mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-06-13 18:43:34 +00:00
23
vendor/github.com/petar/GoLLRB/.gitignore
generated
vendored
23
vendor/github.com/petar/GoLLRB/.gitignore
generated
vendored
@ -1,23 +0,0 @@
|
||||
syntax:glob
|
||||
*.[568ao]
|
||||
*.ao
|
||||
*.so
|
||||
*.pyc
|
||||
*.swp
|
||||
*.swo
|
||||
._*
|
||||
.nfs.*
|
||||
[568a].out
|
||||
*~
|
||||
*.orig
|
||||
*.pb.go
|
||||
core
|
||||
_obj
|
||||
_test
|
||||
src/pkg/Make.deps
|
||||
_testmain.go
|
||||
|
||||
syntax:regexp
|
||||
^pkg/
|
||||
^src/cmd/(.*)/6?\1$
|
||||
^.*/core.[0-9]*$
|
66
vendor/github.com/petar/GoLLRB/README.md
generated
vendored
66
vendor/github.com/petar/GoLLRB/README.md
generated
vendored
@ -1,66 +0,0 @@
|
||||
# GoLLRB
|
||||
|
||||
GoLLRB is a Left-Leaning Red-Black (LLRB) implementation of 2-3 balanced binary
|
||||
search trees in Go Language.
|
||||
|
||||
## Overview
|
||||
|
||||
As of this writing and to the best of the author's knowledge,
|
||||
Go still does not have a balanced binary search tree (BBST) data structure.
|
||||
These data structures are quite useful in a variety of cases. A BBST maintains
|
||||
elements in sorted order under dynamic updates (inserts and deletes) and can
|
||||
support various order-specific queries. Furthermore, in practice one often
|
||||
implements other common data structures like Priority Queues, using BBST's.
|
||||
|
||||
2-3 trees (a type of BBST's), as well as the runtime-similar 2-3-4 trees, are
|
||||
the de facto standard BBST algoritms found in implementations of Python, Java,
|
||||
and other libraries. The LLRB method of implementing 2-3 trees is a recent
|
||||
improvement over the traditional implementation. The LLRB approach was
|
||||
discovered relatively recently (in 2008) by Robert Sedgewick of Princeton
|
||||
University.
|
||||
|
||||
GoLLRB is a Go implementation of LLRB 2-3 trees.
|
||||
|
||||
## Maturity
|
||||
|
||||
GoLLRB has been used in some pretty heavy-weight machine learning tasks over many gigabytes of data.
|
||||
I consider it to be in stable, perhaps even production, shape. There are no known bugs.
|
||||
|
||||
## Installation
|
||||
|
||||
With a healthy Go Language installed, simply run `go get github.com/petar/GoLLRB/llrb`
|
||||
|
||||
## Example
|
||||
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"github.com/petar/GoLLRB/llrb"
|
||||
)
|
||||
|
||||
func lessInt(a, b interface{}) bool { return a.(int) < b.(int) }
|
||||
|
||||
func main() {
|
||||
tree := llrb.New(lessInt)
|
||||
tree.ReplaceOrInsert(1)
|
||||
tree.ReplaceOrInsert(2)
|
||||
tree.ReplaceOrInsert(3)
|
||||
tree.ReplaceOrInsert(4)
|
||||
tree.DeleteMin()
|
||||
tree.Delete(4)
|
||||
c := tree.IterAscend()
|
||||
for {
|
||||
u := <-c
|
||||
if u == nil {
|
||||
break
|
||||
}
|
||||
fmt.Printf("%d\n", int(u.(int)))
|
||||
}
|
||||
}
|
||||
|
||||
## About
|
||||
|
||||
GoLLRB was written by [Petar Maymounkov](http://pdos.csail.mit.edu/~petar/).
|
||||
|
||||
Follow me on [Twitter @maymounkov](http://www.twitter.com/maymounkov)!
|
4401
vendor/github.com/petar/GoLLRB/doc/Sedgewick-LLRB.pdf
generated
vendored
4401
vendor/github.com/petar/GoLLRB/doc/Sedgewick-LLRB.pdf
generated
vendored
File diff suppressed because one or more lines are too long
475
vendor/github.com/petar/GoLLRB/doc/Sedgewick-RedBlackBST.java
generated
vendored
475
vendor/github.com/petar/GoLLRB/doc/Sedgewick-RedBlackBST.java
generated
vendored
@ -1,475 +0,0 @@
|
||||
public class RedBlackBST<Key extends Comparable<Key>, Value>
|
||||
{
|
||||
private static final int BST = 0;
|
||||
private static final int TD234 = 1;
|
||||
private static final int BU23 = 2;
|
||||
private static final boolean RED = true;
|
||||
private static final boolean BLACK = false;
|
||||
|
||||
private Node root; // root of the BST
|
||||
private int k; // ordinal for drawing
|
||||
private final int species; // species kind of tree for insert
|
||||
private int heightBLACK; // black height of tree
|
||||
|
||||
RedBlackBST(int species)
|
||||
{ this.species = species; }
|
||||
|
||||
private class Node
|
||||
{
|
||||
Key key; // key
|
||||
Value value; // associated data
|
||||
Node left, right; // left and right subtrees
|
||||
boolean color; // color of parent link
|
||||
private int N; // number of nodes in tree rooted here
|
||||
private int height; // height of tree rooted here
|
||||
private double xc, yc; // for drawing
|
||||
|
||||
Node(Key key, Value value)
|
||||
{
|
||||
this.key = key;
|
||||
this.value = value;
|
||||
this.color = RED;
|
||||
this.N = 1;
|
||||
this.height = 1;
|
||||
}
|
||||
}
|
||||
|
||||
public int size()
|
||||
{ return size(root); }
|
||||
|
||||
private int size(Node x)
|
||||
{
|
||||
if (x == null) return 0;
|
||||
else return x.N;
|
||||
}
|
||||
|
||||
public int rootRank()
|
||||
{
|
||||
if (root == null) return 0;
|
||||
else return size(root.left);
|
||||
}
|
||||
|
||||
public int height()
|
||||
{ return height(root); }
|
||||
|
||||
public int heightB()
|
||||
{ return heightBLACK; }
|
||||
|
||||
private int height(Node x)
|
||||
{
|
||||
if (x == null) return 0;
|
||||
else return x.height;
|
||||
}
|
||||
|
||||
public boolean contains(Key key)
|
||||
{ return (get(key) != null); }
|
||||
|
||||
public Value get(Key key)
|
||||
{ return get(root, key); }
|
||||
|
||||
private Value get(Node x, Key key)
|
||||
{
|
||||
if (x == null) return null;
|
||||
if (eq (key, x.key)) return x.value;
|
||||
if (less(key, x.key)) return get(x.left, key);
|
||||
else return get(x.right, key);
|
||||
}
|
||||
|
||||
public Key min()
|
||||
{
|
||||
if (root == null) return null;
|
||||
else return min(root);
|
||||
}
|
||||
|
||||
private Key min(Node x)
|
||||
{
|
||||
if (x.left == null) return x.key;
|
||||
else return min(x.left);
|
||||
}
|
||||
|
||||
public Key max()
|
||||
{
|
||||
if (root == null) return null;
|
||||
else return max(root);
|
||||
}
|
||||
|
||||
private Key max(Node x)
|
||||
{
|
||||
if (x.right == null) return x.key;
|
||||
else return max(x.right);
|
||||
}
|
||||
|
||||
public void put(Key key, Value value)
|
||||
{
|
||||
root = insert(root, key, value);
|
||||
if (isRed(root)) heightBLACK++;
|
||||
root.color = BLACK;
|
||||
}
|
||||
|
||||
private Node insert(Node h, Key key, Value value)
|
||||
{
|
||||
if (h == null)
|
||||
return new Node(key, value);
|
||||
|
||||
if (species == TD234)
|
||||
if (isRed(h.left) && isRed(h.right))
|
||||
colorFlip(h);
|
||||
|
||||
if (eq(key, h.key))
|
||||
h.value = value;
|
||||
else if (less(key, h.key))
|
||||
h.left = insert(h.left, key, value);
|
||||
else
|
||||
h.right = insert(h.right, key, value);
|
||||
|
||||
if (species == BST) return setN(h);
|
||||
|
||||
if (isRed(h.right))
|
||||
h = rotateLeft(h);
|
||||
|
||||
if (isRed(h.left) && isRed(h.left.left))
|
||||
h = rotateRight(h);
|
||||
|
||||
if (species == BU23)
|
||||
if (isRed(h.left) && isRed(h.right))
|
||||
colorFlip(h);
|
||||
|
||||
return setN(h);
|
||||
}
|
||||
|
||||
public void deleteMin()
|
||||
{
|
||||
root = deleteMin(root);
|
||||
root.color = BLACK;
|
||||
}
|
||||
|
||||
private Node deleteMin(Node h)
|
||||
{
|
||||
if (h.left == null)
|
||||
return null;
|
||||
|
||||
if (!isRed(h.left) && !isRed(h.left.left))
|
||||
h = moveRedLeft(h);
|
||||
|
||||
h.left = deleteMin(h.left);
|
||||
|
||||
return fixUp(h);
|
||||
}
|
||||
|
||||
public void deleteMax()
|
||||
{
|
||||
root = deleteMax(root);
|
||||
root.color = BLACK;
|
||||
}
|
||||
|
||||
private Node deleteMax(Node h)
|
||||
{
|
||||
// if (h.right == null)
|
||||
// {
|
||||
// if (h.left != null)
|
||||
// h.left.color = BLACK;
|
||||
// return h.left;
|
||||
// }
|
||||
|
||||
if (isRed(h.left))
|
||||
h = rotateRight(h);
|
||||
|
||||
if (h.right == null)
|
||||
return null;
|
||||
|
||||
if (!isRed(h.right) && !isRed(h.right.left))
|
||||
h = moveRedRight(h);
|
||||
|
||||
h.right = deleteMax(h.right);
|
||||
|
||||
return fixUp(h);
|
||||
}
|
||||
|
||||
public void delete(Key key)
|
||||
{
|
||||
root = delete(root, key);
|
||||
root.color = BLACK;
|
||||
}
|
||||
|
||||
private Node delete(Node h, Key key)
|
||||
{
|
||||
if (less(key, h.key))
|
||||
{
|
||||
if (!isRed(h.left) && !isRed(h.left.left))
|
||||
h = moveRedLeft(h);
|
||||
h.left = delete(h.left, key);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (isRed(h.left))
|
||||
h = rotateRight(h);
|
||||
if (eq(key, h.key) && (h.right == null))
|
||||
return null;
|
||||
if (!isRed(h.right) && !isRed(h.right.left))
|
||||
h = moveRedRight(h);
|
||||
if (eq(key, h.key))
|
||||
{
|
||||
h.value = get(h.right, min(h.right));
|
||||
h.key = min(h.right);
|
||||
h.right = deleteMin(h.right);
|
||||
}
|
||||
else h.right = delete(h.right, key);
|
||||
}
|
||||
|
||||
return fixUp(h);
|
||||
}
|
||||
|
||||
// Helper methods
|
||||
|
||||
private boolean less(Key a, Key b) { return a.compareTo(b) < 0; }
|
||||
private boolean eq (Key a, Key b) { return a.compareTo(b) == 0; }
|
||||
|
||||
private boolean isRed(Node x)
|
||||
{
|
||||
if (x == null) return false;
|
||||
return (x.color == RED);
|
||||
}
|
||||
|
||||
private void colorFlip(Node h)
|
||||
{
|
||||
h.color = !h.color;
|
||||
h.left.color = !h.left.color;
|
||||
h.right.color = !h.right.color;
|
||||
}
|
||||
|
||||
private Node rotateLeft(Node h)
|
||||
{ // Make a right-leaning 3-node lean to the left.
|
||||
Node x = h.right;
|
||||
h.right = x.left;
|
||||
x.left = setN(h);
|
||||
x.color = x.left.color;
|
||||
x.left.color = RED;
|
||||
return setN(x);
|
||||
}
|
||||
|
||||
private Node rotateRight(Node h)
|
||||
{ // Make a left-leaning 3-node lean to the right.
|
||||
Node x = h.left;
|
||||
h.left = x.right;
|
||||
x.right = setN(h);
|
||||
x.color = x.right.color;
|
||||
x.right.color = RED;
|
||||
return setN(x);
|
||||
}
|
||||
|
||||
private Node moveRedLeft(Node h)
|
||||
{ // Assuming that h is red and both h.left and h.left.left
|
||||
// are black, make h.left or one of its children red.
|
||||
colorFlip(h);
|
||||
if (isRed(h.right.left))
|
||||
{
|
||||
h.right = rotateRight(h.right);
|
||||
h = rotateLeft(h);
|
||||
colorFlip(h);
|
||||
}
|
||||
return h;
|
||||
}
|
||||
|
||||
private Node moveRedRight(Node h)
|
||||
{ // Assuming that h is red and both h.right and h.right.left
|
||||
// are black, make h.right or one of its children red.
|
||||
colorFlip(h);
|
||||
if (isRed(h.left.left))
|
||||
{
|
||||
h = rotateRight(h);
|
||||
colorFlip(h);
|
||||
}
|
||||
return h;
|
||||
}
|
||||
|
||||
private Node fixUp(Node h)
|
||||
{
|
||||
if (isRed(h.right))
|
||||
h = rotateLeft(h);
|
||||
|
||||
if (isRed(h.left) && isRed(h.left.left))
|
||||
h = rotateRight(h);
|
||||
|
||||
if (isRed(h.left) && isRed(h.right))
|
||||
colorFlip(h);
|
||||
|
||||
return setN(h);
|
||||
}
|
||||
|
||||
private Node setN(Node h)
|
||||
{
|
||||
h.N = size(h.left) + size(h.right) + 1;
|
||||
if (height(h.left) > height(h.right)) h.height = height(h.left) + 1;
|
||||
else h.height = height(h.right) + 1;
|
||||
return h;
|
||||
}
|
||||
|
||||
public String toString()
|
||||
{
|
||||
if (root == null) return "";
|
||||
else return heightB() + " " + toString(root);
|
||||
}
|
||||
|
||||
public String toString(Node x)
|
||||
{
|
||||
String s = "(";
|
||||
if (x.left == null) s += "("; else s += toString(x.left);
|
||||
if (isRed(x)) s += "*";
|
||||
if (x.right == null) s += ")"; else s += toString(x.right);
|
||||
return s + ")";
|
||||
}
|
||||
|
||||
// Methods for tree drawing
|
||||
|
||||
public void draw(double y, double lineWidth, double nodeSize)
|
||||
{
|
||||
k = 0;
|
||||
setcoords(root, y);
|
||||
StdDraw.setPenColor(StdDraw.BLACK);
|
||||
StdDraw.setPenRadius(lineWidth);
|
||||
drawlines(root);
|
||||
StdDraw.setPenColor(StdDraw.WHITE);
|
||||
drawnodes(root, nodeSize);
|
||||
}
|
||||
|
||||
public void setcoords(Node x, double d)
|
||||
{
|
||||
if (x == null) return;
|
||||
setcoords(x.left, d-.04);
|
||||
x.xc = (0.5 + k++)/size(); x.yc = d - .04;
|
||||
setcoords(x.right, d-.04);
|
||||
}
|
||||
|
||||
public void drawlines(Node x)
|
||||
{
|
||||
if (x == null) return;
|
||||
drawlines(x.left);
|
||||
if (x.left != null)
|
||||
{
|
||||
if (x.left.color == RED) StdDraw.setPenColor(StdDraw.RED);
|
||||
else StdDraw.setPenColor(StdDraw.BLACK);
|
||||
StdDraw.line(x.xc, x.yc, x.left.xc, x.left.yc);
|
||||
}
|
||||
if (x.right != null)
|
||||
{
|
||||
if (x.right.color == RED) StdDraw.setPenColor(StdDraw.RED);
|
||||
else StdDraw.setPenColor(StdDraw.BLACK);
|
||||
StdDraw.line(x.xc, x.yc, x.right.xc, x.right.yc);
|
||||
}
|
||||
drawlines(x.right);
|
||||
}
|
||||
|
||||
public void drawnodes(Node x, double nodeSize)
|
||||
{
|
||||
if (x == null) return;
|
||||
drawnodes(x.left, nodeSize);
|
||||
StdDraw.filledCircle(x.xc, x.yc, nodeSize);
|
||||
drawnodes(x.right, nodeSize);
|
||||
}
|
||||
|
||||
public void mark(Key key)
|
||||
{
|
||||
StdDraw.setPenColor(StdDraw.BLACK);
|
||||
marknodes(key, root);
|
||||
}
|
||||
|
||||
public void marknodes(Key key, Node x)
|
||||
{
|
||||
if (x == null) return;
|
||||
marknodes(key, x.left);
|
||||
if (eq(key, x.key))
|
||||
StdDraw.filledCircle(x.xc, x.yc, .004);
|
||||
marknodes(key, x.right);
|
||||
}
|
||||
|
||||
public int ipl()
|
||||
{ return ipl(root); }
|
||||
|
||||
public int ipl(Node x)
|
||||
{
|
||||
if (x == null) return 0;
|
||||
return size(x) - 1 + ipl(x.left) + ipl(x.right);
|
||||
}
|
||||
|
||||
public int sizeRed()
|
||||
{ return sizeRed(root); }
|
||||
|
||||
public int sizeRed(Node x)
|
||||
{
|
||||
if (x == null) return 0;
|
||||
if (isRed(x)) return 1 + sizeRed(x.left) + sizeRed(x.right);
|
||||
else return sizeRed(x.left) + sizeRed(x.right);
|
||||
}
|
||||
|
||||
// Integrity checks
|
||||
|
||||
public boolean check()
|
||||
{ // Is this tree a red-black tree?
|
||||
return isBST() && is234() && isBalanced();
|
||||
}
|
||||
|
||||
private boolean isBST()
|
||||
{ // Is this tree a BST?
|
||||
return isBST(root, min(), max());
|
||||
}
|
||||
|
||||
private boolean isBST(Node x, Key min, Key max)
|
||||
{ // Are all the values in the BST rooted at x between min and max,
|
||||
// and does the same property hold for both subtrees?
|
||||
if (x == null) return true;
|
||||
if (less(x.key, min) || less(max, x.key)) return false;
|
||||
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
|
||||
}
|
||||
|
||||
private boolean is234() { return is234(root); }
|
||||
private boolean is234(Node x)
|
||||
{ // Does the tree have no red right links, and at most two (left)
|
||||
// red links in a row on any path?
|
||||
if (x == null) return true;
|
||||
if (isRed(x.right)) return false;
|
||||
if (isRed(x))
|
||||
if (isRed(x.left))
|
||||
if (isRed(x.left.left)) return false;
|
||||
return is234(x.left) && is234(x.right);
|
||||
}
|
||||
|
||||
private boolean isBalanced()
|
||||
{ // Do all paths from root to leaf have same number of black edges?
|
||||
int black = 0; // number of black links on path from root to min
|
||||
Node x = root;
|
||||
while (x != null)
|
||||
{
|
||||
if (!isRed(x)) black++;
|
||||
x = x.left;
|
||||
}
|
||||
return isBalanced(root, black);
|
||||
}
|
||||
|
||||
private boolean isBalanced(Node x, int black)
|
||||
{ // Does every path from the root to a leaf have the given number
|
||||
// of black links?
|
||||
if (x == null && black == 0) return true;
|
||||
else if (x == null && black != 0) return false;
|
||||
if (!isRed(x)) black--;
|
||||
return isBalanced(x.left, black) && isBalanced(x.right, black);
|
||||
}
|
||||
|
||||
|
||||
public static void main(String[] args)
|
||||
{
|
||||
StdDraw.setPenRadius(.0025);
|
||||
int species = Integer.parseInt(args[0]);
|
||||
RedBlackBST<Integer, Integer> st;
|
||||
st = new RedBlackBST<Integer, Integer>(species);
|
||||
int[] a = { 3, 1, 4, 2, 5, 9, 6, 8, 7 };
|
||||
for (int i = 0; i < a.length; i++)
|
||||
st.put(a[i], i);
|
||||
StdOut.println(st);
|
||||
StdDraw.clear(StdDraw.LIGHT_GRAY);
|
||||
st.draw(.95, .0025, .008);
|
||||
StdOut.println(st.min() + " " + st.max() + " " + st.check());
|
||||
StdOut.println(st.ipl());
|
||||
StdOut.println(st.heightB());
|
||||
}
|
||||
|
||||
}
|
BIN
vendor/github.com/petar/GoLLRB/doc/Sedgewick-Talk-Penn2008.pdf
generated
vendored
BIN
vendor/github.com/petar/GoLLRB/doc/Sedgewick-Talk-Penn2008.pdf
generated
vendored
Binary file not shown.
26
vendor/github.com/petar/GoLLRB/example/ex1.go
generated
vendored
26
vendor/github.com/petar/GoLLRB/example/ex1.go
generated
vendored
@ -1,26 +0,0 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"github.com/petar/GoLLRB/llrb"
|
||||
)
|
||||
|
||||
func lessInt(a, b interface{}) bool { return a.(int) < b.(int) }
|
||||
|
||||
func main() {
|
||||
tree := llrb.New(lessInt)
|
||||
tree.ReplaceOrInsert(1)
|
||||
tree.ReplaceOrInsert(2)
|
||||
tree.ReplaceOrInsert(3)
|
||||
tree.ReplaceOrInsert(4)
|
||||
tree.DeleteMin()
|
||||
tree.Delete(4)
|
||||
c := tree.IterAscend()
|
||||
for {
|
||||
u := <-c
|
||||
if u == nil {
|
||||
break
|
||||
}
|
||||
fmt.Printf("%d\n", int(u.(int)))
|
||||
}
|
||||
}
|
76
vendor/github.com/petar/GoLLRB/llrb/iterator_test.go
generated
vendored
76
vendor/github.com/petar/GoLLRB/llrb/iterator_test.go
generated
vendored
@ -1,76 +0,0 @@
|
||||
package llrb
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestAscendGreaterOrEqual(t *testing.T) {
|
||||
tree := New()
|
||||
tree.InsertNoReplace(Int(4))
|
||||
tree.InsertNoReplace(Int(6))
|
||||
tree.InsertNoReplace(Int(1))
|
||||
tree.InsertNoReplace(Int(3))
|
||||
var ary []Item
|
||||
tree.AscendGreaterOrEqual(Int(-1), func(i Item) bool {
|
||||
ary = append(ary, i)
|
||||
return true
|
||||
})
|
||||
expected := []Item{Int(1), Int(3), Int(4), Int(6)}
|
||||
if !reflect.DeepEqual(ary, expected) {
|
||||
t.Errorf("expected %v but got %v", expected, ary)
|
||||
}
|
||||
ary = nil
|
||||
tree.AscendGreaterOrEqual(Int(3), func(i Item) bool {
|
||||
ary = append(ary, i)
|
||||
return true
|
||||
})
|
||||
expected = []Item{Int(3), Int(4), Int(6)}
|
||||
if !reflect.DeepEqual(ary, expected) {
|
||||
t.Errorf("expected %v but got %v", expected, ary)
|
||||
}
|
||||
ary = nil
|
||||
tree.AscendGreaterOrEqual(Int(2), func(i Item) bool {
|
||||
ary = append(ary, i)
|
||||
return true
|
||||
})
|
||||
expected = []Item{Int(3), Int(4), Int(6)}
|
||||
if !reflect.DeepEqual(ary, expected) {
|
||||
t.Errorf("expected %v but got %v", expected, ary)
|
||||
}
|
||||
}
|
||||
|
||||
func TestDescendLessOrEqual(t *testing.T) {
|
||||
tree := New()
|
||||
tree.InsertNoReplace(Int(4))
|
||||
tree.InsertNoReplace(Int(6))
|
||||
tree.InsertNoReplace(Int(1))
|
||||
tree.InsertNoReplace(Int(3))
|
||||
var ary []Item
|
||||
tree.DescendLessOrEqual(Int(10), func(i Item) bool {
|
||||
ary = append(ary, i)
|
||||
return true
|
||||
})
|
||||
expected := []Item{Int(6), Int(4), Int(3), Int(1)}
|
||||
if !reflect.DeepEqual(ary, expected) {
|
||||
t.Errorf("expected %v but got %v", expected, ary)
|
||||
}
|
||||
ary = nil
|
||||
tree.DescendLessOrEqual(Int(4), func(i Item) bool {
|
||||
ary = append(ary, i)
|
||||
return true
|
||||
})
|
||||
expected = []Item{Int(4), Int(3), Int(1)}
|
||||
if !reflect.DeepEqual(ary, expected) {
|
||||
t.Errorf("expected %v but got %v", expected, ary)
|
||||
}
|
||||
ary = nil
|
||||
tree.DescendLessOrEqual(Int(5), func(i Item) bool {
|
||||
ary = append(ary, i)
|
||||
return true
|
||||
})
|
||||
expected = []Item{Int(4), Int(3), Int(1)}
|
||||
if !reflect.DeepEqual(ary, expected) {
|
||||
t.Errorf("expected %v but got %v", expected, ary)
|
||||
}
|
||||
}
|
239
vendor/github.com/petar/GoLLRB/llrb/llrb_test.go
generated
vendored
239
vendor/github.com/petar/GoLLRB/llrb/llrb_test.go
generated
vendored
@ -1,239 +0,0 @@
|
||||
// Copyright 2010 Petar Maymounkov. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package llrb
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/rand"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestCases(t *testing.T) {
|
||||
tree := New()
|
||||
tree.ReplaceOrInsert(Int(1))
|
||||
tree.ReplaceOrInsert(Int(1))
|
||||
if tree.Len() != 1 {
|
||||
t.Errorf("expecting len 1")
|
||||
}
|
||||
if !tree.Has(Int(1)) {
|
||||
t.Errorf("expecting to find key=1")
|
||||
}
|
||||
|
||||
tree.Delete(Int(1))
|
||||
if tree.Len() != 0 {
|
||||
t.Errorf("expecting len 0")
|
||||
}
|
||||
if tree.Has(Int(1)) {
|
||||
t.Errorf("not expecting to find key=1")
|
||||
}
|
||||
|
||||
tree.Delete(Int(1))
|
||||
if tree.Len() != 0 {
|
||||
t.Errorf("expecting len 0")
|
||||
}
|
||||
if tree.Has(Int(1)) {
|
||||
t.Errorf("not expecting to find key=1")
|
||||
}
|
||||
}
|
||||
|
||||
func TestReverseInsertOrder(t *testing.T) {
|
||||
tree := New()
|
||||
n := 100
|
||||
for i := 0; i < n; i++ {
|
||||
tree.ReplaceOrInsert(Int(n - i))
|
||||
}
|
||||
i := 0
|
||||
tree.AscendGreaterOrEqual(Int(0), func(item Item) bool {
|
||||
i++
|
||||
if item.(Int) != Int(i) {
|
||||
t.Errorf("bad order: got %d, expect %d", item.(Int), i)
|
||||
}
|
||||
return true
|
||||
})
|
||||
}
|
||||
|
||||
func TestRange(t *testing.T) {
|
||||
tree := New()
|
||||
order := []String{
|
||||
"ab", "aba", "abc", "a", "aa", "aaa", "b", "a-", "a!",
|
||||
}
|
||||
for _, i := range order {
|
||||
tree.ReplaceOrInsert(i)
|
||||
}
|
||||
k := 0
|
||||
tree.AscendRange(String("ab"), String("ac"), func(item Item) bool {
|
||||
if k > 3 {
|
||||
t.Fatalf("returned more items than expected")
|
||||
}
|
||||
i1 := order[k]
|
||||
i2 := item.(String)
|
||||
if i1 != i2 {
|
||||
t.Errorf("expecting %s, got %s", i1, i2)
|
||||
}
|
||||
k++
|
||||
return true
|
||||
})
|
||||
}
|
||||
|
||||
func TestRandomInsertOrder(t *testing.T) {
|
||||
tree := New()
|
||||
n := 1000
|
||||
perm := rand.Perm(n)
|
||||
for i := 0; i < n; i++ {
|
||||
tree.ReplaceOrInsert(Int(perm[i]))
|
||||
}
|
||||
j := 0
|
||||
tree.AscendGreaterOrEqual(Int(0), func(item Item) bool {
|
||||
if item.(Int) != Int(j) {
|
||||
t.Fatalf("bad order")
|
||||
}
|
||||
j++
|
||||
return true
|
||||
})
|
||||
}
|
||||
|
||||
func TestRandomReplace(t *testing.T) {
|
||||
tree := New()
|
||||
n := 100
|
||||
perm := rand.Perm(n)
|
||||
for i := 0; i < n; i++ {
|
||||
tree.ReplaceOrInsert(Int(perm[i]))
|
||||
}
|
||||
perm = rand.Perm(n)
|
||||
for i := 0; i < n; i++ {
|
||||
if replaced := tree.ReplaceOrInsert(Int(perm[i])); replaced == nil || replaced.(Int) != Int(perm[i]) {
|
||||
t.Errorf("error replacing")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestRandomInsertSequentialDelete(t *testing.T) {
|
||||
tree := New()
|
||||
n := 1000
|
||||
perm := rand.Perm(n)
|
||||
for i := 0; i < n; i++ {
|
||||
tree.ReplaceOrInsert(Int(perm[i]))
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
tree.Delete(Int(i))
|
||||
}
|
||||
}
|
||||
|
||||
func TestRandomInsertDeleteNonExistent(t *testing.T) {
|
||||
tree := New()
|
||||
n := 100
|
||||
perm := rand.Perm(n)
|
||||
for i := 0; i < n; i++ {
|
||||
tree.ReplaceOrInsert(Int(perm[i]))
|
||||
}
|
||||
if tree.Delete(Int(200)) != nil {
|
||||
t.Errorf("deleted non-existent item")
|
||||
}
|
||||
if tree.Delete(Int(-2)) != nil {
|
||||
t.Errorf("deleted non-existent item")
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
if u := tree.Delete(Int(i)); u == nil || u.(Int) != Int(i) {
|
||||
t.Errorf("delete failed")
|
||||
}
|
||||
}
|
||||
if tree.Delete(Int(200)) != nil {
|
||||
t.Errorf("deleted non-existent item")
|
||||
}
|
||||
if tree.Delete(Int(-2)) != nil {
|
||||
t.Errorf("deleted non-existent item")
|
||||
}
|
||||
}
|
||||
|
||||
func TestRandomInsertPartialDeleteOrder(t *testing.T) {
|
||||
tree := New()
|
||||
n := 100
|
||||
perm := rand.Perm(n)
|
||||
for i := 0; i < n; i++ {
|
||||
tree.ReplaceOrInsert(Int(perm[i]))
|
||||
}
|
||||
for i := 1; i < n-1; i++ {
|
||||
tree.Delete(Int(i))
|
||||
}
|
||||
j := 0
|
||||
tree.AscendGreaterOrEqual(Int(0), func(item Item) bool {
|
||||
switch j {
|
||||
case 0:
|
||||
if item.(Int) != Int(0) {
|
||||
t.Errorf("expecting 0")
|
||||
}
|
||||
case 1:
|
||||
if item.(Int) != Int(n-1) {
|
||||
t.Errorf("expecting %d", n-1)
|
||||
}
|
||||
}
|
||||
j++
|
||||
return true
|
||||
})
|
||||
}
|
||||
|
||||
func TestRandomInsertStats(t *testing.T) {
|
||||
tree := New()
|
||||
n := 100000
|
||||
perm := rand.Perm(n)
|
||||
for i := 0; i < n; i++ {
|
||||
tree.ReplaceOrInsert(Int(perm[i]))
|
||||
}
|
||||
avg, _ := tree.HeightStats()
|
||||
expAvg := math.Log2(float64(n)) - 1.5
|
||||
if math.Abs(avg-expAvg) >= 2.0 {
|
||||
t.Errorf("too much deviation from expected average height")
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkInsert(b *testing.B) {
|
||||
tree := New()
|
||||
for i := 0; i < b.N; i++ {
|
||||
tree.ReplaceOrInsert(Int(b.N - i))
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkDelete(b *testing.B) {
|
||||
b.StopTimer()
|
||||
tree := New()
|
||||
for i := 0; i < b.N; i++ {
|
||||
tree.ReplaceOrInsert(Int(b.N - i))
|
||||
}
|
||||
b.StartTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
tree.Delete(Int(i))
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkDeleteMin(b *testing.B) {
|
||||
b.StopTimer()
|
||||
tree := New()
|
||||
for i := 0; i < b.N; i++ {
|
||||
tree.ReplaceOrInsert(Int(b.N - i))
|
||||
}
|
||||
b.StartTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
tree.DeleteMin()
|
||||
}
|
||||
}
|
||||
|
||||
func TestInsertNoReplace(t *testing.T) {
|
||||
tree := New()
|
||||
n := 1000
|
||||
for q := 0; q < 2; q++ {
|
||||
perm := rand.Perm(n)
|
||||
for i := 0; i < n; i++ {
|
||||
tree.InsertNoReplace(Int(perm[i]))
|
||||
}
|
||||
}
|
||||
j := 0
|
||||
tree.AscendGreaterOrEqual(Int(0), func(item Item) bool {
|
||||
if item.(Int) != Int(j/2) {
|
||||
t.Fatalf("bad order")
|
||||
}
|
||||
j++
|
||||
return true
|
||||
})
|
||||
}
|
Reference in New Issue
Block a user