rebase: update go-ceph to v0.8.0

Updating go-ceph to v0.8.0.

Signed-off-by: Mudit Agarwal <muagarwa@redhat.com>
This commit is contained in:
Mudit Agarwal 2021-02-10 09:08:18 +05:30 committed by mergify[bot]
parent e6098520d1
commit 32d78c4f7f
24 changed files with 1724 additions and 229 deletions

2
go.mod
View File

@ -3,7 +3,7 @@ module github.com/ceph/ceph-csi
go 1.13
require (
github.com/ceph/go-ceph v0.7.0
github.com/ceph/go-ceph v0.8.0
github.com/container-storage-interface/spec v1.3.0
github.com/go-logr/logr v0.2.1 // indirect
github.com/golang/protobuf v1.4.3

4
go.sum
View File

@ -203,8 +203,8 @@ github.com/cenkalti/backoff v2.2.1+incompatible/go.mod h1:90ReRw6GdpyfrHakVjL/QH
github.com/census-instrumentation/opencensus-proto v0.2.1/go.mod h1:f6KPmirojxKA12rnyqOA5BBL4O983OfeGPqjHWSTneU=
github.com/centrify/cloud-golang-sdk v0.0.0-20190214225812-119110094d0f h1:gJzxrodnNd/CtPXjO3WYiakyNzHg3rtAi7rO74ejHYU=
github.com/centrify/cloud-golang-sdk v0.0.0-20190214225812-119110094d0f/go.mod h1:C0rtzmGXgN78pYR0tGJFhtHgkbAs0lIbHwkB81VxDQE=
github.com/ceph/go-ceph v0.7.0 h1:+4oWZCuvh9B7/kZVJVw/DSuk9Qby38KWY1pMQ5gYGyY=
github.com/ceph/go-ceph v0.7.0/go.mod h1:wd+keAOqrcsN//20VQnHBGtnBnY0KHl0PA024Ng8HfQ=
github.com/ceph/go-ceph v0.8.0 h1:d+VP0eyconBl9RrvKVUq7S0npyK969ErLkCt5pg2fp0=
github.com/ceph/go-ceph v0.8.0/go.mod h1:wd+keAOqrcsN//20VQnHBGtnBnY0KHl0PA024Ng8HfQ=
github.com/cespare/prettybench v0.0.0-20150116022406-03b8cfe5406c/go.mod h1:Xe6ZsFhtM8HrDku0pxJ3/Lr51rwykrzgFwpmTzleatY=
github.com/cespare/xxhash v1.1.0 h1:a6HrQnmkObjyL+Gs60czilIUGqrzKutQD6XZog3p+ko=
github.com/cespare/xxhash v1.1.0/go.mod h1:XrSqR1VqqWfGrhpAt58auRo0WTKS1nRRg3ghfAqPWnc=

View File

@ -41,7 +41,7 @@ func (f SubVolRmFlags) flags() map[string]bool {
o["force"] = true
}
if f.RetainSnapshots {
o["retain-snapshots"] = true
o["retain_snapshots"] = true
}
return o
}

View File

@ -197,23 +197,48 @@ const (
SnapshotRetentionFeature = Feature("snapshot-retention")
)
// SubVolumeState is used to define constant value for the state of
// a subvolume.
type SubVolumeState string
const (
// StateUnset indicates a subvolume without any state.
StateUnset = SubVolumeState("")
// StateInit indicates that the subvolume is in initializing state.
StateInit = SubVolumeState("init")
// StatePending indicates that the subvolume is in pending state.
StatePending = SubVolumeState("pending")
// StateInProgress indicates that the subvolume is in in-progress state.
StateInProgress = SubVolumeState("in-progress")
// StateFailed indicates that the subvolume is in failed state.
StateFailed = SubVolumeState("failed")
// StateComplete indicates that the subvolume is in complete state.
StateComplete = SubVolumeState("complete")
// StateCanceled indicates that the subvolume is in canceled state.
StateCanceled = SubVolumeState("canceled")
// StateSnapRetained indicates that the subvolume is in
// snapshot-retained state.
StateSnapRetained = SubVolumeState("snapshot-retained")
)
// SubVolumeInfo reports various informational values about a subvolume.
type SubVolumeInfo struct {
Type string `json:"type"`
Path string `json:"path"`
Uid int `json:"uid"`
Gid int `json:"gid"`
Mode int `json:"mode"`
BytesPercent string `json:"bytes_pcent"`
BytesUsed ByteCount `json:"bytes_used"`
BytesQuota QuotaSize `json:"-"`
DataPool string `json:"data_pool"`
PoolNamespace string `json:"pool_namespace"`
Atime TimeStamp `json:"atime"`
Mtime TimeStamp `json:"mtime"`
Ctime TimeStamp `json:"ctime"`
CreatedAt TimeStamp `json:"created_at"`
Features []Feature `json:"features"`
Type string `json:"type"`
Path string `json:"path"`
State SubVolumeState `json:"state"`
Uid int `json:"uid"`
Gid int `json:"gid"`
Mode int `json:"mode"`
BytesPercent string `json:"bytes_pcent"`
BytesUsed ByteCount `json:"bytes_used"`
BytesQuota QuotaSize `json:"-"`
DataPool string `json:"data_pool"`
PoolNamespace string `json:"pool_namespace"`
Atime TimeStamp `json:"atime"`
Mtime TimeStamp `json:"mtime"`
Ctime TimeStamp `json:"ctime"`
CreatedAt TimeStamp `json:"created_at"`
Features []Feature `json:"features"`
}
type subVolumeInfoWrapper struct {

View File

@ -0,0 +1,62 @@
package cutil
/*
#include <stdlib.h>
#include <string.h>
typedef void* voidptr;
*/
import "C"
import (
"unsafe"
)
const (
// MaxIdx is the maximum index on 32 bit systems
MaxIdx = 1<<31 - 1 // 2GB, max int32 value, should be safe
// PtrSize is the size of a pointer
PtrSize = C.sizeof_voidptr
// SizeTSize is the size of C.size_t
SizeTSize = C.sizeof_size_t
)
// SizeT wraps size_t from C.
type SizeT C.size_t
// This section contains a bunch of types that are basically just
// unsafe.Pointer but have specific types to help "self document" what the
// underlying pointer is really meant to represent.
// CPtr is an unsafe.Pointer to C allocated memory
type CPtr unsafe.Pointer
// CharPtrPtr is an unsafe pointer wrapping C's `char**`.
type CharPtrPtr unsafe.Pointer
// CharPtr is an unsafe pointer wrapping C's `char*`.
type CharPtr unsafe.Pointer
// SizeTPtr is an unsafe pointer wrapping C's `size_t*`.
type SizeTPtr unsafe.Pointer
// FreeFunc is a wrapper around calls to, or act like, C's free function.
type FreeFunc func(unsafe.Pointer)
// Malloc is C.malloc
func Malloc(s SizeT) CPtr { return CPtr(C.malloc(C.size_t(s))) }
// Free is C.free
func Free(p CPtr) { C.free(unsafe.Pointer(p)) }
// CString is C.CString
func CString(s string) CharPtr { return CharPtr((C.CString(s))) }
// CBytes is C.CBytes
func CBytes(b []byte) CPtr { return CPtr(C.CBytes(b)) }
// Memcpy is C.memcpy
func Memcpy(dst, src CPtr, n SizeT) {
C.memcpy(unsafe.Pointer(dst), unsafe.Pointer(src), C.size_t(n))
}

View File

@ -5,74 +5,56 @@ package cutil
#include <sys/uio.h>
*/
import "C"
import (
"unsafe"
)
var iovecSize uintptr
// StructIovecPtr is an unsafe pointer wrapping C's `*struct iovec`.
type StructIovecPtr unsafe.Pointer
// Iovec helps manage struct iovec arrays needed by some C functions.
// Iovec is a slice of iovec structs. Might have allocated C memory, so it must
// be freed with the Free() method.
type Iovec struct {
// cvec represents an array of struct iovec C memory
cvec unsafe.Pointer
// length of the array (in elements)
length int
iovec []C.struct_iovec
sbs []*SyncBuffer
}
// NewIovec creates an Iovec, and underlying C memory, of the specified size.
func NewIovec(l int) *Iovec {
r := &Iovec{
cvec: C.malloc(C.size_t(l) * C.size_t(iovecSize)),
length: l,
const iovecSize = C.sizeof_struct_iovec
// ByteSlicesToIovec creates an Iovec and links it to Go buffers in data.
func ByteSlicesToIovec(data [][]byte) (v Iovec) {
n := len(data)
iovecMem := C.malloc(iovecSize * C.size_t(n))
v.iovec = (*[MaxIdx]C.struct_iovec)(iovecMem)[:n:n]
for i, b := range data {
sb := NewSyncBuffer(CPtr(&v.iovec[i].iov_base), b)
v.sbs = append(v.sbs, sb)
v.iovec[i].iov_len = C.size_t(len(b))
}
return r
return
}
// ByteSlicesToIovec takes a slice of byte slices and returns a new iovec that
// maps the slice data to struct iovec entries.
func ByteSlicesToIovec(data [][]byte) *Iovec {
iov := NewIovec(len(data))
for i := range data {
iov.Set(i, data[i])
// Sync makes sure the slices contain the same as the C buffers
func (v *Iovec) Sync() {
for _, sb := range v.sbs {
sb.Sync()
}
return iov
}
// Pointer returns a StructIovecPtr that represents the C memory of the
// underlying array.
func (v *Iovec) Pointer() StructIovecPtr {
return StructIovecPtr(unsafe.Pointer(v.cvec))
// Pointer returns a pointer to the iovec
func (v *Iovec) Pointer() unsafe.Pointer {
return unsafe.Pointer(&v.iovec[0])
}
// Len returns the number of entries in the Iovec.
// Len returns a pointer to the iovec
func (v *Iovec) Len() int {
return v.length
return len(v.iovec)
}
// Free the C memory in the Iovec.
func (v *Iovec) Free() {
if v.cvec != nil {
C.free(v.cvec)
v.cvec = nil
v.length = 0
for _, sb := range v.sbs {
sb.Release()
}
}
// Set will map the memory of the given byte slice to the iovec at the
// specified position.
func (v *Iovec) Set(i int, buf []byte) {
offset := uintptr(i) * iovecSize
iov := (*C.struct_iovec)(unsafe.Pointer(
uintptr(unsafe.Pointer(v.cvec)) + offset))
iov.iov_base = unsafe.Pointer(&buf[0])
iov.iov_len = C.size_t(len(buf))
}
func init() {
var iovec C.struct_iovec
iovecSize = unsafe.Sizeof(iovec)
if len(v.iovec) != 0 {
C.free(unsafe.Pointer(&v.iovec[0]))
}
v.iovec = nil
}

View File

@ -0,0 +1,79 @@
package cutil
import (
"sync"
"unsafe"
)
// PtrGuard respresents a guarded Go pointer (pointing to memory allocated by Go
// runtime) stored in C memory (allocated by C)
type PtrGuard struct {
// These mutexes will be used as binary semaphores for signalling events from
// one thread to another, which - in contrast to other languages like C++ - is
// possible in Go, that is a Mutex can be locked in one thread and unlocked in
// another.
stored, release sync.Mutex
released bool
}
// WARNING: using binary semaphores (mutexes) for signalling like this is quite
// a delicate task in order to avoid deadlocks or panics. Whenever changing the
// code logic, please review at least three times that there is no unexpected
// state possible. Usually the natural choice would be to use channels instead,
// but these can not easily passed to C code because of the pointer-to-pointer
// cgo rule, and would require the use of a Go object registry.
// NewPtrGuard writes the goPtr (pointing to Go memory) into C memory at the
// position cPtr, and returns a PtrGuard object.
func NewPtrGuard(cPtr CPtr, goPtr unsafe.Pointer) *PtrGuard {
var v PtrGuard
// Since the mutexes are used for signalling, they have to be initialized to
// locked state, so that following lock attempts will block.
v.release.Lock()
v.stored.Lock()
// Start a background go routine that lives until Release is called. This
// calls a special function that makes sure the garbage collector doesn't touch
// goPtr, stores it into C memory at position cPtr and then waits until it
// reveices the "release" signal, after which it nulls out the C memory at
// cPtr and then exits.
go func() {
storeUntilRelease(&v, (*CPtr)(cPtr), uintptr(goPtr))
}()
// Wait for the "stored" signal from the go routine when the Go pointer has
// been stored to the C memory. <--(1)
v.stored.Lock()
return &v
}
// Release removes the guarded Go pointer from the C memory by overwriting it
// with NULL.
func (v *PtrGuard) Release() {
if !v.released {
v.released = true
v.release.Unlock() // Send the "release" signal to the go routine. -->(2)
v.stored.Lock() // Wait for the second "stored" signal when the C memory
// has been nulled out. <--(3)
}
}
//go:uintptrescapes
// From https://golang.org/src/cmd/compile/internal/gc/lex.go:
// For the next function declared in the file any uintptr arguments may be
// pointer values converted to uintptr. This directive ensures that the
// referenced allocated object, if any, is retained and not moved until the call
// completes, even though from the types alone it would appear that the object
// is no longer needed during the call. The conversion to uintptr must appear in
// the argument list.
// Also see https://golang.org/cmd/compile/#hdr-Compiler_Directives
func storeUntilRelease(v *PtrGuard, cPtr *CPtr, goPtr uintptr) {
uip := (*uintptr)(unsafe.Pointer(cPtr))
*uip = goPtr // store Go pointer in C memory at c_ptr
v.stored.Unlock() // send "stored" signal to main thread -->(1)
v.release.Lock() // wait for "release" signal from main thread when
// Release() has been called. <--(2)
*uip = 0 // reset C memory to NULL
v.stored.Unlock() // send second "stored" signal to main thread -->(3)
}

View File

@ -0,0 +1,28 @@
// +build ptrguard
package cutil
import (
"unsafe"
)
// SyncBuffer is a C buffer connected to a data slice
type SyncBuffer struct {
pg *PtrGuard
}
// NewSyncBuffer creates a C buffer from a data slice and stores it at CPtr
func NewSyncBuffer(cPtr CPtr, data []byte) *SyncBuffer {
var v SyncBuffer
v.pg = NewPtrGuard(cPtr, unsafe.Pointer(&data[0]))
return &v
}
// Release releases the C buffer and nulls its stored pointer
func (v *SyncBuffer) Release() {
v.pg.Release()
}
// Sync asserts that changes in the C buffer are available in the data
// slice
func (v *SyncBuffer) Sync() {}

View File

@ -0,0 +1,37 @@
// +build !ptrguard
package cutil
// SyncBuffer is a C buffer connected to a data slice
type SyncBuffer struct {
data []byte
cPtr *CPtr
}
// NewSyncBuffer creates a C buffer from a data slice and stores it at CPtr
func NewSyncBuffer(cPtr CPtr, data []byte) *SyncBuffer {
var v SyncBuffer
v.data = data
v.cPtr = (*CPtr)(cPtr)
*v.cPtr = CBytes(data)
return &v
}
// Release releases the C buffer and nulls its stored pointer
func (v *SyncBuffer) Release() {
if v.cPtr != nil {
Free(*v.cPtr)
*v.cPtr = nil
v.cPtr = nil
}
v.data = nil
}
// Sync asserts that changes in the C buffer are available in the data
// slice
func (v *SyncBuffer) Sync() {
if v.cPtr == nil {
return
}
Memcpy(CPtr(&v.data[0]), CPtr(*v.cPtr), SizeT(len(v.data)))
}

View File

@ -1,28 +0,0 @@
package cutil
import "C"
import (
"unsafe"
)
// Basic types from C that we can make "public" without too much fuss.
// SizeT wraps size_t from C.
type SizeT C.size_t
// This section contains a bunch of types that are basically just
// unsafe.Pointer but have specific types to help "self document" what the
// underlying pointer is really meant to represent.
// CharPtrPtr is an unsafe pointer wrapping C's `char**`.
type CharPtrPtr unsafe.Pointer
// CharPtr is an unsafe pointer wrapping C's `char*`.
type CharPtr unsafe.Pointer
// SizeTPtr is an unsafe pointer wrapping C's `size_t*`.
type SizeTPtr unsafe.Pointer
// FreeFunc is a wrapper around calls to, or act like, C's free function.
type FreeFunc func(unsafe.Pointer)

View File

@ -28,3 +28,12 @@ func CStructToTimespec(cts CTimespecPtr) Timespec {
Nsec: int64(t.tv_nsec),
}
}
// CopyToCStruct copies the time values from a Timespec to a previously
// allocated C `struct timespec`. Due to restrictions on Cgo the C pointer
// must be passed via the CTimespecPtr wrapper.
func CopyToCStruct(ts Timespec, cts CTimespecPtr) {
t := (*C.struct_timespec)(cts)
t.tv_sec = C.time_t(ts.Sec)
t.tv_nsec = C.long(ts.Nsec)
}

View File

@ -52,6 +52,9 @@ var (
// ErrInvalidIOContext may be returned if an api call requires an IOContext
// but IOContext is not ready for use.
ErrInvalidIOContext = errors.New("IOContext is not ready for use")
// ErrOperationIncomplete is returned from write op or read op steps for
// which the operation has not been performed yet.
ErrOperationIncomplete = errors.New("Operation has not been performed yet")
)
// Public radosErrors:

View File

@ -128,15 +128,10 @@ func (ioctx *IOContext) SetNamespace(namespace string) {
// void rados_write_op_create(rados_write_op_t write_op, int exclusive,
// const char* category)
func (ioctx *IOContext) Create(oid string, exclusive CreateOption) error {
c_oid := C.CString(oid)
defer C.free(unsafe.Pointer(c_oid))
op := C.rados_create_write_op()
C.rados_write_op_create(op, C.int(exclusive), nil)
ret := C.rados_write_op_operate(op, ioctx.ioctx, c_oid, nil, 0)
C.rados_release_write_op(op)
return getError(ret)
op := CreateWriteOp()
defer op.Release()
op.Create(exclusive)
return op.operateCompat(ioctx, oid)
}
// Write writes len(data) bytes to the object with key oid starting at byte

View File

@ -1,69 +1,230 @@
package rados
// #cgo LDFLAGS: -lrados
// #include <stdlib.h>
// #include <rados/librados.h>
//
/*
#cgo LDFLAGS: -lrados
#include <stdlib.h>
#include <rados/librados.h>
typedef void* voidptr;
*/
import "C"
import (
"runtime"
"unsafe"
)
// SetOmap appends the map `pairs` to the omap `oid`
func (ioctx *IOContext) SetOmap(oid string, pairs map[string][]byte) error {
c_oid := C.CString(oid)
defer C.free(unsafe.Pointer(c_oid))
const (
ptrSize = C.sizeof_voidptr
sizeTSize = C.sizeof_size_t
)
var s C.size_t
var c *C.char
ptrSize := unsafe.Sizeof(c)
// setOmapStep is a write op step. It holds C memory used in the operation.
type setOmapStep struct {
withRefs
withoutUpdate
c_keys := C.malloc(C.size_t(len(pairs)) * C.size_t(ptrSize))
c_values := C.malloc(C.size_t(len(pairs)) * C.size_t(ptrSize))
c_lengths := C.malloc(C.size_t(len(pairs)) * C.size_t(unsafe.Sizeof(s)))
// C arguments
cKeys **C.char
cValues **C.char
cLengths *C.size_t
cNum C.size_t
}
defer C.free(unsafe.Pointer(c_keys))
defer C.free(unsafe.Pointer(c_values))
defer C.free(unsafe.Pointer(c_lengths))
func newSetOmapStep(pairs map[string][]byte) *setOmapStep {
i := 0
maplen := C.size_t(len(pairs))
cKeys := C.malloc(maplen * ptrSize)
cValues := C.malloc(maplen * ptrSize)
cLengths := C.malloc(maplen * sizeTSize)
sos := &setOmapStep{
cKeys: (**C.char)(cKeys),
cValues: (**C.char)(cValues),
cLengths: (*C.size_t)(cLengths),
cNum: C.size_t(len(pairs)),
}
sos.add(cKeys)
sos.add(cValues)
sos.add(cLengths)
var i uintptr
for key, value := range pairs {
// key
c_key_ptr := (**C.char)(unsafe.Pointer(uintptr(c_keys) + uintptr(i)*ptrSize))
*c_key_ptr = C.CString(key)
defer C.free(unsafe.Pointer(*c_key_ptr))
ck := C.CString(key)
sos.add(unsafe.Pointer(ck))
ckp := (**C.char)(unsafe.Pointer(uintptr(cKeys) + i*ptrSize))
*ckp = ck
// value and its length
c_value_ptr := (**C.char)(unsafe.Pointer(uintptr(c_values) + uintptr(i)*ptrSize))
var c_length C.size_t
if len(value) > 0 {
*c_value_ptr = (*C.char)(unsafe.Pointer(&value[0]))
c_length = C.size_t(len(value))
cvp := (**C.char)(unsafe.Pointer(uintptr(cValues) + i*ptrSize))
vlen := C.size_t(len(value))
if vlen > 0 {
cv := C.CBytes(value)
sos.add(cv)
*cvp = (*C.char)(cv)
} else {
*c_value_ptr = nil
c_length = C.size_t(0)
*cvp = nil
}
c_length_ptr := (*C.size_t)(unsafe.Pointer(uintptr(c_lengths) + uintptr(i)*ptrSize))
*c_length_ptr = c_length
clp := (*C.size_t)(unsafe.Pointer(uintptr(cLengths) + i*ptrSize))
*clp = vlen
i++
}
op := C.rados_create_write_op()
C.rados_write_op_omap_set(
op,
(**C.char)(c_keys),
(**C.char)(c_values),
(*C.size_t)(c_lengths),
C.size_t(len(pairs)))
runtime.SetFinalizer(sos, opStepFinalizer)
return sos
}
ret := C.rados_write_op_operate(op, ioctx.ioctx, c_oid, nil, 0)
C.rados_release_write_op(op)
func (sos *setOmapStep) free() {
sos.cKeys = nil
sos.cValues = nil
sos.cLengths = nil
sos.withRefs.free()
}
return getError(ret)
// OmapKeyValue items are returned by the GetOmapStep's Next call.
type OmapKeyValue struct {
Key string
Value []byte
}
// GetOmapStep values are used to get the results of an GetOmapValues call
// on a WriteOp. Until the Operate method of the WriteOp is called the Next
// call will return an error. After Operate is called, the Next call will
// return valid results.
//
// The life cycle of the GetOmapStep is bound to the ReadOp, if the ReadOp
// Release method is called the public methods of the step must no longer be
// used and may return errors.
type GetOmapStep struct {
// inputs:
startAfter string
filterPrefix string
maxReturn uint64
// arguments:
cStartAfter *C.char
cFilterPrefix *C.char
// C returned data:
iter C.rados_omap_iter_t
more C.uchar
rval C.int
// internal state:
// canIterate is only set after the operation is performed and is
// intended to prevent premature fetching of data
canIterate bool
}
func newGetOmapStep(startAfter, filterPrefix string, maxReturn uint64) *GetOmapStep {
gos := &GetOmapStep{
startAfter: startAfter,
filterPrefix: filterPrefix,
maxReturn: maxReturn,
cStartAfter: C.CString(startAfter),
cFilterPrefix: C.CString(filterPrefix),
}
runtime.SetFinalizer(gos, opStepFinalizer)
return gos
}
func (gos *GetOmapStep) free() {
gos.canIterate = false
if gos.iter != nil {
C.rados_omap_get_end(gos.iter)
}
gos.iter = nil
gos.more = 0
gos.rval = 0
C.free(unsafe.Pointer(gos.cStartAfter))
gos.cStartAfter = nil
C.free(unsafe.Pointer(gos.cFilterPrefix))
gos.cFilterPrefix = nil
}
func (gos *GetOmapStep) update() error {
err := getError(gos.rval)
gos.canIterate = (err == nil)
return err
}
// Next returns the next key value pair or nil if iteration is exhausted.
func (gos *GetOmapStep) Next() (*OmapKeyValue, error) {
if !gos.canIterate {
return nil, ErrOperationIncomplete
}
var (
cKey *C.char
cVal *C.char
cLen C.size_t
)
ret := C.rados_omap_get_next(gos.iter, &cKey, &cVal, &cLen)
if ret != 0 {
return nil, getError(ret)
}
if cKey == nil {
return nil, nil
}
return &OmapKeyValue{
Key: C.GoString(cKey),
Value: C.GoBytes(unsafe.Pointer(cVal), C.int(cLen)),
}, nil
}
// More returns true if there are more matching keys available.
func (gos *GetOmapStep) More() bool {
// tad bit hacky, but go can't automatically convert from
// unsigned char to bool
return gos.more != 0
}
// removeOmapKeysStep is a write operation step used to track state, especially
// C memory, across the setup and use of a WriteOp.
type removeOmapKeysStep struct {
withRefs
withoutUpdate
// arguments:
cKeys **C.char
cNum C.size_t
}
func newRemoveOmapKeysStep(keys []string) *removeOmapKeysStep {
cKeys := C.malloc(C.size_t(len(keys)) * ptrSize)
roks := &removeOmapKeysStep{
cKeys: (**C.char)(cKeys),
cNum: C.size_t(len(keys)),
}
roks.add(cKeys)
i := 0
for _, key := range keys {
ckp := (**C.char)(unsafe.Pointer(uintptr(cKeys) + uintptr(i)*ptrSize))
*ckp = C.CString(key)
roks.add(unsafe.Pointer(*ckp))
i++
}
runtime.SetFinalizer(roks, opStepFinalizer)
return roks
}
func (roks *removeOmapKeysStep) free() {
roks.cKeys = nil
roks.withRefs.free()
}
// SetOmap appends the map `pairs` to the omap `oid`
func (ioctx *IOContext) SetOmap(oid string, pairs map[string][]byte) error {
op := CreateWriteOp()
defer op.Release()
op.SetOmap(pairs)
return op.operateCompat(ioctx, oid)
}
// OmapListFunc is the type of the function called for each omap key
@ -78,58 +239,25 @@ type OmapListFunc func(key string, value []byte)
// `maxReturn`: iterate no more than `maxReturn` key/value pairs
// `listFn`: the function called at each iteration
func (ioctx *IOContext) ListOmapValues(oid string, startAfter string, filterPrefix string, maxReturn int64, listFn OmapListFunc) error {
c_oid := C.CString(oid)
c_start_after := C.CString(startAfter)
c_filter_prefix := C.CString(filterPrefix)
c_max_return := C.uint64_t(maxReturn)
defer C.free(unsafe.Pointer(c_oid))
defer C.free(unsafe.Pointer(c_start_after))
defer C.free(unsafe.Pointer(c_filter_prefix))
op := C.rados_create_read_op()
var c_iter C.rados_omap_iter_t
var c_prval C.int
C.rados_read_op_omap_get_vals2(
op,
c_start_after,
c_filter_prefix,
c_max_return,
&c_iter,
nil,
&c_prval,
)
ret := C.rados_read_op_operate(op, ioctx.ioctx, c_oid, 0)
if int(ret) != 0 {
return getError(ret)
} else if int(c_prval) != 0 {
return getError(c_prval)
op := CreateReadOp()
defer op.Release()
gos := op.GetOmapValues(startAfter, filterPrefix, uint64(maxReturn))
err := op.operateCompat(ioctx, oid)
if err != nil {
return err
}
for {
var c_key *C.char
var c_val *C.char
var c_len C.size_t
ret = C.rados_omap_get_next(c_iter, &c_key, &c_val, &c_len)
if int(ret) != 0 {
return getError(ret)
kv, err := gos.Next()
if err != nil {
return err
}
if c_key == nil {
if kv == nil {
break
}
listFn(C.GoString(c_key), C.GoBytes(unsafe.Pointer(c_val), C.int(c_len)))
listFn(kv.Key, kv.Value)
}
C.rados_omap_get_end(c_iter)
C.rados_release_read_op(op)
return nil
}
@ -184,45 +312,16 @@ func (ioctx *IOContext) GetAllOmapValues(oid string, startAfter string, filterPr
// RmOmapKeys removes the specified `keys` from the omap `oid`
func (ioctx *IOContext) RmOmapKeys(oid string, keys []string) error {
c_oid := C.CString(oid)
defer C.free(unsafe.Pointer(c_oid))
var c *C.char
ptrSize := unsafe.Sizeof(c)
c_keys := C.malloc(C.size_t(len(keys)) * C.size_t(ptrSize))
defer C.free(unsafe.Pointer(c_keys))
i := 0
for _, key := range keys {
c_key_ptr := (**C.char)(unsafe.Pointer(uintptr(c_keys) + uintptr(i)*ptrSize))
*c_key_ptr = C.CString(key)
defer C.free(unsafe.Pointer(*c_key_ptr))
i++
}
op := C.rados_create_write_op()
C.rados_write_op_omap_rm_keys(
op,
(**C.char)(c_keys),
C.size_t(len(keys)))
ret := C.rados_write_op_operate(op, ioctx.ioctx, c_oid, nil, 0)
C.rados_release_write_op(op)
return getError(ret)
op := CreateWriteOp()
defer op.Release()
op.RmOmapKeys(keys)
return op.operateCompat(ioctx, oid)
}
// CleanOmap clears the omap `oid`
func (ioctx *IOContext) CleanOmap(oid string) error {
c_oid := C.CString(oid)
defer C.free(unsafe.Pointer(c_oid))
op := C.rados_create_write_op()
C.rados_write_op_omap_clear(op)
ret := C.rados_write_op_operate(op, ioctx.ioctx, c_oid, nil, 0)
C.rados_release_write_op(op)
return getError(ret)
op := CreateWriteOp()
defer op.Release()
op.CleanOmap()
return op.operateCompat(ioctx, oid)
}

151
vendor/github.com/ceph/go-ceph/rados/operation.go generated vendored Normal file
View File

@ -0,0 +1,151 @@
package rados
// #include <stdlib.h>
import "C"
import (
"fmt"
"strings"
"unsafe"
)
// The file operation.go exists to support both read op and write op types that
// have some pretty common behaviors between them. In C/C++ its assumed that
// the buffer types and other pointers will not be freed between passing them
// to the action setup calls (things like rados_write_op_write or
// rados_read_op_omap_get_vals2) and the call to Operate(...). Since there's
// nothing stopping one from sleeping for hours between these calls, or passing
// the op to other functions and calling Operate there, we want a mechanism
// that's (fairly) simple to understand and won't run afoul of Go's garbage
// collection. That's one reason the operation type tracks the steps (the
// parts that track complex inputs and outputs) so that as long as the op
// exists it will have a reference to the step, which will have references
// to the C language types.
type opKind string
const (
readOp opKind = "read"
writeOp opKind = "write"
)
// OperationError is an error type that may be returned by an Operate call.
// It captures the error from the operate call itself and any errors from
// steps that can return an error.
type OperationError struct {
kind opKind
OpError error
StepErrors map[int]error
}
func (e OperationError) Error() string {
subErrors := []string{}
if e.OpError != nil {
subErrors = append(subErrors,
fmt.Sprintf("op=%s", e.OpError))
}
for idx, es := range e.StepErrors {
subErrors = append(subErrors,
fmt.Sprintf("Step#%d=%s", idx, es))
}
return fmt.Sprintf(
"%s operation error: %s",
e.kind,
strings.Join(subErrors, ", "))
}
// opStep provides an interface for types that are tied to the management of
// data being input or output from write ops and read ops. The steps are
// meant to simplify the internals of the ops themselves and be exportable when
// appropriate. If a step is not being exported it should not be returned
// from an ops action function. If the step is exported it should be
// returned from an ops action function.
//
// Not all types implementing opStep are expected to need all the functions
// in the interface. However, for the sake of simplicity on the op side, we use
// the same interface for all cases and expect those implementing opStep
// just embed the without* types that provide no-op implementation of
// functions that make up this interface.
type opStep interface {
// update the state of the step after the call to Operate.
// It can be used to convert values from C and cache them and/or
// communicate a failure of the action associated with the step. The
// update call will only be made once. Implementations are not required to
// handle this call being made more than once.
update() error
// free will be called to free any resources, especially C memory, that
// the step is managing. The behavior of free should be idempotent and
// handle being called more than once.
free()
}
// operation represents some of the shared underlying mechanisms for
// both read and write op types.
type operation struct {
steps []opStep
}
// free will call the free method of all the steps this operation
// contains.
func (o *operation) free() {
for i := range o.steps {
o.steps[i].free()
}
}
// update the operation and the steps it contains. The top-level result
// of the rados call is passed in as ret and used to construct errors.
// The update call of each step is used to update the contents of each
// step and gather any errors from those steps.
func (o *operation) update(kind opKind, ret C.int) error {
stepErrors := map[int]error{}
for i := range o.steps {
if err := o.steps[i].update(); err != nil {
stepErrors[i] = err
}
}
if ret == 0 && len(stepErrors) == 0 {
return nil
}
return OperationError{
kind: kind,
OpError: getError(ret),
StepErrors: stepErrors,
}
}
func opStepFinalizer(s opStep) {
if s != nil {
s.free()
}
}
// withoutUpdate can be embedded in a struct to help indicate
// the type implements the opStep interface but has a no-op
// update function.
type withoutUpdate struct{}
func (*withoutUpdate) update() error { return nil }
// withoutFree can be embedded in a struct to help indicate
// the type implements the opStep interface but has a no-op
// free function.
type withoutFree struct{}
func (*withoutFree) free() {}
// withRefs is a embeddable type to help track and free C memory.
type withRefs struct {
refs []unsafe.Pointer
}
func (w *withRefs) free() {
for i := range w.refs {
C.free(w.refs[i])
}
w.refs = nil
}
func (w *withRefs) add(ptr unsafe.Pointer) {
w.refs = append(w.refs, ptr)
}

View File

@ -0,0 +1,37 @@
package rados
// #cgo LDFLAGS: -lrados
// #include <errno.h>
// #include <stdlib.h>
// #include <rados/librados.h>
//
import "C"
// OperationFlags control the behavior of read and write operations.
type OperationFlags int
const (
// OperationNoFlag indicates no special behavior is requested.
OperationNoFlag = OperationFlags(C.LIBRADOS_OPERATION_NOFLAG)
// OperationBalanceReads TODO
OperationBalanceReads = OperationFlags(C.LIBRADOS_OPERATION_BALANCE_READS)
// OperationLocalizeReads TODO
OperationLocalizeReads = OperationFlags(C.LIBRADOS_OPERATION_LOCALIZE_READS)
// OperationOrderReadsWrites TODO
OperationOrderReadsWrites = OperationFlags(C.LIBRADOS_OPERATION_ORDER_READS_WRITES)
// OperationIgnoreCache TODO
OperationIgnoreCache = OperationFlags(C.LIBRADOS_OPERATION_IGNORE_CACHE)
// OperationSkipRWLocks TODO
OperationSkipRWLocks = OperationFlags(C.LIBRADOS_OPERATION_SKIPRWLOCKS)
// OperationIgnoreOverlay TODO
OperationIgnoreOverlay = OperationFlags(C.LIBRADOS_OPERATION_IGNORE_OVERLAY)
// OperationFullTry send request to a full cluster or pool, ops such as delete
// can succeed while other ops will return out-of-space errors.
OperationFullTry = OperationFlags(C.LIBRADOS_OPERATION_FULL_TRY)
// OperationFullForce TODO
OperationFullForce = OperationFlags(C.LIBRADOS_OPERATION_FULL_FORCE)
// OperationIgnoreRedirect TODO
OperationIgnoreRedirect = OperationFlags(C.LIBRADOS_OPERATION_IGNORE_REDIRECT)
// OperationOrderSnap TODO
OperationOrderSnap = OperationFlags(C.LIBRADOS_OPERATION_ORDERSNAP)
)

84
vendor/github.com/ceph/go-ceph/rados/read_op.go generated vendored Normal file
View File

@ -0,0 +1,84 @@
package rados
// #cgo LDFLAGS: -lrados
// #include <errno.h>
// #include <stdlib.h>
// #include <rados/librados.h>
//
import "C"
import (
"unsafe"
)
// ReadOp manages a set of discrete object read actions that will be performed
// together atomically.
type ReadOp struct {
operation
op C.rados_read_op_t
}
// CreateReadOp returns a newly constructed read operation.
func CreateReadOp() *ReadOp {
return &ReadOp{
op: C.rados_create_read_op(),
}
}
// Release the resources associated with this read operation.
func (r *ReadOp) Release() {
C.rados_release_read_op(r.op)
r.op = nil
r.free()
}
// Operate will perform the operation(s).
func (r *ReadOp) Operate(ioctx *IOContext, oid string, flags OperationFlags) error {
if err := ioctx.validate(); err != nil {
return err
}
cOid := C.CString(oid)
defer C.free(unsafe.Pointer(cOid))
ret := C.rados_read_op_operate(r.op, ioctx.ioctx, cOid, C.int(flags))
return r.update(readOp, ret)
}
func (r *ReadOp) operateCompat(ioctx *IOContext, oid string) error {
switch err := r.Operate(ioctx, oid, OperationNoFlag).(type) {
case nil:
return nil
case OperationError:
return err.OpError
default:
return err
}
}
// AssertExists assures the object targeted by the read op exists.
//
// Implements:
// void rados_read_op_assert_exists(rados_read_op_t read_op);
func (r *ReadOp) AssertExists() {
C.rados_read_op_assert_exists(r.op)
}
// GetOmapValues is used to iterate over a set, or sub-set, of omap keys
// as part of a read operation. An GetOmapStep is returned from this
// function. The GetOmapStep may be used to iterate over the key-value
// pairs after the Operate call has been performed.
func (r *ReadOp) GetOmapValues(startAfter, filterPrefix string, maxReturn uint64) *GetOmapStep {
gos := newGetOmapStep(startAfter, filterPrefix, maxReturn)
r.steps = append(r.steps, gos)
C.rados_read_op_omap_get_vals2(
r.op,
gos.cStartAfter,
gos.cFilterPrefix,
C.uint64_t(gos.maxReturn),
&gos.iter,
&gos.more,
&gos.rval,
)
return gos
}

179
vendor/github.com/ceph/go-ceph/rados/write_op.go generated vendored Normal file
View File

@ -0,0 +1,179 @@
package rados
// #cgo LDFLAGS: -lrados
// #include <errno.h>
// #include <stdlib.h>
// #include <rados/librados.h>
//
import "C"
import (
"unsafe"
ts "github.com/ceph/go-ceph/internal/timespec"
)
// Timespec is a public type for the internal C 'struct timespec'
type Timespec ts.Timespec
// WriteOp manages a set of discrete actions that will be performed together
// atomically.
type WriteOp struct {
operation
op C.rados_write_op_t
}
// CreateWriteOp returns a newly constructed write operation.
func CreateWriteOp() *WriteOp {
return &WriteOp{
op: C.rados_create_write_op(),
}
}
// Release the resources associated with this write operation.
func (w *WriteOp) Release() {
C.rados_release_write_op(w.op)
w.op = nil
w.free()
}
func (w WriteOp) operate2(
ioctx *IOContext, oid string, mtime *Timespec, flags OperationFlags) error {
if err := ioctx.validate(); err != nil {
return err
}
cOid := C.CString(oid)
defer C.free(unsafe.Pointer(cOid))
var cMtime *C.struct_timespec
if mtime != nil {
cMtime = &C.struct_timespec{}
ts.CopyToCStruct(
ts.Timespec(*mtime),
ts.CTimespecPtr(cMtime))
}
ret := C.rados_write_op_operate2(
w.op, ioctx.ioctx, cOid, cMtime, C.int(flags))
return w.update(writeOp, ret)
}
// Operate will perform the operation(s).
func (w *WriteOp) Operate(ioctx *IOContext, oid string, flags OperationFlags) error {
return w.operate2(ioctx, oid, nil, flags)
}
// OperateWithMtime will perform the operation while setting the modification
// time stamp to the supplied value.
func (w *WriteOp) OperateWithMtime(
ioctx *IOContext, oid string, mtime Timespec, flags OperationFlags) error {
return w.operate2(ioctx, oid, &mtime, flags)
}
func (w *WriteOp) operateCompat(ioctx *IOContext, oid string) error {
switch err := w.Operate(ioctx, oid, OperationNoFlag).(type) {
case nil:
return nil
case OperationError:
return err.OpError
default:
return err
}
}
// Create a rados object.
func (w *WriteOp) Create(exclusive CreateOption) {
// category, the 3rd param, is deprecated and has no effect so we do not
// implement it in go-ceph
C.rados_write_op_create(w.op, C.int(exclusive), nil)
}
// SetOmap appends the map `pairs` to the omap `oid`.
func (w *WriteOp) SetOmap(pairs map[string][]byte) {
sos := newSetOmapStep(pairs)
w.steps = append(w.steps, sos)
C.rados_write_op_omap_set(
w.op,
sos.cKeys,
sos.cValues,
sos.cLengths,
sos.cNum)
}
// RmOmapKeys removes the specified `keys` from the omap `oid`.
func (w *WriteOp) RmOmapKeys(keys []string) {
roks := newRemoveOmapKeysStep(keys)
w.steps = append(w.steps, roks)
C.rados_write_op_omap_rm_keys(
w.op,
roks.cKeys,
roks.cNum)
}
// CleanOmap clears the omap `oid`.
func (w *WriteOp) CleanOmap() {
C.rados_write_op_omap_clear(w.op)
}
// AssertExists assures the object targeted by the write op exists.
//
// Implements:
// void rados_write_op_assert_exists(rados_write_op_t write_op);
func (w *WriteOp) AssertExists() {
C.rados_write_op_assert_exists(w.op)
}
// Write a given byte slice at the supplied offset.
//
// Implements:
// void rados_write_op_write(rados_write_op_t write_op,
// const char *buffer,
// size_t len,
// uint64_t offset);
func (w *WriteOp) Write(b []byte, offset uint64) {
oe := newWriteStep(b, 0, offset)
w.steps = append(w.steps, oe)
C.rados_write_op_write(
w.op,
oe.cBuffer,
oe.cDataLen,
oe.cOffset)
}
// WriteFull writes a given byte slice as the whole object,
// atomically replacing it.
//
// Implements:
// void rados_write_op_write_full(rados_write_op_t write_op,
// const char *buffer,
// size_t len);
func (w *WriteOp) WriteFull(b []byte) {
oe := newWriteStep(b, 0, 0)
w.steps = append(w.steps, oe)
C.rados_write_op_write_full(
w.op,
oe.cBuffer,
oe.cDataLen)
}
// WriteSame write a given byte slice to the object multiple times, until
// writeLen is satisfied.
//
// Implements:
// void rados_write_op_writesame(rados_write_op_t write_op,
// const char *buffer,
// size_t data_len,
// size_t write_len,
// uint64_t offset);
func (w *WriteOp) WriteSame(b []byte, writeLen, offset uint64) {
oe := newWriteStep(b, writeLen, offset)
w.steps = append(w.steps, oe)
C.rados_write_op_writesame(
w.op,
oe.cBuffer,
oe.cDataLen,
oe.cWriteLen,
oe.cOffset)
}

33
vendor/github.com/ceph/go-ceph/rados/write_step.go generated vendored Normal file
View File

@ -0,0 +1,33 @@
package rados
// #include <stdint.h>
import "C"
import (
"unsafe"
)
type writeStep struct {
withoutUpdate
withoutFree
// the c pointer utilizes the Go byteslice data and no free is needed
// inputs:
b []byte
// arguments:
cBuffer *C.char
cDataLen C.size_t
cWriteLen C.size_t
cOffset C.uint64_t
}
func newWriteStep(b []byte, writeLen, offset uint64) *writeStep {
return &writeStep{
b: b,
cBuffer: (*C.char)(unsafe.Pointer(&b[0])),
cDataLen: C.size_t(len(b)),
cWriteLen: C.size_t(writeLen),
cOffset: C.uint64_t(offset),
}
}

258
vendor/github.com/ceph/go-ceph/rbd/group.go generated vendored Normal file
View File

@ -0,0 +1,258 @@
package rbd
/*
#cgo LDFLAGS: -lrbd
#include <stdlib.h>
#include <rbd/librbd.h>
*/
import "C"
import (
"unsafe"
"github.com/ceph/go-ceph/internal/cutil"
"github.com/ceph/go-ceph/internal/retry"
"github.com/ceph/go-ceph/rados"
)
// GroupCreate is used to create an image group.
//
// Implements:
// int rbd_group_create(rados_ioctx_t p, const char *name);
func GroupCreate(ioctx *rados.IOContext, name string) error {
cName := C.CString(name)
defer C.free(unsafe.Pointer(cName))
ret := C.rbd_group_create(cephIoctx(ioctx), cName)
return getError(ret)
}
// GroupRemove is used to remove an image group.
//
// Implements:
// int rbd_group_remove(rados_ioctx_t p, const char *name);
func GroupRemove(ioctx *rados.IOContext, name string) error {
cName := C.CString(name)
defer C.free(unsafe.Pointer(cName))
ret := C.rbd_group_remove(cephIoctx(ioctx), cName)
return getError(ret)
}
// GroupRename will rename an existing image group.
//
// Implements:
// int rbd_group_rename(rados_ioctx_t p, const char *src_name,
// const char *dest_name);
func GroupRename(ioctx *rados.IOContext, src, dest string) error {
cSrc := C.CString(src)
defer C.free(unsafe.Pointer(cSrc))
cDest := C.CString(dest)
defer C.free(unsafe.Pointer(cDest))
ret := C.rbd_group_rename(cephIoctx(ioctx), cSrc, cDest)
return getError(ret)
}
// GroupList returns a slice of image group names.
//
// Implements:
// int rbd_group_list(rados_ioctx_t p, char *names, size_t *size);
func GroupList(ioctx *rados.IOContext) ([]string, error) {
var (
buf []byte
err error
ret C.int
)
retry.WithSizes(1024, 262144, func(size int) retry.Hint {
cSize := C.size_t(size)
buf = make([]byte, cSize)
ret = C.rbd_group_list(
cephIoctx(ioctx),
(*C.char)(unsafe.Pointer(&buf[0])),
&cSize)
err = getErrorIfNegative(ret)
return retry.Size(int(cSize)).If(err == errRange)
})
if err != nil {
return nil, err
}
// cSize is not set to the expected size when it is sufficiently large
// but ret will be set to the size in a non-error condition.
groups := cutil.SplitBuffer(buf[:ret])
return groups, nil
}
// GroupImageAdd will add the specified image to the named group.
// An io context must be supplied for both the group and image.
//
// Implements:
// int rbd_group_image_add(rados_ioctx_t group_p,
// const char *group_name,
// rados_ioctx_t image_p,
// const char *image_name);
func GroupImageAdd(groupIoctx *rados.IOContext, groupName string,
imageIoctx *rados.IOContext, imageName string) error {
cGroupName := C.CString(groupName)
defer C.free(unsafe.Pointer(cGroupName))
cImageName := C.CString(imageName)
defer C.free(unsafe.Pointer(cImageName))
ret := C.rbd_group_image_add(
cephIoctx(groupIoctx),
cGroupName,
cephIoctx(imageIoctx),
cImageName)
return getError(ret)
}
// GroupImageRemove will remove the specified image from the named group.
// An io context must be supplied for both the group and image.
//
// Implements:
// int rbd_group_image_remove(rados_ioctx_t group_p,
// const char *group_name,
// rados_ioctx_t image_p,
// const char *image_name);
func GroupImageRemove(groupIoctx *rados.IOContext, groupName string,
imageIoctx *rados.IOContext, imageName string) error {
cGroupName := C.CString(groupName)
defer C.free(unsafe.Pointer(cGroupName))
cImageName := C.CString(imageName)
defer C.free(unsafe.Pointer(cImageName))
ret := C.rbd_group_image_remove(
cephIoctx(groupIoctx),
cGroupName,
cephIoctx(imageIoctx),
cImageName)
return getError(ret)
}
// GroupImageRemoveByID will remove the specified image from the named group.
// An io context must be supplied for both the group and image.
//
// Implements:
// CEPH_RBD_API int rbd_group_image_remove_by_id(rados_ioctx_t group_p,
// const char *group_name,
// rados_ioctx_t image_p,
// const char *image_id);
func GroupImageRemoveByID(groupIoctx *rados.IOContext, groupName string,
imageIoctx *rados.IOContext, imageID string) error {
cGroupName := C.CString(groupName)
defer C.free(unsafe.Pointer(cGroupName))
cid := C.CString(imageID)
defer C.free(unsafe.Pointer(cid))
ret := C.rbd_group_image_remove_by_id(
cephIoctx(groupIoctx),
cGroupName,
cephIoctx(imageIoctx),
cid)
return getError(ret)
}
// GroupImageState indicates an image's state in a group.
type GroupImageState int
const (
// GroupImageStateAttached is equivalent to RBD_GROUP_IMAGE_STATE_ATTACHED
GroupImageStateAttached = GroupImageState(C.RBD_GROUP_IMAGE_STATE_ATTACHED)
// GroupImageStateIncomplete is equivalent to RBD_GROUP_IMAGE_STATE_INCOMPLETE
GroupImageStateIncomplete = GroupImageState(C.RBD_GROUP_IMAGE_STATE_INCOMPLETE)
)
// GroupImageInfo reports on images within a group.
type GroupImageInfo struct {
Name string
PoolID int64
State GroupImageState
}
// GroupImageList returns a slice of GroupImageInfo types based on the
// images that are part of the named group.
//
// Implements:
// int rbd_group_image_list(rados_ioctx_t group_p,
// const char *group_name,
// rbd_group_image_info_t *images,
// size_t group_image_info_size,
// size_t *num_entries);
func GroupImageList(ioctx *rados.IOContext, name string) ([]GroupImageInfo, error) {
cName := C.CString(name)
defer C.free(unsafe.Pointer(cName))
var (
cImages []C.rbd_group_image_info_t
cSize C.size_t
err error
)
retry.WithSizes(1024, 262144, func(size int) retry.Hint {
cSize = C.size_t(size)
cImages = make([]C.rbd_group_image_info_t, cSize)
ret := C.rbd_group_image_list(
cephIoctx(ioctx),
cName,
(*C.rbd_group_image_info_t)(unsafe.Pointer(&cImages[0])),
C.sizeof_rbd_group_image_info_t,
&cSize)
err = getErrorIfNegative(ret)
return retry.Size(int(cSize)).If(err == errRange)
})
if err != nil {
return nil, err
}
images := make([]GroupImageInfo, cSize)
for i := range images {
images[i].Name = C.GoString(cImages[i].name)
images[i].PoolID = int64(cImages[i].pool)
images[i].State = GroupImageState(cImages[i].state)
}
// free C memory allocated by C.rbd_group_image_list call
ret := C.rbd_group_image_list_cleanup(
(*C.rbd_group_image_info_t)(unsafe.Pointer(&cImages[0])),
C.sizeof_rbd_group_image_info_t,
cSize)
return images, getError(ret)
}
// GroupInfo contains the name and pool id of a RBD group.
type GroupInfo struct {
Name string
PoolID int64
}
// GetGroup returns group info for the group this image is part of.
//
// Implements:
// int rbd_get_group(rbd_image_t image, rbd_group_info_t *group_info,
// size_t group_info_size);
func (image *Image) GetGroup() (GroupInfo, error) {
if err := image.validate(imageIsOpen); err != nil {
return GroupInfo{}, err
}
var cgi C.rbd_group_info_t
ret := C.rbd_get_group(
image.image,
&cgi,
C.sizeof_rbd_group_info_t)
if err := getErrorIfNegative(ret); err != nil {
return GroupInfo{}, err
}
gi := GroupInfo{
Name: C.GoString(cgi.name),
PoolID: int64(cgi.pool),
}
ret = C.rbd_group_info_cleanup(&cgi, C.sizeof_rbd_group_info_t)
return gi, getError(ret)
}

223
vendor/github.com/ceph/go-ceph/rbd/group_snap.go generated vendored Normal file
View File

@ -0,0 +1,223 @@
package rbd
/*
#cgo LDFLAGS: -lrbd
#include <errno.h>
#include <stdlib.h>
#include <rbd/librbd.h>
extern int snapRollbackCallback(uint64_t, uint64_t, uintptr_t);
// inline wrapper to cast uintptr_t to void*
static inline int wrap_rbd_group_snap_rollback_with_progress(
rados_ioctx_t group_p, const char *group_name,
const char *snap_name, uintptr_t arg) {
return rbd_group_snap_rollback_with_progress(
group_p, group_name, snap_name, (librbd_progress_fn_t)snapRollbackCallback, (void*)arg);
};
*/
import "C"
import (
"unsafe"
"github.com/ceph/go-ceph/internal/callbacks"
"github.com/ceph/go-ceph/internal/retry"
"github.com/ceph/go-ceph/rados"
)
// GroupSnapCreate will create a group snapshot.
//
// Implements:
// int rbd_group_snap_create(rados_ioctx_t group_p,
// const char *group_name,
// const char *snap_name);
func GroupSnapCreate(ioctx *rados.IOContext, group, snap string) error {
cGroupName := C.CString(group)
defer C.free(unsafe.Pointer(cGroupName))
cSnapName := C.CString(snap)
defer C.free(unsafe.Pointer(cSnapName))
ret := C.rbd_group_snap_create(cephIoctx(ioctx), cGroupName, cSnapName)
return getError(ret)
}
// GroupSnapRemove removes an existing group snapshot.
//
// Implements:
// int rbd_group_snap_remove(rados_ioctx_t group_p,
// const char *group_name,
// const char *snap_name);
func GroupSnapRemove(ioctx *rados.IOContext, group, snap string) error {
cGroupName := C.CString(group)
defer C.free(unsafe.Pointer(cGroupName))
cSnapName := C.CString(snap)
defer C.free(unsafe.Pointer(cSnapName))
ret := C.rbd_group_snap_remove(cephIoctx(ioctx), cGroupName, cSnapName)
return getError(ret)
}
// GroupSnapRename will rename an existing group snapshot.
//
// Implements:
// int rbd_group_snap_rename(rados_ioctx_t group_p,
// const char *group_name,
// const char *old_snap_name,
// const char *new_snap_name);
func GroupSnapRename(ioctx *rados.IOContext, group, src, dest string) error {
cGroupName := C.CString(group)
defer C.free(unsafe.Pointer(cGroupName))
cOldSnapName := C.CString(src)
defer C.free(unsafe.Pointer(cOldSnapName))
cNewSnapName := C.CString(dest)
defer C.free(unsafe.Pointer(cNewSnapName))
ret := C.rbd_group_snap_rename(
cephIoctx(ioctx), cGroupName, cOldSnapName, cNewSnapName)
return getError(ret)
}
// GroupSnapState represents the state of a group snapshot in GroupSnapInfo.
type GroupSnapState int
const (
// GroupSnapStateIncomplete is equivalent to RBD_GROUP_SNAP_STATE_INCOMPLETE.
GroupSnapStateIncomplete = GroupSnapState(C.RBD_GROUP_SNAP_STATE_INCOMPLETE)
// GroupSnapStateComplete is equivalent to RBD_GROUP_SNAP_STATE_COMPLETE.
GroupSnapStateComplete = GroupSnapState(C.RBD_GROUP_SNAP_STATE_COMPLETE)
)
// GroupSnapInfo values are returned by GroupSnapList, representing the
// snapshots that are part of an rbd group.
type GroupSnapInfo struct {
Name string
State GroupSnapState
}
// GroupSnapList returns a slice of snapshots in a group.
//
// Implements:
// int rbd_group_snap_list(rados_ioctx_t group_p,
// const char *group_name,
// rbd_group_snap_info_t *snaps,
// size_t group_snap_info_size,
// size_t *num_entries);
func GroupSnapList(ioctx *rados.IOContext, group string) ([]GroupSnapInfo, error) {
cGroupName := C.CString(group)
defer C.free(unsafe.Pointer(cGroupName))
var (
cSnaps []C.rbd_group_snap_info_t
cSize C.size_t
err error
)
retry.WithSizes(1024, 262144, func(size int) retry.Hint {
cSize = C.size_t(size)
cSnaps = make([]C.rbd_group_snap_info_t, cSize)
ret := C.rbd_group_snap_list(
cephIoctx(ioctx),
cGroupName,
(*C.rbd_group_snap_info_t)(unsafe.Pointer(&cSnaps[0])),
C.sizeof_rbd_group_snap_info_t,
&cSize)
err = getErrorIfNegative(ret)
return retry.Size(int(cSize)).If(err == errRange)
})
if err != nil {
return nil, err
}
snaps := make([]GroupSnapInfo, cSize)
for i := range snaps {
snaps[i].Name = C.GoString(cSnaps[i].name)
snaps[i].State = GroupSnapState(cSnaps[i].state)
}
// free C memory allocated by C.rbd_group_snap_list call
ret := C.rbd_group_snap_list_cleanup(
(*C.rbd_group_snap_info_t)(unsafe.Pointer(&cSnaps[0])),
C.sizeof_rbd_group_snap_info_t,
cSize)
return snaps, getError(ret)
}
// GroupSnapRollback will roll back the images in the group to that of the
// given snapshot.
//
// Implements:
// int rbd_group_snap_rollback(rados_ioctx_t group_p,
// const char *group_name,
// const char *snap_name);
func GroupSnapRollback(ioctx *rados.IOContext, group, snap string) error {
cGroupName := C.CString(group)
defer C.free(unsafe.Pointer(cGroupName))
cSnapName := C.CString(snap)
defer C.free(unsafe.Pointer(cSnapName))
ret := C.rbd_group_snap_rollback(cephIoctx(ioctx), cGroupName, cSnapName)
return getError(ret)
}
// GroupSnapRollbackCallback defines the function signature needed for the
// GroupSnapRollbackWithProgress callback.
//
// This callback will be called by GroupSnapRollbackWithProgress when it
// wishes to report progress rolling back a group snapshot.
type GroupSnapRollbackCallback func(uint64, uint64, interface{}) int
var groupSnapRollbackCallbacks = callbacks.New()
// GroupSnapRollbackWithProgress will roll back the images in the group
// to that of given snapshot. The given progress callback will be called
// to report on the progress of the snapshot rollback.
//
// Implements:
// int rbd_group_snap_rollback_with_progress(rados_ioctx_t group_p,
// const char *group_name,
// const char *snap_name,
// librbd_progress_fn_t cb,
// void *cbdata);
func GroupSnapRollbackWithProgress(
ioctx *rados.IOContext, group, snap string,
cb GroupSnapRollbackCallback, data interface{}) error {
// the provided callback must be a real function
if cb == nil {
return rbdError(C.EINVAL)
}
cGroupName := C.CString(group)
defer C.free(unsafe.Pointer(cGroupName))
cSnapName := C.CString(snap)
defer C.free(unsafe.Pointer(cSnapName))
ctx := gsnapRollbackCallbackCtx{
callback: cb,
data: data,
}
cbIndex := groupSnapRollbackCallbacks.Add(ctx)
defer diffIterateCallbacks.Remove(cbIndex)
ret := C.wrap_rbd_group_snap_rollback_with_progress(
cephIoctx(ioctx),
cGroupName,
cSnapName,
C.uintptr_t(cbIndex))
return getError(ret)
}
type gsnapRollbackCallbackCtx struct {
callback GroupSnapRollbackCallback
data interface{}
}
//export snapRollbackCallback
func snapRollbackCallback(
offset, total C.uint64_t, index uintptr) C.int {
v := groupSnapRollbackCallbacks.Lookup(index)
ctx := v.(gsnapRollbackCallbackCtx)
return C.int(ctx.callback(uint64(offset), uint64(total), ctx.data))
}

235
vendor/github.com/ceph/go-ceph/rbd/mirror.go generated vendored Normal file
View File

@ -0,0 +1,235 @@
// +build !nautilus
// Initially, we're only providing mirroring related functions for octopus as
// that version of ceph deprecated a number of the functions in nautilus. If
// you need mirroring on an earlier supported version of ceph please file an
// issue in our tracker.
package rbd
// #cgo LDFLAGS: -lrbd
// #include <stdlib.h>
// #include <rbd/librbd.h>
import "C"
import (
"unsafe"
"github.com/ceph/go-ceph/internal/retry"
"github.com/ceph/go-ceph/rados"
)
// MirrorMode is used to indicate an approach used for RBD mirroring.
type MirrorMode int64
const (
// MirrorModeDisabled disables mirroring.
MirrorModeDisabled = MirrorMode(C.RBD_MIRROR_MODE_DISABLED)
// MirrorModeImage enables mirroring on a per-image basis.
MirrorModeImage = MirrorMode(C.RBD_MIRROR_MODE_IMAGE)
// MirrorModePool enables mirroring on all journaled images.
MirrorModePool = MirrorMode(C.RBD_MIRROR_MODE_POOL)
)
// ImageMirrorMode is used to indicate the mirroring approach for an RBD image.
type ImageMirrorMode int64
const (
// ImageMirrorModeJournal uses journaling to propagate RBD images between
// ceph clusters.
ImageMirrorModeJournal = ImageMirrorMode(C.RBD_MIRROR_IMAGE_MODE_JOURNAL)
// ImageMirrorModeSnapshot uses snapshots to propagate RBD images between
// ceph clusters.
ImageMirrorModeSnapshot = ImageMirrorMode(C.RBD_MIRROR_IMAGE_MODE_SNAPSHOT)
)
// SetMirrorMode is used to enable or disable pool level mirroring with either
// an automatic or per-image behavior.
//
// Implements:
// int rbd_mirror_mode_set(rados_ioctx_t io_ctx,
// rbd_mirror_mode_t mirror_mode);
func SetMirrorMode(ioctx *rados.IOContext, mode MirrorMode) error {
ret := C.rbd_mirror_mode_set(
cephIoctx(ioctx),
C.rbd_mirror_mode_t(mode))
return getError(ret)
}
// GetMirrorMode is used to fetch the current mirroring mode for a pool.
//
// Implements:
// int rbd_mirror_mode_get(rados_ioctx_t io_ctx,
// rbd_mirror_mode_t *mirror_mode);
func GetMirrorMode(ioctx *rados.IOContext) (MirrorMode, error) {
var mode C.rbd_mirror_mode_t
ret := C.rbd_mirror_mode_get(
cephIoctx(ioctx),
&mode)
if err := getError(ret); err != nil {
return MirrorModeDisabled, err
}
return MirrorMode(mode), nil
}
// MirrorEnable will enable mirroring for an image using the specified mode.
//
// Implements:
// int rbd_mirror_image_enable2(rbd_image_t image,
// rbd_mirror_image_mode_t mode);
func (image *Image) MirrorEnable(mode ImageMirrorMode) error {
if err := image.validate(imageIsOpen); err != nil {
return err
}
ret := C.rbd_mirror_image_enable2(image.image, C.rbd_mirror_image_mode_t(mode))
return getError(ret)
}
// MirrorDisable will disable mirroring for the image.
//
// Implements:
// int rbd_mirror_image_disable(rbd_image_t image, bool force);
func (image *Image) MirrorDisable(force bool) error {
if err := image.validate(imageIsOpen); err != nil {
return err
}
ret := C.rbd_mirror_image_disable(image.image, C.bool(force))
return getError(ret)
}
// MirrorPromote will promote the image to primary status.
//
// Implements:
// int rbd_mirror_image_promote(rbd_image_t image, bool force);
func (image *Image) MirrorPromote(force bool) error {
if err := image.validate(imageIsOpen); err != nil {
return err
}
ret := C.rbd_mirror_image_promote(image.image, C.bool(force))
return getError(ret)
}
// MirrorDemote will demote the image to secondary status.
//
// Implements:
// int rbd_mirror_image_demote(rbd_image_t image);
func (image *Image) MirrorDemote() error {
if err := image.validate(imageIsOpen); err != nil {
return err
}
ret := C.rbd_mirror_image_demote(image.image)
return getError(ret)
}
// MirrorResync is used to manually resolve split-brain status by triggering
// resynchronization.
//
// Implements:
// int rbd_mirror_image_resync(rbd_image_t image);
func (image *Image) MirrorResync() error {
if err := image.validate(imageIsOpen); err != nil {
return err
}
ret := C.rbd_mirror_image_resync(image.image)
return getError(ret)
}
// MirrorInstanceID returns a string naming the instance id for the image.
//
// Implements:
// int rbd_mirror_image_get_instance_id(rbd_image_t image,
// char *instance_id,
// size_t *id_max_length);
func (image *Image) MirrorInstanceID() (string, error) {
if err := image.validate(imageIsOpen); err != nil {
return "", err
}
var (
err error
buf []byte
cSize C.size_t
)
retry.WithSizes(1024, 1<<16, func(size int) retry.Hint {
cSize = C.size_t(size)
buf = make([]byte, cSize)
ret := C.rbd_mirror_image_get_instance_id(
image.image,
(*C.char)(unsafe.Pointer(&buf[0])),
&cSize)
err = getErrorIfNegative(ret)
return retry.Size(int(cSize)).If(err == errRange)
})
if err != nil {
return "", err
}
return string(buf[:cSize]), nil
}
// MirrorImageState represents the mirroring state of a RBD image.
type MirrorImageState C.rbd_mirror_image_state_t
const (
// MirrorImageDisabling is the representation of
// RBD_MIRROR_IMAGE_DISABLING from librbd.
MirrorImageDisabling = MirrorImageState(C.RBD_MIRROR_IMAGE_DISABLING)
// MirrorImageEnabled is the representation of
// RBD_MIRROR_IMAGE_ENABLED from librbd.
MirrorImageEnabled = MirrorImageState(C.RBD_MIRROR_IMAGE_ENABLED)
// MirrorImageDisabled is the representation of
// RBD_MIRROR_IMAGE_DISABLED from librbd.
MirrorImageDisabled = MirrorImageState(C.RBD_MIRROR_IMAGE_DISABLED)
)
// MirrorImageInfo represents the mirroring status information of a RBD image.
type MirrorImageInfo struct {
GlobalID string
State MirrorImageState
Primary bool
}
// GetMirrorImageInfo fetches the mirroring status information of a RBD image.
//
// Implements:
// int rbd_mirror_image_get_info(rbd_image_t image,
// rbd_mirror_image_info_t *mirror_image_info,
// size_t info_size)
func (image *Image) GetMirrorImageInfo() (*MirrorImageInfo, error) {
if err := image.validate(imageIsOpen); err != nil {
return nil, err
}
var cInfo C.rbd_mirror_image_info_t
ret := C.rbd_mirror_image_get_info(
image.image,
&cInfo,
C.sizeof_rbd_mirror_image_info_t)
if ret < 0 {
return nil, getError(ret)
}
mii := MirrorImageInfo{
GlobalID: C.GoString(cInfo.global_id),
State: MirrorImageState(cInfo.state),
Primary: bool(cInfo.primary),
}
// free C memory allocated by C.rbd_mirror_image_get_info call
C.rbd_mirror_image_get_info_cleanup(&cInfo)
return &mii, nil
}
// GetImageMirrorMode fetches the mirroring approach for an RBD image.
//
// Implements:
// int rbd_mirror_image_get_mode(rbd_image_t image, rbd_mirror_image_mode_t *mode);
func (image *Image) GetImageMirrorMode() (ImageMirrorMode, error) {
var mode C.rbd_mirror_image_mode_t
if err := image.validate(imageIsOpen); err != nil {
return ImageMirrorMode(mode), err
}
ret := C.rbd_mirror_image_get_mode(image.image, &mode)
return ImageMirrorMode(mode), getError(ret)
}

View File

@ -95,7 +95,11 @@ type TrashInfo struct {
// cephIoctx returns a ceph rados_ioctx_t given a go-ceph rados IOContext.
func cephIoctx(radosIoctx *rados.IOContext) C.rados_ioctx_t {
return C.rados_ioctx_t(radosIoctx.Pointer())
p := radosIoctx.Pointer()
if p == nil {
panic("invalid IOContext pointer")
}
return C.rados_ioctx_t(p)
}
// test if a bit is set in the given value

2
vendor/modules.txt vendored
View File

@ -26,7 +26,7 @@ github.com/aws/aws-sdk-go/service/ec2
github.com/beorn7/perks/quantile
# github.com/blang/semver v3.5.1+incompatible
github.com/blang/semver
# github.com/ceph/go-ceph v0.7.0
# github.com/ceph/go-ceph v0.8.0
github.com/ceph/go-ceph/cephfs/admin
github.com/ceph/go-ceph/internal/callbacks
github.com/ceph/go-ceph/internal/cutil