||||
return &SizeEstimate{Min: v, Max: v}
|
||||
}
|
||||
|
||||
// SizeEstimate represents an estimated size of a variable length string, bytes, map or list.
|
||||
type SizeEstimate struct {
|
||||
Min, Max uint64
|
||||
}
|
||||
|
||||
// Add adds to another SizeEstimate and returns the sum.
|
||||
// If add would result in an uint64 overflow, the result is math.MaxUint64.
|
||||
func (se SizeEstimate) Add(sizeEstimate SizeEstimate) SizeEstimate {
|
||||
return SizeEstimate{
|
||||
addUint64NoOverflow(se.Min, sizeEstimate.Min),
|
||||
addUint64NoOverflow(se.Max, sizeEstimate.Max),
|
||||
}
|
||||
}
|
||||
|
||||
// Multiply multiplies by another SizeEstimate and returns the product.
|
||||
// If multiply would result in an uint64 overflow, the result is math.MaxUint64.
|
||||
func (se SizeEstimate) Multiply(sizeEstimate SizeEstimate) SizeEstimate {
|
||||
return SizeEstimate{
|
||||
multiplyUint64NoOverflow(se.Min, sizeEstimate.Min),
|
||||
multiplyUint64NoOverflow(se.Max, sizeEstimate.Max),
|
||||
}
|
||||
}
|
||||
|
||||
// MultiplyByCostFactor multiplies a SizeEstimate by a cost factor and returns the CostEstimate with the
|
||||
// nearest integer of the result, rounded up.
|
||||
func (se SizeEstimate) MultiplyByCostFactor(costPerUnit float64) CostEstimate {
|
||||
return CostEstimate{
|
||||
multiplyByCostFactor(se.Min, costPerUnit),
|
||||
multiplyByCostFactor(se.Max, costPerUnit),
|
||||
}
|
||||
}
|
||||
|
||||
// MultiplyByCost multiplies by the cost and returns the product.
|
||||
// If multiply would result in an uint64 overflow, the result is math.MaxUint64.
|
||||
func (se SizeEstimate) MultiplyByCost(cost CostEstimate) CostEstimate {
|
||||
return CostEstimate{
|
||||
multiplyUint64NoOverflow(se.Min, cost.Min),
|
||||
multiplyUint64NoOverflow(se.Max, cost.Max),
|
||||
}
|
||||
}
|
||||
|
||||
// Union returns a SizeEstimate that encompasses both input the SizeEstimate.
|
||||
func (se SizeEstimate) Union(size SizeEstimate) SizeEstimate {
|
||||
result := se
|
||||
if size.Min < result.Min {
|
||||
result.Min = size.Min
|
||||
}
|
||||
if size.Max > result.Max {
|
||||
result.Max = size.Max
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// CostEstimate represents an estimated cost range and provides add and multiply operations
|
||||
// that do not overflow.
|
||||
type CostEstimate struct {
|
||||
Min, Max uint64
|
||||
}
|
||||
|
||||
// Add adds the costs and returns the sum.
|
||||
// If add would result in an uint64 overflow for the min or max, the value is set to math.MaxUint64.
|
||||
func (ce CostEstimate) Add(cost CostEstimate) CostEstimate {
|
||||
return CostEstimate{
|
||||
addUint64NoOverflow(ce.Min, cost.Min),
|
||||
addUint64NoOverflow(ce.Max, cost.Max),
|
||||
}
|
||||
}
|
||||
|
||||
// Multiply multiplies by the cost and returns the product.
|
||||
// If multiply would result in an uint64 overflow, the result is math.MaxUint64.
|
||||
func (ce CostEstimate) Multiply(cost CostEstimate) CostEstimate {
|
||||
return CostEstimate{
|
||||
multiplyUint64NoOverflow(ce.Min, cost.Min),
|
||||
multiplyUint64NoOverflow(ce.Max, cost.Max),
|
||||
}
|
||||
}
|
||||
|
||||
// MultiplyByCostFactor multiplies a CostEstimate by a cost factor and returns the CostEstimate with the
|
||||
// nearest integer of the result, rounded up.
|
||||
func (ce CostEstimate) MultiplyByCostFactor(costPerUnit float64) CostEstimate {
|
||||
return CostEstimate{
|
||||
multiplyByCostFactor(ce.Min, costPerUnit),
|
||||
multiplyByCostFactor(ce.Max, costPerUnit),
|
||||
}
|
||||
}
|
||||
|
||||
// Union returns a CostEstimate that encompasses both input the CostEstimates.
|
||||
func (ce CostEstimate) Union(size CostEstimate) CostEstimate {
|
||||
result := ce
|
||||
if size.Min < result.Min {
|
||||
result.Min = size.Min
|
||||
}
|
||||
if size.Max > result.Max {
|
||||
result.Max = size.Max
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// addUint64NoOverflow adds non-negative ints. If the result is exceeds math.MaxUint64, math.MaxUint64
|
||||
// is returned.
|
||||
func addUint64NoOverflow(x, y uint64) uint64 {
|
||||
if y > 0 && x > math.MaxUint64-y {
|
||||
return math.MaxUint64
|
||||
}
|
||||
return x + y
|
||||
}
|
||||
|
||||
// multiplyUint64NoOverflow multiplies non-negative ints. If the result is exceeds math.MaxUint64, math.MaxUint64
|
||||
// is returned.
|
||||
func multiplyUint64NoOverflow(x, y uint64) uint64 {
|
||||
if x > 0 && y > 0 && x > math.MaxUint64/y {
|
||||
return math.MaxUint64
|
||||
}
|
||||
return x * y
|
||||
}
|
||||
|
||||
// multiplyByFactor multiplies an integer by a cost factor float and returns the nearest integer value, rounded up.
|
||||
func multiplyByCostFactor(x uint64, y float64) uint64 {
|
||||
xFloat := float64(x)
|
||||
if xFloat > 0 && y > 0 && xFloat > math.MaxUint64/y {
|
||||
return math.MaxUint64
|
||||
}
|
||||
return uint64(math.Ceil(xFloat * y))
|
||||
}
|
||||
|
||||
var (
|
||||
selectAndIdentCost = CostEstimate{Min: common.SelectAndIdentCost, Max: common.SelectAndIdentCost}
|
||||
constCost = CostEstimate{Min: common.ConstCost, Max: common.ConstCost}
|
||||
|
||||
createListBaseCost = CostEstimate{Min: common.ListCreateBaseCost, Max: common.ListCreateBaseCost}
|
||||
createMapBaseCost = CostEstimate{Min: common.MapCreateBaseCost, Max: common.MapCreateBaseCost}
|
||||
createMessageBaseCost = CostEstimate{Min: common.StructCreateBaseCost, Max: common.StructCreateBaseCost}
|
||||
)
|
||||
|
||||
type coster struct {
|
||||
// exprPath maps from Expr Id to field path.
|
||||
exprPath map[int64][]string
|
||||
// iterRanges tracks the iterRange of each iterVar.
|
||||
iterRanges iterRangeScopes
|
||||
// computedSizes tracks the computed sizes of call results.
|
||||
computedSizes map[int64]SizeEstimate
|
||||
checkedExpr *exprpb.CheckedExpr
|
||||
estimator CostEstimator
|
||||
}
|
||||
|
||||
// Use a stack of iterVar -> iterRange Expr Ids to handle shadowed variable names.
|
||||
type iterRangeScopes map[string][]int64
|
||||
|
||||
func (vs iterRangeScopes) push(varName string, expr *exprpb.Expr) {
|
||||
vs[varName] = append(vs[varName], expr.GetId())
|
||||
}
|
||||
|
||||
func (vs iterRangeScopes) pop(varName string) {
|
||||
varStack := vs[varName]
|
||||
vs[varName] = varStack[:len(varStack)-1]
|
||||
}
|
||||
|
||||
func (vs iterRangeScopes) peek(varName string) (int64, bool) {
|
||||
varStack := vs[varName]
|
||||
if len(varStack) > 0 {
|
||||
return varStack[len(varStack)-1], true
|
||||
}
|
||||
return 0, false
|
||||
}
|
||||
|
||||
// Cost estimates the cost of the parsed and type checked CEL expression.
|
||||
func Cost(checker *exprpb.CheckedExpr, estimator CostEstimator) CostEstimate {
|
||||
c := coster{
|
||||
checkedExpr: checker,
|
||||
estimator: estimator,
|
||||
exprPath: map[int64][]string{},
|
||||
iterRanges: map[string][]int64{},
|
||||
computedSizes: map[int64]SizeEstimate{},
|
||||
}
|
||||
return c.cost(checker.GetExpr())
|
||||
}
|
||||
|
||||
func (c *coster) cost(e *exprpb.Expr) CostEstimate {
|
||||
if e == nil {
|
||||
return CostEstimate{}
|
||||
}
|
||||
var cost CostEstimate
|
||||
switch e.GetExprKind().(type) {
|
||||
case *exprpb.Expr_ConstExpr:
|
||||
cost = constCost
|
||||
case *exprpb.Expr_IdentExpr:
|
||||
cost = c.costIdent(e)
|
||||
case *exprpb.Expr_SelectExpr:
|
||||
cost = c.costSelect(e)
|
||||
case *exprpb.Expr_CallExpr:
|
||||
cost = c.costCall(e)
|
||||
case *exprpb.Expr_ListExpr:
|
||||
cost = c.costCreateList(e)
|
||||
case *exprpb.Expr_StructExpr:
|
||||
cost = c.costCreateStruct(e)
|
||||
case *exprpb.Expr_ComprehensionExpr:
|
||||
cost = c.costComprehension(e)
|
||||
default:
|
||||
return CostEstimate{}
|
||||
}
|
||||
return cost
|
||||
}
|
||||
|
||||
func (c *coster) costIdent(e *exprpb.Expr) CostEstimate {
|
||||
identExpr := e.GetIdentExpr()
|
||||
|
||||
// build and track the field path
|
||||
if iterRange, ok := c.iterRanges.peek(identExpr.GetName()); ok {
|
||||
switch c.checkedExpr.TypeMap[iterRange].GetTypeKind().(type) {
|
||||
case *exprpb.Type_ListType_:
|
||||
c.addPath(e, append(c.exprPath[iterRange], "@items"))
|
||||
case *exprpb.Type_MapType_:
|
||||
c.addPath(e, append(c.exprPath[iterRange], "@keys"))
|
||||
}
|
||||
} else {
|
||||
c.addPath(e, []string{identExpr.GetName()})
|
||||
}
|
||||
|
||||
return selectAndIdentCost
|
||||
}
|
||||
|
||||
func (c *coster) costSelect(e *exprpb.Expr) CostEstimate {
|
||||
sel := e.GetSelectExpr()
|
||||
var sum CostEstimate
|
||||
if sel.GetTestOnly() {
|
||||
return sum
|
||||
}
|
||||
sum = sum.Add(c.cost(sel.GetOperand()))
|
||||
targetType := c.getType(sel.GetOperand())
|
||||
switch kindOf(targetType) {
|
||||
case kindMap, kindObject, kindTypeParam:
|
||||
sum = sum.Add(selectAndIdentCost)
|
||||
}
|
||||
|
||||
// build and track the field path
|
||||
c.addPath(e, append(c.getPath(sel.GetOperand()), sel.GetField()))
|
||||
|
||||
return sum
|
||||
}
|
||||
|
||||
func (c *coster) costCall(e *exprpb.Expr) CostEstimate {
|
||||
call := e.GetCallExpr()
|
||||
target := call.GetTarget()
|
||||
args := call.GetArgs()
|
||||
|
||||
var sum CostEstimate
|
||||
|
||||
argTypes := make([]AstNode, len(args))
|
||||
argCosts := make([]CostEstimate, len(args))
|
||||
for i, arg := range args {
|
||||
argCosts[i] = c.cost(arg)
|
||||
argTypes[i] = c.newAstNode(arg)
|
||||
}
|
||||
|
||||
ref := c.checkedExpr.ReferenceMap[e.GetId()]
|
||||
if ref == nil || len(ref.GetOverloadId()) == 0 {
|
||||
return CostEstimate{}
|
||||
}
|
||||
var targetType AstNode
|
||||
if target != nil {
|
||||
if call.Target != nil {
|
||||
sum = sum.Add(c.cost(call.GetTarget()))
|
||||
targetType = c.newAstNode(call.GetTarget())
|
||||
}
|
||||
}
|
||||
// Pick a cost estimate range that covers all the overload cost estimation ranges
|
||||
fnCost := CostEstimate{Min: uint64(math.MaxUint64), Max: 0}
|
||||
var resultSize *SizeEstimate
|
||||
for _, overload := range ref.GetOverloadId() {
|
||||
overloadCost := c.functionCost(call.GetFunction(), overload, &targetType, argTypes, argCosts)
|
||||
fnCost = fnCost.Union(overloadCost.CostEstimate)
|
||||
if overloadCost.ResultSize != nil {
|
||||
if resultSize == nil {
|
||||
resultSize = overloadCost.ResultSize
|
||||
} else {
|
||||
size := resultSize.Union(*overloadCost.ResultSize)
|
||||
resultSize = &size
|
||||
}
|
||||
}
|
||||
// build and track the field path for index operations
|
||||
switch overload {
|
||||
case overloads.IndexList:
|
||||
if len(args) > 0 {
|
||||
c.addPath(e, append(c.getPath(args[0]), "@items"))
|
||||
}
|
||||
case overloads.IndexMap:
|
||||
if len(args) > 0 {
|
||||
c.addPath(e, append(c.getPath(args[0]), "@values"))
|
||||
}
|
||||
}
|
||||
}
|
||||
if resultSize != nil {
|
||||
c.computedSizes[e.GetId()] = *resultSize
|
||||
}
|
||||
return sum.Add(fnCost)
|
||||
}
|
||||
|
||||
func (c *coster) costCreateList(e *exprpb.Expr) CostEstimate {
|
||||
create := e.GetListExpr()
|
||||
var sum CostEstimate
|
||||
for _, e := range create.GetElements() {
|
||||
sum = sum.Add(c.cost(e))
|
||||
}
|
||||
return sum.Add(createListBaseCost)
|
||||
}
|
||||
|
||||
func (c *coster) costCreateStruct(e *exprpb.Expr) CostEstimate {
|
||||
str := e.GetStructExpr()
|
||||
if str.MessageName != "" {
|
||||
return c.costCreateMessage(e)
|
||||
}
|
||||
return c.costCreateMap(e)
|
||||
}
|
||||
|
||||
func (c *coster) costCreateMap(e *exprpb.Expr) CostEstimate {
|
||||
mapVal := e.GetStructExpr()
|
||||
var sum CostEstimate
|
||||
for _, ent := range mapVal.GetEntries() {
|
||||
key := ent.GetMapKey()
|
||||
sum = sum.Add(c.cost(key))
|
||||
|
||||
sum = sum.Add(c.cost(ent.GetValue()))
|
||||
}
|
||||
return sum.Add(createMapBaseCost)
|
||||
}
|
||||
|
||||
func (c *coster) costCreateMessage(e *exprpb.Expr) CostEstimate {
|
||||
msgVal := e.GetStructExpr()
|
||||
var sum CostEstimate
|
||||
for _, ent := range msgVal.GetEntries() {
|
||||
sum = sum.Add(c.cost(ent.GetValue()))
|
||||
}
|
||||
return sum.Add(createMessageBaseCost)
|
||||
}
|
||||
|
||||
func (c *coster) costComprehension(e *exprpb.Expr) CostEstimate {
|
||||
comp := e.GetComprehensionExpr()
|
||||
var sum CostEstimate
|
||||
sum = sum.Add(c.cost(comp.GetIterRange()))
|
||||
sum = sum.Add(c.cost(comp.GetAccuInit()))
|
||||
|
||||
// Track the iterRange of each IterVar for field path construction
|
||||
c.iterRanges.push(comp.GetIterVar(), comp.GetIterRange())
|
||||
loopCost := c.cost(comp.GetLoopCondition())
|
||||
stepCost := c.cost(comp.GetLoopStep())
|
||||
c.iterRanges.pop(comp.GetIterVar())
|
||||
sum = sum.Add(c.cost(comp.Result))
|
||||
rangeCnt := c.sizeEstimate(c.newAstNode(comp.GetIterRange()))
|
||||
rangeCost := rangeCnt.MultiplyByCost(stepCost.Add(loopCost))
|
||||
sum = sum.Add(rangeCost)
|
||||
|
||||
return sum
|
||||
}
|
||||
|
||||
func (c *coster) sizeEstimate(t AstNode) SizeEstimate {
|
||||
if l := t.ComputedSize(); l != nil {
|
||||
return *l
|
||||
}
|
||||
if l := c.estimator.EstimateSize(t); l != nil {
|
||||
return *l
|
||||
}
|
||||
// return an estimate of 1 for return types of set
|
||||
// lengths, since strings/bytes/more complex objects could be of
|
||||
// variable length
|
||||
if isScalar(t.Type()) {
|
||||
// TODO: since the logic for size estimation is split between
|
||||
// ComputedSize and isScalar, changing one will likely require changing
|
||||
// the other, so they should be merged in the future if possible
|
||||
return SizeEstimate{Min: 1, Max: 1}
|
||||
}
|
||||
return SizeEstimate{Min: 0, Max: math.MaxUint64}
|
||||
}
|
||||
|
||||
func (c *coster) functionCost(function, overloadID string, target *AstNode, args []AstNode, argCosts []CostEstimate) CallEstimate {
|
||||
argCostSum := func() CostEstimate {
|
||||
var sum CostEstimate
|
||||
for _, a := range argCosts {
|
||||
sum = sum.Add(a)
|
||||
}
|
||||
return sum
|
||||
}
|
||||
|
||||
if est := c.estimator.EstimateCallCost(function, overloadID, target, args); est != nil {
|
||||
callEst := *est
|
||||
return CallEstimate{CostEstimate: callEst.Add(argCostSum())}
|
||||
}
|
||||
switch overloadID {
|
||||
// O(n) functions
|
||||
case overloads.StartsWithString, overloads.EndsWithString, overloads.StringToBytes, overloads.BytesToString:
|
||||
if len(args) == 1 {
|
||||
return CallEstimate{CostEstimate: c.sizeEstimate(args[0]).MultiplyByCostFactor(common.StringTraversalCostFactor).Add(argCostSum())}
|
||||
}
|
||||
case overloads.InList:
|
||||
// If a list is composed entirely of constant values this is O(1), but we don't account for that here.
|
||||
// We just assume all list containment checks are O(n).
|
||||
if len(args) == 2 {
|
||||
return CallEstimate{CostEstimate: c.sizeEstimate(args[1]).MultiplyByCostFactor(1).Add(argCostSum())}
|
||||
}
|
||||
// O(nm) functions
|
||||
case overloads.MatchesString:
|
||||
// https://swtch.com/~rsc/regexp/regexp1.html applies to RE2 implementation supported by CEL
|
||||
if target != nil && len(args) == 1 {
|
||||
// Add one to string length for purposes of cost calculation to prevent product of string and regex to be 0
|
||||
// in case where string is empty but regex is still expensive.
|
||||
strCost := c.sizeEstimate(*target).Add(SizeEstimate{Min: 1, Max: 1}).MultiplyByCostFactor(common.StringTraversalCostFactor)
|
||||
// We don't know how many expressions are in the regex, just the string length (a huge
|
||||
// improvement here would be to somehow get a count the number of expressions in the regex or
|
||||
// how many states are in the regex state machine and use that to measure regex cost).
|
||||
// For now, we're making a guess that each expression in a regex is typically at least 4 chars
|
||||
// in length.
|
||||
regexCost := c.sizeEstimate(args[0]).MultiplyByCostFactor(common.RegexStringLengthCostFactor)
|
||||
return CallEstimate{CostEstimate: strCost.Multiply(regexCost).Add(argCostSum())}
|
||||
}
|
||||
case overloads.ContainsString:
|
||||
if target != nil && len(args) == 1 {
|
||||
strCost := c.sizeEstimate(*target).MultiplyByCostFactor(common.StringTraversalCostFactor)
|
||||
substrCost := c.sizeEstimate(args[0]).MultiplyByCostFactor(common.StringTraversalCostFactor)
|
||||
return CallEstimate{CostEstimate: strCost.Multiply(substrCost).Add(argCostSum())}
|
||||
}
|
||||
case overloads.LogicalOr, overloads.LogicalAnd:
|
||||
lhs := argCosts[0]
|
||||
rhs := argCosts[1]
|
||||
// min cost is min of LHS for short circuited && or ||
|
||||
argCost := CostEstimate{Min: lhs.Min, Max: lhs.Add(rhs).Max}
|
||||
return CallEstimate{CostEstimate: argCost}
|
||||
case overloads.Conditional:
|
||||
size := c.sizeEstimate(args[1]).Union(c.sizeEstimate(args[2]))
|
||||
conditionalCost := argCosts[0]
|
||||
ifTrueCost := argCosts[1]
|
||||
ifFalseCost := argCosts[2]
|
||||
argCost := conditionalCost.Add(ifTrueCost.Union(ifFalseCost))
|
||||
return CallEstimate{CostEstimate: argCost, ResultSize: &size}
|
||||
case overloads.AddString, overloads.AddBytes, overloads.AddList:
|
||||
if len(args) == 2 {
|
||||
lhsSize := c.sizeEstimate(args[0])
|
||||
rhsSize := c.sizeEstimate(args[1])
|
||||
resultSize := lhsSize.Add(rhsSize)
|
||||
switch overloadID {
|
||||
case overloads.AddList:
|
||||
// list concatenation is O(1), but we handle it here to track size
|
||||
return CallEstimate{CostEstimate: CostEstimate{Min: 1, Max: 1}.Add(argCostSum()), ResultSize: &resultSize}
|
||||
default:
|
||||
return CallEstimate{CostEstimate: resultSize.MultiplyByCostFactor(common.StringTraversalCostFactor).Add(argCostSum()), ResultSize: &resultSize}
|
||||
}
|
||||
}
|
||||
case overloads.LessString, overloads.GreaterString, overloads.LessEqualsString, overloads.GreaterEqualsString,
|
||||
overloads.LessBytes, overloads.GreaterBytes, overloads.LessEqualsBytes, overloads.GreaterEqualsBytes,
|
||||
overloads.Equals, overloads.NotEquals:
|
||||
lhsCost := c.sizeEstimate(args[0])
|
||||
rhsCost := c.sizeEstimate(args[1])
|
||||
min := uint64(0)
|
||||
smallestMax := lhsCost.Max
|
||||
if rhsCost.Max < smallestMax {
|
||||
smallestMax = rhsCost.Max
|
||||
}
|
||||
if smallestMax > 0 {
|
||||
min = 1
|
||||
}
|
||||
// equality of 2 scalar values results in a cost of 1
|
||||
return CallEstimate{CostEstimate: CostEstimate{Min: min, Max: smallestMax}.MultiplyByCostFactor(common.StringTraversalCostFactor).Add(argCostSum())}
|
||||
}
|
||||
// O(1) functions
|
||||
// See CostTracker.costCall for more details about O(1) cost calculations
|
||||
|
||||
// Benchmarks suggest that most of the other operations take +/- 50% of a base cost unit
|
||||
// which on an Intel xeon 2.20GHz CPU is 50ns.
|
||||
return CallEstimate{CostEstimate: CostEstimate{Min: 1, Max: 1}.Add(argCostSum())}
|
||||
}
|
||||
|
||||
func (c *coster) getType(e *exprpb.Expr) *exprpb.Type {
|
||||
return c.checkedExpr.TypeMap[e.GetId()]
|
||||
}
|
||||
|
||||
func (c *coster) getPath(e *exprpb.Expr) []string {
|
||||
return c.exprPath[e.GetId()]
|
||||
}
|
||||
|
||||
func (c *coster) addPath(e *exprpb.Expr, path []string) {
|
||||
c.exprPath[e.GetId()] = path
|
||||
}
|
||||
|
||||
func (c *coster) newAstNode(e *exprpb.Expr) *astNode {
|
||||
path := c.getPath(e)
|
||||
if len(path) > 0 && path[0] == parser.AccumulatorName {
|
||||
// only provide paths to root vars; omit accumulator vars
|
||||
path = nil
|
||||
}
|
||||
var derivedSize *SizeEstimate
|
||||
if size, ok := c.computedSizes[e.GetId()]; ok {
|
||||
derivedSize = &size
|
||||
}
|
||||
return &astNode{path: path, t: c.getType(e), expr: e, derivedSize: derivedSize}
|
||||
}
|
||||
|
||||
// isScalar returns true if the given type is known to be of a constant size at
|
||||
// compile time. isScalar will return false for strings (they are variable-width)
|
||||
// in addition to protobuf.Any and protobuf.Value (their size is not knowable at compile time).
|
||||
func isScalar(t *exprpb.Type) bool {
|
||||
switch kindOf(t) {
|
||||
case kindPrimitive:
|
||||
if t.GetPrimitive() != exprpb.Type_STRING && t.GetPrimitive() != exprpb.Type_BYTES {
|
||||
return true
|
||||
}
|
||||
case kindWellKnown:
|
||||
if t.GetWellKnown() == exprpb.Type_DURATION || t.GetWellKnown() == exprpb.Type_TIMESTAMP {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
Reference in New Issue
Block a user