Migrate from snapClient.VolumesnapshotV1alpha1Client to

snapClient.SnapshotV1alpha1Client and also update kube dependency

Signed-off-by: Humble Chirammal <hchiramm@redhat.com>
This commit is contained in:
Humble Chirammal
2019-06-24 14:38:09 +05:30
committed by mergify[bot]
parent 3bc6771df8
commit 22ff5c0911
1031 changed files with 34242 additions and 177906 deletions

View File

@ -0,0 +1,447 @@
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package scheduling
import (
"fmt"
"strconv"
"sync"
"k8s.io/klog"
"k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/meta"
"k8s.io/client-go/tools/cache"
)
// AssumeCache is a cache on top of the informer that allows for updating
// objects outside of informer events and also restoring the informer
// cache's version of the object. Objects are assumed to be
// Kubernetes API objects that implement meta.Interface
type AssumeCache interface {
// Assume updates the object in-memory only
Assume(obj interface{}) error
// Restore the informer cache's version of the object
Restore(objName string)
// Get the object by name
Get(objName string) (interface{}, error)
// Get the API object by name
GetAPIObj(objName string) (interface{}, error)
// List all the objects in the cache
List(indexObj interface{}) []interface{}
}
type errWrongType struct {
typeName string
object interface{}
}
func (e *errWrongType) Error() string {
return fmt.Sprintf("could not convert object to type %v: %+v", e.typeName, e.object)
}
type errNotFound struct {
typeName string
objectName string
}
func (e *errNotFound) Error() string {
return fmt.Sprintf("could not find %v %q", e.typeName, e.objectName)
}
type errObjectName struct {
detailedErr error
}
func (e *errObjectName) Error() string {
return fmt.Sprintf("failed to get object name: %v", e.detailedErr)
}
// assumeCache stores two pointers to represent a single object:
// * The pointer to the informer object.
// * The pointer to the latest object, which could be the same as
// the informer object, or an in-memory object.
//
// An informer update always overrides the latest object pointer.
//
// Assume() only updates the latest object pointer.
// Restore() sets the latest object pointer back to the informer object.
// Get/List() always returns the latest object pointer.
type assumeCache struct {
// Synchronizes updates to store
rwMutex sync.RWMutex
// describes the object stored
description string
// Stores objInfo pointers
store cache.Indexer
// Index function for object
indexFunc cache.IndexFunc
indexName string
}
type objInfo struct {
// name of the object
name string
// Latest version of object could be cached-only or from informer
latestObj interface{}
// Latest object from informer
apiObj interface{}
}
func objInfoKeyFunc(obj interface{}) (string, error) {
objInfo, ok := obj.(*objInfo)
if !ok {
return "", &errWrongType{"objInfo", obj}
}
return objInfo.name, nil
}
func (c *assumeCache) objInfoIndexFunc(obj interface{}) ([]string, error) {
objInfo, ok := obj.(*objInfo)
if !ok {
return []string{""}, &errWrongType{"objInfo", obj}
}
return c.indexFunc(objInfo.latestObj)
}
// NewAssumeCache creates an assume cache for genernal objects.
func NewAssumeCache(informer cache.SharedIndexInformer, description, indexName string, indexFunc cache.IndexFunc) AssumeCache {
c := &assumeCache{
description: description,
indexFunc: indexFunc,
indexName: indexName,
}
c.store = cache.NewIndexer(objInfoKeyFunc, cache.Indexers{indexName: c.objInfoIndexFunc})
// Unit tests don't use informers
if informer != nil {
informer.AddEventHandler(
cache.ResourceEventHandlerFuncs{
AddFunc: c.add,
UpdateFunc: c.update,
DeleteFunc: c.delete,
},
)
}
return c
}
func (c *assumeCache) add(obj interface{}) {
if obj == nil {
return
}
name, err := cache.MetaNamespaceKeyFunc(obj)
if err != nil {
klog.Errorf("add failed: %v", &errObjectName{err})
return
}
c.rwMutex.Lock()
defer c.rwMutex.Unlock()
if objInfo, _ := c.getObjInfo(name); objInfo != nil {
newVersion, err := c.getObjVersion(name, obj)
if err != nil {
klog.Errorf("add: couldn't get object version: %v", err)
return
}
storedVersion, err := c.getObjVersion(name, objInfo.latestObj)
if err != nil {
klog.Errorf("add: couldn't get stored object version: %v", err)
return
}
// Only update object if version is newer.
// This is so we don't override assumed objects due to informer resync.
if newVersion <= storedVersion {
klog.V(10).Infof("Skip adding %v %v to assume cache because version %v is not newer than %v", c.description, name, newVersion, storedVersion)
return
}
}
objInfo := &objInfo{name: name, latestObj: obj, apiObj: obj}
c.store.Update(objInfo)
klog.V(10).Infof("Adding %v %v to assume cache: %+v ", c.description, name, obj)
}
func (c *assumeCache) update(oldObj interface{}, newObj interface{}) {
c.add(newObj)
}
func (c *assumeCache) delete(obj interface{}) {
if obj == nil {
return
}
name, err := cache.MetaNamespaceKeyFunc(obj)
if err != nil {
klog.Errorf("delete failed: %v", &errObjectName{err})
return
}
c.rwMutex.Lock()
defer c.rwMutex.Unlock()
objInfo := &objInfo{name: name}
err = c.store.Delete(objInfo)
if err != nil {
klog.Errorf("delete: failed to delete %v %v: %v", c.description, name, err)
}
}
func (c *assumeCache) getObjVersion(name string, obj interface{}) (int64, error) {
objAccessor, err := meta.Accessor(obj)
if err != nil {
return -1, err
}
objResourceVersion, err := strconv.ParseInt(objAccessor.GetResourceVersion(), 10, 64)
if err != nil {
return -1, fmt.Errorf("error parsing ResourceVersion %q for %v %q: %s", objAccessor.GetResourceVersion(), c.description, name, err)
}
return objResourceVersion, nil
}
func (c *assumeCache) getObjInfo(name string) (*objInfo, error) {
obj, ok, err := c.store.GetByKey(name)
if err != nil {
return nil, err
}
if !ok {
return nil, &errNotFound{c.description, name}
}
objInfo, ok := obj.(*objInfo)
if !ok {
return nil, &errWrongType{"objInfo", obj}
}
return objInfo, nil
}
func (c *assumeCache) Get(objName string) (interface{}, error) {
c.rwMutex.RLock()
defer c.rwMutex.RUnlock()
objInfo, err := c.getObjInfo(objName)
if err != nil {
return nil, err
}
return objInfo.latestObj, nil
}
func (c *assumeCache) GetAPIObj(objName string) (interface{}, error) {
c.rwMutex.RLock()
defer c.rwMutex.RUnlock()
objInfo, err := c.getObjInfo(objName)
if err != nil {
return nil, err
}
return objInfo.apiObj, nil
}
func (c *assumeCache) List(indexObj interface{}) []interface{} {
c.rwMutex.RLock()
defer c.rwMutex.RUnlock()
allObjs := []interface{}{}
objs, err := c.store.Index(c.indexName, &objInfo{latestObj: indexObj})
if err != nil {
klog.Errorf("list index error: %v", err)
return nil
}
for _, obj := range objs {
objInfo, ok := obj.(*objInfo)
if !ok {
klog.Errorf("list error: %v", &errWrongType{"objInfo", obj})
continue
}
allObjs = append(allObjs, objInfo.latestObj)
}
return allObjs
}
func (c *assumeCache) Assume(obj interface{}) error {
name, err := cache.MetaNamespaceKeyFunc(obj)
if err != nil {
return &errObjectName{err}
}
c.rwMutex.Lock()
defer c.rwMutex.Unlock()
objInfo, err := c.getObjInfo(name)
if err != nil {
return err
}
newVersion, err := c.getObjVersion(name, obj)
if err != nil {
return err
}
storedVersion, err := c.getObjVersion(name, objInfo.latestObj)
if err != nil {
return err
}
if newVersion < storedVersion {
return fmt.Errorf("%v %q is out of sync (stored: %d, assume: %d)", c.description, name, storedVersion, newVersion)
}
// Only update the cached object
objInfo.latestObj = obj
klog.V(4).Infof("Assumed %v %q, version %v", c.description, name, newVersion)
return nil
}
func (c *assumeCache) Restore(objName string) {
c.rwMutex.Lock()
defer c.rwMutex.Unlock()
objInfo, err := c.getObjInfo(objName)
if err != nil {
// This could be expected if object got deleted
klog.V(5).Infof("Restore %v %q warning: %v", c.description, objName, err)
} else {
objInfo.latestObj = objInfo.apiObj
klog.V(4).Infof("Restored %v %q", c.description, objName)
}
}
// PVAssumeCache is a AssumeCache for PersistentVolume objects
type PVAssumeCache interface {
AssumeCache
GetPV(pvName string) (*v1.PersistentVolume, error)
GetAPIPV(pvName string) (*v1.PersistentVolume, error)
ListPVs(storageClassName string) []*v1.PersistentVolume
}
type pvAssumeCache struct {
AssumeCache
}
func pvStorageClassIndexFunc(obj interface{}) ([]string, error) {
if pv, ok := obj.(*v1.PersistentVolume); ok {
return []string{pv.Spec.StorageClassName}, nil
}
return []string{""}, fmt.Errorf("object is not a v1.PersistentVolume: %v", obj)
}
// NewPVAssumeCache creates a PV assume cache.
func NewPVAssumeCache(informer cache.SharedIndexInformer) PVAssumeCache {
return &pvAssumeCache{NewAssumeCache(informer, "v1.PersistentVolume", "storageclass", pvStorageClassIndexFunc)}
}
func (c *pvAssumeCache) GetPV(pvName string) (*v1.PersistentVolume, error) {
obj, err := c.Get(pvName)
if err != nil {
return nil, err
}
pv, ok := obj.(*v1.PersistentVolume)
if !ok {
return nil, &errWrongType{"v1.PersistentVolume", obj}
}
return pv, nil
}
func (c *pvAssumeCache) GetAPIPV(pvName string) (*v1.PersistentVolume, error) {
obj, err := c.GetAPIObj(pvName)
if err != nil {
return nil, err
}
pv, ok := obj.(*v1.PersistentVolume)
if !ok {
return nil, &errWrongType{"v1.PersistentVolume", obj}
}
return pv, nil
}
func (c *pvAssumeCache) ListPVs(storageClassName string) []*v1.PersistentVolume {
objs := c.List(&v1.PersistentVolume{
Spec: v1.PersistentVolumeSpec{
StorageClassName: storageClassName,
},
})
pvs := []*v1.PersistentVolume{}
for _, obj := range objs {
pv, ok := obj.(*v1.PersistentVolume)
if !ok {
klog.Errorf("ListPVs: %v", &errWrongType{"v1.PersistentVolume", obj})
}
pvs = append(pvs, pv)
}
return pvs
}
// PVCAssumeCache is a AssumeCache for PersistentVolumeClaim objects
type PVCAssumeCache interface {
AssumeCache
// GetPVC returns the PVC from the cache with given pvcKey.
// pvcKey is the result of MetaNamespaceKeyFunc on PVC obj
GetPVC(pvcKey string) (*v1.PersistentVolumeClaim, error)
GetAPIPVC(pvcKey string) (*v1.PersistentVolumeClaim, error)
}
type pvcAssumeCache struct {
AssumeCache
}
// NewPVCAssumeCache creates a PVC assume cache.
func NewPVCAssumeCache(informer cache.SharedIndexInformer) PVCAssumeCache {
return &pvcAssumeCache{NewAssumeCache(informer, "v1.PersistentVolumeClaim", "namespace", cache.MetaNamespaceIndexFunc)}
}
func (c *pvcAssumeCache) GetPVC(pvcKey string) (*v1.PersistentVolumeClaim, error) {
obj, err := c.Get(pvcKey)
if err != nil {
return nil, err
}
pvc, ok := obj.(*v1.PersistentVolumeClaim)
if !ok {
return nil, &errWrongType{"v1.PersistentVolumeClaim", obj}
}
return pvc, nil
}
func (c *pvcAssumeCache) GetAPIPVC(pvcKey string) (*v1.PersistentVolumeClaim, error) {
obj, err := c.GetAPIObj(pvcKey)
if err != nil {
return nil, err
}
pvc, ok := obj.(*v1.PersistentVolumeClaim)
if !ok {
return nil, &errWrongType{"v1.PersistentVolumeClaim", obj}
}
return pvc, nil
}

View File

@ -0,0 +1,63 @@
/*
Copyright 2018 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package scheduling
import (
"github.com/prometheus/client_golang/prometheus"
)
// VolumeSchedulerSubsystem - subsystem name used by scheduler
const VolumeSchedulerSubsystem = "scheduler_volume"
var (
// VolumeBindingRequestSchedulerBinderCache tracks the number of volume binder cache operations.
VolumeBindingRequestSchedulerBinderCache = prometheus.NewCounterVec(
prometheus.CounterOpts{
Subsystem: VolumeSchedulerSubsystem,
Name: "binder_cache_requests_total",
Help: "Total number for request volume binding cache",
},
[]string{"operation"},
)
// VolumeSchedulingStageLatency tracks the latency of volume scheduling operations.
VolumeSchedulingStageLatency = prometheus.NewHistogramVec(
prometheus.HistogramOpts{
Subsystem: VolumeSchedulerSubsystem,
Name: "scheduling_duration_seconds",
Help: "Volume scheduling stage latency",
Buckets: prometheus.ExponentialBuckets(1000, 2, 15),
},
[]string{"operation"},
)
// VolumeSchedulingStageFailed tracks the number of failed volume scheduling operations.
VolumeSchedulingStageFailed = prometheus.NewCounterVec(
prometheus.CounterOpts{
Subsystem: VolumeSchedulerSubsystem,
Name: "scheduling_stage_error_total",
Help: "Volume scheduling stage error count",
},
[]string{"operation"},
)
)
// RegisterVolumeSchedulingMetrics is used for scheduler, because the volume binding cache is a library
// used by scheduler process.
func RegisterVolumeSchedulingMetrics() {
prometheus.MustRegister(VolumeBindingRequestSchedulerBinderCache)
prometheus.MustRegister(VolumeSchedulingStageLatency)
prometheus.MustRegister(VolumeSchedulingStageFailed)
}

View File

@ -0,0 +1,781 @@
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package scheduling
import (
"fmt"
"sort"
"time"
v1 "k8s.io/api/core/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/labels"
"k8s.io/apimachinery/pkg/util/wait"
"k8s.io/apiserver/pkg/storage/etcd"
coreinformers "k8s.io/client-go/informers/core/v1"
storageinformers "k8s.io/client-go/informers/storage/v1"
clientset "k8s.io/client-go/kubernetes"
storagelisters "k8s.io/client-go/listers/storage/v1"
"k8s.io/klog"
v1helper "k8s.io/kubernetes/pkg/apis/core/v1/helper"
pvutil "k8s.io/kubernetes/pkg/controller/volume/persistentvolume/util"
volumeutil "k8s.io/kubernetes/pkg/volume/util"
)
// SchedulerVolumeBinder is used by the scheduler to handle PVC/PV binding
// and dynamic provisioning. The binding decisions are integrated into the pod scheduling
// workflow so that the PV NodeAffinity is also considered along with the pod's other
// scheduling requirements.
//
// This integrates into the existing default scheduler workflow as follows:
// 1. The scheduler takes a Pod off the scheduler queue and processes it serially:
// a. Invokes all predicate functions, parallelized across nodes. FindPodVolumes() is invoked here.
// b. Invokes all priority functions. Future/TBD
// c. Selects the best node for the Pod.
// d. Cache the node selection for the Pod. AssumePodVolumes() is invoked here.
// i. If PVC binding is required, cache in-memory only:
// * For manual binding: update PV objects for prebinding to the corresponding PVCs.
// * For dynamic provisioning: update PVC object with a selected node from c)
// * For the pod, which PVCs and PVs need API updates.
// ii. Afterwards, the main scheduler caches the Pod->Node binding in the scheduler's pod cache,
// This is handled in the scheduler and not here.
// e. Asynchronously bind volumes and pod in a separate goroutine
// i. BindPodVolumes() is called first. It makes all the necessary API updates and waits for
// PV controller to fully bind and provision the PVCs. If binding fails, the Pod is sent
// back through the scheduler.
// ii. After BindPodVolumes() is complete, then the scheduler does the final Pod->Node binding.
// 2. Once all the assume operations are done in d), the scheduler processes the next Pod in the scheduler queue
// while the actual binding operation occurs in the background.
type SchedulerVolumeBinder interface {
// FindPodVolumes checks if all of a Pod's PVCs can be satisfied by the node.
//
// If a PVC is bound, it checks if the PV's NodeAffinity matches the Node.
// Otherwise, it tries to find an available PV to bind to the PVC.
//
// It returns true if all of the Pod's PVCs have matching PVs or can be dynamic provisioned,
// and returns true if bound volumes satisfy the PV NodeAffinity.
//
// This function is called by the volume binding scheduler predicate and can be called in parallel
FindPodVolumes(pod *v1.Pod, node *v1.Node) (unboundVolumesSatisified, boundVolumesSatisfied bool, err error)
// AssumePodVolumes will:
// 1. Take the PV matches for unbound PVCs and update the PV cache assuming
// that the PV is prebound to the PVC.
// 2. Take the PVCs that need provisioning and update the PVC cache with related
// annotations set.
//
// It returns true if all volumes are fully bound
//
// This function will modify assumedPod with the node name.
// This function is called serially.
AssumePodVolumes(assumedPod *v1.Pod, nodeName string) (allFullyBound bool, err error)
// BindPodVolumes will:
// 1. Initiate the volume binding by making the API call to prebind the PV
// to its matching PVC.
// 2. Trigger the volume provisioning by making the API call to set related
// annotations on the PVC
// 3. Wait for PVCs to be completely bound by the PV controller
//
// This function can be called in parallel.
BindPodVolumes(assumedPod *v1.Pod) error
// GetBindingsCache returns the cache used (if any) to store volume binding decisions.
GetBindingsCache() PodBindingCache
}
type volumeBinder struct {
kubeClient clientset.Interface
classLister storagelisters.StorageClassLister
nodeInformer coreinformers.NodeInformer
pvcCache PVCAssumeCache
pvCache PVAssumeCache
// Stores binding decisions that were made in FindPodVolumes for use in AssumePodVolumes.
// AssumePodVolumes modifies the bindings again for use in BindPodVolumes.
podBindingCache PodBindingCache
// Amount of time to wait for the bind operation to succeed
bindTimeout time.Duration
}
// NewVolumeBinder sets up all the caches needed for the scheduler to make volume binding decisions.
func NewVolumeBinder(
kubeClient clientset.Interface,
nodeInformer coreinformers.NodeInformer,
pvcInformer coreinformers.PersistentVolumeClaimInformer,
pvInformer coreinformers.PersistentVolumeInformer,
storageClassInformer storageinformers.StorageClassInformer,
bindTimeout time.Duration) SchedulerVolumeBinder {
b := &volumeBinder{
kubeClient: kubeClient,
classLister: storageClassInformer.Lister(),
nodeInformer: nodeInformer,
pvcCache: NewPVCAssumeCache(pvcInformer.Informer()),
pvCache: NewPVAssumeCache(pvInformer.Informer()),
podBindingCache: NewPodBindingCache(),
bindTimeout: bindTimeout,
}
return b
}
func (b *volumeBinder) GetBindingsCache() PodBindingCache {
return b.podBindingCache
}
// FindPodVolumes caches the matching PVs and PVCs to provision per node in podBindingCache.
// This method intentionally takes in a *v1.Node object instead of using volumebinder.nodeInformer.
// That's necessary because some operations will need to pass in to the predicate fake node objects.
func (b *volumeBinder) FindPodVolumes(pod *v1.Pod, node *v1.Node) (unboundVolumesSatisfied, boundVolumesSatisfied bool, err error) {
podName := getPodName(pod)
// Warning: Below log needs high verbosity as it can be printed several times (#60933).
klog.V(5).Infof("FindPodVolumes for pod %q, node %q", podName, node.Name)
// Initialize to true for pods that don't have volumes
unboundVolumesSatisfied = true
boundVolumesSatisfied = true
start := time.Now()
defer func() {
VolumeSchedulingStageLatency.WithLabelValues("predicate").Observe(time.Since(start).Seconds())
if err != nil {
VolumeSchedulingStageFailed.WithLabelValues("predicate").Inc()
}
}()
var (
matchedBindings []*bindingInfo
provisionedClaims []*v1.PersistentVolumeClaim
)
defer func() {
// We recreate bindings for each new schedule loop.
if len(matchedBindings) == 0 && len(provisionedClaims) == 0 {
// Clear cache if no claims to bind or provision for this node.
b.podBindingCache.ClearBindings(pod, node.Name)
return
}
// Although we do not distinguish nil from empty in this function, for
// easier testing, we normalize empty to nil.
if len(matchedBindings) == 0 {
matchedBindings = nil
}
if len(provisionedClaims) == 0 {
provisionedClaims = nil
}
// Mark cache with all matched and provisioned claims for this node
b.podBindingCache.UpdateBindings(pod, node.Name, matchedBindings, provisionedClaims)
}()
// The pod's volumes need to be processed in one call to avoid the race condition where
// volumes can get bound/provisioned in between calls.
boundClaims, claimsToBind, unboundClaimsImmediate, err := b.getPodVolumes(pod)
if err != nil {
return false, false, err
}
// Immediate claims should be bound
if len(unboundClaimsImmediate) > 0 {
return false, false, fmt.Errorf("pod has unbound immediate PersistentVolumeClaims")
}
// Check PV node affinity on bound volumes
if len(boundClaims) > 0 {
boundVolumesSatisfied, err = b.checkBoundClaims(boundClaims, node, podName)
if err != nil {
return false, false, err
}
}
// Find matching volumes and node for unbound claims
if len(claimsToBind) > 0 {
var (
claimsToFindMatching []*v1.PersistentVolumeClaim
claimsToProvision []*v1.PersistentVolumeClaim
)
// Filter out claims to provision
for _, claim := range claimsToBind {
if selectedNode, ok := claim.Annotations[pvutil.AnnSelectedNode]; ok {
if selectedNode != node.Name {
// Fast path, skip unmatched node
return false, boundVolumesSatisfied, nil
}
claimsToProvision = append(claimsToProvision, claim)
} else {
claimsToFindMatching = append(claimsToFindMatching, claim)
}
}
// Find matching volumes
if len(claimsToFindMatching) > 0 {
var unboundClaims []*v1.PersistentVolumeClaim
unboundVolumesSatisfied, matchedBindings, unboundClaims, err = b.findMatchingVolumes(pod, claimsToFindMatching, node)
if err != nil {
return false, false, err
}
claimsToProvision = append(claimsToProvision, unboundClaims...)
}
// Check for claims to provision
if len(claimsToProvision) > 0 {
unboundVolumesSatisfied, provisionedClaims, err = b.checkVolumeProvisions(pod, claimsToProvision, node)
if err != nil {
return false, false, err
}
}
}
return unboundVolumesSatisfied, boundVolumesSatisfied, nil
}
// AssumePodVolumes will take the cached matching PVs and PVCs to provision
// in podBindingCache for the chosen node, and:
// 1. Update the pvCache with the new prebound PV.
// 2. Update the pvcCache with the new PVCs with annotations set
// 3. Update podBindingCache again with cached API updates for PVs and PVCs.
func (b *volumeBinder) AssumePodVolumes(assumedPod *v1.Pod, nodeName string) (allFullyBound bool, err error) {
podName := getPodName(assumedPod)
klog.V(4).Infof("AssumePodVolumes for pod %q, node %q", podName, nodeName)
start := time.Now()
defer func() {
VolumeSchedulingStageLatency.WithLabelValues("assume").Observe(time.Since(start).Seconds())
if err != nil {
VolumeSchedulingStageFailed.WithLabelValues("assume").Inc()
}
}()
if allBound := b.arePodVolumesBound(assumedPod); allBound {
klog.V(4).Infof("AssumePodVolumes for pod %q, node %q: all PVCs bound and nothing to do", podName, nodeName)
return true, nil
}
assumedPod.Spec.NodeName = nodeName
claimsToBind := b.podBindingCache.GetBindings(assumedPod, nodeName)
claimsToProvision := b.podBindingCache.GetProvisionedPVCs(assumedPod, nodeName)
// Assume PV
newBindings := []*bindingInfo{}
for _, binding := range claimsToBind {
newPV, dirty, err := pvutil.GetBindVolumeToClaim(binding.pv, binding.pvc)
klog.V(5).Infof("AssumePodVolumes: GetBindVolumeToClaim for pod %q, PV %q, PVC %q. newPV %p, dirty %v, err: %v",
podName,
binding.pv.Name,
binding.pvc.Name,
newPV,
dirty,
err)
if err != nil {
b.revertAssumedPVs(newBindings)
return false, err
}
// TODO: can we assume everytime?
if dirty {
err = b.pvCache.Assume(newPV)
if err != nil {
b.revertAssumedPVs(newBindings)
return false, err
}
}
newBindings = append(newBindings, &bindingInfo{pv: newPV, pvc: binding.pvc})
}
// Assume PVCs
newProvisionedPVCs := []*v1.PersistentVolumeClaim{}
for _, claim := range claimsToProvision {
// The claims from method args can be pointing to watcher cache. We must not
// modify these, therefore create a copy.
claimClone := claim.DeepCopy()
metav1.SetMetaDataAnnotation(&claimClone.ObjectMeta, pvutil.AnnSelectedNode, nodeName)
err = b.pvcCache.Assume(claimClone)
if err != nil {
b.revertAssumedPVs(newBindings)
b.revertAssumedPVCs(newProvisionedPVCs)
return
}
newProvisionedPVCs = append(newProvisionedPVCs, claimClone)
}
// Update cache with the assumed pvcs and pvs
// Even if length is zero, update the cache with an empty slice to indicate that no
// operations are needed
b.podBindingCache.UpdateBindings(assumedPod, nodeName, newBindings, newProvisionedPVCs)
return
}
// BindPodVolumes gets the cached bindings and PVCs to provision in podBindingCache,
// makes the API update for those PVs/PVCs, and waits for the PVCs to be completely bound
// by the PV controller.
func (b *volumeBinder) BindPodVolumes(assumedPod *v1.Pod) (err error) {
podName := getPodName(assumedPod)
klog.V(4).Infof("BindPodVolumes for pod %q, node %q", podName, assumedPod.Spec.NodeName)
start := time.Now()
defer func() {
VolumeSchedulingStageLatency.WithLabelValues("bind").Observe(time.Since(start).Seconds())
if err != nil {
VolumeSchedulingStageFailed.WithLabelValues("bind").Inc()
}
}()
bindings := b.podBindingCache.GetBindings(assumedPod, assumedPod.Spec.NodeName)
claimsToProvision := b.podBindingCache.GetProvisionedPVCs(assumedPod, assumedPod.Spec.NodeName)
// Start API operations
err = b.bindAPIUpdate(podName, bindings, claimsToProvision)
if err != nil {
return err
}
return wait.Poll(time.Second, b.bindTimeout, func() (bool, error) {
b, err := b.checkBindings(assumedPod, bindings, claimsToProvision)
return b, err
})
}
func getPodName(pod *v1.Pod) string {
return pod.Namespace + "/" + pod.Name
}
func getPVCName(pvc *v1.PersistentVolumeClaim) string {
return pvc.Namespace + "/" + pvc.Name
}
// bindAPIUpdate gets the cached bindings and PVCs to provision in podBindingCache
// and makes the API update for those PVs/PVCs.
func (b *volumeBinder) bindAPIUpdate(podName string, bindings []*bindingInfo, claimsToProvision []*v1.PersistentVolumeClaim) error {
if bindings == nil {
return fmt.Errorf("failed to get cached bindings for pod %q", podName)
}
if claimsToProvision == nil {
return fmt.Errorf("failed to get cached claims to provision for pod %q", podName)
}
lastProcessedBinding := 0
lastProcessedProvisioning := 0
defer func() {
// only revert assumed cached updates for volumes we haven't successfully bound
if lastProcessedBinding < len(bindings) {
b.revertAssumedPVs(bindings[lastProcessedBinding:])
}
// only revert assumed cached updates for claims we haven't updated,
if lastProcessedProvisioning < len(claimsToProvision) {
b.revertAssumedPVCs(claimsToProvision[lastProcessedProvisioning:])
}
}()
var (
binding *bindingInfo
i int
claim *v1.PersistentVolumeClaim
)
// Do the actual prebinding. Let the PV controller take care of the rest
// There is no API rollback if the actual binding fails
for _, binding = range bindings {
klog.V(5).Infof("bindAPIUpdate: Pod %q, binding PV %q to PVC %q", podName, binding.pv.Name, binding.pvc.Name)
// TODO: does it hurt if we make an api call and nothing needs to be updated?
claimKey := claimToClaimKey(binding.pvc)
klog.V(2).Infof("claim %q bound to volume %q", claimKey, binding.pv.Name)
newPV, err := b.kubeClient.CoreV1().PersistentVolumes().Update(binding.pv)
if err != nil {
klog.V(4).Infof("updating PersistentVolume[%s]: binding to %q failed: %v", binding.pv.Name, claimKey, err)
return err
}
klog.V(4).Infof("updating PersistentVolume[%s]: bound to %q", binding.pv.Name, claimKey)
// Save updated object from apiserver for later checking.
binding.pv = newPV
lastProcessedBinding++
}
// Update claims objects to trigger volume provisioning. Let the PV controller take care of the rest
// PV controller is expect to signal back by removing related annotations if actual provisioning fails
for i, claim = range claimsToProvision {
klog.V(5).Infof("bindAPIUpdate: Pod %q, PVC %q", podName, getPVCName(claim))
newClaim, err := b.kubeClient.CoreV1().PersistentVolumeClaims(claim.Namespace).Update(claim)
if err != nil {
return err
}
// Save updated object from apiserver for later checking.
claimsToProvision[i] = newClaim
lastProcessedProvisioning++
}
return nil
}
var (
versioner = etcd.APIObjectVersioner{}
)
// checkBindings runs through all the PVCs in the Pod and checks:
// * if the PVC is fully bound
// * if there are any conditions that require binding to fail and be retried
//
// It returns true when all of the Pod's PVCs are fully bound, and error if
// binding (and scheduling) needs to be retried
// Note that it checks on API objects not PV/PVC cache, this is because
// PV/PVC cache can be assumed again in main scheduler loop, we must check
// latest state in API server which are shared with PV controller and
// provisioners
func (b *volumeBinder) checkBindings(pod *v1.Pod, bindings []*bindingInfo, claimsToProvision []*v1.PersistentVolumeClaim) (bool, error) {
podName := getPodName(pod)
if bindings == nil {
return false, fmt.Errorf("failed to get cached bindings for pod %q", podName)
}
if claimsToProvision == nil {
return false, fmt.Errorf("failed to get cached claims to provision for pod %q", podName)
}
node, err := b.nodeInformer.Lister().Get(pod.Spec.NodeName)
if err != nil {
return false, fmt.Errorf("failed to get node %q: %v", pod.Spec.NodeName, err)
}
// Check for any conditions that might require scheduling retry
// When pod is removed from scheduling queue because of deletion or any
// other reasons, binding operation should be cancelled. There is no need
// to check PV/PVC bindings any more.
// We check pod binding cache here which will be cleared when pod is
// removed from scheduling queue.
if b.podBindingCache.GetDecisions(pod) == nil {
return false, fmt.Errorf("pod %q does not exist any more", podName)
}
for _, binding := range bindings {
pv, err := b.pvCache.GetAPIPV(binding.pv.Name)
if err != nil {
return false, fmt.Errorf("failed to check binding: %v", err)
}
pvc, err := b.pvcCache.GetAPIPVC(getPVCName(binding.pvc))
if err != nil {
return false, fmt.Errorf("failed to check binding: %v", err)
}
// Because we updated PV in apiserver, skip if API object is older
// and wait for new API object propagated from apiserver.
if versioner.CompareResourceVersion(binding.pv, pv) > 0 {
return false, nil
}
// Check PV's node affinity (the node might not have the proper label)
if err := volumeutil.CheckNodeAffinity(pv, node.Labels); err != nil {
return false, fmt.Errorf("pv %q node affinity doesn't match node %q: %v", pv.Name, node.Name, err)
}
// Check if pv.ClaimRef got dropped by unbindVolume()
if pv.Spec.ClaimRef == nil || pv.Spec.ClaimRef.UID == "" {
return false, fmt.Errorf("ClaimRef got reset for pv %q", pv.Name)
}
// Check if pvc is fully bound
if !b.isPVCFullyBound(pvc) {
return false, nil
}
}
for _, claim := range claimsToProvision {
pvc, err := b.pvcCache.GetAPIPVC(getPVCName(claim))
if err != nil {
return false, fmt.Errorf("failed to check provisioning pvc: %v", err)
}
// Because we updated PVC in apiserver, skip if API object is older
// and wait for new API object propagated from apiserver.
if versioner.CompareResourceVersion(claim, pvc) > 0 {
return false, nil
}
// Check if selectedNode annotation is still set
if pvc.Annotations == nil {
return false, fmt.Errorf("selectedNode annotation reset for PVC %q", pvc.Name)
}
selectedNode := pvc.Annotations[pvutil.AnnSelectedNode]
if selectedNode != pod.Spec.NodeName {
return false, fmt.Errorf("selectedNode annotation value %q not set to scheduled node %q", selectedNode, pod.Spec.NodeName)
}
// If the PVC is bound to a PV, check its node affinity
if pvc.Spec.VolumeName != "" {
pv, err := b.pvCache.GetAPIPV(pvc.Spec.VolumeName)
if err != nil {
if _, ok := err.(*errNotFound); ok {
// We tolerate NotFound error here, because PV is possibly
// not found because of API delay, we can check next time.
// And if PV does not exist because it's deleted, PVC will
// be unbound eventually.
return false, nil
}
return false, fmt.Errorf("failed to get pv %q from cache: %v", pvc.Spec.VolumeName, err)
}
if err := volumeutil.CheckNodeAffinity(pv, node.Labels); err != nil {
return false, fmt.Errorf("pv %q node affinity doesn't match node %q: %v", pv.Name, node.Name, err)
}
}
// Check if pvc is fully bound
if !b.isPVCFullyBound(pvc) {
return false, nil
}
}
// All pvs and pvcs that we operated on are bound
klog.V(4).Infof("All PVCs for pod %q are bound", podName)
return true, nil
}
func (b *volumeBinder) isVolumeBound(namespace string, vol *v1.Volume) (bool, *v1.PersistentVolumeClaim, error) {
if vol.PersistentVolumeClaim == nil {
return true, nil, nil
}
pvcName := vol.PersistentVolumeClaim.ClaimName
return b.isPVCBound(namespace, pvcName)
}
func (b *volumeBinder) isPVCBound(namespace, pvcName string) (bool, *v1.PersistentVolumeClaim, error) {
claim := &v1.PersistentVolumeClaim{
ObjectMeta: metav1.ObjectMeta{
Name: pvcName,
Namespace: namespace,
},
}
pvcKey := getPVCName(claim)
pvc, err := b.pvcCache.GetPVC(pvcKey)
if err != nil || pvc == nil {
return false, nil, fmt.Errorf("error getting PVC %q: %v", pvcKey, err)
}
fullyBound := b.isPVCFullyBound(pvc)
if fullyBound {
klog.V(5).Infof("PVC %q is fully bound to PV %q", pvcKey, pvc.Spec.VolumeName)
} else {
if pvc.Spec.VolumeName != "" {
klog.V(5).Infof("PVC %q is not fully bound to PV %q", pvcKey, pvc.Spec.VolumeName)
} else {
klog.V(5).Infof("PVC %q is not bound", pvcKey)
}
}
return fullyBound, pvc, nil
}
func (b *volumeBinder) isPVCFullyBound(pvc *v1.PersistentVolumeClaim) bool {
return pvc.Spec.VolumeName != "" && metav1.HasAnnotation(pvc.ObjectMeta, pvutil.AnnBindCompleted)
}
// arePodVolumesBound returns true if all volumes are fully bound
func (b *volumeBinder) arePodVolumesBound(pod *v1.Pod) bool {
for _, vol := range pod.Spec.Volumes {
if isBound, _, _ := b.isVolumeBound(pod.Namespace, &vol); !isBound {
// Pod has at least one PVC that needs binding
return false
}
}
return true
}
// getPodVolumes returns a pod's PVCs separated into bound, unbound with delayed binding (including provisioning)
// and unbound with immediate binding (including prebound)
func (b *volumeBinder) getPodVolumes(pod *v1.Pod) (boundClaims []*v1.PersistentVolumeClaim, unboundClaimsDelayBinding []*v1.PersistentVolumeClaim, unboundClaimsImmediate []*v1.PersistentVolumeClaim, err error) {
boundClaims = []*v1.PersistentVolumeClaim{}
unboundClaimsImmediate = []*v1.PersistentVolumeClaim{}
unboundClaimsDelayBinding = []*v1.PersistentVolumeClaim{}
for _, vol := range pod.Spec.Volumes {
volumeBound, pvc, err := b.isVolumeBound(pod.Namespace, &vol)
if err != nil {
return nil, nil, nil, err
}
if pvc == nil {
continue
}
if volumeBound {
boundClaims = append(boundClaims, pvc)
} else {
delayBindingMode, err := pvutil.IsDelayBindingMode(pvc, b.classLister)
if err != nil {
return nil, nil, nil, err
}
// Prebound PVCs are treated as unbound immediate binding
if delayBindingMode && pvc.Spec.VolumeName == "" {
// Scheduler path
unboundClaimsDelayBinding = append(unboundClaimsDelayBinding, pvc)
} else {
// !delayBindingMode || pvc.Spec.VolumeName != ""
// Immediate binding should have already been bound
unboundClaimsImmediate = append(unboundClaimsImmediate, pvc)
}
}
}
return boundClaims, unboundClaimsDelayBinding, unboundClaimsImmediate, nil
}
func (b *volumeBinder) checkBoundClaims(claims []*v1.PersistentVolumeClaim, node *v1.Node, podName string) (bool, error) {
for _, pvc := range claims {
pvName := pvc.Spec.VolumeName
pv, err := b.pvCache.GetPV(pvName)
if err != nil {
return false, err
}
err = volumeutil.CheckNodeAffinity(pv, node.Labels)
if err != nil {
klog.V(4).Infof("PersistentVolume %q, Node %q mismatch for Pod %q: %v", pvName, node.Name, podName, err)
return false, nil
}
klog.V(5).Infof("PersistentVolume %q, Node %q matches for Pod %q", pvName, node.Name, podName)
}
klog.V(4).Infof("All bound volumes for Pod %q match with Node %q", podName, node.Name)
return true, nil
}
// findMatchingVolumes tries to find matching volumes for given claims,
// and return unbound claims for further provision.
func (b *volumeBinder) findMatchingVolumes(pod *v1.Pod, claimsToBind []*v1.PersistentVolumeClaim, node *v1.Node) (foundMatches bool, bindings []*bindingInfo, unboundClaims []*v1.PersistentVolumeClaim, err error) {
podName := getPodName(pod)
// Sort all the claims by increasing size request to get the smallest fits
sort.Sort(byPVCSize(claimsToBind))
chosenPVs := map[string]*v1.PersistentVolume{}
foundMatches = true
for _, pvc := range claimsToBind {
// Get storage class name from each PVC
storageClassName := ""
storageClass := pvc.Spec.StorageClassName
if storageClass != nil {
storageClassName = *storageClass
}
allPVs := b.pvCache.ListPVs(storageClassName)
pvcName := getPVCName(pvc)
// Find a matching PV
pv, err := pvutil.FindMatchingVolume(pvc, allPVs, node, chosenPVs, true)
if err != nil {
return false, nil, nil, err
}
if pv == nil {
klog.V(4).Infof("No matching volumes for Pod %q, PVC %q on node %q", podName, pvcName, node.Name)
unboundClaims = append(unboundClaims, pvc)
foundMatches = false
continue
}
// matching PV needs to be excluded so we don't select it again
chosenPVs[pv.Name] = pv
bindings = append(bindings, &bindingInfo{pv: pv, pvc: pvc})
klog.V(5).Infof("Found matching PV %q for PVC %q on node %q for pod %q", pv.Name, pvcName, node.Name, podName)
}
if foundMatches {
klog.V(4).Infof("Found matching volumes for pod %q on node %q", podName, node.Name)
}
return
}
// checkVolumeProvisions checks given unbound claims (the claims have gone through func
// findMatchingVolumes, and do not have matching volumes for binding), and return true
// if all of the claims are eligible for dynamic provision.
func (b *volumeBinder) checkVolumeProvisions(pod *v1.Pod, claimsToProvision []*v1.PersistentVolumeClaim, node *v1.Node) (provisionSatisfied bool, provisionedClaims []*v1.PersistentVolumeClaim, err error) {
podName := getPodName(pod)
provisionedClaims = []*v1.PersistentVolumeClaim{}
for _, claim := range claimsToProvision {
pvcName := getPVCName(claim)
className := v1helper.GetPersistentVolumeClaimClass(claim)
if className == "" {
return false, nil, fmt.Errorf("no class for claim %q", pvcName)
}
class, err := b.classLister.Get(className)
if err != nil {
return false, nil, fmt.Errorf("failed to find storage class %q", className)
}
provisioner := class.Provisioner
if provisioner == "" || provisioner == pvutil.NotSupportedProvisioner {
klog.V(4).Infof("storage class %q of claim %q does not support dynamic provisioning", className, pvcName)
return false, nil, nil
}
// Check if the node can satisfy the topology requirement in the class
if !v1helper.MatchTopologySelectorTerms(class.AllowedTopologies, labels.Set(node.Labels)) {
klog.V(4).Infof("Node %q cannot satisfy provisioning topology requirements of claim %q", node.Name, pvcName)
return false, nil, nil
}
// TODO: Check if capacity of the node domain in the storage class
// can satisfy resource requirement of given claim
provisionedClaims = append(provisionedClaims, claim)
}
klog.V(4).Infof("Provisioning for claims of pod %q that has no matching volumes on node %q ...", podName, node.Name)
return true, provisionedClaims, nil
}
func (b *volumeBinder) revertAssumedPVs(bindings []*bindingInfo) {
for _, bindingInfo := range bindings {
b.pvCache.Restore(bindingInfo.pv.Name)
}
}
func (b *volumeBinder) revertAssumedPVCs(claims []*v1.PersistentVolumeClaim) {
for _, claim := range claims {
b.pvcCache.Restore(getPVCName(claim))
}
}
type bindingInfo struct {
// Claim that needs to be bound
pvc *v1.PersistentVolumeClaim
// Proposed PV to bind to this claim
pv *v1.PersistentVolume
}
type byPVCSize []*v1.PersistentVolumeClaim
func (a byPVCSize) Len() int {
return len(a)
}
func (a byPVCSize) Swap(i, j int) {
a[i], a[j] = a[j], a[i]
}
func (a byPVCSize) Less(i, j int) bool {
iSize := a[i].Spec.Resources.Requests[v1.ResourceStorage]
jSize := a[j].Spec.Resources.Requests[v1.ResourceStorage]
// return true if iSize is less than jSize
return iSize.Cmp(jSize) == -1
}
func claimToClaimKey(claim *v1.PersistentVolumeClaim) string {
return fmt.Sprintf("%s/%s", claim.Namespace, claim.Name)
}

View File

@ -0,0 +1,166 @@
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package scheduling
import (
"sync"
"k8s.io/api/core/v1"
)
// PodBindingCache stores PV binding decisions per pod per node.
// Pod entries are removed when the Pod is deleted or updated to
// no longer be schedulable.
type PodBindingCache interface {
// UpdateBindings will update the cache with the given bindings for the
// pod and node.
UpdateBindings(pod *v1.Pod, node string, bindings []*bindingInfo, provisionings []*v1.PersistentVolumeClaim)
// ClearBindings will clear the cached bindings for the given pod and node.
ClearBindings(pod *v1.Pod, node string)
// GetBindings will return the cached bindings for the given pod and node.
// A nil return value means that the entry was not found. An empty slice
// means that no binding operations are needed.
GetBindings(pod *v1.Pod, node string) []*bindingInfo
// A nil return value means that the entry was not found. An empty slice
// means that no provisioning operations are needed.
GetProvisionedPVCs(pod *v1.Pod, node string) []*v1.PersistentVolumeClaim
// GetDecisions will return all cached decisions for the given pod.
GetDecisions(pod *v1.Pod) nodeDecisions
// DeleteBindings will remove all cached bindings and provisionings for the given pod.
// TODO: separate the func if it is needed to delete bindings/provisionings individually
DeleteBindings(pod *v1.Pod)
}
type podBindingCache struct {
// synchronizes bindingDecisions
rwMutex sync.RWMutex
// Key = pod name
// Value = nodeDecisions
bindingDecisions map[string]nodeDecisions
}
// Key = nodeName
// Value = bindings & provisioned PVCs of the node
type nodeDecisions map[string]nodeDecision
// A decision includes bindingInfo and provisioned PVCs of the node
type nodeDecision struct {
bindings []*bindingInfo
provisionings []*v1.PersistentVolumeClaim
}
// NewPodBindingCache creates a pod binding cache.
func NewPodBindingCache() PodBindingCache {
return &podBindingCache{bindingDecisions: map[string]nodeDecisions{}}
}
func (c *podBindingCache) GetDecisions(pod *v1.Pod) nodeDecisions {
c.rwMutex.RLock()
defer c.rwMutex.RUnlock()
podName := getPodName(pod)
decisions, ok := c.bindingDecisions[podName]
if !ok {
return nil
}
return decisions
}
func (c *podBindingCache) DeleteBindings(pod *v1.Pod) {
c.rwMutex.Lock()
defer c.rwMutex.Unlock()
podName := getPodName(pod)
if _, ok := c.bindingDecisions[podName]; ok {
delete(c.bindingDecisions, podName)
VolumeBindingRequestSchedulerBinderCache.WithLabelValues("delete").Inc()
}
}
func (c *podBindingCache) UpdateBindings(pod *v1.Pod, node string, bindings []*bindingInfo, pvcs []*v1.PersistentVolumeClaim) {
c.rwMutex.Lock()
defer c.rwMutex.Unlock()
podName := getPodName(pod)
decisions, ok := c.bindingDecisions[podName]
if !ok {
decisions = nodeDecisions{}
c.bindingDecisions[podName] = decisions
}
decision, ok := decisions[node]
if !ok {
decision = nodeDecision{
bindings: bindings,
provisionings: pvcs,
}
VolumeBindingRequestSchedulerBinderCache.WithLabelValues("add").Inc()
} else {
decision.bindings = bindings
decision.provisionings = pvcs
}
decisions[node] = decision
}
func (c *podBindingCache) GetBindings(pod *v1.Pod, node string) []*bindingInfo {
c.rwMutex.RLock()
defer c.rwMutex.RUnlock()
podName := getPodName(pod)
decisions, ok := c.bindingDecisions[podName]
if !ok {
return nil
}
decision, ok := decisions[node]
if !ok {
return nil
}
return decision.bindings
}
func (c *podBindingCache) GetProvisionedPVCs(pod *v1.Pod, node string) []*v1.PersistentVolumeClaim {
c.rwMutex.RLock()
defer c.rwMutex.RUnlock()
podName := getPodName(pod)
decisions, ok := c.bindingDecisions[podName]
if !ok {
return nil
}
decision, ok := decisions[node]
if !ok {
return nil
}
return decision.provisionings
}
func (c *podBindingCache) ClearBindings(pod *v1.Pod, node string) {
c.rwMutex.Lock()
defer c.rwMutex.Unlock()
podName := getPodName(pod)
decisions, ok := c.bindingDecisions[podName]
if !ok {
return
}
delete(decisions, node)
}

View File

@ -0,0 +1,66 @@
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package scheduling
import "k8s.io/api/core/v1"
// FakeVolumeBinderConfig holds configurations for fake volume binder.
type FakeVolumeBinderConfig struct {
AllBound bool
FindUnboundSatsified bool
FindBoundSatsified bool
FindErr error
AssumeErr error
BindErr error
}
// NewFakeVolumeBinder sets up all the caches needed for the scheduler to make
// topology-aware volume binding decisions.
func NewFakeVolumeBinder(config *FakeVolumeBinderConfig) *FakeVolumeBinder {
return &FakeVolumeBinder{
config: config,
}
}
// FakeVolumeBinder represents a fake volume binder for testing.
type FakeVolumeBinder struct {
config *FakeVolumeBinderConfig
AssumeCalled bool
BindCalled bool
}
// FindPodVolumes implements SchedulerVolumeBinder.FindPodVolumes.
func (b *FakeVolumeBinder) FindPodVolumes(pod *v1.Pod, node *v1.Node) (unboundVolumesSatisfied, boundVolumesSatsified bool, err error) {
return b.config.FindUnboundSatsified, b.config.FindBoundSatsified, b.config.FindErr
}
// AssumePodVolumes implements SchedulerVolumeBinder.AssumePodVolumes.
func (b *FakeVolumeBinder) AssumePodVolumes(assumedPod *v1.Pod, nodeName string) (bool, error) {
b.AssumeCalled = true
return b.config.AllBound, b.config.AssumeErr
}
// BindPodVolumes implements SchedulerVolumeBinder.BindPodVolumes.
func (b *FakeVolumeBinder) BindPodVolumes(assumedPod *v1.Pod) error {
b.BindCalled = true
return b.config.BindErr
}
// GetBindingsCache implements SchedulerVolumeBinder.GetBindingsCache.
func (b *FakeVolumeBinder) GetBindingsCache() PodBindingCache {
return nil
}