mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-06-14 10:53:34 +00:00
Update to kube v1.17
Signed-off-by: Humble Chirammal <hchiramm@redhat.com>
This commit is contained in:
committed by
mergify[bot]
parent
327fcd1b1b
commit
3af1e26d7c
28
vendor/honnef.co/go/tools/ssa/LICENSE
vendored
Normal file
28
vendor/honnef.co/go/tools/ssa/LICENSE
vendored
Normal file
@ -0,0 +1,28 @@
|
||||
Copyright (c) 2009 The Go Authors. All rights reserved.
|
||||
Copyright (c) 2016 Dominik Honnef. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
195
vendor/honnef.co/go/tools/ssa/blockopt.go
vendored
Normal file
195
vendor/honnef.co/go/tools/ssa/blockopt.go
vendored
Normal file
@ -0,0 +1,195 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// Simple block optimizations to simplify the control flow graph.
|
||||
|
||||
// TODO(adonovan): opt: instead of creating several "unreachable" blocks
|
||||
// per function in the Builder, reuse a single one (e.g. at Blocks[1])
|
||||
// to reduce garbage.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
)
|
||||
|
||||
// If true, perform sanity checking and show progress at each
|
||||
// successive iteration of optimizeBlocks. Very verbose.
|
||||
const debugBlockOpt = false
|
||||
|
||||
// markReachable sets Index=-1 for all blocks reachable from b.
|
||||
func markReachable(b *BasicBlock) {
|
||||
b.Index = -1
|
||||
for _, succ := range b.Succs {
|
||||
if succ.Index == 0 {
|
||||
markReachable(succ)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func DeleteUnreachableBlocks(f *Function) {
|
||||
deleteUnreachableBlocks(f)
|
||||
}
|
||||
|
||||
// deleteUnreachableBlocks marks all reachable blocks of f and
|
||||
// eliminates (nils) all others, including possibly cyclic subgraphs.
|
||||
//
|
||||
func deleteUnreachableBlocks(f *Function) {
|
||||
const white, black = 0, -1
|
||||
// We borrow b.Index temporarily as the mark bit.
|
||||
for _, b := range f.Blocks {
|
||||
b.Index = white
|
||||
}
|
||||
markReachable(f.Blocks[0])
|
||||
if f.Recover != nil {
|
||||
markReachable(f.Recover)
|
||||
}
|
||||
for i, b := range f.Blocks {
|
||||
if b.Index == white {
|
||||
for _, c := range b.Succs {
|
||||
if c.Index == black {
|
||||
c.removePred(b) // delete white->black edge
|
||||
}
|
||||
}
|
||||
if debugBlockOpt {
|
||||
fmt.Fprintln(os.Stderr, "unreachable", b)
|
||||
}
|
||||
f.Blocks[i] = nil // delete b
|
||||
}
|
||||
}
|
||||
f.removeNilBlocks()
|
||||
}
|
||||
|
||||
// jumpThreading attempts to apply simple jump-threading to block b,
|
||||
// in which a->b->c become a->c if b is just a Jump.
|
||||
// The result is true if the optimization was applied.
|
||||
//
|
||||
func jumpThreading(f *Function, b *BasicBlock) bool {
|
||||
if b.Index == 0 {
|
||||
return false // don't apply to entry block
|
||||
}
|
||||
if b.Instrs == nil {
|
||||
return false
|
||||
}
|
||||
if _, ok := b.Instrs[0].(*Jump); !ok {
|
||||
return false // not just a jump
|
||||
}
|
||||
c := b.Succs[0]
|
||||
if c == b {
|
||||
return false // don't apply to degenerate jump-to-self.
|
||||
}
|
||||
if c.hasPhi() {
|
||||
return false // not sound without more effort
|
||||
}
|
||||
for j, a := range b.Preds {
|
||||
a.replaceSucc(b, c)
|
||||
|
||||
// If a now has two edges to c, replace its degenerate If by Jump.
|
||||
if len(a.Succs) == 2 && a.Succs[0] == c && a.Succs[1] == c {
|
||||
jump := new(Jump)
|
||||
jump.setBlock(a)
|
||||
a.Instrs[len(a.Instrs)-1] = jump
|
||||
a.Succs = a.Succs[:1]
|
||||
c.removePred(b)
|
||||
} else {
|
||||
if j == 0 {
|
||||
c.replacePred(b, a)
|
||||
} else {
|
||||
c.Preds = append(c.Preds, a)
|
||||
}
|
||||
}
|
||||
|
||||
if debugBlockOpt {
|
||||
fmt.Fprintln(os.Stderr, "jumpThreading", a, b, c)
|
||||
}
|
||||
}
|
||||
f.Blocks[b.Index] = nil // delete b
|
||||
return true
|
||||
}
|
||||
|
||||
// fuseBlocks attempts to apply the block fusion optimization to block
|
||||
// a, in which a->b becomes ab if len(a.Succs)==len(b.Preds)==1.
|
||||
// The result is true if the optimization was applied.
|
||||
//
|
||||
func fuseBlocks(f *Function, a *BasicBlock) bool {
|
||||
if len(a.Succs) != 1 {
|
||||
return false
|
||||
}
|
||||
b := a.Succs[0]
|
||||
if len(b.Preds) != 1 {
|
||||
return false
|
||||
}
|
||||
|
||||
// Degenerate &&/|| ops may result in a straight-line CFG
|
||||
// containing φ-nodes. (Ideally we'd replace such them with
|
||||
// their sole operand but that requires Referrers, built later.)
|
||||
if b.hasPhi() {
|
||||
return false // not sound without further effort
|
||||
}
|
||||
|
||||
// Eliminate jump at end of A, then copy all of B across.
|
||||
a.Instrs = append(a.Instrs[:len(a.Instrs)-1], b.Instrs...)
|
||||
for _, instr := range b.Instrs {
|
||||
instr.setBlock(a)
|
||||
}
|
||||
|
||||
// A inherits B's successors
|
||||
a.Succs = append(a.succs2[:0], b.Succs...)
|
||||
|
||||
// Fix up Preds links of all successors of B.
|
||||
for _, c := range b.Succs {
|
||||
c.replacePred(b, a)
|
||||
}
|
||||
|
||||
if debugBlockOpt {
|
||||
fmt.Fprintln(os.Stderr, "fuseBlocks", a, b)
|
||||
}
|
||||
|
||||
f.Blocks[b.Index] = nil // delete b
|
||||
return true
|
||||
}
|
||||
|
||||
func OptimizeBlocks(f *Function) {
|
||||
optimizeBlocks(f)
|
||||
}
|
||||
|
||||
// optimizeBlocks() performs some simple block optimizations on a
|
||||
// completed function: dead block elimination, block fusion, jump
|
||||
// threading.
|
||||
//
|
||||
func optimizeBlocks(f *Function) {
|
||||
deleteUnreachableBlocks(f)
|
||||
|
||||
// Loop until no further progress.
|
||||
changed := true
|
||||
for changed {
|
||||
changed = false
|
||||
|
||||
if debugBlockOpt {
|
||||
f.WriteTo(os.Stderr)
|
||||
mustSanityCheck(f, nil)
|
||||
}
|
||||
|
||||
for _, b := range f.Blocks {
|
||||
// f.Blocks will temporarily contain nils to indicate
|
||||
// deleted blocks; we remove them at the end.
|
||||
if b == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
// Fuse blocks. b->c becomes bc.
|
||||
if fuseBlocks(f, b) {
|
||||
changed = true
|
||||
}
|
||||
|
||||
// a->b->c becomes a->c if b contains only a Jump.
|
||||
if jumpThreading(f, b) {
|
||||
changed = true
|
||||
continue // (b was disconnected)
|
||||
}
|
||||
}
|
||||
}
|
||||
f.removeNilBlocks()
|
||||
}
|
2379
vendor/honnef.co/go/tools/ssa/builder.go
vendored
Normal file
2379
vendor/honnef.co/go/tools/ssa/builder.go
vendored
Normal file
File diff suppressed because it is too large
Load Diff
169
vendor/honnef.co/go/tools/ssa/const.go
vendored
Normal file
169
vendor/honnef.co/go/tools/ssa/const.go
vendored
Normal file
@ -0,0 +1,169 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file defines the Const SSA value type.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/constant"
|
||||
"go/token"
|
||||
"go/types"
|
||||
"strconv"
|
||||
)
|
||||
|
||||
// NewConst returns a new constant of the specified value and type.
|
||||
// val must be valid according to the specification of Const.Value.
|
||||
//
|
||||
func NewConst(val constant.Value, typ types.Type) *Const {
|
||||
return &Const{typ, val}
|
||||
}
|
||||
|
||||
// intConst returns an 'int' constant that evaluates to i.
|
||||
// (i is an int64 in case the host is narrower than the target.)
|
||||
func intConst(i int64) *Const {
|
||||
return NewConst(constant.MakeInt64(i), tInt)
|
||||
}
|
||||
|
||||
// nilConst returns a nil constant of the specified type, which may
|
||||
// be any reference type, including interfaces.
|
||||
//
|
||||
func nilConst(typ types.Type) *Const {
|
||||
return NewConst(nil, typ)
|
||||
}
|
||||
|
||||
// stringConst returns a 'string' constant that evaluates to s.
|
||||
func stringConst(s string) *Const {
|
||||
return NewConst(constant.MakeString(s), tString)
|
||||
}
|
||||
|
||||
// zeroConst returns a new "zero" constant of the specified type,
|
||||
// which must not be an array or struct type: the zero values of
|
||||
// aggregates are well-defined but cannot be represented by Const.
|
||||
//
|
||||
func zeroConst(t types.Type) *Const {
|
||||
switch t := t.(type) {
|
||||
case *types.Basic:
|
||||
switch {
|
||||
case t.Info()&types.IsBoolean != 0:
|
||||
return NewConst(constant.MakeBool(false), t)
|
||||
case t.Info()&types.IsNumeric != 0:
|
||||
return NewConst(constant.MakeInt64(0), t)
|
||||
case t.Info()&types.IsString != 0:
|
||||
return NewConst(constant.MakeString(""), t)
|
||||
case t.Kind() == types.UnsafePointer:
|
||||
fallthrough
|
||||
case t.Kind() == types.UntypedNil:
|
||||
return nilConst(t)
|
||||
default:
|
||||
panic(fmt.Sprint("zeroConst for unexpected type:", t))
|
||||
}
|
||||
case *types.Pointer, *types.Slice, *types.Interface, *types.Chan, *types.Map, *types.Signature:
|
||||
return nilConst(t)
|
||||
case *types.Named:
|
||||
return NewConst(zeroConst(t.Underlying()).Value, t)
|
||||
case *types.Array, *types.Struct, *types.Tuple:
|
||||
panic(fmt.Sprint("zeroConst applied to aggregate:", t))
|
||||
}
|
||||
panic(fmt.Sprint("zeroConst: unexpected ", t))
|
||||
}
|
||||
|
||||
func (c *Const) RelString(from *types.Package) string {
|
||||
var s string
|
||||
if c.Value == nil {
|
||||
s = "nil"
|
||||
} else if c.Value.Kind() == constant.String {
|
||||
s = constant.StringVal(c.Value)
|
||||
const max = 20
|
||||
// TODO(adonovan): don't cut a rune in half.
|
||||
if len(s) > max {
|
||||
s = s[:max-3] + "..." // abbreviate
|
||||
}
|
||||
s = strconv.Quote(s)
|
||||
} else {
|
||||
s = c.Value.String()
|
||||
}
|
||||
return s + ":" + relType(c.Type(), from)
|
||||
}
|
||||
|
||||
func (c *Const) Name() string {
|
||||
return c.RelString(nil)
|
||||
}
|
||||
|
||||
func (c *Const) String() string {
|
||||
return c.Name()
|
||||
}
|
||||
|
||||
func (c *Const) Type() types.Type {
|
||||
return c.typ
|
||||
}
|
||||
|
||||
func (c *Const) Referrers() *[]Instruction {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *Const) Parent() *Function { return nil }
|
||||
|
||||
func (c *Const) Pos() token.Pos {
|
||||
return token.NoPos
|
||||
}
|
||||
|
||||
// IsNil returns true if this constant represents a typed or untyped nil value.
|
||||
func (c *Const) IsNil() bool {
|
||||
return c.Value == nil
|
||||
}
|
||||
|
||||
// TODO(adonovan): move everything below into honnef.co/go/tools/ssa/interp.
|
||||
|
||||
// Int64 returns the numeric value of this constant truncated to fit
|
||||
// a signed 64-bit integer.
|
||||
//
|
||||
func (c *Const) Int64() int64 {
|
||||
switch x := constant.ToInt(c.Value); x.Kind() {
|
||||
case constant.Int:
|
||||
if i, ok := constant.Int64Val(x); ok {
|
||||
return i
|
||||
}
|
||||
return 0
|
||||
case constant.Float:
|
||||
f, _ := constant.Float64Val(x)
|
||||
return int64(f)
|
||||
}
|
||||
panic(fmt.Sprintf("unexpected constant value: %T", c.Value))
|
||||
}
|
||||
|
||||
// Uint64 returns the numeric value of this constant truncated to fit
|
||||
// an unsigned 64-bit integer.
|
||||
//
|
||||
func (c *Const) Uint64() uint64 {
|
||||
switch x := constant.ToInt(c.Value); x.Kind() {
|
||||
case constant.Int:
|
||||
if u, ok := constant.Uint64Val(x); ok {
|
||||
return u
|
||||
}
|
||||
return 0
|
||||
case constant.Float:
|
||||
f, _ := constant.Float64Val(x)
|
||||
return uint64(f)
|
||||
}
|
||||
panic(fmt.Sprintf("unexpected constant value: %T", c.Value))
|
||||
}
|
||||
|
||||
// Float64 returns the numeric value of this constant truncated to fit
|
||||
// a float64.
|
||||
//
|
||||
func (c *Const) Float64() float64 {
|
||||
f, _ := constant.Float64Val(c.Value)
|
||||
return f
|
||||
}
|
||||
|
||||
// Complex128 returns the complex value of this constant truncated to
|
||||
// fit a complex128.
|
||||
//
|
||||
func (c *Const) Complex128() complex128 {
|
||||
re, _ := constant.Float64Val(constant.Real(c.Value))
|
||||
im, _ := constant.Float64Val(constant.Imag(c.Value))
|
||||
return complex(re, im)
|
||||
}
|
270
vendor/honnef.co/go/tools/ssa/create.go
vendored
Normal file
270
vendor/honnef.co/go/tools/ssa/create.go
vendored
Normal file
@ -0,0 +1,270 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file implements the CREATE phase of SSA construction.
|
||||
// See builder.go for explanation.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/ast"
|
||||
"go/token"
|
||||
"go/types"
|
||||
"os"
|
||||
"sync"
|
||||
|
||||
"golang.org/x/tools/go/types/typeutil"
|
||||
)
|
||||
|
||||
// NewProgram returns a new SSA Program.
|
||||
//
|
||||
// mode controls diagnostics and checking during SSA construction.
|
||||
//
|
||||
func NewProgram(fset *token.FileSet, mode BuilderMode) *Program {
|
||||
prog := &Program{
|
||||
Fset: fset,
|
||||
imported: make(map[string]*Package),
|
||||
packages: make(map[*types.Package]*Package),
|
||||
thunks: make(map[selectionKey]*Function),
|
||||
bounds: make(map[*types.Func]*Function),
|
||||
mode: mode,
|
||||
}
|
||||
|
||||
h := typeutil.MakeHasher() // protected by methodsMu, in effect
|
||||
prog.methodSets.SetHasher(h)
|
||||
prog.canon.SetHasher(h)
|
||||
|
||||
return prog
|
||||
}
|
||||
|
||||
// memberFromObject populates package pkg with a member for the
|
||||
// typechecker object obj.
|
||||
//
|
||||
// For objects from Go source code, syntax is the associated syntax
|
||||
// tree (for funcs and vars only); it will be used during the build
|
||||
// phase.
|
||||
//
|
||||
func memberFromObject(pkg *Package, obj types.Object, syntax ast.Node) {
|
||||
name := obj.Name()
|
||||
switch obj := obj.(type) {
|
||||
case *types.Builtin:
|
||||
if pkg.Pkg != types.Unsafe {
|
||||
panic("unexpected builtin object: " + obj.String())
|
||||
}
|
||||
|
||||
case *types.TypeName:
|
||||
pkg.Members[name] = &Type{
|
||||
object: obj,
|
||||
pkg: pkg,
|
||||
}
|
||||
|
||||
case *types.Const:
|
||||
c := &NamedConst{
|
||||
object: obj,
|
||||
Value: NewConst(obj.Val(), obj.Type()),
|
||||
pkg: pkg,
|
||||
}
|
||||
pkg.values[obj] = c.Value
|
||||
pkg.Members[name] = c
|
||||
|
||||
case *types.Var:
|
||||
g := &Global{
|
||||
Pkg: pkg,
|
||||
name: name,
|
||||
object: obj,
|
||||
typ: types.NewPointer(obj.Type()), // address
|
||||
pos: obj.Pos(),
|
||||
}
|
||||
pkg.values[obj] = g
|
||||
pkg.Members[name] = g
|
||||
|
||||
case *types.Func:
|
||||
sig := obj.Type().(*types.Signature)
|
||||
if sig.Recv() == nil && name == "init" {
|
||||
pkg.ninit++
|
||||
name = fmt.Sprintf("init#%d", pkg.ninit)
|
||||
}
|
||||
fn := &Function{
|
||||
name: name,
|
||||
object: obj,
|
||||
Signature: sig,
|
||||
syntax: syntax,
|
||||
pos: obj.Pos(),
|
||||
Pkg: pkg,
|
||||
Prog: pkg.Prog,
|
||||
}
|
||||
if syntax == nil {
|
||||
fn.Synthetic = "loaded from gc object file"
|
||||
}
|
||||
|
||||
pkg.values[obj] = fn
|
||||
if sig.Recv() == nil {
|
||||
pkg.Members[name] = fn // package-level function
|
||||
}
|
||||
|
||||
default: // (incl. *types.Package)
|
||||
panic("unexpected Object type: " + obj.String())
|
||||
}
|
||||
}
|
||||
|
||||
// membersFromDecl populates package pkg with members for each
|
||||
// typechecker object (var, func, const or type) associated with the
|
||||
// specified decl.
|
||||
//
|
||||
func membersFromDecl(pkg *Package, decl ast.Decl) {
|
||||
switch decl := decl.(type) {
|
||||
case *ast.GenDecl: // import, const, type or var
|
||||
switch decl.Tok {
|
||||
case token.CONST:
|
||||
for _, spec := range decl.Specs {
|
||||
for _, id := range spec.(*ast.ValueSpec).Names {
|
||||
if !isBlankIdent(id) {
|
||||
memberFromObject(pkg, pkg.info.Defs[id], nil)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
case token.VAR:
|
||||
for _, spec := range decl.Specs {
|
||||
for _, id := range spec.(*ast.ValueSpec).Names {
|
||||
if !isBlankIdent(id) {
|
||||
memberFromObject(pkg, pkg.info.Defs[id], spec)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
case token.TYPE:
|
||||
for _, spec := range decl.Specs {
|
||||
id := spec.(*ast.TypeSpec).Name
|
||||
if !isBlankIdent(id) {
|
||||
memberFromObject(pkg, pkg.info.Defs[id], nil)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
case *ast.FuncDecl:
|
||||
id := decl.Name
|
||||
if !isBlankIdent(id) {
|
||||
memberFromObject(pkg, pkg.info.Defs[id], decl)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// CreatePackage constructs and returns an SSA Package from the
|
||||
// specified type-checked, error-free file ASTs, and populates its
|
||||
// Members mapping.
|
||||
//
|
||||
// importable determines whether this package should be returned by a
|
||||
// subsequent call to ImportedPackage(pkg.Path()).
|
||||
//
|
||||
// The real work of building SSA form for each function is not done
|
||||
// until a subsequent call to Package.Build().
|
||||
//
|
||||
func (prog *Program) CreatePackage(pkg *types.Package, files []*ast.File, info *types.Info, importable bool) *Package {
|
||||
p := &Package{
|
||||
Prog: prog,
|
||||
Members: make(map[string]Member),
|
||||
values: make(map[types.Object]Value),
|
||||
Pkg: pkg,
|
||||
info: info, // transient (CREATE and BUILD phases)
|
||||
files: files, // transient (CREATE and BUILD phases)
|
||||
}
|
||||
|
||||
// Add init() function.
|
||||
p.init = &Function{
|
||||
name: "init",
|
||||
Signature: new(types.Signature),
|
||||
Synthetic: "package initializer",
|
||||
Pkg: p,
|
||||
Prog: prog,
|
||||
}
|
||||
p.Members[p.init.name] = p.init
|
||||
|
||||
// CREATE phase.
|
||||
// Allocate all package members: vars, funcs, consts and types.
|
||||
if len(files) > 0 {
|
||||
// Go source package.
|
||||
for _, file := range files {
|
||||
for _, decl := range file.Decls {
|
||||
membersFromDecl(p, decl)
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// GC-compiled binary package (or "unsafe")
|
||||
// No code.
|
||||
// No position information.
|
||||
scope := p.Pkg.Scope()
|
||||
for _, name := range scope.Names() {
|
||||
obj := scope.Lookup(name)
|
||||
memberFromObject(p, obj, nil)
|
||||
if obj, ok := obj.(*types.TypeName); ok {
|
||||
if named, ok := obj.Type().(*types.Named); ok {
|
||||
for i, n := 0, named.NumMethods(); i < n; i++ {
|
||||
memberFromObject(p, named.Method(i), nil)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if prog.mode&BareInits == 0 {
|
||||
// Add initializer guard variable.
|
||||
initguard := &Global{
|
||||
Pkg: p,
|
||||
name: "init$guard",
|
||||
typ: types.NewPointer(tBool),
|
||||
}
|
||||
p.Members[initguard.Name()] = initguard
|
||||
}
|
||||
|
||||
if prog.mode&GlobalDebug != 0 {
|
||||
p.SetDebugMode(true)
|
||||
}
|
||||
|
||||
if prog.mode&PrintPackages != 0 {
|
||||
printMu.Lock()
|
||||
p.WriteTo(os.Stdout)
|
||||
printMu.Unlock()
|
||||
}
|
||||
|
||||
if importable {
|
||||
prog.imported[p.Pkg.Path()] = p
|
||||
}
|
||||
prog.packages[p.Pkg] = p
|
||||
|
||||
return p
|
||||
}
|
||||
|
||||
// printMu serializes printing of Packages/Functions to stdout.
|
||||
var printMu sync.Mutex
|
||||
|
||||
// AllPackages returns a new slice containing all packages in the
|
||||
// program prog in unspecified order.
|
||||
//
|
||||
func (prog *Program) AllPackages() []*Package {
|
||||
pkgs := make([]*Package, 0, len(prog.packages))
|
||||
for _, pkg := range prog.packages {
|
||||
pkgs = append(pkgs, pkg)
|
||||
}
|
||||
return pkgs
|
||||
}
|
||||
|
||||
// ImportedPackage returns the importable Package whose PkgPath
|
||||
// is path, or nil if no such Package has been created.
|
||||
//
|
||||
// A parameter to CreatePackage determines whether a package should be
|
||||
// considered importable. For example, no import declaration can resolve
|
||||
// to the ad-hoc main package created by 'go build foo.go'.
|
||||
//
|
||||
// TODO(adonovan): rethink this function and the "importable" concept;
|
||||
// most packages are importable. This function assumes that all
|
||||
// types.Package.Path values are unique within the ssa.Program, which is
|
||||
// false---yet this function remains very convenient.
|
||||
// Clients should use (*Program).Package instead where possible.
|
||||
// SSA doesn't really need a string-keyed map of packages.
|
||||
//
|
||||
func (prog *Program) ImportedPackage(path string) *Package {
|
||||
return prog.imported[path]
|
||||
}
|
125
vendor/honnef.co/go/tools/ssa/doc.go
vendored
Normal file
125
vendor/honnef.co/go/tools/ssa/doc.go
vendored
Normal file
@ -0,0 +1,125 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package ssa defines a representation of the elements of Go programs
|
||||
// (packages, types, functions, variables and constants) using a
|
||||
// static single-assignment (SSA) form intermediate representation
|
||||
// (IR) for the bodies of functions.
|
||||
//
|
||||
// THIS INTERFACE IS EXPERIMENTAL AND IS LIKELY TO CHANGE.
|
||||
//
|
||||
// For an introduction to SSA form, see
|
||||
// http://en.wikipedia.org/wiki/Static_single_assignment_form.
|
||||
// This page provides a broader reading list:
|
||||
// http://www.dcs.gla.ac.uk/~jsinger/ssa.html.
|
||||
//
|
||||
// The level of abstraction of the SSA form is intentionally close to
|
||||
// the source language to facilitate construction of source analysis
|
||||
// tools. It is not intended for machine code generation.
|
||||
//
|
||||
// All looping, branching and switching constructs are replaced with
|
||||
// unstructured control flow. Higher-level control flow constructs
|
||||
// such as multi-way branch can be reconstructed as needed; see
|
||||
// ssautil.Switches() for an example.
|
||||
//
|
||||
// The simplest way to create the SSA representation of a package is
|
||||
// to load typed syntax trees using golang.org/x/tools/go/packages, then
|
||||
// invoke the ssautil.Packages helper function. See ExampleLoadPackages
|
||||
// and ExampleWholeProgram for examples.
|
||||
// The resulting ssa.Program contains all the packages and their
|
||||
// members, but SSA code is not created for function bodies until a
|
||||
// subsequent call to (*Package).Build or (*Program).Build.
|
||||
//
|
||||
// The builder initially builds a naive SSA form in which all local
|
||||
// variables are addresses of stack locations with explicit loads and
|
||||
// stores. Registerisation of eligible locals and φ-node insertion
|
||||
// using dominance and dataflow are then performed as a second pass
|
||||
// called "lifting" to improve the accuracy and performance of
|
||||
// subsequent analyses; this pass can be skipped by setting the
|
||||
// NaiveForm builder flag.
|
||||
//
|
||||
// The primary interfaces of this package are:
|
||||
//
|
||||
// - Member: a named member of a Go package.
|
||||
// - Value: an expression that yields a value.
|
||||
// - Instruction: a statement that consumes values and performs computation.
|
||||
// - Node: a Value or Instruction (emphasizing its membership in the SSA value graph)
|
||||
//
|
||||
// A computation that yields a result implements both the Value and
|
||||
// Instruction interfaces. The following table shows for each
|
||||
// concrete type which of these interfaces it implements.
|
||||
//
|
||||
// Value? Instruction? Member?
|
||||
// *Alloc ✔ ✔
|
||||
// *BinOp ✔ ✔
|
||||
// *Builtin ✔
|
||||
// *Call ✔ ✔
|
||||
// *ChangeInterface ✔ ✔
|
||||
// *ChangeType ✔ ✔
|
||||
// *Const ✔
|
||||
// *Convert ✔ ✔
|
||||
// *DebugRef ✔
|
||||
// *Defer ✔
|
||||
// *Extract ✔ ✔
|
||||
// *Field ✔ ✔
|
||||
// *FieldAddr ✔ ✔
|
||||
// *FreeVar ✔
|
||||
// *Function ✔ ✔ (func)
|
||||
// *Global ✔ ✔ (var)
|
||||
// *Go ✔
|
||||
// *If ✔
|
||||
// *Index ✔ ✔
|
||||
// *IndexAddr ✔ ✔
|
||||
// *Jump ✔
|
||||
// *Lookup ✔ ✔
|
||||
// *MakeChan ✔ ✔
|
||||
// *MakeClosure ✔ ✔
|
||||
// *MakeInterface ✔ ✔
|
||||
// *MakeMap ✔ ✔
|
||||
// *MakeSlice ✔ ✔
|
||||
// *MapUpdate ✔
|
||||
// *NamedConst ✔ (const)
|
||||
// *Next ✔ ✔
|
||||
// *Panic ✔
|
||||
// *Parameter ✔
|
||||
// *Phi ✔ ✔
|
||||
// *Range ✔ ✔
|
||||
// *Return ✔
|
||||
// *RunDefers ✔
|
||||
// *Select ✔ ✔
|
||||
// *Send ✔
|
||||
// *Slice ✔ ✔
|
||||
// *Store ✔
|
||||
// *Type ✔ (type)
|
||||
// *TypeAssert ✔ ✔
|
||||
// *UnOp ✔ ✔
|
||||
//
|
||||
// Other key types in this package include: Program, Package, Function
|
||||
// and BasicBlock.
|
||||
//
|
||||
// The program representation constructed by this package is fully
|
||||
// resolved internally, i.e. it does not rely on the names of Values,
|
||||
// Packages, Functions, Types or BasicBlocks for the correct
|
||||
// interpretation of the program. Only the identities of objects and
|
||||
// the topology of the SSA and type graphs are semantically
|
||||
// significant. (There is one exception: Ids, used to identify field
|
||||
// and method names, contain strings.) Avoidance of name-based
|
||||
// operations simplifies the implementation of subsequent passes and
|
||||
// can make them very efficient. Many objects are nonetheless named
|
||||
// to aid in debugging, but it is not essential that the names be
|
||||
// either accurate or unambiguous. The public API exposes a number of
|
||||
// name-based maps for client convenience.
|
||||
//
|
||||
// The ssa/ssautil package provides various utilities that depend only
|
||||
// on the public API of this package.
|
||||
//
|
||||
// TODO(adonovan): Consider the exceptional control-flow implications
|
||||
// of defer and recover().
|
||||
//
|
||||
// TODO(adonovan): write a how-to document for all the various cases
|
||||
// of trying to determine corresponding elements across the four
|
||||
// domains of source locations, ast.Nodes, types.Objects,
|
||||
// ssa.Values/Instructions.
|
||||
//
|
||||
package ssa // import "honnef.co/go/tools/ssa"
|
343
vendor/honnef.co/go/tools/ssa/dom.go
vendored
Normal file
343
vendor/honnef.co/go/tools/ssa/dom.go
vendored
Normal file
@ -0,0 +1,343 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file defines algorithms related to dominance.
|
||||
|
||||
// Dominator tree construction ----------------------------------------
|
||||
//
|
||||
// We use the algorithm described in Lengauer & Tarjan. 1979. A fast
|
||||
// algorithm for finding dominators in a flowgraph.
|
||||
// http://doi.acm.org/10.1145/357062.357071
|
||||
//
|
||||
// We also apply the optimizations to SLT described in Georgiadis et
|
||||
// al, Finding Dominators in Practice, JGAA 2006,
|
||||
// http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf
|
||||
// to avoid the need for buckets of size > 1.
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"math/big"
|
||||
"os"
|
||||
"sort"
|
||||
)
|
||||
|
||||
// Idom returns the block that immediately dominates b:
|
||||
// its parent in the dominator tree, if any.
|
||||
// Neither the entry node (b.Index==0) nor recover node
|
||||
// (b==b.Parent().Recover()) have a parent.
|
||||
//
|
||||
func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom }
|
||||
|
||||
// Dominees returns the list of blocks that b immediately dominates:
|
||||
// its children in the dominator tree.
|
||||
//
|
||||
func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children }
|
||||
|
||||
// Dominates reports whether b dominates c.
|
||||
func (b *BasicBlock) Dominates(c *BasicBlock) bool {
|
||||
return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post
|
||||
}
|
||||
|
||||
type byDomPreorder []*BasicBlock
|
||||
|
||||
func (a byDomPreorder) Len() int { return len(a) }
|
||||
func (a byDomPreorder) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
||||
func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre }
|
||||
|
||||
// DomPreorder returns a new slice containing the blocks of f in
|
||||
// dominator tree preorder.
|
||||
//
|
||||
func (f *Function) DomPreorder() []*BasicBlock {
|
||||
n := len(f.Blocks)
|
||||
order := make(byDomPreorder, n)
|
||||
copy(order, f.Blocks)
|
||||
sort.Sort(order)
|
||||
return order
|
||||
}
|
||||
|
||||
// domInfo contains a BasicBlock's dominance information.
|
||||
type domInfo struct {
|
||||
idom *BasicBlock // immediate dominator (parent in domtree)
|
||||
children []*BasicBlock // nodes immediately dominated by this one
|
||||
pre, post int32 // pre- and post-order numbering within domtree
|
||||
}
|
||||
|
||||
// ltState holds the working state for Lengauer-Tarjan algorithm
|
||||
// (during which domInfo.pre is repurposed for CFG DFS preorder number).
|
||||
type ltState struct {
|
||||
// Each slice is indexed by b.Index.
|
||||
sdom []*BasicBlock // b's semidominator
|
||||
parent []*BasicBlock // b's parent in DFS traversal of CFG
|
||||
ancestor []*BasicBlock // b's ancestor with least sdom
|
||||
}
|
||||
|
||||
// dfs implements the depth-first search part of the LT algorithm.
|
||||
func (lt *ltState) dfs(v *BasicBlock, i int32, preorder []*BasicBlock) int32 {
|
||||
preorder[i] = v
|
||||
v.dom.pre = i // For now: DFS preorder of spanning tree of CFG
|
||||
i++
|
||||
lt.sdom[v.Index] = v
|
||||
lt.link(nil, v)
|
||||
for _, w := range v.Succs {
|
||||
if lt.sdom[w.Index] == nil {
|
||||
lt.parent[w.Index] = v
|
||||
i = lt.dfs(w, i, preorder)
|
||||
}
|
||||
}
|
||||
return i
|
||||
}
|
||||
|
||||
// eval implements the EVAL part of the LT algorithm.
|
||||
func (lt *ltState) eval(v *BasicBlock) *BasicBlock {
|
||||
// TODO(adonovan): opt: do path compression per simple LT.
|
||||
u := v
|
||||
for ; lt.ancestor[v.Index] != nil; v = lt.ancestor[v.Index] {
|
||||
if lt.sdom[v.Index].dom.pre < lt.sdom[u.Index].dom.pre {
|
||||
u = v
|
||||
}
|
||||
}
|
||||
return u
|
||||
}
|
||||
|
||||
// link implements the LINK part of the LT algorithm.
|
||||
func (lt *ltState) link(v, w *BasicBlock) {
|
||||
lt.ancestor[w.Index] = v
|
||||
}
|
||||
|
||||
// buildDomTree computes the dominator tree of f using the LT algorithm.
|
||||
// Precondition: all blocks are reachable (e.g. optimizeBlocks has been run).
|
||||
//
|
||||
func buildDomTree(f *Function) {
|
||||
// The step numbers refer to the original LT paper; the
|
||||
// reordering is due to Georgiadis.
|
||||
|
||||
// Clear any previous domInfo.
|
||||
for _, b := range f.Blocks {
|
||||
b.dom = domInfo{}
|
||||
}
|
||||
|
||||
n := len(f.Blocks)
|
||||
// Allocate space for 5 contiguous [n]*BasicBlock arrays:
|
||||
// sdom, parent, ancestor, preorder, buckets.
|
||||
space := make([]*BasicBlock, 5*n)
|
||||
lt := ltState{
|
||||
sdom: space[0:n],
|
||||
parent: space[n : 2*n],
|
||||
ancestor: space[2*n : 3*n],
|
||||
}
|
||||
|
||||
// Step 1. Number vertices by depth-first preorder.
|
||||
preorder := space[3*n : 4*n]
|
||||
root := f.Blocks[0]
|
||||
prenum := lt.dfs(root, 0, preorder)
|
||||
recover := f.Recover
|
||||
if recover != nil {
|
||||
lt.dfs(recover, prenum, preorder)
|
||||
}
|
||||
|
||||
buckets := space[4*n : 5*n]
|
||||
copy(buckets, preorder)
|
||||
|
||||
// In reverse preorder...
|
||||
for i := int32(n) - 1; i > 0; i-- {
|
||||
w := preorder[i]
|
||||
|
||||
// Step 3. Implicitly define the immediate dominator of each node.
|
||||
for v := buckets[i]; v != w; v = buckets[v.dom.pre] {
|
||||
u := lt.eval(v)
|
||||
if lt.sdom[u.Index].dom.pre < i {
|
||||
v.dom.idom = u
|
||||
} else {
|
||||
v.dom.idom = w
|
||||
}
|
||||
}
|
||||
|
||||
// Step 2. Compute the semidominators of all nodes.
|
||||
lt.sdom[w.Index] = lt.parent[w.Index]
|
||||
for _, v := range w.Preds {
|
||||
u := lt.eval(v)
|
||||
if lt.sdom[u.Index].dom.pre < lt.sdom[w.Index].dom.pre {
|
||||
lt.sdom[w.Index] = lt.sdom[u.Index]
|
||||
}
|
||||
}
|
||||
|
||||
lt.link(lt.parent[w.Index], w)
|
||||
|
||||
if lt.parent[w.Index] == lt.sdom[w.Index] {
|
||||
w.dom.idom = lt.parent[w.Index]
|
||||
} else {
|
||||
buckets[i] = buckets[lt.sdom[w.Index].dom.pre]
|
||||
buckets[lt.sdom[w.Index].dom.pre] = w
|
||||
}
|
||||
}
|
||||
|
||||
// The final 'Step 3' is now outside the loop.
|
||||
for v := buckets[0]; v != root; v = buckets[v.dom.pre] {
|
||||
v.dom.idom = root
|
||||
}
|
||||
|
||||
// Step 4. Explicitly define the immediate dominator of each
|
||||
// node, in preorder.
|
||||
for _, w := range preorder[1:] {
|
||||
if w == root || w == recover {
|
||||
w.dom.idom = nil
|
||||
} else {
|
||||
if w.dom.idom != lt.sdom[w.Index] {
|
||||
w.dom.idom = w.dom.idom.dom.idom
|
||||
}
|
||||
// Calculate Children relation as inverse of Idom.
|
||||
w.dom.idom.dom.children = append(w.dom.idom.dom.children, w)
|
||||
}
|
||||
}
|
||||
|
||||
pre, post := numberDomTree(root, 0, 0)
|
||||
if recover != nil {
|
||||
numberDomTree(recover, pre, post)
|
||||
}
|
||||
|
||||
// printDomTreeDot(os.Stderr, f) // debugging
|
||||
// printDomTreeText(os.Stderr, root, 0) // debugging
|
||||
|
||||
if f.Prog.mode&SanityCheckFunctions != 0 {
|
||||
sanityCheckDomTree(f)
|
||||
}
|
||||
}
|
||||
|
||||
// numberDomTree sets the pre- and post-order numbers of a depth-first
|
||||
// traversal of the dominator tree rooted at v. These are used to
|
||||
// answer dominance queries in constant time.
|
||||
//
|
||||
func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
|
||||
v.dom.pre = pre
|
||||
pre++
|
||||
for _, child := range v.dom.children {
|
||||
pre, post = numberDomTree(child, pre, post)
|
||||
}
|
||||
v.dom.post = post
|
||||
post++
|
||||
return pre, post
|
||||
}
|
||||
|
||||
// Testing utilities ----------------------------------------
|
||||
|
||||
// sanityCheckDomTree checks the correctness of the dominator tree
|
||||
// computed by the LT algorithm by comparing against the dominance
|
||||
// relation computed by a naive Kildall-style forward dataflow
|
||||
// analysis (Algorithm 10.16 from the "Dragon" book).
|
||||
//
|
||||
func sanityCheckDomTree(f *Function) {
|
||||
n := len(f.Blocks)
|
||||
|
||||
// D[i] is the set of blocks that dominate f.Blocks[i],
|
||||
// represented as a bit-set of block indices.
|
||||
D := make([]big.Int, n)
|
||||
|
||||
one := big.NewInt(1)
|
||||
|
||||
// all is the set of all blocks; constant.
|
||||
var all big.Int
|
||||
all.Set(one).Lsh(&all, uint(n)).Sub(&all, one)
|
||||
|
||||
// Initialization.
|
||||
for i, b := range f.Blocks {
|
||||
if i == 0 || b == f.Recover {
|
||||
// A root is dominated only by itself.
|
||||
D[i].SetBit(&D[0], 0, 1)
|
||||
} else {
|
||||
// All other blocks are (initially) dominated
|
||||
// by every block.
|
||||
D[i].Set(&all)
|
||||
}
|
||||
}
|
||||
|
||||
// Iteration until fixed point.
|
||||
for changed := true; changed; {
|
||||
changed = false
|
||||
for i, b := range f.Blocks {
|
||||
if i == 0 || b == f.Recover {
|
||||
continue
|
||||
}
|
||||
// Compute intersection across predecessors.
|
||||
var x big.Int
|
||||
x.Set(&all)
|
||||
for _, pred := range b.Preds {
|
||||
x.And(&x, &D[pred.Index])
|
||||
}
|
||||
x.SetBit(&x, i, 1) // a block always dominates itself.
|
||||
if D[i].Cmp(&x) != 0 {
|
||||
D[i].Set(&x)
|
||||
changed = true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check the entire relation. O(n^2).
|
||||
// The Recover block (if any) must be treated specially so we skip it.
|
||||
ok := true
|
||||
for i := 0; i < n; i++ {
|
||||
for j := 0; j < n; j++ {
|
||||
b, c := f.Blocks[i], f.Blocks[j]
|
||||
if c == f.Recover {
|
||||
continue
|
||||
}
|
||||
actual := b.Dominates(c)
|
||||
expected := D[j].Bit(i) == 1
|
||||
if actual != expected {
|
||||
fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected)
|
||||
ok = false
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
preorder := f.DomPreorder()
|
||||
for _, b := range f.Blocks {
|
||||
if got := preorder[b.dom.pre]; got != b {
|
||||
fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b)
|
||||
ok = false
|
||||
}
|
||||
}
|
||||
|
||||
if !ok {
|
||||
panic("sanityCheckDomTree failed for " + f.String())
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Printing functions ----------------------------------------
|
||||
|
||||
// printDomTree prints the dominator tree as text, using indentation.
|
||||
//lint:ignore U1000 used during debugging
|
||||
func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) {
|
||||
fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
|
||||
for _, child := range v.dom.children {
|
||||
printDomTreeText(buf, child, indent+1)
|
||||
}
|
||||
}
|
||||
|
||||
// printDomTreeDot prints the dominator tree of f in AT&T GraphViz
|
||||
// (.dot) format.
|
||||
//lint:ignore U1000 used during debugging
|
||||
func printDomTreeDot(buf *bytes.Buffer, f *Function) {
|
||||
fmt.Fprintln(buf, "//", f)
|
||||
fmt.Fprintln(buf, "digraph domtree {")
|
||||
for i, b := range f.Blocks {
|
||||
v := b.dom
|
||||
fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
|
||||
// TODO(adonovan): improve appearance of edges
|
||||
// belonging to both dominator tree and CFG.
|
||||
|
||||
// Dominator tree edge.
|
||||
if i != 0 {
|
||||
fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre)
|
||||
}
|
||||
// CFG edges.
|
||||
for _, pred := range b.Preds {
|
||||
fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre)
|
||||
}
|
||||
}
|
||||
fmt.Fprintln(buf, "}")
|
||||
}
|
469
vendor/honnef.co/go/tools/ssa/emit.go
vendored
Normal file
469
vendor/honnef.co/go/tools/ssa/emit.go
vendored
Normal file
@ -0,0 +1,469 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// Helpers for emitting SSA instructions.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/ast"
|
||||
"go/token"
|
||||
"go/types"
|
||||
)
|
||||
|
||||
// emitNew emits to f a new (heap Alloc) instruction allocating an
|
||||
// object of type typ. pos is the optional source location.
|
||||
//
|
||||
func emitNew(f *Function, typ types.Type, pos token.Pos) *Alloc {
|
||||
v := &Alloc{Heap: true}
|
||||
v.setType(types.NewPointer(typ))
|
||||
v.setPos(pos)
|
||||
f.emit(v)
|
||||
return v
|
||||
}
|
||||
|
||||
// emitLoad emits to f an instruction to load the address addr into a
|
||||
// new temporary, and returns the value so defined.
|
||||
//
|
||||
func emitLoad(f *Function, addr Value) *UnOp {
|
||||
v := &UnOp{Op: token.MUL, X: addr}
|
||||
v.setType(deref(addr.Type()))
|
||||
f.emit(v)
|
||||
return v
|
||||
}
|
||||
|
||||
// emitDebugRef emits to f a DebugRef pseudo-instruction associating
|
||||
// expression e with value v.
|
||||
//
|
||||
func emitDebugRef(f *Function, e ast.Expr, v Value, isAddr bool) {
|
||||
if !f.debugInfo() {
|
||||
return // debugging not enabled
|
||||
}
|
||||
if v == nil || e == nil {
|
||||
panic("nil")
|
||||
}
|
||||
var obj types.Object
|
||||
e = unparen(e)
|
||||
if id, ok := e.(*ast.Ident); ok {
|
||||
if isBlankIdent(id) {
|
||||
return
|
||||
}
|
||||
obj = f.Pkg.objectOf(id)
|
||||
switch obj.(type) {
|
||||
case *types.Nil, *types.Const, *types.Builtin:
|
||||
return
|
||||
}
|
||||
}
|
||||
f.emit(&DebugRef{
|
||||
X: v,
|
||||
Expr: e,
|
||||
IsAddr: isAddr,
|
||||
object: obj,
|
||||
})
|
||||
}
|
||||
|
||||
// emitArith emits to f code to compute the binary operation op(x, y)
|
||||
// where op is an eager shift, logical or arithmetic operation.
|
||||
// (Use emitCompare() for comparisons and Builder.logicalBinop() for
|
||||
// non-eager operations.)
|
||||
//
|
||||
func emitArith(f *Function, op token.Token, x, y Value, t types.Type, pos token.Pos) Value {
|
||||
switch op {
|
||||
case token.SHL, token.SHR:
|
||||
x = emitConv(f, x, t)
|
||||
// y may be signed or an 'untyped' constant.
|
||||
// TODO(adonovan): whence signed values?
|
||||
if b, ok := y.Type().Underlying().(*types.Basic); ok && b.Info()&types.IsUnsigned == 0 {
|
||||
y = emitConv(f, y, types.Typ[types.Uint64])
|
||||
}
|
||||
|
||||
case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
|
||||
x = emitConv(f, x, t)
|
||||
y = emitConv(f, y, t)
|
||||
|
||||
default:
|
||||
panic("illegal op in emitArith: " + op.String())
|
||||
|
||||
}
|
||||
v := &BinOp{
|
||||
Op: op,
|
||||
X: x,
|
||||
Y: y,
|
||||
}
|
||||
v.setPos(pos)
|
||||
v.setType(t)
|
||||
return f.emit(v)
|
||||
}
|
||||
|
||||
// emitCompare emits to f code compute the boolean result of
|
||||
// comparison comparison 'x op y'.
|
||||
//
|
||||
func emitCompare(f *Function, op token.Token, x, y Value, pos token.Pos) Value {
|
||||
xt := x.Type().Underlying()
|
||||
yt := y.Type().Underlying()
|
||||
|
||||
// Special case to optimise a tagless SwitchStmt so that
|
||||
// these are equivalent
|
||||
// switch { case e: ...}
|
||||
// switch true { case e: ... }
|
||||
// if e==true { ... }
|
||||
// even in the case when e's type is an interface.
|
||||
// TODO(adonovan): opt: generalise to x==true, false!=y, etc.
|
||||
if x == vTrue && op == token.EQL {
|
||||
if yt, ok := yt.(*types.Basic); ok && yt.Info()&types.IsBoolean != 0 {
|
||||
return y
|
||||
}
|
||||
}
|
||||
|
||||
if types.Identical(xt, yt) {
|
||||
// no conversion necessary
|
||||
} else if _, ok := xt.(*types.Interface); ok {
|
||||
y = emitConv(f, y, x.Type())
|
||||
} else if _, ok := yt.(*types.Interface); ok {
|
||||
x = emitConv(f, x, y.Type())
|
||||
} else if _, ok := x.(*Const); ok {
|
||||
x = emitConv(f, x, y.Type())
|
||||
} else if _, ok := y.(*Const); ok {
|
||||
y = emitConv(f, y, x.Type())
|
||||
//lint:ignore SA9003 no-op
|
||||
} else {
|
||||
// other cases, e.g. channels. No-op.
|
||||
}
|
||||
|
||||
v := &BinOp{
|
||||
Op: op,
|
||||
X: x,
|
||||
Y: y,
|
||||
}
|
||||
v.setPos(pos)
|
||||
v.setType(tBool)
|
||||
return f.emit(v)
|
||||
}
|
||||
|
||||
// isValuePreserving returns true if a conversion from ut_src to
|
||||
// ut_dst is value-preserving, i.e. just a change of type.
|
||||
// Precondition: neither argument is a named type.
|
||||
//
|
||||
func isValuePreserving(ut_src, ut_dst types.Type) bool {
|
||||
// Identical underlying types?
|
||||
if structTypesIdentical(ut_dst, ut_src) {
|
||||
return true
|
||||
}
|
||||
|
||||
switch ut_dst.(type) {
|
||||
case *types.Chan:
|
||||
// Conversion between channel types?
|
||||
_, ok := ut_src.(*types.Chan)
|
||||
return ok
|
||||
|
||||
case *types.Pointer:
|
||||
// Conversion between pointers with identical base types?
|
||||
_, ok := ut_src.(*types.Pointer)
|
||||
return ok
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// emitConv emits to f code to convert Value val to exactly type typ,
|
||||
// and returns the converted value. Implicit conversions are required
|
||||
// by language assignability rules in assignments, parameter passing,
|
||||
// etc. Conversions cannot fail dynamically.
|
||||
//
|
||||
func emitConv(f *Function, val Value, typ types.Type) Value {
|
||||
t_src := val.Type()
|
||||
|
||||
// Identical types? Conversion is a no-op.
|
||||
if types.Identical(t_src, typ) {
|
||||
return val
|
||||
}
|
||||
|
||||
ut_dst := typ.Underlying()
|
||||
ut_src := t_src.Underlying()
|
||||
|
||||
// Just a change of type, but not value or representation?
|
||||
if isValuePreserving(ut_src, ut_dst) {
|
||||
c := &ChangeType{X: val}
|
||||
c.setType(typ)
|
||||
return f.emit(c)
|
||||
}
|
||||
|
||||
// Conversion to, or construction of a value of, an interface type?
|
||||
if _, ok := ut_dst.(*types.Interface); ok {
|
||||
// Assignment from one interface type to another?
|
||||
if _, ok := ut_src.(*types.Interface); ok {
|
||||
c := &ChangeInterface{X: val}
|
||||
c.setType(typ)
|
||||
return f.emit(c)
|
||||
}
|
||||
|
||||
// Untyped nil constant? Return interface-typed nil constant.
|
||||
if ut_src == tUntypedNil {
|
||||
return nilConst(typ)
|
||||
}
|
||||
|
||||
// Convert (non-nil) "untyped" literals to their default type.
|
||||
if t, ok := ut_src.(*types.Basic); ok && t.Info()&types.IsUntyped != 0 {
|
||||
val = emitConv(f, val, DefaultType(ut_src))
|
||||
}
|
||||
|
||||
f.Pkg.Prog.needMethodsOf(val.Type())
|
||||
mi := &MakeInterface{X: val}
|
||||
mi.setType(typ)
|
||||
return f.emit(mi)
|
||||
}
|
||||
|
||||
// Conversion of a compile-time constant value?
|
||||
if c, ok := val.(*Const); ok {
|
||||
if _, ok := ut_dst.(*types.Basic); ok || c.IsNil() {
|
||||
// Conversion of a compile-time constant to
|
||||
// another constant type results in a new
|
||||
// constant of the destination type and
|
||||
// (initially) the same abstract value.
|
||||
// We don't truncate the value yet.
|
||||
return NewConst(c.Value, typ)
|
||||
}
|
||||
|
||||
// We're converting from constant to non-constant type,
|
||||
// e.g. string -> []byte/[]rune.
|
||||
}
|
||||
|
||||
// A representation-changing conversion?
|
||||
// At least one of {ut_src,ut_dst} must be *Basic.
|
||||
// (The other may be []byte or []rune.)
|
||||
_, ok1 := ut_src.(*types.Basic)
|
||||
_, ok2 := ut_dst.(*types.Basic)
|
||||
if ok1 || ok2 {
|
||||
c := &Convert{X: val}
|
||||
c.setType(typ)
|
||||
return f.emit(c)
|
||||
}
|
||||
|
||||
panic(fmt.Sprintf("in %s: cannot convert %s (%s) to %s", f, val, val.Type(), typ))
|
||||
}
|
||||
|
||||
// emitStore emits to f an instruction to store value val at location
|
||||
// addr, applying implicit conversions as required by assignability rules.
|
||||
//
|
||||
func emitStore(f *Function, addr, val Value, pos token.Pos) *Store {
|
||||
s := &Store{
|
||||
Addr: addr,
|
||||
Val: emitConv(f, val, deref(addr.Type())),
|
||||
pos: pos,
|
||||
}
|
||||
f.emit(s)
|
||||
return s
|
||||
}
|
||||
|
||||
// emitJump emits to f a jump to target, and updates the control-flow graph.
|
||||
// Postcondition: f.currentBlock is nil.
|
||||
//
|
||||
func emitJump(f *Function, target *BasicBlock) {
|
||||
b := f.currentBlock
|
||||
b.emit(new(Jump))
|
||||
addEdge(b, target)
|
||||
f.currentBlock = nil
|
||||
}
|
||||
|
||||
// emitIf emits to f a conditional jump to tblock or fblock based on
|
||||
// cond, and updates the control-flow graph.
|
||||
// Postcondition: f.currentBlock is nil.
|
||||
//
|
||||
func emitIf(f *Function, cond Value, tblock, fblock *BasicBlock) {
|
||||
b := f.currentBlock
|
||||
b.emit(&If{Cond: cond})
|
||||
addEdge(b, tblock)
|
||||
addEdge(b, fblock)
|
||||
f.currentBlock = nil
|
||||
}
|
||||
|
||||
// emitExtract emits to f an instruction to extract the index'th
|
||||
// component of tuple. It returns the extracted value.
|
||||
//
|
||||
func emitExtract(f *Function, tuple Value, index int) Value {
|
||||
e := &Extract{Tuple: tuple, Index: index}
|
||||
e.setType(tuple.Type().(*types.Tuple).At(index).Type())
|
||||
return f.emit(e)
|
||||
}
|
||||
|
||||
// emitTypeAssert emits to f a type assertion value := x.(t) and
|
||||
// returns the value. x.Type() must be an interface.
|
||||
//
|
||||
func emitTypeAssert(f *Function, x Value, t types.Type, pos token.Pos) Value {
|
||||
a := &TypeAssert{X: x, AssertedType: t}
|
||||
a.setPos(pos)
|
||||
a.setType(t)
|
||||
return f.emit(a)
|
||||
}
|
||||
|
||||
// emitTypeTest emits to f a type test value,ok := x.(t) and returns
|
||||
// a (value, ok) tuple. x.Type() must be an interface.
|
||||
//
|
||||
func emitTypeTest(f *Function, x Value, t types.Type, pos token.Pos) Value {
|
||||
a := &TypeAssert{
|
||||
X: x,
|
||||
AssertedType: t,
|
||||
CommaOk: true,
|
||||
}
|
||||
a.setPos(pos)
|
||||
a.setType(types.NewTuple(
|
||||
newVar("value", t),
|
||||
varOk,
|
||||
))
|
||||
return f.emit(a)
|
||||
}
|
||||
|
||||
// emitTailCall emits to f a function call in tail position. The
|
||||
// caller is responsible for all fields of 'call' except its type.
|
||||
// Intended for wrapper methods.
|
||||
// Precondition: f does/will not use deferred procedure calls.
|
||||
// Postcondition: f.currentBlock is nil.
|
||||
//
|
||||
func emitTailCall(f *Function, call *Call) {
|
||||
tresults := f.Signature.Results()
|
||||
nr := tresults.Len()
|
||||
if nr == 1 {
|
||||
call.typ = tresults.At(0).Type()
|
||||
} else {
|
||||
call.typ = tresults
|
||||
}
|
||||
tuple := f.emit(call)
|
||||
var ret Return
|
||||
switch nr {
|
||||
case 0:
|
||||
// no-op
|
||||
case 1:
|
||||
ret.Results = []Value{tuple}
|
||||
default:
|
||||
for i := 0; i < nr; i++ {
|
||||
v := emitExtract(f, tuple, i)
|
||||
// TODO(adonovan): in principle, this is required:
|
||||
// v = emitConv(f, o.Type, f.Signature.Results[i].Type)
|
||||
// but in practice emitTailCall is only used when
|
||||
// the types exactly match.
|
||||
ret.Results = append(ret.Results, v)
|
||||
}
|
||||
}
|
||||
f.emit(&ret)
|
||||
f.currentBlock = nil
|
||||
}
|
||||
|
||||
// emitImplicitSelections emits to f code to apply the sequence of
|
||||
// implicit field selections specified by indices to base value v, and
|
||||
// returns the selected value.
|
||||
//
|
||||
// If v is the address of a struct, the result will be the address of
|
||||
// a field; if it is the value of a struct, the result will be the
|
||||
// value of a field.
|
||||
//
|
||||
func emitImplicitSelections(f *Function, v Value, indices []int) Value {
|
||||
for _, index := range indices {
|
||||
fld := deref(v.Type()).Underlying().(*types.Struct).Field(index)
|
||||
|
||||
if isPointer(v.Type()) {
|
||||
instr := &FieldAddr{
|
||||
X: v,
|
||||
Field: index,
|
||||
}
|
||||
instr.setType(types.NewPointer(fld.Type()))
|
||||
v = f.emit(instr)
|
||||
// Load the field's value iff indirectly embedded.
|
||||
if isPointer(fld.Type()) {
|
||||
v = emitLoad(f, v)
|
||||
}
|
||||
} else {
|
||||
instr := &Field{
|
||||
X: v,
|
||||
Field: index,
|
||||
}
|
||||
instr.setType(fld.Type())
|
||||
v = f.emit(instr)
|
||||
}
|
||||
}
|
||||
return v
|
||||
}
|
||||
|
||||
// emitFieldSelection emits to f code to select the index'th field of v.
|
||||
//
|
||||
// If wantAddr, the input must be a pointer-to-struct and the result
|
||||
// will be the field's address; otherwise the result will be the
|
||||
// field's value.
|
||||
// Ident id is used for position and debug info.
|
||||
//
|
||||
func emitFieldSelection(f *Function, v Value, index int, wantAddr bool, id *ast.Ident) Value {
|
||||
fld := deref(v.Type()).Underlying().(*types.Struct).Field(index)
|
||||
if isPointer(v.Type()) {
|
||||
instr := &FieldAddr{
|
||||
X: v,
|
||||
Field: index,
|
||||
}
|
||||
instr.setPos(id.Pos())
|
||||
instr.setType(types.NewPointer(fld.Type()))
|
||||
v = f.emit(instr)
|
||||
// Load the field's value iff we don't want its address.
|
||||
if !wantAddr {
|
||||
v = emitLoad(f, v)
|
||||
}
|
||||
} else {
|
||||
instr := &Field{
|
||||
X: v,
|
||||
Field: index,
|
||||
}
|
||||
instr.setPos(id.Pos())
|
||||
instr.setType(fld.Type())
|
||||
v = f.emit(instr)
|
||||
}
|
||||
emitDebugRef(f, id, v, wantAddr)
|
||||
return v
|
||||
}
|
||||
|
||||
// zeroValue emits to f code to produce a zero value of type t,
|
||||
// and returns it.
|
||||
//
|
||||
func zeroValue(f *Function, t types.Type) Value {
|
||||
switch t.Underlying().(type) {
|
||||
case *types.Struct, *types.Array:
|
||||
return emitLoad(f, f.addLocal(t, token.NoPos))
|
||||
default:
|
||||
return zeroConst(t)
|
||||
}
|
||||
}
|
||||
|
||||
// createRecoverBlock emits to f a block of code to return after a
|
||||
// recovered panic, and sets f.Recover to it.
|
||||
//
|
||||
// If f's result parameters are named, the code loads and returns
|
||||
// their current values, otherwise it returns the zero values of their
|
||||
// type.
|
||||
//
|
||||
// Idempotent.
|
||||
//
|
||||
func createRecoverBlock(f *Function) {
|
||||
if f.Recover != nil {
|
||||
return // already created
|
||||
}
|
||||
saved := f.currentBlock
|
||||
|
||||
f.Recover = f.newBasicBlock("recover")
|
||||
f.currentBlock = f.Recover
|
||||
|
||||
var results []Value
|
||||
if f.namedResults != nil {
|
||||
// Reload NRPs to form value tuple.
|
||||
for _, r := range f.namedResults {
|
||||
results = append(results, emitLoad(f, r))
|
||||
}
|
||||
} else {
|
||||
R := f.Signature.Results()
|
||||
for i, n := 0, R.Len(); i < n; i++ {
|
||||
T := R.At(i).Type()
|
||||
|
||||
// Return zero value of each result type.
|
||||
results = append(results, zeroValue(f, T))
|
||||
}
|
||||
}
|
||||
f.emit(&Return{Results: results})
|
||||
|
||||
f.currentBlock = saved
|
||||
}
|
765
vendor/honnef.co/go/tools/ssa/func.go
vendored
Normal file
765
vendor/honnef.co/go/tools/ssa/func.go
vendored
Normal file
@ -0,0 +1,765 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file implements the Function and BasicBlock types.
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"go/ast"
|
||||
"go/token"
|
||||
"go/types"
|
||||
"io"
|
||||
"os"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// addEdge adds a control-flow graph edge from from to to.
|
||||
func addEdge(from, to *BasicBlock) {
|
||||
from.Succs = append(from.Succs, to)
|
||||
to.Preds = append(to.Preds, from)
|
||||
}
|
||||
|
||||
// Parent returns the function that contains block b.
|
||||
func (b *BasicBlock) Parent() *Function { return b.parent }
|
||||
|
||||
// String returns a human-readable label of this block.
|
||||
// It is not guaranteed unique within the function.
|
||||
//
|
||||
func (b *BasicBlock) String() string {
|
||||
return fmt.Sprintf("%d", b.Index)
|
||||
}
|
||||
|
||||
// emit appends an instruction to the current basic block.
|
||||
// If the instruction defines a Value, it is returned.
|
||||
//
|
||||
func (b *BasicBlock) emit(i Instruction) Value {
|
||||
i.setBlock(b)
|
||||
b.Instrs = append(b.Instrs, i)
|
||||
v, _ := i.(Value)
|
||||
return v
|
||||
}
|
||||
|
||||
// predIndex returns the i such that b.Preds[i] == c or panics if
|
||||
// there is none.
|
||||
func (b *BasicBlock) predIndex(c *BasicBlock) int {
|
||||
for i, pred := range b.Preds {
|
||||
if pred == c {
|
||||
return i
|
||||
}
|
||||
}
|
||||
panic(fmt.Sprintf("no edge %s -> %s", c, b))
|
||||
}
|
||||
|
||||
// hasPhi returns true if b.Instrs contains φ-nodes.
|
||||
func (b *BasicBlock) hasPhi() bool {
|
||||
_, ok := b.Instrs[0].(*Phi)
|
||||
return ok
|
||||
}
|
||||
|
||||
func (b *BasicBlock) Phis() []Instruction {
|
||||
return b.phis()
|
||||
}
|
||||
|
||||
// phis returns the prefix of b.Instrs containing all the block's φ-nodes.
|
||||
func (b *BasicBlock) phis() []Instruction {
|
||||
for i, instr := range b.Instrs {
|
||||
if _, ok := instr.(*Phi); !ok {
|
||||
return b.Instrs[:i]
|
||||
}
|
||||
}
|
||||
return nil // unreachable in well-formed blocks
|
||||
}
|
||||
|
||||
// replacePred replaces all occurrences of p in b's predecessor list with q.
|
||||
// Ordinarily there should be at most one.
|
||||
//
|
||||
func (b *BasicBlock) replacePred(p, q *BasicBlock) {
|
||||
for i, pred := range b.Preds {
|
||||
if pred == p {
|
||||
b.Preds[i] = q
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// replaceSucc replaces all occurrences of p in b's successor list with q.
|
||||
// Ordinarily there should be at most one.
|
||||
//
|
||||
func (b *BasicBlock) replaceSucc(p, q *BasicBlock) {
|
||||
for i, succ := range b.Succs {
|
||||
if succ == p {
|
||||
b.Succs[i] = q
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (b *BasicBlock) RemovePred(p *BasicBlock) {
|
||||
b.removePred(p)
|
||||
}
|
||||
|
||||
// removePred removes all occurrences of p in b's
|
||||
// predecessor list and φ-nodes.
|
||||
// Ordinarily there should be at most one.
|
||||
//
|
||||
func (b *BasicBlock) removePred(p *BasicBlock) {
|
||||
phis := b.phis()
|
||||
|
||||
// We must preserve edge order for φ-nodes.
|
||||
j := 0
|
||||
for i, pred := range b.Preds {
|
||||
if pred != p {
|
||||
b.Preds[j] = b.Preds[i]
|
||||
// Strike out φ-edge too.
|
||||
for _, instr := range phis {
|
||||
phi := instr.(*Phi)
|
||||
phi.Edges[j] = phi.Edges[i]
|
||||
}
|
||||
j++
|
||||
}
|
||||
}
|
||||
// Nil out b.Preds[j:] and φ-edges[j:] to aid GC.
|
||||
for i := j; i < len(b.Preds); i++ {
|
||||
b.Preds[i] = nil
|
||||
for _, instr := range phis {
|
||||
instr.(*Phi).Edges[i] = nil
|
||||
}
|
||||
}
|
||||
b.Preds = b.Preds[:j]
|
||||
for _, instr := range phis {
|
||||
phi := instr.(*Phi)
|
||||
phi.Edges = phi.Edges[:j]
|
||||
}
|
||||
}
|
||||
|
||||
// Destinations associated with unlabelled for/switch/select stmts.
|
||||
// We push/pop one of these as we enter/leave each construct and for
|
||||
// each BranchStmt we scan for the innermost target of the right type.
|
||||
//
|
||||
type targets struct {
|
||||
tail *targets // rest of stack
|
||||
_break *BasicBlock
|
||||
_continue *BasicBlock
|
||||
_fallthrough *BasicBlock
|
||||
}
|
||||
|
||||
// Destinations associated with a labelled block.
|
||||
// We populate these as labels are encountered in forward gotos or
|
||||
// labelled statements.
|
||||
//
|
||||
type lblock struct {
|
||||
_goto *BasicBlock
|
||||
_break *BasicBlock
|
||||
_continue *BasicBlock
|
||||
}
|
||||
|
||||
// labelledBlock returns the branch target associated with the
|
||||
// specified label, creating it if needed.
|
||||
//
|
||||
func (f *Function) labelledBlock(label *ast.Ident) *lblock {
|
||||
lb := f.lblocks[label.Obj]
|
||||
if lb == nil {
|
||||
lb = &lblock{_goto: f.newBasicBlock(label.Name)}
|
||||
if f.lblocks == nil {
|
||||
f.lblocks = make(map[*ast.Object]*lblock)
|
||||
}
|
||||
f.lblocks[label.Obj] = lb
|
||||
}
|
||||
return lb
|
||||
}
|
||||
|
||||
// addParam adds a (non-escaping) parameter to f.Params of the
|
||||
// specified name, type and source position.
|
||||
//
|
||||
func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter {
|
||||
v := &Parameter{
|
||||
name: name,
|
||||
typ: typ,
|
||||
pos: pos,
|
||||
parent: f,
|
||||
}
|
||||
f.Params = append(f.Params, v)
|
||||
return v
|
||||
}
|
||||
|
||||
func (f *Function) addParamObj(obj types.Object) *Parameter {
|
||||
name := obj.Name()
|
||||
if name == "" {
|
||||
name = fmt.Sprintf("arg%d", len(f.Params))
|
||||
}
|
||||
param := f.addParam(name, obj.Type(), obj.Pos())
|
||||
param.object = obj
|
||||
return param
|
||||
}
|
||||
|
||||
// addSpilledParam declares a parameter that is pre-spilled to the
|
||||
// stack; the function body will load/store the spilled location.
|
||||
// Subsequent lifting will eliminate spills where possible.
|
||||
//
|
||||
func (f *Function) addSpilledParam(obj types.Object) {
|
||||
param := f.addParamObj(obj)
|
||||
spill := &Alloc{Comment: obj.Name()}
|
||||
spill.setType(types.NewPointer(obj.Type()))
|
||||
spill.setPos(obj.Pos())
|
||||
f.objects[obj] = spill
|
||||
f.Locals = append(f.Locals, spill)
|
||||
f.emit(spill)
|
||||
f.emit(&Store{Addr: spill, Val: param})
|
||||
}
|
||||
|
||||
// startBody initializes the function prior to generating SSA code for its body.
|
||||
// Precondition: f.Type() already set.
|
||||
//
|
||||
func (f *Function) startBody() {
|
||||
f.currentBlock = f.newBasicBlock("entry")
|
||||
f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init
|
||||
}
|
||||
|
||||
// createSyntacticParams populates f.Params and generates code (spills
|
||||
// and named result locals) for all the parameters declared in the
|
||||
// syntax. In addition it populates the f.objects mapping.
|
||||
//
|
||||
// Preconditions:
|
||||
// f.startBody() was called.
|
||||
// Postcondition:
|
||||
// len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
|
||||
//
|
||||
func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) {
|
||||
// Receiver (at most one inner iteration).
|
||||
if recv != nil {
|
||||
for _, field := range recv.List {
|
||||
for _, n := range field.Names {
|
||||
f.addSpilledParam(f.Pkg.info.Defs[n])
|
||||
}
|
||||
// Anonymous receiver? No need to spill.
|
||||
if field.Names == nil {
|
||||
f.addParamObj(f.Signature.Recv())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Parameters.
|
||||
if functype.Params != nil {
|
||||
n := len(f.Params) // 1 if has recv, 0 otherwise
|
||||
for _, field := range functype.Params.List {
|
||||
for _, n := range field.Names {
|
||||
f.addSpilledParam(f.Pkg.info.Defs[n])
|
||||
}
|
||||
// Anonymous parameter? No need to spill.
|
||||
if field.Names == nil {
|
||||
f.addParamObj(f.Signature.Params().At(len(f.Params) - n))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Named results.
|
||||
if functype.Results != nil {
|
||||
for _, field := range functype.Results.List {
|
||||
// Implicit "var" decl of locals for named results.
|
||||
for _, n := range field.Names {
|
||||
f.namedResults = append(f.namedResults, f.addLocalForIdent(n))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// numberRegisters assigns numbers to all SSA registers
|
||||
// (value-defining Instructions) in f, to aid debugging.
|
||||
// (Non-Instruction Values are named at construction.)
|
||||
//
|
||||
func numberRegisters(f *Function) {
|
||||
v := 0
|
||||
for _, b := range f.Blocks {
|
||||
for _, instr := range b.Instrs {
|
||||
switch instr.(type) {
|
||||
case Value:
|
||||
instr.(interface {
|
||||
setNum(int)
|
||||
}).setNum(v)
|
||||
v++
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// buildReferrers populates the def/use information in all non-nil
|
||||
// Value.Referrers slice.
|
||||
// Precondition: all such slices are initially empty.
|
||||
func buildReferrers(f *Function) {
|
||||
var rands []*Value
|
||||
for _, b := range f.Blocks {
|
||||
for _, instr := range b.Instrs {
|
||||
rands = instr.Operands(rands[:0]) // recycle storage
|
||||
for _, rand := range rands {
|
||||
if r := *rand; r != nil {
|
||||
if ref := r.Referrers(); ref != nil {
|
||||
*ref = append(*ref, instr)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// finishBody() finalizes the function after SSA code generation of its body.
|
||||
func (f *Function) finishBody() {
|
||||
f.objects = nil
|
||||
f.currentBlock = nil
|
||||
f.lblocks = nil
|
||||
|
||||
// Don't pin the AST in memory (except in debug mode).
|
||||
if n := f.syntax; n != nil && !f.debugInfo() {
|
||||
f.syntax = extentNode{n.Pos(), n.End()}
|
||||
}
|
||||
|
||||
// Remove from f.Locals any Allocs that escape to the heap.
|
||||
j := 0
|
||||
for _, l := range f.Locals {
|
||||
if !l.Heap {
|
||||
f.Locals[j] = l
|
||||
j++
|
||||
}
|
||||
}
|
||||
// Nil out f.Locals[j:] to aid GC.
|
||||
for i := j; i < len(f.Locals); i++ {
|
||||
f.Locals[i] = nil
|
||||
}
|
||||
f.Locals = f.Locals[:j]
|
||||
|
||||
// comma-ok receiving from a time.Tick channel will never return
|
||||
// ok == false, so any branching on the value of ok can be
|
||||
// replaced with an unconditional jump. This will primarily match
|
||||
// `for range time.Tick(x)` loops, but it can also match
|
||||
// user-written code.
|
||||
for _, block := range f.Blocks {
|
||||
if len(block.Instrs) < 3 {
|
||||
continue
|
||||
}
|
||||
if len(block.Succs) != 2 {
|
||||
continue
|
||||
}
|
||||
var instrs []*Instruction
|
||||
for i, ins := range block.Instrs {
|
||||
if _, ok := ins.(*DebugRef); ok {
|
||||
continue
|
||||
}
|
||||
instrs = append(instrs, &block.Instrs[i])
|
||||
}
|
||||
|
||||
for i, ins := range instrs {
|
||||
unop, ok := (*ins).(*UnOp)
|
||||
if !ok || unop.Op != token.ARROW {
|
||||
continue
|
||||
}
|
||||
call, ok := unop.X.(*Call)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
if call.Common().IsInvoke() {
|
||||
continue
|
||||
}
|
||||
|
||||
// OPT(dh): surely there is a more efficient way of doing
|
||||
// this, than using FullName. We should already have
|
||||
// resolved time.Tick somewhere?
|
||||
v, ok := call.Common().Value.(*Function)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
t, ok := v.Object().(*types.Func)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
if t.FullName() != "time.Tick" {
|
||||
continue
|
||||
}
|
||||
ex, ok := (*instrs[i+1]).(*Extract)
|
||||
if !ok || ex.Tuple != unop || ex.Index != 1 {
|
||||
continue
|
||||
}
|
||||
|
||||
ifstmt, ok := (*instrs[i+2]).(*If)
|
||||
if !ok || ifstmt.Cond != ex {
|
||||
continue
|
||||
}
|
||||
|
||||
*instrs[i+2] = NewJump(block)
|
||||
succ := block.Succs[1]
|
||||
block.Succs = block.Succs[0:1]
|
||||
succ.RemovePred(block)
|
||||
}
|
||||
}
|
||||
|
||||
optimizeBlocks(f)
|
||||
|
||||
buildReferrers(f)
|
||||
|
||||
buildDomTree(f)
|
||||
|
||||
if f.Prog.mode&NaiveForm == 0 {
|
||||
// For debugging pre-state of lifting pass:
|
||||
// numberRegisters(f)
|
||||
// f.WriteTo(os.Stderr)
|
||||
lift(f)
|
||||
}
|
||||
|
||||
f.namedResults = nil // (used by lifting)
|
||||
|
||||
numberRegisters(f)
|
||||
|
||||
if f.Prog.mode&PrintFunctions != 0 {
|
||||
printMu.Lock()
|
||||
f.WriteTo(os.Stdout)
|
||||
printMu.Unlock()
|
||||
}
|
||||
|
||||
if f.Prog.mode&SanityCheckFunctions != 0 {
|
||||
mustSanityCheck(f, nil)
|
||||
}
|
||||
}
|
||||
|
||||
func (f *Function) RemoveNilBlocks() {
|
||||
f.removeNilBlocks()
|
||||
}
|
||||
|
||||
// removeNilBlocks eliminates nils from f.Blocks and updates each
|
||||
// BasicBlock.Index. Use this after any pass that may delete blocks.
|
||||
//
|
||||
func (f *Function) removeNilBlocks() {
|
||||
j := 0
|
||||
for _, b := range f.Blocks {
|
||||
if b != nil {
|
||||
b.Index = j
|
||||
f.Blocks[j] = b
|
||||
j++
|
||||
}
|
||||
}
|
||||
// Nil out f.Blocks[j:] to aid GC.
|
||||
for i := j; i < len(f.Blocks); i++ {
|
||||
f.Blocks[i] = nil
|
||||
}
|
||||
f.Blocks = f.Blocks[:j]
|
||||
}
|
||||
|
||||
// SetDebugMode sets the debug mode for package pkg. If true, all its
|
||||
// functions will include full debug info. This greatly increases the
|
||||
// size of the instruction stream, and causes Functions to depend upon
|
||||
// the ASTs, potentially keeping them live in memory for longer.
|
||||
//
|
||||
func (pkg *Package) SetDebugMode(debug bool) {
|
||||
// TODO(adonovan): do we want ast.File granularity?
|
||||
pkg.debug = debug
|
||||
}
|
||||
|
||||
// debugInfo reports whether debug info is wanted for this function.
|
||||
func (f *Function) debugInfo() bool {
|
||||
return f.Pkg != nil && f.Pkg.debug
|
||||
}
|
||||
|
||||
// addNamedLocal creates a local variable, adds it to function f and
|
||||
// returns it. Its name and type are taken from obj. Subsequent
|
||||
// calls to f.lookup(obj) will return the same local.
|
||||
//
|
||||
func (f *Function) addNamedLocal(obj types.Object) *Alloc {
|
||||
l := f.addLocal(obj.Type(), obj.Pos())
|
||||
l.Comment = obj.Name()
|
||||
f.objects[obj] = l
|
||||
return l
|
||||
}
|
||||
|
||||
func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc {
|
||||
return f.addNamedLocal(f.Pkg.info.Defs[id])
|
||||
}
|
||||
|
||||
// addLocal creates an anonymous local variable of type typ, adds it
|
||||
// to function f and returns it. pos is the optional source location.
|
||||
//
|
||||
func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc {
|
||||
v := &Alloc{}
|
||||
v.setType(types.NewPointer(typ))
|
||||
v.setPos(pos)
|
||||
f.Locals = append(f.Locals, v)
|
||||
f.emit(v)
|
||||
return v
|
||||
}
|
||||
|
||||
// lookup returns the address of the named variable identified by obj
|
||||
// that is local to function f or one of its enclosing functions.
|
||||
// If escaping, the reference comes from a potentially escaping pointer
|
||||
// expression and the referent must be heap-allocated.
|
||||
//
|
||||
func (f *Function) lookup(obj types.Object, escaping bool) Value {
|
||||
if v, ok := f.objects[obj]; ok {
|
||||
if alloc, ok := v.(*Alloc); ok && escaping {
|
||||
alloc.Heap = true
|
||||
}
|
||||
return v // function-local var (address)
|
||||
}
|
||||
|
||||
// Definition must be in an enclosing function;
|
||||
// plumb it through intervening closures.
|
||||
if f.parent == nil {
|
||||
panic("no ssa.Value for " + obj.String())
|
||||
}
|
||||
outer := f.parent.lookup(obj, true) // escaping
|
||||
v := &FreeVar{
|
||||
name: obj.Name(),
|
||||
typ: outer.Type(),
|
||||
pos: outer.Pos(),
|
||||
outer: outer,
|
||||
parent: f,
|
||||
}
|
||||
f.objects[obj] = v
|
||||
f.FreeVars = append(f.FreeVars, v)
|
||||
return v
|
||||
}
|
||||
|
||||
// emit emits the specified instruction to function f.
|
||||
func (f *Function) emit(instr Instruction) Value {
|
||||
return f.currentBlock.emit(instr)
|
||||
}
|
||||
|
||||
// RelString returns the full name of this function, qualified by
|
||||
// package name, receiver type, etc.
|
||||
//
|
||||
// The specific formatting rules are not guaranteed and may change.
|
||||
//
|
||||
// Examples:
|
||||
// "math.IsNaN" // a package-level function
|
||||
// "(*bytes.Buffer).Bytes" // a declared method or a wrapper
|
||||
// "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0)
|
||||
// "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure)
|
||||
// "main.main$1" // an anonymous function in main
|
||||
// "main.init#1" // a declared init function
|
||||
// "main.init" // the synthesized package initializer
|
||||
//
|
||||
// When these functions are referred to from within the same package
|
||||
// (i.e. from == f.Pkg.Object), they are rendered without the package path.
|
||||
// For example: "IsNaN", "(*Buffer).Bytes", etc.
|
||||
//
|
||||
// All non-synthetic functions have distinct package-qualified names.
|
||||
// (But two methods may have the same name "(T).f" if one is a synthetic
|
||||
// wrapper promoting a non-exported method "f" from another package; in
|
||||
// that case, the strings are equal but the identifiers "f" are distinct.)
|
||||
//
|
||||
func (f *Function) RelString(from *types.Package) string {
|
||||
// Anonymous?
|
||||
if f.parent != nil {
|
||||
// An anonymous function's Name() looks like "parentName$1",
|
||||
// but its String() should include the type/package/etc.
|
||||
parent := f.parent.RelString(from)
|
||||
for i, anon := range f.parent.AnonFuncs {
|
||||
if anon == f {
|
||||
return fmt.Sprintf("%s$%d", parent, 1+i)
|
||||
}
|
||||
}
|
||||
|
||||
return f.name // should never happen
|
||||
}
|
||||
|
||||
// Method (declared or wrapper)?
|
||||
if recv := f.Signature.Recv(); recv != nil {
|
||||
return f.relMethod(from, recv.Type())
|
||||
}
|
||||
|
||||
// Thunk?
|
||||
if f.method != nil {
|
||||
return f.relMethod(from, f.method.Recv())
|
||||
}
|
||||
|
||||
// Bound?
|
||||
if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") {
|
||||
return f.relMethod(from, f.FreeVars[0].Type())
|
||||
}
|
||||
|
||||
// Package-level function?
|
||||
// Prefix with package name for cross-package references only.
|
||||
if p := f.pkg(); p != nil && p != from {
|
||||
return fmt.Sprintf("%s.%s", p.Path(), f.name)
|
||||
}
|
||||
|
||||
// Unknown.
|
||||
return f.name
|
||||
}
|
||||
|
||||
func (f *Function) relMethod(from *types.Package, recv types.Type) string {
|
||||
return fmt.Sprintf("(%s).%s", relType(recv, from), f.name)
|
||||
}
|
||||
|
||||
// writeSignature writes to buf the signature sig in declaration syntax.
|
||||
func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) {
|
||||
buf.WriteString("func ")
|
||||
if recv := sig.Recv(); recv != nil {
|
||||
buf.WriteString("(")
|
||||
if n := params[0].Name(); n != "" {
|
||||
buf.WriteString(n)
|
||||
buf.WriteString(" ")
|
||||
}
|
||||
types.WriteType(buf, params[0].Type(), types.RelativeTo(from))
|
||||
buf.WriteString(") ")
|
||||
}
|
||||
buf.WriteString(name)
|
||||
types.WriteSignature(buf, sig, types.RelativeTo(from))
|
||||
}
|
||||
|
||||
func (f *Function) pkg() *types.Package {
|
||||
if f.Pkg != nil {
|
||||
return f.Pkg.Pkg
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer
|
||||
|
||||
func (f *Function) WriteTo(w io.Writer) (int64, error) {
|
||||
var buf bytes.Buffer
|
||||
WriteFunction(&buf, f)
|
||||
n, err := w.Write(buf.Bytes())
|
||||
return int64(n), err
|
||||
}
|
||||
|
||||
// WriteFunction writes to buf a human-readable "disassembly" of f.
|
||||
func WriteFunction(buf *bytes.Buffer, f *Function) {
|
||||
fmt.Fprintf(buf, "# Name: %s\n", f.String())
|
||||
if f.Pkg != nil {
|
||||
fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path())
|
||||
}
|
||||
if syn := f.Synthetic; syn != "" {
|
||||
fmt.Fprintln(buf, "# Synthetic:", syn)
|
||||
}
|
||||
if pos := f.Pos(); pos.IsValid() {
|
||||
fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos))
|
||||
}
|
||||
|
||||
if f.parent != nil {
|
||||
fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name())
|
||||
}
|
||||
|
||||
if f.Recover != nil {
|
||||
fmt.Fprintf(buf, "# Recover: %s\n", f.Recover)
|
||||
}
|
||||
|
||||
from := f.pkg()
|
||||
|
||||
if f.FreeVars != nil {
|
||||
buf.WriteString("# Free variables:\n")
|
||||
for i, fv := range f.FreeVars {
|
||||
fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from))
|
||||
}
|
||||
}
|
||||
|
||||
if len(f.Locals) > 0 {
|
||||
buf.WriteString("# Locals:\n")
|
||||
for i, l := range f.Locals {
|
||||
fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from))
|
||||
}
|
||||
}
|
||||
writeSignature(buf, from, f.Name(), f.Signature, f.Params)
|
||||
buf.WriteString(":\n")
|
||||
|
||||
if f.Blocks == nil {
|
||||
buf.WriteString("\t(external)\n")
|
||||
}
|
||||
|
||||
// NB. column calculations are confused by non-ASCII
|
||||
// characters and assume 8-space tabs.
|
||||
const punchcard = 80 // for old time's sake.
|
||||
const tabwidth = 8
|
||||
for _, b := range f.Blocks {
|
||||
if b == nil {
|
||||
// Corrupt CFG.
|
||||
fmt.Fprintf(buf, ".nil:\n")
|
||||
continue
|
||||
}
|
||||
n, _ := fmt.Fprintf(buf, "%d:", b.Index)
|
||||
bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs))
|
||||
fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg)
|
||||
|
||||
if false { // CFG debugging
|
||||
fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
|
||||
}
|
||||
for _, instr := range b.Instrs {
|
||||
buf.WriteString("\t")
|
||||
switch v := instr.(type) {
|
||||
case Value:
|
||||
l := punchcard - tabwidth
|
||||
// Left-align the instruction.
|
||||
if name := v.Name(); name != "" {
|
||||
n, _ := fmt.Fprintf(buf, "%s = ", name)
|
||||
l -= n
|
||||
}
|
||||
n, _ := buf.WriteString(instr.String())
|
||||
l -= n
|
||||
// Right-align the type if there's space.
|
||||
if t := v.Type(); t != nil {
|
||||
buf.WriteByte(' ')
|
||||
ts := relType(t, from)
|
||||
l -= len(ts) + len(" ") // (spaces before and after type)
|
||||
if l > 0 {
|
||||
fmt.Fprintf(buf, "%*s", l, "")
|
||||
}
|
||||
buf.WriteString(ts)
|
||||
}
|
||||
case nil:
|
||||
// Be robust against bad transforms.
|
||||
buf.WriteString("<deleted>")
|
||||
default:
|
||||
buf.WriteString(instr.String())
|
||||
}
|
||||
buf.WriteString("\n")
|
||||
}
|
||||
}
|
||||
fmt.Fprintf(buf, "\n")
|
||||
}
|
||||
|
||||
// newBasicBlock adds to f a new basic block and returns it. It does
|
||||
// not automatically become the current block for subsequent calls to emit.
|
||||
// comment is an optional string for more readable debugging output.
|
||||
//
|
||||
func (f *Function) newBasicBlock(comment string) *BasicBlock {
|
||||
b := &BasicBlock{
|
||||
Index: len(f.Blocks),
|
||||
Comment: comment,
|
||||
parent: f,
|
||||
}
|
||||
b.Succs = b.succs2[:0]
|
||||
f.Blocks = append(f.Blocks, b)
|
||||
return b
|
||||
}
|
||||
|
||||
// NewFunction returns a new synthetic Function instance belonging to
|
||||
// prog, with its name and signature fields set as specified.
|
||||
//
|
||||
// The caller is responsible for initializing the remaining fields of
|
||||
// the function object, e.g. Pkg, Params, Blocks.
|
||||
//
|
||||
// It is practically impossible for clients to construct well-formed
|
||||
// SSA functions/packages/programs directly, so we assume this is the
|
||||
// job of the Builder alone. NewFunction exists to provide clients a
|
||||
// little flexibility. For example, analysis tools may wish to
|
||||
// construct fake Functions for the root of the callgraph, a fake
|
||||
// "reflect" package, etc.
|
||||
//
|
||||
// TODO(adonovan): think harder about the API here.
|
||||
//
|
||||
func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function {
|
||||
return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance}
|
||||
}
|
||||
|
||||
type extentNode [2]token.Pos
|
||||
|
||||
func (n extentNode) Pos() token.Pos { return n[0] }
|
||||
func (n extentNode) End() token.Pos { return n[1] }
|
||||
|
||||
// Syntax returns an ast.Node whose Pos/End methods provide the
|
||||
// lexical extent of the function if it was defined by Go source code
|
||||
// (f.Synthetic==""), or nil otherwise.
|
||||
//
|
||||
// If f was built with debug information (see Package.SetDebugRef),
|
||||
// the result is the *ast.FuncDecl or *ast.FuncLit that declared the
|
||||
// function. Otherwise, it is an opaque Node providing only position
|
||||
// information; this avoids pinning the AST in memory.
|
||||
//
|
||||
func (f *Function) Syntax() ast.Node { return f.syntax }
|
7
vendor/honnef.co/go/tools/ssa/identical.go
vendored
Normal file
7
vendor/honnef.co/go/tools/ssa/identical.go
vendored
Normal file
@ -0,0 +1,7 @@
|
||||
// +build go1.8
|
||||
|
||||
package ssa
|
||||
|
||||
import "go/types"
|
||||
|
||||
var structTypesIdentical = types.IdenticalIgnoreTags
|
7
vendor/honnef.co/go/tools/ssa/identical_17.go
vendored
Normal file
7
vendor/honnef.co/go/tools/ssa/identical_17.go
vendored
Normal file
@ -0,0 +1,7 @@
|
||||
// +build !go1.8
|
||||
|
||||
package ssa
|
||||
|
||||
import "go/types"
|
||||
|
||||
var structTypesIdentical = types.Identical
|
657
vendor/honnef.co/go/tools/ssa/lift.go
vendored
Normal file
657
vendor/honnef.co/go/tools/ssa/lift.go
vendored
Normal file
@ -0,0 +1,657 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file defines the lifting pass which tries to "lift" Alloc
|
||||
// cells (new/local variables) into SSA registers, replacing loads
|
||||
// with the dominating stored value, eliminating loads and stores, and
|
||||
// inserting φ-nodes as needed.
|
||||
|
||||
// Cited papers and resources:
|
||||
//
|
||||
// Ron Cytron et al. 1991. Efficiently computing SSA form...
|
||||
// http://doi.acm.org/10.1145/115372.115320
|
||||
//
|
||||
// Cooper, Harvey, Kennedy. 2001. A Simple, Fast Dominance Algorithm.
|
||||
// Software Practice and Experience 2001, 4:1-10.
|
||||
// http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
|
||||
//
|
||||
// Daniel Berlin, llvmdev mailing list, 2012.
|
||||
// http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-January/046638.html
|
||||
// (Be sure to expand the whole thread.)
|
||||
|
||||
// TODO(adonovan): opt: there are many optimizations worth evaluating, and
|
||||
// the conventional wisdom for SSA construction is that a simple
|
||||
// algorithm well engineered often beats those of better asymptotic
|
||||
// complexity on all but the most egregious inputs.
|
||||
//
|
||||
// Danny Berlin suggests that the Cooper et al. algorithm for
|
||||
// computing the dominance frontier is superior to Cytron et al.
|
||||
// Furthermore he recommends that rather than computing the DF for the
|
||||
// whole function then renaming all alloc cells, it may be cheaper to
|
||||
// compute the DF for each alloc cell separately and throw it away.
|
||||
//
|
||||
// Consider exploiting liveness information to avoid creating dead
|
||||
// φ-nodes which we then immediately remove.
|
||||
//
|
||||
// Also see many other "TODO: opt" suggestions in the code.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/token"
|
||||
"go/types"
|
||||
"math/big"
|
||||
"os"
|
||||
)
|
||||
|
||||
// If true, show diagnostic information at each step of lifting.
|
||||
// Very verbose.
|
||||
const debugLifting = false
|
||||
|
||||
// domFrontier maps each block to the set of blocks in its dominance
|
||||
// frontier. The outer slice is conceptually a map keyed by
|
||||
// Block.Index. The inner slice is conceptually a set, possibly
|
||||
// containing duplicates.
|
||||
//
|
||||
// TODO(adonovan): opt: measure impact of dups; consider a packed bit
|
||||
// representation, e.g. big.Int, and bitwise parallel operations for
|
||||
// the union step in the Children loop.
|
||||
//
|
||||
// domFrontier's methods mutate the slice's elements but not its
|
||||
// length, so their receivers needn't be pointers.
|
||||
//
|
||||
type domFrontier [][]*BasicBlock
|
||||
|
||||
func (df domFrontier) add(u, v *BasicBlock) {
|
||||
p := &df[u.Index]
|
||||
*p = append(*p, v)
|
||||
}
|
||||
|
||||
// build builds the dominance frontier df for the dominator (sub)tree
|
||||
// rooted at u, using the Cytron et al. algorithm.
|
||||
//
|
||||
// TODO(adonovan): opt: consider Berlin approach, computing pruned SSA
|
||||
// by pruning the entire IDF computation, rather than merely pruning
|
||||
// the DF -> IDF step.
|
||||
func (df domFrontier) build(u *BasicBlock) {
|
||||
// Encounter each node u in postorder of dom tree.
|
||||
for _, child := range u.dom.children {
|
||||
df.build(child)
|
||||
}
|
||||
for _, vb := range u.Succs {
|
||||
if v := vb.dom; v.idom != u {
|
||||
df.add(u, vb)
|
||||
}
|
||||
}
|
||||
for _, w := range u.dom.children {
|
||||
for _, vb := range df[w.Index] {
|
||||
// TODO(adonovan): opt: use word-parallel bitwise union.
|
||||
if v := vb.dom; v.idom != u {
|
||||
df.add(u, vb)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func buildDomFrontier(fn *Function) domFrontier {
|
||||
df := make(domFrontier, len(fn.Blocks))
|
||||
df.build(fn.Blocks[0])
|
||||
if fn.Recover != nil {
|
||||
df.build(fn.Recover)
|
||||
}
|
||||
return df
|
||||
}
|
||||
|
||||
func removeInstr(refs []Instruction, instr Instruction) []Instruction {
|
||||
i := 0
|
||||
for _, ref := range refs {
|
||||
if ref == instr {
|
||||
continue
|
||||
}
|
||||
refs[i] = ref
|
||||
i++
|
||||
}
|
||||
for j := i; j != len(refs); j++ {
|
||||
refs[j] = nil // aid GC
|
||||
}
|
||||
return refs[:i]
|
||||
}
|
||||
|
||||
// lift replaces local and new Allocs accessed only with
|
||||
// load/store by SSA registers, inserting φ-nodes where necessary.
|
||||
// The result is a program in classical pruned SSA form.
|
||||
//
|
||||
// Preconditions:
|
||||
// - fn has no dead blocks (blockopt has run).
|
||||
// - Def/use info (Operands and Referrers) is up-to-date.
|
||||
// - The dominator tree is up-to-date.
|
||||
//
|
||||
func lift(fn *Function) {
|
||||
// TODO(adonovan): opt: lots of little optimizations may be
|
||||
// worthwhile here, especially if they cause us to avoid
|
||||
// buildDomFrontier. For example:
|
||||
//
|
||||
// - Alloc never loaded? Eliminate.
|
||||
// - Alloc never stored? Replace all loads with a zero constant.
|
||||
// - Alloc stored once? Replace loads with dominating store;
|
||||
// don't forget that an Alloc is itself an effective store
|
||||
// of zero.
|
||||
// - Alloc used only within a single block?
|
||||
// Use degenerate algorithm avoiding φ-nodes.
|
||||
// - Consider synergy with scalar replacement of aggregates (SRA).
|
||||
// e.g. *(&x.f) where x is an Alloc.
|
||||
// Perhaps we'd get better results if we generated this as x.f
|
||||
// i.e. Field(x, .f) instead of Load(FieldIndex(x, .f)).
|
||||
// Unclear.
|
||||
//
|
||||
// But we will start with the simplest correct code.
|
||||
df := buildDomFrontier(fn)
|
||||
|
||||
if debugLifting {
|
||||
title := false
|
||||
for i, blocks := range df {
|
||||
if blocks != nil {
|
||||
if !title {
|
||||
fmt.Fprintf(os.Stderr, "Dominance frontier of %s:\n", fn)
|
||||
title = true
|
||||
}
|
||||
fmt.Fprintf(os.Stderr, "\t%s: %s\n", fn.Blocks[i], blocks)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
newPhis := make(newPhiMap)
|
||||
|
||||
// During this pass we will replace some BasicBlock.Instrs
|
||||
// (allocs, loads and stores) with nil, keeping a count in
|
||||
// BasicBlock.gaps. At the end we will reset Instrs to the
|
||||
// concatenation of all non-dead newPhis and non-nil Instrs
|
||||
// for the block, reusing the original array if space permits.
|
||||
|
||||
// While we're here, we also eliminate 'rundefers'
|
||||
// instructions in functions that contain no 'defer'
|
||||
// instructions.
|
||||
usesDefer := false
|
||||
|
||||
// A counter used to generate ~unique ids for Phi nodes, as an
|
||||
// aid to debugging. We use large numbers to make them highly
|
||||
// visible. All nodes are renumbered later.
|
||||
fresh := 1000
|
||||
|
||||
// Determine which allocs we can lift and number them densely.
|
||||
// The renaming phase uses this numbering for compact maps.
|
||||
numAllocs := 0
|
||||
for _, b := range fn.Blocks {
|
||||
b.gaps = 0
|
||||
b.rundefers = 0
|
||||
for _, instr := range b.Instrs {
|
||||
switch instr := instr.(type) {
|
||||
case *Alloc:
|
||||
index := -1
|
||||
if liftAlloc(df, instr, newPhis, &fresh) {
|
||||
index = numAllocs
|
||||
numAllocs++
|
||||
}
|
||||
instr.index = index
|
||||
case *Defer:
|
||||
usesDefer = true
|
||||
case *RunDefers:
|
||||
b.rundefers++
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// renaming maps an alloc (keyed by index) to its replacement
|
||||
// value. Initially the renaming contains nil, signifying the
|
||||
// zero constant of the appropriate type; we construct the
|
||||
// Const lazily at most once on each path through the domtree.
|
||||
// TODO(adonovan): opt: cache per-function not per subtree.
|
||||
renaming := make([]Value, numAllocs)
|
||||
|
||||
// Renaming.
|
||||
rename(fn.Blocks[0], renaming, newPhis)
|
||||
|
||||
// Eliminate dead φ-nodes.
|
||||
removeDeadPhis(fn.Blocks, newPhis)
|
||||
|
||||
// Prepend remaining live φ-nodes to each block.
|
||||
for _, b := range fn.Blocks {
|
||||
nps := newPhis[b]
|
||||
j := len(nps)
|
||||
|
||||
rundefersToKill := b.rundefers
|
||||
if usesDefer {
|
||||
rundefersToKill = 0
|
||||
}
|
||||
|
||||
if j+b.gaps+rundefersToKill == 0 {
|
||||
continue // fast path: no new phis or gaps
|
||||
}
|
||||
|
||||
// Compact nps + non-nil Instrs into a new slice.
|
||||
// TODO(adonovan): opt: compact in situ (rightwards)
|
||||
// if Instrs has sufficient space or slack.
|
||||
dst := make([]Instruction, len(b.Instrs)+j-b.gaps-rundefersToKill)
|
||||
for i, np := range nps {
|
||||
dst[i] = np.phi
|
||||
}
|
||||
for _, instr := range b.Instrs {
|
||||
if instr == nil {
|
||||
continue
|
||||
}
|
||||
if !usesDefer {
|
||||
if _, ok := instr.(*RunDefers); ok {
|
||||
continue
|
||||
}
|
||||
}
|
||||
dst[j] = instr
|
||||
j++
|
||||
}
|
||||
b.Instrs = dst
|
||||
}
|
||||
|
||||
// Remove any fn.Locals that were lifted.
|
||||
j := 0
|
||||
for _, l := range fn.Locals {
|
||||
if l.index < 0 {
|
||||
fn.Locals[j] = l
|
||||
j++
|
||||
}
|
||||
}
|
||||
// Nil out fn.Locals[j:] to aid GC.
|
||||
for i := j; i < len(fn.Locals); i++ {
|
||||
fn.Locals[i] = nil
|
||||
}
|
||||
fn.Locals = fn.Locals[:j]
|
||||
}
|
||||
|
||||
// removeDeadPhis removes φ-nodes not transitively needed by a
|
||||
// non-Phi, non-DebugRef instruction.
|
||||
func removeDeadPhis(blocks []*BasicBlock, newPhis newPhiMap) {
|
||||
// First pass: find the set of "live" φ-nodes: those reachable
|
||||
// from some non-Phi instruction.
|
||||
//
|
||||
// We compute reachability in reverse, starting from each φ,
|
||||
// rather than forwards, starting from each live non-Phi
|
||||
// instruction, because this way visits much less of the
|
||||
// Value graph.
|
||||
livePhis := make(map[*Phi]bool)
|
||||
for _, npList := range newPhis {
|
||||
for _, np := range npList {
|
||||
phi := np.phi
|
||||
if !livePhis[phi] && phiHasDirectReferrer(phi) {
|
||||
markLivePhi(livePhis, phi)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Existing φ-nodes due to && and || operators
|
||||
// are all considered live (see Go issue 19622).
|
||||
for _, b := range blocks {
|
||||
for _, phi := range b.phis() {
|
||||
markLivePhi(livePhis, phi.(*Phi))
|
||||
}
|
||||
}
|
||||
|
||||
// Second pass: eliminate unused phis from newPhis.
|
||||
for block, npList := range newPhis {
|
||||
j := 0
|
||||
for _, np := range npList {
|
||||
if livePhis[np.phi] {
|
||||
npList[j] = np
|
||||
j++
|
||||
} else {
|
||||
// discard it, first removing it from referrers
|
||||
for _, val := range np.phi.Edges {
|
||||
if refs := val.Referrers(); refs != nil {
|
||||
*refs = removeInstr(*refs, np.phi)
|
||||
}
|
||||
}
|
||||
np.phi.block = nil
|
||||
}
|
||||
}
|
||||
newPhis[block] = npList[:j]
|
||||
}
|
||||
}
|
||||
|
||||
// markLivePhi marks phi, and all φ-nodes transitively reachable via
|
||||
// its Operands, live.
|
||||
func markLivePhi(livePhis map[*Phi]bool, phi *Phi) {
|
||||
livePhis[phi] = true
|
||||
for _, rand := range phi.Operands(nil) {
|
||||
if q, ok := (*rand).(*Phi); ok {
|
||||
if !livePhis[q] {
|
||||
markLivePhi(livePhis, q)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// phiHasDirectReferrer reports whether phi is directly referred to by
|
||||
// a non-Phi instruction. Such instructions are the
|
||||
// roots of the liveness traversal.
|
||||
func phiHasDirectReferrer(phi *Phi) bool {
|
||||
for _, instr := range *phi.Referrers() {
|
||||
if _, ok := instr.(*Phi); !ok {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
type BlockSet struct{ big.Int } // (inherit methods from Int)
|
||||
|
||||
// add adds b to the set and returns true if the set changed.
|
||||
func (s *BlockSet) Add(b *BasicBlock) bool {
|
||||
i := b.Index
|
||||
if s.Bit(i) != 0 {
|
||||
return false
|
||||
}
|
||||
s.SetBit(&s.Int, i, 1)
|
||||
return true
|
||||
}
|
||||
|
||||
func (s *BlockSet) Has(b *BasicBlock) bool {
|
||||
return s.Bit(b.Index) == 1
|
||||
}
|
||||
|
||||
// take removes an arbitrary element from a set s and
|
||||
// returns its index, or returns -1 if empty.
|
||||
func (s *BlockSet) Take() int {
|
||||
l := s.BitLen()
|
||||
for i := 0; i < l; i++ {
|
||||
if s.Bit(i) == 1 {
|
||||
s.SetBit(&s.Int, i, 0)
|
||||
return i
|
||||
}
|
||||
}
|
||||
return -1
|
||||
}
|
||||
|
||||
// newPhi is a pair of a newly introduced φ-node and the lifted Alloc
|
||||
// it replaces.
|
||||
type newPhi struct {
|
||||
phi *Phi
|
||||
alloc *Alloc
|
||||
}
|
||||
|
||||
// newPhiMap records for each basic block, the set of newPhis that
|
||||
// must be prepended to the block.
|
||||
type newPhiMap map[*BasicBlock][]newPhi
|
||||
|
||||
// liftAlloc determines whether alloc can be lifted into registers,
|
||||
// and if so, it populates newPhis with all the φ-nodes it may require
|
||||
// and returns true.
|
||||
//
|
||||
// fresh is a source of fresh ids for phi nodes.
|
||||
//
|
||||
func liftAlloc(df domFrontier, alloc *Alloc, newPhis newPhiMap, fresh *int) bool {
|
||||
// Don't lift aggregates into registers, because we don't have
|
||||
// a way to express their zero-constants.
|
||||
switch deref(alloc.Type()).Underlying().(type) {
|
||||
case *types.Array, *types.Struct:
|
||||
return false
|
||||
}
|
||||
|
||||
// Don't lift named return values in functions that defer
|
||||
// calls that may recover from panic.
|
||||
if fn := alloc.Parent(); fn.Recover != nil {
|
||||
for _, nr := range fn.namedResults {
|
||||
if nr == alloc {
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute defblocks, the set of blocks containing a
|
||||
// definition of the alloc cell.
|
||||
var defblocks BlockSet
|
||||
for _, instr := range *alloc.Referrers() {
|
||||
// Bail out if we discover the alloc is not liftable;
|
||||
// the only operations permitted to use the alloc are
|
||||
// loads/stores into the cell, and DebugRef.
|
||||
switch instr := instr.(type) {
|
||||
case *Store:
|
||||
if instr.Val == alloc {
|
||||
return false // address used as value
|
||||
}
|
||||
if instr.Addr != alloc {
|
||||
panic("Alloc.Referrers is inconsistent")
|
||||
}
|
||||
defblocks.Add(instr.Block())
|
||||
case *UnOp:
|
||||
if instr.Op != token.MUL {
|
||||
return false // not a load
|
||||
}
|
||||
if instr.X != alloc {
|
||||
panic("Alloc.Referrers is inconsistent")
|
||||
}
|
||||
case *DebugRef:
|
||||
// ok
|
||||
default:
|
||||
return false // some other instruction
|
||||
}
|
||||
}
|
||||
// The Alloc itself counts as a (zero) definition of the cell.
|
||||
defblocks.Add(alloc.Block())
|
||||
|
||||
if debugLifting {
|
||||
fmt.Fprintln(os.Stderr, "\tlifting ", alloc, alloc.Name())
|
||||
}
|
||||
|
||||
fn := alloc.Parent()
|
||||
|
||||
// Φ-insertion.
|
||||
//
|
||||
// What follows is the body of the main loop of the insert-φ
|
||||
// function described by Cytron et al, but instead of using
|
||||
// counter tricks, we just reset the 'hasAlready' and 'work'
|
||||
// sets each iteration. These are bitmaps so it's pretty cheap.
|
||||
//
|
||||
// TODO(adonovan): opt: recycle slice storage for W,
|
||||
// hasAlready, defBlocks across liftAlloc calls.
|
||||
var hasAlready BlockSet
|
||||
|
||||
// Initialize W and work to defblocks.
|
||||
var work BlockSet = defblocks // blocks seen
|
||||
var W BlockSet // blocks to do
|
||||
W.Set(&defblocks.Int)
|
||||
|
||||
// Traverse iterated dominance frontier, inserting φ-nodes.
|
||||
for i := W.Take(); i != -1; i = W.Take() {
|
||||
u := fn.Blocks[i]
|
||||
for _, v := range df[u.Index] {
|
||||
if hasAlready.Add(v) {
|
||||
// Create φ-node.
|
||||
// It will be prepended to v.Instrs later, if needed.
|
||||
phi := &Phi{
|
||||
Edges: make([]Value, len(v.Preds)),
|
||||
Comment: alloc.Comment,
|
||||
}
|
||||
// This is merely a debugging aid:
|
||||
phi.setNum(*fresh)
|
||||
*fresh++
|
||||
|
||||
phi.pos = alloc.Pos()
|
||||
phi.setType(deref(alloc.Type()))
|
||||
phi.block = v
|
||||
if debugLifting {
|
||||
fmt.Fprintf(os.Stderr, "\tplace %s = %s at block %s\n", phi.Name(), phi, v)
|
||||
}
|
||||
newPhis[v] = append(newPhis[v], newPhi{phi, alloc})
|
||||
|
||||
if work.Add(v) {
|
||||
W.Add(v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
// replaceAll replaces all intraprocedural uses of x with y,
|
||||
// updating x.Referrers and y.Referrers.
|
||||
// Precondition: x.Referrers() != nil, i.e. x must be local to some function.
|
||||
//
|
||||
func replaceAll(x, y Value) {
|
||||
var rands []*Value
|
||||
pxrefs := x.Referrers()
|
||||
pyrefs := y.Referrers()
|
||||
for _, instr := range *pxrefs {
|
||||
rands = instr.Operands(rands[:0]) // recycle storage
|
||||
for _, rand := range rands {
|
||||
if *rand != nil {
|
||||
if *rand == x {
|
||||
*rand = y
|
||||
}
|
||||
}
|
||||
}
|
||||
if pyrefs != nil {
|
||||
*pyrefs = append(*pyrefs, instr) // dups ok
|
||||
}
|
||||
}
|
||||
*pxrefs = nil // x is now unreferenced
|
||||
}
|
||||
|
||||
// renamed returns the value to which alloc is being renamed,
|
||||
// constructing it lazily if it's the implicit zero initialization.
|
||||
//
|
||||
func renamed(renaming []Value, alloc *Alloc) Value {
|
||||
v := renaming[alloc.index]
|
||||
if v == nil {
|
||||
v = zeroConst(deref(alloc.Type()))
|
||||
renaming[alloc.index] = v
|
||||
}
|
||||
return v
|
||||
}
|
||||
|
||||
// rename implements the (Cytron et al) SSA renaming algorithm, a
|
||||
// preorder traversal of the dominator tree replacing all loads of
|
||||
// Alloc cells with the value stored to that cell by the dominating
|
||||
// store instruction. For lifting, we need only consider loads,
|
||||
// stores and φ-nodes.
|
||||
//
|
||||
// renaming is a map from *Alloc (keyed by index number) to its
|
||||
// dominating stored value; newPhis[x] is the set of new φ-nodes to be
|
||||
// prepended to block x.
|
||||
//
|
||||
func rename(u *BasicBlock, renaming []Value, newPhis newPhiMap) {
|
||||
// Each φ-node becomes the new name for its associated Alloc.
|
||||
for _, np := range newPhis[u] {
|
||||
phi := np.phi
|
||||
alloc := np.alloc
|
||||
renaming[alloc.index] = phi
|
||||
}
|
||||
|
||||
// Rename loads and stores of allocs.
|
||||
for i, instr := range u.Instrs {
|
||||
switch instr := instr.(type) {
|
||||
case *Alloc:
|
||||
if instr.index >= 0 { // store of zero to Alloc cell
|
||||
// Replace dominated loads by the zero value.
|
||||
renaming[instr.index] = nil
|
||||
if debugLifting {
|
||||
fmt.Fprintf(os.Stderr, "\tkill alloc %s\n", instr)
|
||||
}
|
||||
// Delete the Alloc.
|
||||
u.Instrs[i] = nil
|
||||
u.gaps++
|
||||
}
|
||||
|
||||
case *Store:
|
||||
if alloc, ok := instr.Addr.(*Alloc); ok && alloc.index >= 0 { // store to Alloc cell
|
||||
// Replace dominated loads by the stored value.
|
||||
renaming[alloc.index] = instr.Val
|
||||
if debugLifting {
|
||||
fmt.Fprintf(os.Stderr, "\tkill store %s; new value: %s\n",
|
||||
instr, instr.Val.Name())
|
||||
}
|
||||
// Remove the store from the referrer list of the stored value.
|
||||
if refs := instr.Val.Referrers(); refs != nil {
|
||||
*refs = removeInstr(*refs, instr)
|
||||
}
|
||||
// Delete the Store.
|
||||
u.Instrs[i] = nil
|
||||
u.gaps++
|
||||
}
|
||||
|
||||
case *UnOp:
|
||||
if instr.Op == token.MUL {
|
||||
if alloc, ok := instr.X.(*Alloc); ok && alloc.index >= 0 { // load of Alloc cell
|
||||
newval := renamed(renaming, alloc)
|
||||
if debugLifting {
|
||||
fmt.Fprintf(os.Stderr, "\tupdate load %s = %s with %s\n",
|
||||
instr.Name(), instr, newval.Name())
|
||||
}
|
||||
// Replace all references to
|
||||
// the loaded value by the
|
||||
// dominating stored value.
|
||||
replaceAll(instr, newval)
|
||||
// Delete the Load.
|
||||
u.Instrs[i] = nil
|
||||
u.gaps++
|
||||
}
|
||||
}
|
||||
|
||||
case *DebugRef:
|
||||
if alloc, ok := instr.X.(*Alloc); ok && alloc.index >= 0 { // ref of Alloc cell
|
||||
if instr.IsAddr {
|
||||
instr.X = renamed(renaming, alloc)
|
||||
instr.IsAddr = false
|
||||
|
||||
// Add DebugRef to instr.X's referrers.
|
||||
if refs := instr.X.Referrers(); refs != nil {
|
||||
*refs = append(*refs, instr)
|
||||
}
|
||||
} else {
|
||||
// A source expression denotes the address
|
||||
// of an Alloc that was optimized away.
|
||||
instr.X = nil
|
||||
|
||||
// Delete the DebugRef.
|
||||
u.Instrs[i] = nil
|
||||
u.gaps++
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// For each φ-node in a CFG successor, rename the edge.
|
||||
for _, v := range u.Succs {
|
||||
phis := newPhis[v]
|
||||
if len(phis) == 0 {
|
||||
continue
|
||||
}
|
||||
i := v.predIndex(u)
|
||||
for _, np := range phis {
|
||||
phi := np.phi
|
||||
alloc := np.alloc
|
||||
newval := renamed(renaming, alloc)
|
||||
if debugLifting {
|
||||
fmt.Fprintf(os.Stderr, "\tsetphi %s edge %s -> %s (#%d) (alloc=%s) := %s\n",
|
||||
phi.Name(), u, v, i, alloc.Name(), newval.Name())
|
||||
}
|
||||
phi.Edges[i] = newval
|
||||
if prefs := newval.Referrers(); prefs != nil {
|
||||
*prefs = append(*prefs, phi)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Continue depth-first recursion over domtree, pushing a
|
||||
// fresh copy of the renaming map for each subtree.
|
||||
for i, v := range u.dom.children {
|
||||
r := renaming
|
||||
if i < len(u.dom.children)-1 {
|
||||
// On all but the final iteration, we must make
|
||||
// a copy to avoid destructive update.
|
||||
r = make([]Value, len(renaming))
|
||||
copy(r, renaming)
|
||||
}
|
||||
rename(v, r, newPhis)
|
||||
}
|
||||
|
||||
}
|
123
vendor/honnef.co/go/tools/ssa/lvalue.go
vendored
Normal file
123
vendor/honnef.co/go/tools/ssa/lvalue.go
vendored
Normal file
@ -0,0 +1,123 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// lvalues are the union of addressable expressions and map-index
|
||||
// expressions.
|
||||
|
||||
import (
|
||||
"go/ast"
|
||||
"go/token"
|
||||
"go/types"
|
||||
)
|
||||
|
||||
// An lvalue represents an assignable location that may appear on the
|
||||
// left-hand side of an assignment. This is a generalization of a
|
||||
// pointer to permit updates to elements of maps.
|
||||
//
|
||||
type lvalue interface {
|
||||
store(fn *Function, v Value) // stores v into the location
|
||||
load(fn *Function) Value // loads the contents of the location
|
||||
address(fn *Function) Value // address of the location
|
||||
typ() types.Type // returns the type of the location
|
||||
}
|
||||
|
||||
// An address is an lvalue represented by a true pointer.
|
||||
type address struct {
|
||||
addr Value
|
||||
pos token.Pos // source position
|
||||
expr ast.Expr // source syntax of the value (not address) [debug mode]
|
||||
}
|
||||
|
||||
func (a *address) load(fn *Function) Value {
|
||||
load := emitLoad(fn, a.addr)
|
||||
load.pos = a.pos
|
||||
return load
|
||||
}
|
||||
|
||||
func (a *address) store(fn *Function, v Value) {
|
||||
store := emitStore(fn, a.addr, v, a.pos)
|
||||
if a.expr != nil {
|
||||
// store.Val is v, converted for assignability.
|
||||
emitDebugRef(fn, a.expr, store.Val, false)
|
||||
}
|
||||
}
|
||||
|
||||
func (a *address) address(fn *Function) Value {
|
||||
if a.expr != nil {
|
||||
emitDebugRef(fn, a.expr, a.addr, true)
|
||||
}
|
||||
return a.addr
|
||||
}
|
||||
|
||||
func (a *address) typ() types.Type {
|
||||
return deref(a.addr.Type())
|
||||
}
|
||||
|
||||
// An element is an lvalue represented by m[k], the location of an
|
||||
// element of a map or string. These locations are not addressable
|
||||
// since pointers cannot be formed from them, but they do support
|
||||
// load(), and in the case of maps, store().
|
||||
//
|
||||
type element struct {
|
||||
m, k Value // map or string
|
||||
t types.Type // map element type or string byte type
|
||||
pos token.Pos // source position of colon ({k:v}) or lbrack (m[k]=v)
|
||||
}
|
||||
|
||||
func (e *element) load(fn *Function) Value {
|
||||
l := &Lookup{
|
||||
X: e.m,
|
||||
Index: e.k,
|
||||
}
|
||||
l.setPos(e.pos)
|
||||
l.setType(e.t)
|
||||
return fn.emit(l)
|
||||
}
|
||||
|
||||
func (e *element) store(fn *Function, v Value) {
|
||||
up := &MapUpdate{
|
||||
Map: e.m,
|
||||
Key: e.k,
|
||||
Value: emitConv(fn, v, e.t),
|
||||
}
|
||||
up.pos = e.pos
|
||||
fn.emit(up)
|
||||
}
|
||||
|
||||
func (e *element) address(fn *Function) Value {
|
||||
panic("map/string elements are not addressable")
|
||||
}
|
||||
|
||||
func (e *element) typ() types.Type {
|
||||
return e.t
|
||||
}
|
||||
|
||||
// A blank is a dummy variable whose name is "_".
|
||||
// It is not reified: loads are illegal and stores are ignored.
|
||||
//
|
||||
type blank struct{}
|
||||
|
||||
func (bl blank) load(fn *Function) Value {
|
||||
panic("blank.load is illegal")
|
||||
}
|
||||
|
||||
func (bl blank) store(fn *Function, v Value) {
|
||||
s := &BlankStore{
|
||||
Val: v,
|
||||
}
|
||||
fn.emit(s)
|
||||
}
|
||||
|
||||
func (bl blank) address(fn *Function) Value {
|
||||
panic("blank var is not addressable")
|
||||
}
|
||||
|
||||
func (bl blank) typ() types.Type {
|
||||
// This should be the type of the blank Ident; the typechecker
|
||||
// doesn't provide this yet, but fortunately, we don't need it
|
||||
// yet either.
|
||||
panic("blank.typ is unimplemented")
|
||||
}
|
239
vendor/honnef.co/go/tools/ssa/methods.go
vendored
Normal file
239
vendor/honnef.co/go/tools/ssa/methods.go
vendored
Normal file
@ -0,0 +1,239 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file defines utilities for population of method sets.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/types"
|
||||
)
|
||||
|
||||
// MethodValue returns the Function implementing method sel, building
|
||||
// wrapper methods on demand. It returns nil if sel denotes an
|
||||
// abstract (interface) method.
|
||||
//
|
||||
// Precondition: sel.Kind() == MethodVal.
|
||||
//
|
||||
// Thread-safe.
|
||||
//
|
||||
// EXCLUSIVE_LOCKS_ACQUIRED(prog.methodsMu)
|
||||
//
|
||||
func (prog *Program) MethodValue(sel *types.Selection) *Function {
|
||||
if sel.Kind() != types.MethodVal {
|
||||
panic(fmt.Sprintf("MethodValue(%s) kind != MethodVal", sel))
|
||||
}
|
||||
T := sel.Recv()
|
||||
if isInterface(T) {
|
||||
return nil // abstract method
|
||||
}
|
||||
if prog.mode&LogSource != 0 {
|
||||
defer logStack("MethodValue %s %v", T, sel)()
|
||||
}
|
||||
|
||||
prog.methodsMu.Lock()
|
||||
defer prog.methodsMu.Unlock()
|
||||
|
||||
return prog.addMethod(prog.createMethodSet(T), sel)
|
||||
}
|
||||
|
||||
// LookupMethod returns the implementation of the method of type T
|
||||
// identified by (pkg, name). It returns nil if the method exists but
|
||||
// is abstract, and panics if T has no such method.
|
||||
//
|
||||
func (prog *Program) LookupMethod(T types.Type, pkg *types.Package, name string) *Function {
|
||||
sel := prog.MethodSets.MethodSet(T).Lookup(pkg, name)
|
||||
if sel == nil {
|
||||
panic(fmt.Sprintf("%s has no method %s", T, types.Id(pkg, name)))
|
||||
}
|
||||
return prog.MethodValue(sel)
|
||||
}
|
||||
|
||||
// methodSet contains the (concrete) methods of a non-interface type.
|
||||
type methodSet struct {
|
||||
mapping map[string]*Function // populated lazily
|
||||
complete bool // mapping contains all methods
|
||||
}
|
||||
|
||||
// Precondition: !isInterface(T).
|
||||
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
|
||||
func (prog *Program) createMethodSet(T types.Type) *methodSet {
|
||||
mset, ok := prog.methodSets.At(T).(*methodSet)
|
||||
if !ok {
|
||||
mset = &methodSet{mapping: make(map[string]*Function)}
|
||||
prog.methodSets.Set(T, mset)
|
||||
}
|
||||
return mset
|
||||
}
|
||||
|
||||
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
|
||||
func (prog *Program) addMethod(mset *methodSet, sel *types.Selection) *Function {
|
||||
if sel.Kind() == types.MethodExpr {
|
||||
panic(sel)
|
||||
}
|
||||
id := sel.Obj().Id()
|
||||
fn := mset.mapping[id]
|
||||
if fn == nil {
|
||||
obj := sel.Obj().(*types.Func)
|
||||
|
||||
needsPromotion := len(sel.Index()) > 1
|
||||
needsIndirection := !isPointer(recvType(obj)) && isPointer(sel.Recv())
|
||||
if needsPromotion || needsIndirection {
|
||||
fn = makeWrapper(prog, sel)
|
||||
} else {
|
||||
fn = prog.declaredFunc(obj)
|
||||
}
|
||||
if fn.Signature.Recv() == nil {
|
||||
panic(fn) // missing receiver
|
||||
}
|
||||
mset.mapping[id] = fn
|
||||
}
|
||||
return fn
|
||||
}
|
||||
|
||||
// RuntimeTypes returns a new unordered slice containing all
|
||||
// concrete types in the program for which a complete (non-empty)
|
||||
// method set is required at run-time.
|
||||
//
|
||||
// Thread-safe.
|
||||
//
|
||||
// EXCLUSIVE_LOCKS_ACQUIRED(prog.methodsMu)
|
||||
//
|
||||
func (prog *Program) RuntimeTypes() []types.Type {
|
||||
prog.methodsMu.Lock()
|
||||
defer prog.methodsMu.Unlock()
|
||||
|
||||
var res []types.Type
|
||||
prog.methodSets.Iterate(func(T types.Type, v interface{}) {
|
||||
if v.(*methodSet).complete {
|
||||
res = append(res, T)
|
||||
}
|
||||
})
|
||||
return res
|
||||
}
|
||||
|
||||
// declaredFunc returns the concrete function/method denoted by obj.
|
||||
// Panic ensues if there is none.
|
||||
//
|
||||
func (prog *Program) declaredFunc(obj *types.Func) *Function {
|
||||
if v := prog.packageLevelValue(obj); v != nil {
|
||||
return v.(*Function)
|
||||
}
|
||||
panic("no concrete method: " + obj.String())
|
||||
}
|
||||
|
||||
// needMethodsOf ensures that runtime type information (including the
|
||||
// complete method set) is available for the specified type T and all
|
||||
// its subcomponents.
|
||||
//
|
||||
// needMethodsOf must be called for at least every type that is an
|
||||
// operand of some MakeInterface instruction, and for the type of
|
||||
// every exported package member.
|
||||
//
|
||||
// Precondition: T is not a method signature (*Signature with Recv()!=nil).
|
||||
//
|
||||
// Thread-safe. (Called via emitConv from multiple builder goroutines.)
|
||||
//
|
||||
// TODO(adonovan): make this faster. It accounts for 20% of SSA build time.
|
||||
//
|
||||
// EXCLUSIVE_LOCKS_ACQUIRED(prog.methodsMu)
|
||||
//
|
||||
func (prog *Program) needMethodsOf(T types.Type) {
|
||||
prog.methodsMu.Lock()
|
||||
prog.needMethods(T, false)
|
||||
prog.methodsMu.Unlock()
|
||||
}
|
||||
|
||||
// Precondition: T is not a method signature (*Signature with Recv()!=nil).
|
||||
// Recursive case: skip => don't create methods for T.
|
||||
//
|
||||
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
|
||||
//
|
||||
func (prog *Program) needMethods(T types.Type, skip bool) {
|
||||
// Each package maintains its own set of types it has visited.
|
||||
if prevSkip, ok := prog.runtimeTypes.At(T).(bool); ok {
|
||||
// needMethods(T) was previously called
|
||||
if !prevSkip || skip {
|
||||
return // already seen, with same or false 'skip' value
|
||||
}
|
||||
}
|
||||
prog.runtimeTypes.Set(T, skip)
|
||||
|
||||
tmset := prog.MethodSets.MethodSet(T)
|
||||
|
||||
if !skip && !isInterface(T) && tmset.Len() > 0 {
|
||||
// Create methods of T.
|
||||
mset := prog.createMethodSet(T)
|
||||
if !mset.complete {
|
||||
mset.complete = true
|
||||
n := tmset.Len()
|
||||
for i := 0; i < n; i++ {
|
||||
prog.addMethod(mset, tmset.At(i))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Recursion over signatures of each method.
|
||||
for i := 0; i < tmset.Len(); i++ {
|
||||
sig := tmset.At(i).Type().(*types.Signature)
|
||||
prog.needMethods(sig.Params(), false)
|
||||
prog.needMethods(sig.Results(), false)
|
||||
}
|
||||
|
||||
switch t := T.(type) {
|
||||
case *types.Basic:
|
||||
// nop
|
||||
|
||||
case *types.Interface:
|
||||
// nop---handled by recursion over method set.
|
||||
|
||||
case *types.Pointer:
|
||||
prog.needMethods(t.Elem(), false)
|
||||
|
||||
case *types.Slice:
|
||||
prog.needMethods(t.Elem(), false)
|
||||
|
||||
case *types.Chan:
|
||||
prog.needMethods(t.Elem(), false)
|
||||
|
||||
case *types.Map:
|
||||
prog.needMethods(t.Key(), false)
|
||||
prog.needMethods(t.Elem(), false)
|
||||
|
||||
case *types.Signature:
|
||||
if t.Recv() != nil {
|
||||
panic(fmt.Sprintf("Signature %s has Recv %s", t, t.Recv()))
|
||||
}
|
||||
prog.needMethods(t.Params(), false)
|
||||
prog.needMethods(t.Results(), false)
|
||||
|
||||
case *types.Named:
|
||||
// A pointer-to-named type can be derived from a named
|
||||
// type via reflection. It may have methods too.
|
||||
prog.needMethods(types.NewPointer(T), false)
|
||||
|
||||
// Consider 'type T struct{S}' where S has methods.
|
||||
// Reflection provides no way to get from T to struct{S},
|
||||
// only to S, so the method set of struct{S} is unwanted,
|
||||
// so set 'skip' flag during recursion.
|
||||
prog.needMethods(t.Underlying(), true)
|
||||
|
||||
case *types.Array:
|
||||
prog.needMethods(t.Elem(), false)
|
||||
|
||||
case *types.Struct:
|
||||
for i, n := 0, t.NumFields(); i < n; i++ {
|
||||
prog.needMethods(t.Field(i).Type(), false)
|
||||
}
|
||||
|
||||
case *types.Tuple:
|
||||
for i, n := 0, t.Len(); i < n; i++ {
|
||||
prog.needMethods(t.At(i).Type(), false)
|
||||
}
|
||||
|
||||
default:
|
||||
panic(T)
|
||||
}
|
||||
}
|
100
vendor/honnef.co/go/tools/ssa/mode.go
vendored
Normal file
100
vendor/honnef.co/go/tools/ssa/mode.go
vendored
Normal file
@ -0,0 +1,100 @@
|
||||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file defines the BuilderMode type and its command-line flag.
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
)
|
||||
|
||||
// BuilderMode is a bitmask of options for diagnostics and checking.
|
||||
//
|
||||
// *BuilderMode satisfies the flag.Value interface. Example:
|
||||
//
|
||||
// var mode = ssa.BuilderMode(0)
|
||||
// func init() { flag.Var(&mode, "build", ssa.BuilderModeDoc) }
|
||||
//
|
||||
type BuilderMode uint
|
||||
|
||||
const (
|
||||
PrintPackages BuilderMode = 1 << iota // Print package inventory to stdout
|
||||
PrintFunctions // Print function SSA code to stdout
|
||||
LogSource // Log source locations as SSA builder progresses
|
||||
SanityCheckFunctions // Perform sanity checking of function bodies
|
||||
NaiveForm // Build naïve SSA form: don't replace local loads/stores with registers
|
||||
BuildSerially // Build packages serially, not in parallel.
|
||||
GlobalDebug // Enable debug info for all packages
|
||||
BareInits // Build init functions without guards or calls to dependent inits
|
||||
)
|
||||
|
||||
const BuilderModeDoc = `Options controlling the SSA builder.
|
||||
The value is a sequence of zero or more of these letters:
|
||||
C perform sanity [C]hecking of the SSA form.
|
||||
D include [D]ebug info for every function.
|
||||
P print [P]ackage inventory.
|
||||
F print [F]unction SSA code.
|
||||
S log [S]ource locations as SSA builder progresses.
|
||||
L build distinct packages seria[L]ly instead of in parallel.
|
||||
N build [N]aive SSA form: don't replace local loads/stores with registers.
|
||||
I build bare [I]nit functions: no init guards or calls to dependent inits.
|
||||
`
|
||||
|
||||
func (m BuilderMode) String() string {
|
||||
var buf bytes.Buffer
|
||||
if m&GlobalDebug != 0 {
|
||||
buf.WriteByte('D')
|
||||
}
|
||||
if m&PrintPackages != 0 {
|
||||
buf.WriteByte('P')
|
||||
}
|
||||
if m&PrintFunctions != 0 {
|
||||
buf.WriteByte('F')
|
||||
}
|
||||
if m&LogSource != 0 {
|
||||
buf.WriteByte('S')
|
||||
}
|
||||
if m&SanityCheckFunctions != 0 {
|
||||
buf.WriteByte('C')
|
||||
}
|
||||
if m&NaiveForm != 0 {
|
||||
buf.WriteByte('N')
|
||||
}
|
||||
if m&BuildSerially != 0 {
|
||||
buf.WriteByte('L')
|
||||
}
|
||||
return buf.String()
|
||||
}
|
||||
|
||||
// Set parses the flag characters in s and updates *m.
|
||||
func (m *BuilderMode) Set(s string) error {
|
||||
var mode BuilderMode
|
||||
for _, c := range s {
|
||||
switch c {
|
||||
case 'D':
|
||||
mode |= GlobalDebug
|
||||
case 'P':
|
||||
mode |= PrintPackages
|
||||
case 'F':
|
||||
mode |= PrintFunctions
|
||||
case 'S':
|
||||
mode |= LogSource | BuildSerially
|
||||
case 'C':
|
||||
mode |= SanityCheckFunctions
|
||||
case 'N':
|
||||
mode |= NaiveForm
|
||||
case 'L':
|
||||
mode |= BuildSerially
|
||||
default:
|
||||
return fmt.Errorf("unknown BuilderMode option: %q", c)
|
||||
}
|
||||
}
|
||||
*m = mode
|
||||
return nil
|
||||
}
|
||||
|
||||
// Get returns m.
|
||||
func (m BuilderMode) Get() interface{} { return m }
|
435
vendor/honnef.co/go/tools/ssa/print.go
vendored
Normal file
435
vendor/honnef.co/go/tools/ssa/print.go
vendored
Normal file
@ -0,0 +1,435 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file implements the String() methods for all Value and
|
||||
// Instruction types.
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"go/types"
|
||||
"io"
|
||||
"reflect"
|
||||
"sort"
|
||||
|
||||
"golang.org/x/tools/go/types/typeutil"
|
||||
)
|
||||
|
||||
// relName returns the name of v relative to i.
|
||||
// In most cases, this is identical to v.Name(), but references to
|
||||
// Functions (including methods) and Globals use RelString and
|
||||
// all types are displayed with relType, so that only cross-package
|
||||
// references are package-qualified.
|
||||
//
|
||||
func relName(v Value, i Instruction) string {
|
||||
var from *types.Package
|
||||
if i != nil {
|
||||
from = i.Parent().pkg()
|
||||
}
|
||||
switch v := v.(type) {
|
||||
case Member: // *Function or *Global
|
||||
return v.RelString(from)
|
||||
case *Const:
|
||||
return v.RelString(from)
|
||||
}
|
||||
return v.Name()
|
||||
}
|
||||
|
||||
func relType(t types.Type, from *types.Package) string {
|
||||
return types.TypeString(t, types.RelativeTo(from))
|
||||
}
|
||||
|
||||
func relString(m Member, from *types.Package) string {
|
||||
// NB: not all globals have an Object (e.g. init$guard),
|
||||
// so use Package().Object not Object.Package().
|
||||
if pkg := m.Package().Pkg; pkg != nil && pkg != from {
|
||||
return fmt.Sprintf("%s.%s", pkg.Path(), m.Name())
|
||||
}
|
||||
return m.Name()
|
||||
}
|
||||
|
||||
// Value.String()
|
||||
//
|
||||
// This method is provided only for debugging.
|
||||
// It never appears in disassembly, which uses Value.Name().
|
||||
|
||||
func (v *Parameter) String() string {
|
||||
from := v.Parent().pkg()
|
||||
return fmt.Sprintf("parameter %s : %s", v.Name(), relType(v.Type(), from))
|
||||
}
|
||||
|
||||
func (v *FreeVar) String() string {
|
||||
from := v.Parent().pkg()
|
||||
return fmt.Sprintf("freevar %s : %s", v.Name(), relType(v.Type(), from))
|
||||
}
|
||||
|
||||
func (v *Builtin) String() string {
|
||||
return fmt.Sprintf("builtin %s", v.Name())
|
||||
}
|
||||
|
||||
// Instruction.String()
|
||||
|
||||
func (v *Alloc) String() string {
|
||||
op := "local"
|
||||
if v.Heap {
|
||||
op = "new"
|
||||
}
|
||||
from := v.Parent().pkg()
|
||||
return fmt.Sprintf("%s %s (%s)", op, relType(deref(v.Type()), from), v.Comment)
|
||||
}
|
||||
|
||||
func (v *Phi) String() string {
|
||||
var b bytes.Buffer
|
||||
b.WriteString("phi [")
|
||||
for i, edge := range v.Edges {
|
||||
if i > 0 {
|
||||
b.WriteString(", ")
|
||||
}
|
||||
// Be robust against malformed CFG.
|
||||
if v.block == nil {
|
||||
b.WriteString("??")
|
||||
continue
|
||||
}
|
||||
block := -1
|
||||
if i < len(v.block.Preds) {
|
||||
block = v.block.Preds[i].Index
|
||||
}
|
||||
fmt.Fprintf(&b, "%d: ", block)
|
||||
edgeVal := "<nil>" // be robust
|
||||
if edge != nil {
|
||||
edgeVal = relName(edge, v)
|
||||
}
|
||||
b.WriteString(edgeVal)
|
||||
}
|
||||
b.WriteString("]")
|
||||
if v.Comment != "" {
|
||||
b.WriteString(" #")
|
||||
b.WriteString(v.Comment)
|
||||
}
|
||||
return b.String()
|
||||
}
|
||||
|
||||
func printCall(v *CallCommon, prefix string, instr Instruction) string {
|
||||
var b bytes.Buffer
|
||||
b.WriteString(prefix)
|
||||
if !v.IsInvoke() {
|
||||
b.WriteString(relName(v.Value, instr))
|
||||
} else {
|
||||
fmt.Fprintf(&b, "invoke %s.%s", relName(v.Value, instr), v.Method.Name())
|
||||
}
|
||||
b.WriteString("(")
|
||||
for i, arg := range v.Args {
|
||||
if i > 0 {
|
||||
b.WriteString(", ")
|
||||
}
|
||||
b.WriteString(relName(arg, instr))
|
||||
}
|
||||
if v.Signature().Variadic() {
|
||||
b.WriteString("...")
|
||||
}
|
||||
b.WriteString(")")
|
||||
return b.String()
|
||||
}
|
||||
|
||||
func (c *CallCommon) String() string {
|
||||
return printCall(c, "", nil)
|
||||
}
|
||||
|
||||
func (v *Call) String() string {
|
||||
return printCall(&v.Call, "", v)
|
||||
}
|
||||
|
||||
func (v *BinOp) String() string {
|
||||
return fmt.Sprintf("%s %s %s", relName(v.X, v), v.Op.String(), relName(v.Y, v))
|
||||
}
|
||||
|
||||
func (v *UnOp) String() string {
|
||||
return fmt.Sprintf("%s%s%s", v.Op, relName(v.X, v), commaOk(v.CommaOk))
|
||||
}
|
||||
|
||||
func printConv(prefix string, v, x Value) string {
|
||||
from := v.Parent().pkg()
|
||||
return fmt.Sprintf("%s %s <- %s (%s)",
|
||||
prefix,
|
||||
relType(v.Type(), from),
|
||||
relType(x.Type(), from),
|
||||
relName(x, v.(Instruction)))
|
||||
}
|
||||
|
||||
func (v *ChangeType) String() string { return printConv("changetype", v, v.X) }
|
||||
func (v *Convert) String() string { return printConv("convert", v, v.X) }
|
||||
func (v *ChangeInterface) String() string { return printConv("change interface", v, v.X) }
|
||||
func (v *MakeInterface) String() string { return printConv("make", v, v.X) }
|
||||
|
||||
func (v *MakeClosure) String() string {
|
||||
var b bytes.Buffer
|
||||
fmt.Fprintf(&b, "make closure %s", relName(v.Fn, v))
|
||||
if v.Bindings != nil {
|
||||
b.WriteString(" [")
|
||||
for i, c := range v.Bindings {
|
||||
if i > 0 {
|
||||
b.WriteString(", ")
|
||||
}
|
||||
b.WriteString(relName(c, v))
|
||||
}
|
||||
b.WriteString("]")
|
||||
}
|
||||
return b.String()
|
||||
}
|
||||
|
||||
func (v *MakeSlice) String() string {
|
||||
from := v.Parent().pkg()
|
||||
return fmt.Sprintf("make %s %s %s",
|
||||
relType(v.Type(), from),
|
||||
relName(v.Len, v),
|
||||
relName(v.Cap, v))
|
||||
}
|
||||
|
||||
func (v *Slice) String() string {
|
||||
var b bytes.Buffer
|
||||
b.WriteString("slice ")
|
||||
b.WriteString(relName(v.X, v))
|
||||
b.WriteString("[")
|
||||
if v.Low != nil {
|
||||
b.WriteString(relName(v.Low, v))
|
||||
}
|
||||
b.WriteString(":")
|
||||
if v.High != nil {
|
||||
b.WriteString(relName(v.High, v))
|
||||
}
|
||||
if v.Max != nil {
|
||||
b.WriteString(":")
|
||||
b.WriteString(relName(v.Max, v))
|
||||
}
|
||||
b.WriteString("]")
|
||||
return b.String()
|
||||
}
|
||||
|
||||
func (v *MakeMap) String() string {
|
||||
res := ""
|
||||
if v.Reserve != nil {
|
||||
res = relName(v.Reserve, v)
|
||||
}
|
||||
from := v.Parent().pkg()
|
||||
return fmt.Sprintf("make %s %s", relType(v.Type(), from), res)
|
||||
}
|
||||
|
||||
func (v *MakeChan) String() string {
|
||||
from := v.Parent().pkg()
|
||||
return fmt.Sprintf("make %s %s", relType(v.Type(), from), relName(v.Size, v))
|
||||
}
|
||||
|
||||
func (v *FieldAddr) String() string {
|
||||
st := deref(v.X.Type()).Underlying().(*types.Struct)
|
||||
// Be robust against a bad index.
|
||||
name := "?"
|
||||
if 0 <= v.Field && v.Field < st.NumFields() {
|
||||
name = st.Field(v.Field).Name()
|
||||
}
|
||||
return fmt.Sprintf("&%s.%s [#%d]", relName(v.X, v), name, v.Field)
|
||||
}
|
||||
|
||||
func (v *Field) String() string {
|
||||
st := v.X.Type().Underlying().(*types.Struct)
|
||||
// Be robust against a bad index.
|
||||
name := "?"
|
||||
if 0 <= v.Field && v.Field < st.NumFields() {
|
||||
name = st.Field(v.Field).Name()
|
||||
}
|
||||
return fmt.Sprintf("%s.%s [#%d]", relName(v.X, v), name, v.Field)
|
||||
}
|
||||
|
||||
func (v *IndexAddr) String() string {
|
||||
return fmt.Sprintf("&%s[%s]", relName(v.X, v), relName(v.Index, v))
|
||||
}
|
||||
|
||||
func (v *Index) String() string {
|
||||
return fmt.Sprintf("%s[%s]", relName(v.X, v), relName(v.Index, v))
|
||||
}
|
||||
|
||||
func (v *Lookup) String() string {
|
||||
return fmt.Sprintf("%s[%s]%s", relName(v.X, v), relName(v.Index, v), commaOk(v.CommaOk))
|
||||
}
|
||||
|
||||
func (v *Range) String() string {
|
||||
return "range " + relName(v.X, v)
|
||||
}
|
||||
|
||||
func (v *Next) String() string {
|
||||
return "next " + relName(v.Iter, v)
|
||||
}
|
||||
|
||||
func (v *TypeAssert) String() string {
|
||||
from := v.Parent().pkg()
|
||||
return fmt.Sprintf("typeassert%s %s.(%s)", commaOk(v.CommaOk), relName(v.X, v), relType(v.AssertedType, from))
|
||||
}
|
||||
|
||||
func (v *Extract) String() string {
|
||||
return fmt.Sprintf("extract %s #%d", relName(v.Tuple, v), v.Index)
|
||||
}
|
||||
|
||||
func (s *Jump) String() string {
|
||||
// Be robust against malformed CFG.
|
||||
block := -1
|
||||
if s.block != nil && len(s.block.Succs) == 1 {
|
||||
block = s.block.Succs[0].Index
|
||||
}
|
||||
return fmt.Sprintf("jump %d", block)
|
||||
}
|
||||
|
||||
func (s *If) String() string {
|
||||
// Be robust against malformed CFG.
|
||||
tblock, fblock := -1, -1
|
||||
if s.block != nil && len(s.block.Succs) == 2 {
|
||||
tblock = s.block.Succs[0].Index
|
||||
fblock = s.block.Succs[1].Index
|
||||
}
|
||||
return fmt.Sprintf("if %s goto %d else %d", relName(s.Cond, s), tblock, fblock)
|
||||
}
|
||||
|
||||
func (s *Go) String() string {
|
||||
return printCall(&s.Call, "go ", s)
|
||||
}
|
||||
|
||||
func (s *Panic) String() string {
|
||||
return "panic " + relName(s.X, s)
|
||||
}
|
||||
|
||||
func (s *Return) String() string {
|
||||
var b bytes.Buffer
|
||||
b.WriteString("return")
|
||||
for i, r := range s.Results {
|
||||
if i == 0 {
|
||||
b.WriteString(" ")
|
||||
} else {
|
||||
b.WriteString(", ")
|
||||
}
|
||||
b.WriteString(relName(r, s))
|
||||
}
|
||||
return b.String()
|
||||
}
|
||||
|
||||
func (*RunDefers) String() string {
|
||||
return "rundefers"
|
||||
}
|
||||
|
||||
func (s *Send) String() string {
|
||||
return fmt.Sprintf("send %s <- %s", relName(s.Chan, s), relName(s.X, s))
|
||||
}
|
||||
|
||||
func (s *Defer) String() string {
|
||||
return printCall(&s.Call, "defer ", s)
|
||||
}
|
||||
|
||||
func (s *Select) String() string {
|
||||
var b bytes.Buffer
|
||||
for i, st := range s.States {
|
||||
if i > 0 {
|
||||
b.WriteString(", ")
|
||||
}
|
||||
if st.Dir == types.RecvOnly {
|
||||
b.WriteString("<-")
|
||||
b.WriteString(relName(st.Chan, s))
|
||||
} else {
|
||||
b.WriteString(relName(st.Chan, s))
|
||||
b.WriteString("<-")
|
||||
b.WriteString(relName(st.Send, s))
|
||||
}
|
||||
}
|
||||
non := ""
|
||||
if !s.Blocking {
|
||||
non = "non"
|
||||
}
|
||||
return fmt.Sprintf("select %sblocking [%s]", non, b.String())
|
||||
}
|
||||
|
||||
func (s *Store) String() string {
|
||||
return fmt.Sprintf("*%s = %s", relName(s.Addr, s), relName(s.Val, s))
|
||||
}
|
||||
|
||||
func (s *BlankStore) String() string {
|
||||
return fmt.Sprintf("_ = %s", relName(s.Val, s))
|
||||
}
|
||||
|
||||
func (s *MapUpdate) String() string {
|
||||
return fmt.Sprintf("%s[%s] = %s", relName(s.Map, s), relName(s.Key, s), relName(s.Value, s))
|
||||
}
|
||||
|
||||
func (s *DebugRef) String() string {
|
||||
p := s.Parent().Prog.Fset.Position(s.Pos())
|
||||
var descr interface{}
|
||||
if s.object != nil {
|
||||
descr = s.object // e.g. "var x int"
|
||||
} else {
|
||||
descr = reflect.TypeOf(s.Expr) // e.g. "*ast.CallExpr"
|
||||
}
|
||||
var addr string
|
||||
if s.IsAddr {
|
||||
addr = "address of "
|
||||
}
|
||||
return fmt.Sprintf("; %s%s @ %d:%d is %s", addr, descr, p.Line, p.Column, s.X.Name())
|
||||
}
|
||||
|
||||
func (p *Package) String() string {
|
||||
return "package " + p.Pkg.Path()
|
||||
}
|
||||
|
||||
var _ io.WriterTo = (*Package)(nil) // *Package implements io.Writer
|
||||
|
||||
func (p *Package) WriteTo(w io.Writer) (int64, error) {
|
||||
var buf bytes.Buffer
|
||||
WritePackage(&buf, p)
|
||||
n, err := w.Write(buf.Bytes())
|
||||
return int64(n), err
|
||||
}
|
||||
|
||||
// WritePackage writes to buf a human-readable summary of p.
|
||||
func WritePackage(buf *bytes.Buffer, p *Package) {
|
||||
fmt.Fprintf(buf, "%s:\n", p)
|
||||
|
||||
var names []string
|
||||
maxname := 0
|
||||
for name := range p.Members {
|
||||
if l := len(name); l > maxname {
|
||||
maxname = l
|
||||
}
|
||||
names = append(names, name)
|
||||
}
|
||||
|
||||
from := p.Pkg
|
||||
sort.Strings(names)
|
||||
for _, name := range names {
|
||||
switch mem := p.Members[name].(type) {
|
||||
case *NamedConst:
|
||||
fmt.Fprintf(buf, " const %-*s %s = %s\n",
|
||||
maxname, name, mem.Name(), mem.Value.RelString(from))
|
||||
|
||||
case *Function:
|
||||
fmt.Fprintf(buf, " func %-*s %s\n",
|
||||
maxname, name, relType(mem.Type(), from))
|
||||
|
||||
case *Type:
|
||||
fmt.Fprintf(buf, " type %-*s %s\n",
|
||||
maxname, name, relType(mem.Type().Underlying(), from))
|
||||
for _, meth := range typeutil.IntuitiveMethodSet(mem.Type(), &p.Prog.MethodSets) {
|
||||
fmt.Fprintf(buf, " %s\n", types.SelectionString(meth, types.RelativeTo(from)))
|
||||
}
|
||||
|
||||
case *Global:
|
||||
fmt.Fprintf(buf, " var %-*s %s\n",
|
||||
maxname, name, relType(mem.Type().(*types.Pointer).Elem(), from))
|
||||
}
|
||||
}
|
||||
|
||||
fmt.Fprintf(buf, "\n")
|
||||
}
|
||||
|
||||
func commaOk(x bool) string {
|
||||
if x {
|
||||
return ",ok"
|
||||
}
|
||||
return ""
|
||||
}
|
535
vendor/honnef.co/go/tools/ssa/sanity.go
vendored
Normal file
535
vendor/honnef.co/go/tools/ssa/sanity.go
vendored
Normal file
@ -0,0 +1,535 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// An optional pass for sanity-checking invariants of the SSA representation.
|
||||
// Currently it checks CFG invariants but little at the instruction level.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/types"
|
||||
"io"
|
||||
"os"
|
||||
"strings"
|
||||
)
|
||||
|
||||
type sanity struct {
|
||||
reporter io.Writer
|
||||
fn *Function
|
||||
block *BasicBlock
|
||||
instrs map[Instruction]struct{}
|
||||
insane bool
|
||||
}
|
||||
|
||||
// sanityCheck performs integrity checking of the SSA representation
|
||||
// of the function fn and returns true if it was valid. Diagnostics
|
||||
// are written to reporter if non-nil, os.Stderr otherwise. Some
|
||||
// diagnostics are only warnings and do not imply a negative result.
|
||||
//
|
||||
// Sanity-checking is intended to facilitate the debugging of code
|
||||
// transformation passes.
|
||||
//
|
||||
func sanityCheck(fn *Function, reporter io.Writer) bool {
|
||||
if reporter == nil {
|
||||
reporter = os.Stderr
|
||||
}
|
||||
return (&sanity{reporter: reporter}).checkFunction(fn)
|
||||
}
|
||||
|
||||
// mustSanityCheck is like sanityCheck but panics instead of returning
|
||||
// a negative result.
|
||||
//
|
||||
func mustSanityCheck(fn *Function, reporter io.Writer) {
|
||||
if !sanityCheck(fn, reporter) {
|
||||
fn.WriteTo(os.Stderr)
|
||||
panic("SanityCheck failed")
|
||||
}
|
||||
}
|
||||
|
||||
func (s *sanity) diagnostic(prefix, format string, args ...interface{}) {
|
||||
fmt.Fprintf(s.reporter, "%s: function %s", prefix, s.fn)
|
||||
if s.block != nil {
|
||||
fmt.Fprintf(s.reporter, ", block %s", s.block)
|
||||
}
|
||||
io.WriteString(s.reporter, ": ")
|
||||
fmt.Fprintf(s.reporter, format, args...)
|
||||
io.WriteString(s.reporter, "\n")
|
||||
}
|
||||
|
||||
func (s *sanity) errorf(format string, args ...interface{}) {
|
||||
s.insane = true
|
||||
s.diagnostic("Error", format, args...)
|
||||
}
|
||||
|
||||
func (s *sanity) warnf(format string, args ...interface{}) {
|
||||
s.diagnostic("Warning", format, args...)
|
||||
}
|
||||
|
||||
// findDuplicate returns an arbitrary basic block that appeared more
|
||||
// than once in blocks, or nil if all were unique.
|
||||
func findDuplicate(blocks []*BasicBlock) *BasicBlock {
|
||||
if len(blocks) < 2 {
|
||||
return nil
|
||||
}
|
||||
if blocks[0] == blocks[1] {
|
||||
return blocks[0]
|
||||
}
|
||||
// Slow path:
|
||||
m := make(map[*BasicBlock]bool)
|
||||
for _, b := range blocks {
|
||||
if m[b] {
|
||||
return b
|
||||
}
|
||||
m[b] = true
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (s *sanity) checkInstr(idx int, instr Instruction) {
|
||||
switch instr := instr.(type) {
|
||||
case *If, *Jump, *Return, *Panic:
|
||||
s.errorf("control flow instruction not at end of block")
|
||||
case *Phi:
|
||||
if idx == 0 {
|
||||
// It suffices to apply this check to just the first phi node.
|
||||
if dup := findDuplicate(s.block.Preds); dup != nil {
|
||||
s.errorf("phi node in block with duplicate predecessor %s", dup)
|
||||
}
|
||||
} else {
|
||||
prev := s.block.Instrs[idx-1]
|
||||
if _, ok := prev.(*Phi); !ok {
|
||||
s.errorf("Phi instruction follows a non-Phi: %T", prev)
|
||||
}
|
||||
}
|
||||
if ne, np := len(instr.Edges), len(s.block.Preds); ne != np {
|
||||
s.errorf("phi node has %d edges but %d predecessors", ne, np)
|
||||
|
||||
} else {
|
||||
for i, e := range instr.Edges {
|
||||
if e == nil {
|
||||
s.errorf("phi node '%s' has no value for edge #%d from %s", instr.Comment, i, s.block.Preds[i])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
case *Alloc:
|
||||
if !instr.Heap {
|
||||
found := false
|
||||
for _, l := range s.fn.Locals {
|
||||
if l == instr {
|
||||
found = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if !found {
|
||||
s.errorf("local alloc %s = %s does not appear in Function.Locals", instr.Name(), instr)
|
||||
}
|
||||
}
|
||||
|
||||
case *BinOp:
|
||||
case *Call:
|
||||
case *ChangeInterface:
|
||||
case *ChangeType:
|
||||
case *Convert:
|
||||
if _, ok := instr.X.Type().Underlying().(*types.Basic); !ok {
|
||||
if _, ok := instr.Type().Underlying().(*types.Basic); !ok {
|
||||
s.errorf("convert %s -> %s: at least one type must be basic", instr.X.Type(), instr.Type())
|
||||
}
|
||||
}
|
||||
|
||||
case *Defer:
|
||||
case *Extract:
|
||||
case *Field:
|
||||
case *FieldAddr:
|
||||
case *Go:
|
||||
case *Index:
|
||||
case *IndexAddr:
|
||||
case *Lookup:
|
||||
case *MakeChan:
|
||||
case *MakeClosure:
|
||||
numFree := len(instr.Fn.(*Function).FreeVars)
|
||||
numBind := len(instr.Bindings)
|
||||
if numFree != numBind {
|
||||
s.errorf("MakeClosure has %d Bindings for function %s with %d free vars",
|
||||
numBind, instr.Fn, numFree)
|
||||
|
||||
}
|
||||
if recv := instr.Type().(*types.Signature).Recv(); recv != nil {
|
||||
s.errorf("MakeClosure's type includes receiver %s", recv.Type())
|
||||
}
|
||||
|
||||
case *MakeInterface:
|
||||
case *MakeMap:
|
||||
case *MakeSlice:
|
||||
case *MapUpdate:
|
||||
case *Next:
|
||||
case *Range:
|
||||
case *RunDefers:
|
||||
case *Select:
|
||||
case *Send:
|
||||
case *Slice:
|
||||
case *Store:
|
||||
case *TypeAssert:
|
||||
case *UnOp:
|
||||
case *DebugRef:
|
||||
case *BlankStore:
|
||||
case *Sigma:
|
||||
// TODO(adonovan): implement checks.
|
||||
default:
|
||||
panic(fmt.Sprintf("Unknown instruction type: %T", instr))
|
||||
}
|
||||
|
||||
if call, ok := instr.(CallInstruction); ok {
|
||||
if call.Common().Signature() == nil {
|
||||
s.errorf("nil signature: %s", call)
|
||||
}
|
||||
}
|
||||
|
||||
// Check that value-defining instructions have valid types
|
||||
// and a valid referrer list.
|
||||
if v, ok := instr.(Value); ok {
|
||||
t := v.Type()
|
||||
if t == nil {
|
||||
s.errorf("no type: %s = %s", v.Name(), v)
|
||||
} else if t == tRangeIter {
|
||||
// not a proper type; ignore.
|
||||
} else if b, ok := t.Underlying().(*types.Basic); ok && b.Info()&types.IsUntyped != 0 {
|
||||
s.errorf("instruction has 'untyped' result: %s = %s : %s", v.Name(), v, t)
|
||||
}
|
||||
s.checkReferrerList(v)
|
||||
}
|
||||
|
||||
// Untyped constants are legal as instruction Operands(),
|
||||
// for example:
|
||||
// _ = "foo"[0]
|
||||
// or:
|
||||
// if wordsize==64 {...}
|
||||
|
||||
// All other non-Instruction Values can be found via their
|
||||
// enclosing Function or Package.
|
||||
}
|
||||
|
||||
func (s *sanity) checkFinalInstr(instr Instruction) {
|
||||
switch instr := instr.(type) {
|
||||
case *If:
|
||||
if nsuccs := len(s.block.Succs); nsuccs != 2 {
|
||||
s.errorf("If-terminated block has %d successors; expected 2", nsuccs)
|
||||
return
|
||||
}
|
||||
if s.block.Succs[0] == s.block.Succs[1] {
|
||||
s.errorf("If-instruction has same True, False target blocks: %s", s.block.Succs[0])
|
||||
return
|
||||
}
|
||||
|
||||
case *Jump:
|
||||
if nsuccs := len(s.block.Succs); nsuccs != 1 {
|
||||
s.errorf("Jump-terminated block has %d successors; expected 1", nsuccs)
|
||||
return
|
||||
}
|
||||
|
||||
case *Return:
|
||||
if nsuccs := len(s.block.Succs); nsuccs != 0 {
|
||||
s.errorf("Return-terminated block has %d successors; expected none", nsuccs)
|
||||
return
|
||||
}
|
||||
if na, nf := len(instr.Results), s.fn.Signature.Results().Len(); nf != na {
|
||||
s.errorf("%d-ary return in %d-ary function", na, nf)
|
||||
}
|
||||
|
||||
case *Panic:
|
||||
if nsuccs := len(s.block.Succs); nsuccs != 0 {
|
||||
s.errorf("Panic-terminated block has %d successors; expected none", nsuccs)
|
||||
return
|
||||
}
|
||||
|
||||
default:
|
||||
s.errorf("non-control flow instruction at end of block")
|
||||
}
|
||||
}
|
||||
|
||||
func (s *sanity) checkBlock(b *BasicBlock, index int) {
|
||||
s.block = b
|
||||
|
||||
if b.Index != index {
|
||||
s.errorf("block has incorrect Index %d", b.Index)
|
||||
}
|
||||
if b.parent != s.fn {
|
||||
s.errorf("block has incorrect parent %s", b.parent)
|
||||
}
|
||||
|
||||
// Check all blocks are reachable.
|
||||
// (The entry block is always implicitly reachable,
|
||||
// as is the Recover block, if any.)
|
||||
if (index > 0 && b != b.parent.Recover) && len(b.Preds) == 0 {
|
||||
s.warnf("unreachable block")
|
||||
if b.Instrs == nil {
|
||||
// Since this block is about to be pruned,
|
||||
// tolerating transient problems in it
|
||||
// simplifies other optimizations.
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// Check predecessor and successor relations are dual,
|
||||
// and that all blocks in CFG belong to same function.
|
||||
for _, a := range b.Preds {
|
||||
found := false
|
||||
for _, bb := range a.Succs {
|
||||
if bb == b {
|
||||
found = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if !found {
|
||||
s.errorf("expected successor edge in predecessor %s; found only: %s", a, a.Succs)
|
||||
}
|
||||
if a.parent != s.fn {
|
||||
s.errorf("predecessor %s belongs to different function %s", a, a.parent)
|
||||
}
|
||||
}
|
||||
for _, c := range b.Succs {
|
||||
found := false
|
||||
for _, bb := range c.Preds {
|
||||
if bb == b {
|
||||
found = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if !found {
|
||||
s.errorf("expected predecessor edge in successor %s; found only: %s", c, c.Preds)
|
||||
}
|
||||
if c.parent != s.fn {
|
||||
s.errorf("successor %s belongs to different function %s", c, c.parent)
|
||||
}
|
||||
}
|
||||
|
||||
// Check each instruction is sane.
|
||||
n := len(b.Instrs)
|
||||
if n == 0 {
|
||||
s.errorf("basic block contains no instructions")
|
||||
}
|
||||
var rands [10]*Value // reuse storage
|
||||
for j, instr := range b.Instrs {
|
||||
if instr == nil {
|
||||
s.errorf("nil instruction at index %d", j)
|
||||
continue
|
||||
}
|
||||
if b2 := instr.Block(); b2 == nil {
|
||||
s.errorf("nil Block() for instruction at index %d", j)
|
||||
continue
|
||||
} else if b2 != b {
|
||||
s.errorf("wrong Block() (%s) for instruction at index %d ", b2, j)
|
||||
continue
|
||||
}
|
||||
if j < n-1 {
|
||||
s.checkInstr(j, instr)
|
||||
} else {
|
||||
s.checkFinalInstr(instr)
|
||||
}
|
||||
|
||||
// Check Instruction.Operands.
|
||||
operands:
|
||||
for i, op := range instr.Operands(rands[:0]) {
|
||||
if op == nil {
|
||||
s.errorf("nil operand pointer %d of %s", i, instr)
|
||||
continue
|
||||
}
|
||||
val := *op
|
||||
if val == nil {
|
||||
continue // a nil operand is ok
|
||||
}
|
||||
|
||||
// Check that "untyped" types only appear on constant operands.
|
||||
if _, ok := (*op).(*Const); !ok {
|
||||
if basic, ok := (*op).Type().(*types.Basic); ok {
|
||||
if basic.Info()&types.IsUntyped != 0 {
|
||||
s.errorf("operand #%d of %s is untyped: %s", i, instr, basic)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check that Operands that are also Instructions belong to same function.
|
||||
// TODO(adonovan): also check their block dominates block b.
|
||||
if val, ok := val.(Instruction); ok {
|
||||
if val.Block() == nil {
|
||||
s.errorf("operand %d of %s is an instruction (%s) that belongs to no block", i, instr, val)
|
||||
} else if val.Parent() != s.fn {
|
||||
s.errorf("operand %d of %s is an instruction (%s) from function %s", i, instr, val, val.Parent())
|
||||
}
|
||||
}
|
||||
|
||||
// Check that each function-local operand of
|
||||
// instr refers back to instr. (NB: quadratic)
|
||||
switch val := val.(type) {
|
||||
case *Const, *Global, *Builtin:
|
||||
continue // not local
|
||||
case *Function:
|
||||
if val.parent == nil {
|
||||
continue // only anon functions are local
|
||||
}
|
||||
}
|
||||
|
||||
// TODO(adonovan): check val.Parent() != nil <=> val.Referrers() is defined.
|
||||
|
||||
if refs := val.Referrers(); refs != nil {
|
||||
for _, ref := range *refs {
|
||||
if ref == instr {
|
||||
continue operands
|
||||
}
|
||||
}
|
||||
s.errorf("operand %d of %s (%s) does not refer to us", i, instr, val)
|
||||
} else {
|
||||
s.errorf("operand %d of %s (%s) has no referrers", i, instr, val)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (s *sanity) checkReferrerList(v Value) {
|
||||
refs := v.Referrers()
|
||||
if refs == nil {
|
||||
s.errorf("%s has missing referrer list", v.Name())
|
||||
return
|
||||
}
|
||||
for i, ref := range *refs {
|
||||
if _, ok := s.instrs[ref]; !ok {
|
||||
s.errorf("%s.Referrers()[%d] = %s is not an instruction belonging to this function", v.Name(), i, ref)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (s *sanity) checkFunction(fn *Function) bool {
|
||||
// TODO(adonovan): check Function invariants:
|
||||
// - check params match signature
|
||||
// - check transient fields are nil
|
||||
// - warn if any fn.Locals do not appear among block instructions.
|
||||
s.fn = fn
|
||||
if fn.Prog == nil {
|
||||
s.errorf("nil Prog")
|
||||
}
|
||||
|
||||
_ = fn.String() // must not crash
|
||||
_ = fn.RelString(fn.pkg()) // must not crash
|
||||
|
||||
// All functions have a package, except delegates (which are
|
||||
// shared across packages, or duplicated as weak symbols in a
|
||||
// separate-compilation model), and error.Error.
|
||||
if fn.Pkg == nil {
|
||||
if strings.HasPrefix(fn.Synthetic, "wrapper ") ||
|
||||
strings.HasPrefix(fn.Synthetic, "bound ") ||
|
||||
strings.HasPrefix(fn.Synthetic, "thunk ") ||
|
||||
strings.HasSuffix(fn.name, "Error") {
|
||||
// ok
|
||||
} else {
|
||||
s.errorf("nil Pkg")
|
||||
}
|
||||
}
|
||||
if src, syn := fn.Synthetic == "", fn.Syntax() != nil; src != syn {
|
||||
s.errorf("got fromSource=%t, hasSyntax=%t; want same values", src, syn)
|
||||
}
|
||||
for i, l := range fn.Locals {
|
||||
if l.Parent() != fn {
|
||||
s.errorf("Local %s at index %d has wrong parent", l.Name(), i)
|
||||
}
|
||||
if l.Heap {
|
||||
s.errorf("Local %s at index %d has Heap flag set", l.Name(), i)
|
||||
}
|
||||
}
|
||||
// Build the set of valid referrers.
|
||||
s.instrs = make(map[Instruction]struct{})
|
||||
for _, b := range fn.Blocks {
|
||||
for _, instr := range b.Instrs {
|
||||
s.instrs[instr] = struct{}{}
|
||||
}
|
||||
}
|
||||
for i, p := range fn.Params {
|
||||
if p.Parent() != fn {
|
||||
s.errorf("Param %s at index %d has wrong parent", p.Name(), i)
|
||||
}
|
||||
// Check common suffix of Signature and Params match type.
|
||||
if sig := fn.Signature; sig != nil {
|
||||
j := i - len(fn.Params) + sig.Params().Len() // index within sig.Params
|
||||
if j < 0 {
|
||||
continue
|
||||
}
|
||||
if !types.Identical(p.Type(), sig.Params().At(j).Type()) {
|
||||
s.errorf("Param %s at index %d has wrong type (%s, versus %s in Signature)", p.Name(), i, p.Type(), sig.Params().At(j).Type())
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
s.checkReferrerList(p)
|
||||
}
|
||||
for i, fv := range fn.FreeVars {
|
||||
if fv.Parent() != fn {
|
||||
s.errorf("FreeVar %s at index %d has wrong parent", fv.Name(), i)
|
||||
}
|
||||
s.checkReferrerList(fv)
|
||||
}
|
||||
|
||||
if fn.Blocks != nil && len(fn.Blocks) == 0 {
|
||||
// Function _had_ blocks (so it's not external) but
|
||||
// they were "optimized" away, even the entry block.
|
||||
s.errorf("Blocks slice is non-nil but empty")
|
||||
}
|
||||
for i, b := range fn.Blocks {
|
||||
if b == nil {
|
||||
s.warnf("nil *BasicBlock at f.Blocks[%d]", i)
|
||||
continue
|
||||
}
|
||||
s.checkBlock(b, i)
|
||||
}
|
||||
if fn.Recover != nil && fn.Blocks[fn.Recover.Index] != fn.Recover {
|
||||
s.errorf("Recover block is not in Blocks slice")
|
||||
}
|
||||
|
||||
s.block = nil
|
||||
for i, anon := range fn.AnonFuncs {
|
||||
if anon.Parent() != fn {
|
||||
s.errorf("AnonFuncs[%d]=%s but %s.Parent()=%s", i, anon, anon, anon.Parent())
|
||||
}
|
||||
}
|
||||
s.fn = nil
|
||||
return !s.insane
|
||||
}
|
||||
|
||||
// sanityCheckPackage checks invariants of packages upon creation.
|
||||
// It does not require that the package is built.
|
||||
// Unlike sanityCheck (for functions), it just panics at the first error.
|
||||
func sanityCheckPackage(pkg *Package) {
|
||||
if pkg.Pkg == nil {
|
||||
panic(fmt.Sprintf("Package %s has no Object", pkg))
|
||||
}
|
||||
_ = pkg.String() // must not crash
|
||||
|
||||
for name, mem := range pkg.Members {
|
||||
if name != mem.Name() {
|
||||
panic(fmt.Sprintf("%s: %T.Name() = %s, want %s",
|
||||
pkg.Pkg.Path(), mem, mem.Name(), name))
|
||||
}
|
||||
obj := mem.Object()
|
||||
if obj == nil {
|
||||
// This check is sound because fields
|
||||
// {Global,Function}.object have type
|
||||
// types.Object. (If they were declared as
|
||||
// *types.{Var,Func}, we'd have a non-empty
|
||||
// interface containing a nil pointer.)
|
||||
|
||||
continue // not all members have typechecker objects
|
||||
}
|
||||
if obj.Name() != name {
|
||||
if obj.Name() == "init" && strings.HasPrefix(mem.Name(), "init#") {
|
||||
// Ok. The name of a declared init function varies between
|
||||
// its types.Func ("init") and its ssa.Function ("init#%d").
|
||||
} else {
|
||||
panic(fmt.Sprintf("%s: %T.Object().Name() = %s, want %s",
|
||||
pkg.Pkg.Path(), mem, obj.Name(), name))
|
||||
}
|
||||
}
|
||||
if obj.Pos() != mem.Pos() {
|
||||
panic(fmt.Sprintf("%s Pos=%d obj.Pos=%d", mem, mem.Pos(), obj.Pos()))
|
||||
}
|
||||
}
|
||||
}
|
293
vendor/honnef.co/go/tools/ssa/source.go
vendored
Normal file
293
vendor/honnef.co/go/tools/ssa/source.go
vendored
Normal file
@ -0,0 +1,293 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file defines utilities for working with source positions
|
||||
// or source-level named entities ("objects").
|
||||
|
||||
// TODO(adonovan): test that {Value,Instruction}.Pos() positions match
|
||||
// the originating syntax, as specified.
|
||||
|
||||
import (
|
||||
"go/ast"
|
||||
"go/token"
|
||||
"go/types"
|
||||
)
|
||||
|
||||
// EnclosingFunction returns the function that contains the syntax
|
||||
// node denoted by path.
|
||||
//
|
||||
// Syntax associated with package-level variable specifications is
|
||||
// enclosed by the package's init() function.
|
||||
//
|
||||
// Returns nil if not found; reasons might include:
|
||||
// - the node is not enclosed by any function.
|
||||
// - the node is within an anonymous function (FuncLit) and
|
||||
// its SSA function has not been created yet
|
||||
// (pkg.Build() has not yet been called).
|
||||
//
|
||||
func EnclosingFunction(pkg *Package, path []ast.Node) *Function {
|
||||
// Start with package-level function...
|
||||
fn := findEnclosingPackageLevelFunction(pkg, path)
|
||||
if fn == nil {
|
||||
return nil // not in any function
|
||||
}
|
||||
|
||||
// ...then walk down the nested anonymous functions.
|
||||
n := len(path)
|
||||
outer:
|
||||
for i := range path {
|
||||
if lit, ok := path[n-1-i].(*ast.FuncLit); ok {
|
||||
for _, anon := range fn.AnonFuncs {
|
||||
if anon.Pos() == lit.Type.Func {
|
||||
fn = anon
|
||||
continue outer
|
||||
}
|
||||
}
|
||||
// SSA function not found:
|
||||
// - package not yet built, or maybe
|
||||
// - builder skipped FuncLit in dead block
|
||||
// (in principle; but currently the Builder
|
||||
// generates even dead FuncLits).
|
||||
return nil
|
||||
}
|
||||
}
|
||||
return fn
|
||||
}
|
||||
|
||||
// HasEnclosingFunction returns true if the AST node denoted by path
|
||||
// is contained within the declaration of some function or
|
||||
// package-level variable.
|
||||
//
|
||||
// Unlike EnclosingFunction, the behaviour of this function does not
|
||||
// depend on whether SSA code for pkg has been built, so it can be
|
||||
// used to quickly reject check inputs that will cause
|
||||
// EnclosingFunction to fail, prior to SSA building.
|
||||
//
|
||||
func HasEnclosingFunction(pkg *Package, path []ast.Node) bool {
|
||||
return findEnclosingPackageLevelFunction(pkg, path) != nil
|
||||
}
|
||||
|
||||
// findEnclosingPackageLevelFunction returns the Function
|
||||
// corresponding to the package-level function enclosing path.
|
||||
//
|
||||
func findEnclosingPackageLevelFunction(pkg *Package, path []ast.Node) *Function {
|
||||
if n := len(path); n >= 2 { // [... {Gen,Func}Decl File]
|
||||
switch decl := path[n-2].(type) {
|
||||
case *ast.GenDecl:
|
||||
if decl.Tok == token.VAR && n >= 3 {
|
||||
// Package-level 'var' initializer.
|
||||
return pkg.init
|
||||
}
|
||||
|
||||
case *ast.FuncDecl:
|
||||
if decl.Recv == nil && decl.Name.Name == "init" {
|
||||
// Explicit init() function.
|
||||
for _, b := range pkg.init.Blocks {
|
||||
for _, instr := range b.Instrs {
|
||||
if instr, ok := instr.(*Call); ok {
|
||||
if callee, ok := instr.Call.Value.(*Function); ok && callee.Pkg == pkg && callee.Pos() == decl.Name.NamePos {
|
||||
return callee
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Hack: return non-nil when SSA is not yet
|
||||
// built so that HasEnclosingFunction works.
|
||||
return pkg.init
|
||||
}
|
||||
// Declared function/method.
|
||||
return findNamedFunc(pkg, decl.Name.NamePos)
|
||||
}
|
||||
}
|
||||
return nil // not in any function
|
||||
}
|
||||
|
||||
// findNamedFunc returns the named function whose FuncDecl.Ident is at
|
||||
// position pos.
|
||||
//
|
||||
func findNamedFunc(pkg *Package, pos token.Pos) *Function {
|
||||
// Look at all package members and method sets of named types.
|
||||
// Not very efficient.
|
||||
for _, mem := range pkg.Members {
|
||||
switch mem := mem.(type) {
|
||||
case *Function:
|
||||
if mem.Pos() == pos {
|
||||
return mem
|
||||
}
|
||||
case *Type:
|
||||
mset := pkg.Prog.MethodSets.MethodSet(types.NewPointer(mem.Type()))
|
||||
for i, n := 0, mset.Len(); i < n; i++ {
|
||||
// Don't call Program.Method: avoid creating wrappers.
|
||||
obj := mset.At(i).Obj().(*types.Func)
|
||||
if obj.Pos() == pos {
|
||||
return pkg.values[obj].(*Function)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// ValueForExpr returns the SSA Value that corresponds to non-constant
|
||||
// expression e.
|
||||
//
|
||||
// It returns nil if no value was found, e.g.
|
||||
// - the expression is not lexically contained within f;
|
||||
// - f was not built with debug information; or
|
||||
// - e is a constant expression. (For efficiency, no debug
|
||||
// information is stored for constants. Use
|
||||
// go/types.Info.Types[e].Value instead.)
|
||||
// - e is a reference to nil or a built-in function.
|
||||
// - the value was optimised away.
|
||||
//
|
||||
// If e is an addressable expression used in an lvalue context,
|
||||
// value is the address denoted by e, and isAddr is true.
|
||||
//
|
||||
// The types of e (or &e, if isAddr) and the result are equal
|
||||
// (modulo "untyped" bools resulting from comparisons).
|
||||
//
|
||||
// (Tip: to find the ssa.Value given a source position, use
|
||||
// astutil.PathEnclosingInterval to locate the ast.Node, then
|
||||
// EnclosingFunction to locate the Function, then ValueForExpr to find
|
||||
// the ssa.Value.)
|
||||
//
|
||||
func (f *Function) ValueForExpr(e ast.Expr) (value Value, isAddr bool) {
|
||||
if f.debugInfo() { // (opt)
|
||||
e = unparen(e)
|
||||
for _, b := range f.Blocks {
|
||||
for _, instr := range b.Instrs {
|
||||
if ref, ok := instr.(*DebugRef); ok {
|
||||
if ref.Expr == e {
|
||||
return ref.X, ref.IsAddr
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// --- Lookup functions for source-level named entities (types.Objects) ---
|
||||
|
||||
// Package returns the SSA Package corresponding to the specified
|
||||
// type-checker package object.
|
||||
// It returns nil if no such SSA package has been created.
|
||||
//
|
||||
func (prog *Program) Package(obj *types.Package) *Package {
|
||||
return prog.packages[obj]
|
||||
}
|
||||
|
||||
// packageLevelValue returns the package-level value corresponding to
|
||||
// the specified named object, which may be a package-level const
|
||||
// (*Const), var (*Global) or func (*Function) of some package in
|
||||
// prog. It returns nil if the object is not found.
|
||||
//
|
||||
func (prog *Program) packageLevelValue(obj types.Object) Value {
|
||||
if pkg, ok := prog.packages[obj.Pkg()]; ok {
|
||||
return pkg.values[obj]
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// FuncValue returns the concrete Function denoted by the source-level
|
||||
// named function obj, or nil if obj denotes an interface method.
|
||||
//
|
||||
// TODO(adonovan): check the invariant that obj.Type() matches the
|
||||
// result's Signature, both in the params/results and in the receiver.
|
||||
//
|
||||
func (prog *Program) FuncValue(obj *types.Func) *Function {
|
||||
fn, _ := prog.packageLevelValue(obj).(*Function)
|
||||
return fn
|
||||
}
|
||||
|
||||
// ConstValue returns the SSA Value denoted by the source-level named
|
||||
// constant obj.
|
||||
//
|
||||
func (prog *Program) ConstValue(obj *types.Const) *Const {
|
||||
// TODO(adonovan): opt: share (don't reallocate)
|
||||
// Consts for const objects and constant ast.Exprs.
|
||||
|
||||
// Universal constant? {true,false,nil}
|
||||
if obj.Parent() == types.Universe {
|
||||
return NewConst(obj.Val(), obj.Type())
|
||||
}
|
||||
// Package-level named constant?
|
||||
if v := prog.packageLevelValue(obj); v != nil {
|
||||
return v.(*Const)
|
||||
}
|
||||
return NewConst(obj.Val(), obj.Type())
|
||||
}
|
||||
|
||||
// VarValue returns the SSA Value that corresponds to a specific
|
||||
// identifier denoting the source-level named variable obj.
|
||||
//
|
||||
// VarValue returns nil if a local variable was not found, perhaps
|
||||
// because its package was not built, the debug information was not
|
||||
// requested during SSA construction, or the value was optimized away.
|
||||
//
|
||||
// ref is the path to an ast.Ident (e.g. from PathEnclosingInterval),
|
||||
// and that ident must resolve to obj.
|
||||
//
|
||||
// pkg is the package enclosing the reference. (A reference to a var
|
||||
// always occurs within a function, so we need to know where to find it.)
|
||||
//
|
||||
// If the identifier is a field selector and its base expression is
|
||||
// non-addressable, then VarValue returns the value of that field.
|
||||
// For example:
|
||||
// func f() struct {x int}
|
||||
// f().x // VarValue(x) returns a *Field instruction of type int
|
||||
//
|
||||
// All other identifiers denote addressable locations (variables).
|
||||
// For them, VarValue may return either the variable's address or its
|
||||
// value, even when the expression is evaluated only for its value; the
|
||||
// situation is reported by isAddr, the second component of the result.
|
||||
//
|
||||
// If !isAddr, the returned value is the one associated with the
|
||||
// specific identifier. For example,
|
||||
// var x int // VarValue(x) returns Const 0 here
|
||||
// x = 1 // VarValue(x) returns Const 1 here
|
||||
//
|
||||
// It is not specified whether the value or the address is returned in
|
||||
// any particular case, as it may depend upon optimizations performed
|
||||
// during SSA code generation, such as registerization, constant
|
||||
// folding, avoidance of materialization of subexpressions, etc.
|
||||
//
|
||||
func (prog *Program) VarValue(obj *types.Var, pkg *Package, ref []ast.Node) (value Value, isAddr bool) {
|
||||
// All references to a var are local to some function, possibly init.
|
||||
fn := EnclosingFunction(pkg, ref)
|
||||
if fn == nil {
|
||||
return // e.g. def of struct field; SSA not built?
|
||||
}
|
||||
|
||||
id := ref[0].(*ast.Ident)
|
||||
|
||||
// Defining ident of a parameter?
|
||||
if id.Pos() == obj.Pos() {
|
||||
for _, param := range fn.Params {
|
||||
if param.Object() == obj {
|
||||
return param, false
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Other ident?
|
||||
for _, b := range fn.Blocks {
|
||||
for _, instr := range b.Instrs {
|
||||
if dr, ok := instr.(*DebugRef); ok {
|
||||
if dr.Pos() == id.Pos() {
|
||||
return dr.X, dr.IsAddr
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Defining ident of package-level var?
|
||||
if v := prog.packageLevelValue(obj); v != nil {
|
||||
return v.(*Global), true
|
||||
}
|
||||
|
||||
return // e.g. debug info not requested, or var optimized away
|
||||
}
|
1745
vendor/honnef.co/go/tools/ssa/ssa.go
vendored
Normal file
1745
vendor/honnef.co/go/tools/ssa/ssa.go
vendored
Normal file
File diff suppressed because it is too large
Load Diff
271
vendor/honnef.co/go/tools/ssa/testmain.go
vendored
Normal file
271
vendor/honnef.co/go/tools/ssa/testmain.go
vendored
Normal file
@ -0,0 +1,271 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// CreateTestMainPackage synthesizes a main package that runs all the
|
||||
// tests of the supplied packages.
|
||||
// It is closely coupled to $GOROOT/src/cmd/go/test.go and $GOROOT/src/testing.
|
||||
//
|
||||
// TODO(adonovan): throws this all away now that x/tools/go/packages
|
||||
// provides access to the actual synthetic test main files.
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"go/ast"
|
||||
"go/parser"
|
||||
"go/types"
|
||||
"log"
|
||||
"os"
|
||||
"strings"
|
||||
"text/template"
|
||||
)
|
||||
|
||||
// FindTests returns the Test, Benchmark, and Example functions
|
||||
// (as defined by "go test") defined in the specified package,
|
||||
// and its TestMain function, if any.
|
||||
//
|
||||
// Deprecated: use x/tools/go/packages to access synthetic testmain packages.
|
||||
func FindTests(pkg *Package) (tests, benchmarks, examples []*Function, main *Function) {
|
||||
prog := pkg.Prog
|
||||
|
||||
// The first two of these may be nil: if the program doesn't import "testing",
|
||||
// it can't contain any tests, but it may yet contain Examples.
|
||||
var testSig *types.Signature // func(*testing.T)
|
||||
var benchmarkSig *types.Signature // func(*testing.B)
|
||||
var exampleSig = types.NewSignature(nil, nil, nil, false) // func()
|
||||
|
||||
// Obtain the types from the parameters of testing.MainStart.
|
||||
if testingPkg := prog.ImportedPackage("testing"); testingPkg != nil {
|
||||
mainStart := testingPkg.Func("MainStart")
|
||||
params := mainStart.Signature.Params()
|
||||
testSig = funcField(params.At(1).Type())
|
||||
benchmarkSig = funcField(params.At(2).Type())
|
||||
|
||||
// Does the package define this function?
|
||||
// func TestMain(*testing.M)
|
||||
if f := pkg.Func("TestMain"); f != nil {
|
||||
sig := f.Type().(*types.Signature)
|
||||
starM := mainStart.Signature.Results().At(0).Type() // *testing.M
|
||||
if sig.Results().Len() == 0 &&
|
||||
sig.Params().Len() == 1 &&
|
||||
types.Identical(sig.Params().At(0).Type(), starM) {
|
||||
main = f
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO(adonovan): use a stable order, e.g. lexical.
|
||||
for _, mem := range pkg.Members {
|
||||
if f, ok := mem.(*Function); ok &&
|
||||
ast.IsExported(f.Name()) &&
|
||||
strings.HasSuffix(prog.Fset.Position(f.Pos()).Filename, "_test.go") {
|
||||
|
||||
switch {
|
||||
case testSig != nil && isTestSig(f, "Test", testSig):
|
||||
tests = append(tests, f)
|
||||
case benchmarkSig != nil && isTestSig(f, "Benchmark", benchmarkSig):
|
||||
benchmarks = append(benchmarks, f)
|
||||
case isTestSig(f, "Example", exampleSig):
|
||||
examples = append(examples, f)
|
||||
default:
|
||||
continue
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Like isTest, but checks the signature too.
|
||||
func isTestSig(f *Function, prefix string, sig *types.Signature) bool {
|
||||
return isTest(f.Name(), prefix) && types.Identical(f.Signature, sig)
|
||||
}
|
||||
|
||||
// Given the type of one of the three slice parameters of testing.Main,
|
||||
// returns the function type.
|
||||
func funcField(slice types.Type) *types.Signature {
|
||||
return slice.(*types.Slice).Elem().Underlying().(*types.Struct).Field(1).Type().(*types.Signature)
|
||||
}
|
||||
|
||||
// isTest tells whether name looks like a test (or benchmark, according to prefix).
|
||||
// It is a Test (say) if there is a character after Test that is not a lower-case letter.
|
||||
// We don't want TesticularCancer.
|
||||
// Plundered from $GOROOT/src/cmd/go/test.go
|
||||
func isTest(name, prefix string) bool {
|
||||
if !strings.HasPrefix(name, prefix) {
|
||||
return false
|
||||
}
|
||||
if len(name) == len(prefix) { // "Test" is ok
|
||||
return true
|
||||
}
|
||||
return ast.IsExported(name[len(prefix):])
|
||||
}
|
||||
|
||||
// CreateTestMainPackage creates and returns a synthetic "testmain"
|
||||
// package for the specified package if it defines tests, benchmarks or
|
||||
// executable examples, or nil otherwise. The new package is named
|
||||
// "main" and provides a function named "main" that runs the tests,
|
||||
// similar to the one that would be created by the 'go test' tool.
|
||||
//
|
||||
// Subsequent calls to prog.AllPackages include the new package.
|
||||
// The package pkg must belong to the program prog.
|
||||
//
|
||||
// Deprecated: use x/tools/go/packages to access synthetic testmain packages.
|
||||
func (prog *Program) CreateTestMainPackage(pkg *Package) *Package {
|
||||
if pkg.Prog != prog {
|
||||
log.Fatal("Package does not belong to Program")
|
||||
}
|
||||
|
||||
// Template data
|
||||
var data struct {
|
||||
Pkg *Package
|
||||
Tests, Benchmarks, Examples []*Function
|
||||
Main *Function
|
||||
Go18 bool
|
||||
}
|
||||
data.Pkg = pkg
|
||||
|
||||
// Enumerate tests.
|
||||
data.Tests, data.Benchmarks, data.Examples, data.Main = FindTests(pkg)
|
||||
if data.Main == nil &&
|
||||
data.Tests == nil && data.Benchmarks == nil && data.Examples == nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Synthesize source for testmain package.
|
||||
path := pkg.Pkg.Path() + "$testmain"
|
||||
tmpl := testmainTmpl
|
||||
if testingPkg := prog.ImportedPackage("testing"); testingPkg != nil {
|
||||
// In Go 1.8, testing.MainStart's first argument is an interface, not a func.
|
||||
data.Go18 = types.IsInterface(testingPkg.Func("MainStart").Signature.Params().At(0).Type())
|
||||
} else {
|
||||
// The program does not import "testing", but FindTests
|
||||
// returned non-nil, which must mean there were Examples
|
||||
// but no Test, Benchmark, or TestMain functions.
|
||||
|
||||
// We'll simply call them from testmain.main; this will
|
||||
// ensure they don't panic, but will not check any
|
||||
// "Output:" comments.
|
||||
// (We should not execute an Example that has no
|
||||
// "Output:" comment, but it's impossible to tell here.)
|
||||
tmpl = examplesOnlyTmpl
|
||||
}
|
||||
var buf bytes.Buffer
|
||||
if err := tmpl.Execute(&buf, data); err != nil {
|
||||
log.Fatalf("internal error expanding template for %s: %v", path, err)
|
||||
}
|
||||
if false { // debugging
|
||||
fmt.Fprintln(os.Stderr, buf.String())
|
||||
}
|
||||
|
||||
// Parse and type-check the testmain package.
|
||||
f, err := parser.ParseFile(prog.Fset, path+".go", &buf, parser.Mode(0))
|
||||
if err != nil {
|
||||
log.Fatalf("internal error parsing %s: %v", path, err)
|
||||
}
|
||||
conf := types.Config{
|
||||
DisableUnusedImportCheck: true,
|
||||
Importer: importer{pkg},
|
||||
}
|
||||
files := []*ast.File{f}
|
||||
info := &types.Info{
|
||||
Types: make(map[ast.Expr]types.TypeAndValue),
|
||||
Defs: make(map[*ast.Ident]types.Object),
|
||||
Uses: make(map[*ast.Ident]types.Object),
|
||||
Implicits: make(map[ast.Node]types.Object),
|
||||
Scopes: make(map[ast.Node]*types.Scope),
|
||||
Selections: make(map[*ast.SelectorExpr]*types.Selection),
|
||||
}
|
||||
testmainPkg, err := conf.Check(path, prog.Fset, files, info)
|
||||
if err != nil {
|
||||
log.Fatalf("internal error type-checking %s: %v", path, err)
|
||||
}
|
||||
|
||||
// Create and build SSA code.
|
||||
testmain := prog.CreatePackage(testmainPkg, files, info, false)
|
||||
testmain.SetDebugMode(false)
|
||||
testmain.Build()
|
||||
testmain.Func("main").Synthetic = "test main function"
|
||||
testmain.Func("init").Synthetic = "package initializer"
|
||||
return testmain
|
||||
}
|
||||
|
||||
// An implementation of types.Importer for an already loaded SSA program.
|
||||
type importer struct {
|
||||
pkg *Package // package under test; may be non-importable
|
||||
}
|
||||
|
||||
func (imp importer) Import(path string) (*types.Package, error) {
|
||||
if p := imp.pkg.Prog.ImportedPackage(path); p != nil {
|
||||
return p.Pkg, nil
|
||||
}
|
||||
if path == imp.pkg.Pkg.Path() {
|
||||
return imp.pkg.Pkg, nil
|
||||
}
|
||||
return nil, fmt.Errorf("not found") // can't happen
|
||||
}
|
||||
|
||||
var testmainTmpl = template.Must(template.New("testmain").Parse(`
|
||||
package main
|
||||
|
||||
import "io"
|
||||
import "os"
|
||||
import "testing"
|
||||
import p {{printf "%q" .Pkg.Pkg.Path}}
|
||||
|
||||
{{if .Go18}}
|
||||
type deps struct{}
|
||||
|
||||
func (deps) ImportPath() string { return "" }
|
||||
func (deps) MatchString(pat, str string) (bool, error) { return true, nil }
|
||||
func (deps) StartCPUProfile(io.Writer) error { return nil }
|
||||
func (deps) StartTestLog(io.Writer) {}
|
||||
func (deps) StopCPUProfile() {}
|
||||
func (deps) StopTestLog() error { return nil }
|
||||
func (deps) WriteHeapProfile(io.Writer) error { return nil }
|
||||
func (deps) WriteProfileTo(string, io.Writer, int) error { return nil }
|
||||
|
||||
var match deps
|
||||
{{else}}
|
||||
func match(_, _ string) (bool, error) { return true, nil }
|
||||
{{end}}
|
||||
|
||||
func main() {
|
||||
tests := []testing.InternalTest{
|
||||
{{range .Tests}}
|
||||
{ {{printf "%q" .Name}}, p.{{.Name}} },
|
||||
{{end}}
|
||||
}
|
||||
benchmarks := []testing.InternalBenchmark{
|
||||
{{range .Benchmarks}}
|
||||
{ {{printf "%q" .Name}}, p.{{.Name}} },
|
||||
{{end}}
|
||||
}
|
||||
examples := []testing.InternalExample{
|
||||
{{range .Examples}}
|
||||
{Name: {{printf "%q" .Name}}, F: p.{{.Name}}},
|
||||
{{end}}
|
||||
}
|
||||
m := testing.MainStart(match, tests, benchmarks, examples)
|
||||
{{with .Main}}
|
||||
p.{{.Name}}(m)
|
||||
{{else}}
|
||||
os.Exit(m.Run())
|
||||
{{end}}
|
||||
}
|
||||
|
||||
`))
|
||||
|
||||
var examplesOnlyTmpl = template.Must(template.New("examples").Parse(`
|
||||
package main
|
||||
|
||||
import p {{printf "%q" .Pkg.Pkg.Path}}
|
||||
|
||||
func main() {
|
||||
{{range .Examples}}
|
||||
p.{{.Name}}()
|
||||
{{end}}
|
||||
}
|
||||
`))
|
119
vendor/honnef.co/go/tools/ssa/util.go
vendored
Normal file
119
vendor/honnef.co/go/tools/ssa/util.go
vendored
Normal file
@ -0,0 +1,119 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file defines a number of miscellaneous utility functions.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/ast"
|
||||
"go/token"
|
||||
"go/types"
|
||||
"io"
|
||||
"os"
|
||||
|
||||
"golang.org/x/tools/go/ast/astutil"
|
||||
)
|
||||
|
||||
//// AST utilities
|
||||
|
||||
func unparen(e ast.Expr) ast.Expr { return astutil.Unparen(e) }
|
||||
|
||||
// isBlankIdent returns true iff e is an Ident with name "_".
|
||||
// They have no associated types.Object, and thus no type.
|
||||
//
|
||||
func isBlankIdent(e ast.Expr) bool {
|
||||
id, ok := e.(*ast.Ident)
|
||||
return ok && id.Name == "_"
|
||||
}
|
||||
|
||||
//// Type utilities. Some of these belong in go/types.
|
||||
|
||||
// isPointer returns true for types whose underlying type is a pointer.
|
||||
func isPointer(typ types.Type) bool {
|
||||
_, ok := typ.Underlying().(*types.Pointer)
|
||||
return ok
|
||||
}
|
||||
|
||||
func isInterface(T types.Type) bool { return types.IsInterface(T) }
|
||||
|
||||
// deref returns a pointer's element type; otherwise it returns typ.
|
||||
func deref(typ types.Type) types.Type {
|
||||
if p, ok := typ.Underlying().(*types.Pointer); ok {
|
||||
return p.Elem()
|
||||
}
|
||||
return typ
|
||||
}
|
||||
|
||||
// recvType returns the receiver type of method obj.
|
||||
func recvType(obj *types.Func) types.Type {
|
||||
return obj.Type().(*types.Signature).Recv().Type()
|
||||
}
|
||||
|
||||
// DefaultType returns the default "typed" type for an "untyped" type;
|
||||
// it returns the incoming type for all other types. The default type
|
||||
// for untyped nil is untyped nil.
|
||||
//
|
||||
// Exported to ssa/interp.
|
||||
//
|
||||
// TODO(adonovan): use go/types.DefaultType after 1.8.
|
||||
//
|
||||
func DefaultType(typ types.Type) types.Type {
|
||||
if t, ok := typ.(*types.Basic); ok {
|
||||
k := t.Kind()
|
||||
switch k {
|
||||
case types.UntypedBool:
|
||||
k = types.Bool
|
||||
case types.UntypedInt:
|
||||
k = types.Int
|
||||
case types.UntypedRune:
|
||||
k = types.Rune
|
||||
case types.UntypedFloat:
|
||||
k = types.Float64
|
||||
case types.UntypedComplex:
|
||||
k = types.Complex128
|
||||
case types.UntypedString:
|
||||
k = types.String
|
||||
}
|
||||
typ = types.Typ[k]
|
||||
}
|
||||
return typ
|
||||
}
|
||||
|
||||
// logStack prints the formatted "start" message to stderr and
|
||||
// returns a closure that prints the corresponding "end" message.
|
||||
// Call using 'defer logStack(...)()' to show builder stack on panic.
|
||||
// Don't forget trailing parens!
|
||||
//
|
||||
func logStack(format string, args ...interface{}) func() {
|
||||
msg := fmt.Sprintf(format, args...)
|
||||
io.WriteString(os.Stderr, msg)
|
||||
io.WriteString(os.Stderr, "\n")
|
||||
return func() {
|
||||
io.WriteString(os.Stderr, msg)
|
||||
io.WriteString(os.Stderr, " end\n")
|
||||
}
|
||||
}
|
||||
|
||||
// newVar creates a 'var' for use in a types.Tuple.
|
||||
func newVar(name string, typ types.Type) *types.Var {
|
||||
return types.NewParam(token.NoPos, nil, name, typ)
|
||||
}
|
||||
|
||||
// anonVar creates an anonymous 'var' for use in a types.Tuple.
|
||||
func anonVar(typ types.Type) *types.Var {
|
||||
return newVar("", typ)
|
||||
}
|
||||
|
||||
var lenResults = types.NewTuple(anonVar(tInt))
|
||||
|
||||
// makeLen returns the len builtin specialized to type func(T)int.
|
||||
func makeLen(T types.Type) *Builtin {
|
||||
lenParams := types.NewTuple(anonVar(T))
|
||||
return &Builtin{
|
||||
name: "len",
|
||||
sig: types.NewSignature(nil, lenParams, lenResults, false),
|
||||
}
|
||||
}
|
290
vendor/honnef.co/go/tools/ssa/wrappers.go
vendored
Normal file
290
vendor/honnef.co/go/tools/ssa/wrappers.go
vendored
Normal file
@ -0,0 +1,290 @@
|
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
// This file defines synthesis of Functions that delegate to declared
|
||||
// methods; they come in three kinds:
|
||||
//
|
||||
// (1) wrappers: methods that wrap declared methods, performing
|
||||
// implicit pointer indirections and embedded field selections.
|
||||
//
|
||||
// (2) thunks: funcs that wrap declared methods. Like wrappers,
|
||||
// thunks perform indirections and field selections. The thunk's
|
||||
// first parameter is used as the receiver for the method call.
|
||||
//
|
||||
// (3) bounds: funcs that wrap declared methods. The bound's sole
|
||||
// free variable, supplied by a closure, is used as the receiver
|
||||
// for the method call. No indirections or field selections are
|
||||
// performed since they can be done before the call.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"go/types"
|
||||
)
|
||||
|
||||
// -- wrappers -----------------------------------------------------------
|
||||
|
||||
// makeWrapper returns a synthetic method that delegates to the
|
||||
// declared method denoted by meth.Obj(), first performing any
|
||||
// necessary pointer indirections or field selections implied by meth.
|
||||
//
|
||||
// The resulting method's receiver type is meth.Recv().
|
||||
//
|
||||
// This function is versatile but quite subtle! Consider the
|
||||
// following axes of variation when making changes:
|
||||
// - optional receiver indirection
|
||||
// - optional implicit field selections
|
||||
// - meth.Obj() may denote a concrete or an interface method
|
||||
// - the result may be a thunk or a wrapper.
|
||||
//
|
||||
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
|
||||
//
|
||||
func makeWrapper(prog *Program, sel *types.Selection) *Function {
|
||||
obj := sel.Obj().(*types.Func) // the declared function
|
||||
sig := sel.Type().(*types.Signature) // type of this wrapper
|
||||
|
||||
var recv *types.Var // wrapper's receiver or thunk's params[0]
|
||||
name := obj.Name()
|
||||
var description string
|
||||
var start int // first regular param
|
||||
if sel.Kind() == types.MethodExpr {
|
||||
name += "$thunk"
|
||||
description = "thunk"
|
||||
recv = sig.Params().At(0)
|
||||
start = 1
|
||||
} else {
|
||||
description = "wrapper"
|
||||
recv = sig.Recv()
|
||||
}
|
||||
|
||||
description = fmt.Sprintf("%s for %s", description, sel.Obj())
|
||||
if prog.mode&LogSource != 0 {
|
||||
defer logStack("make %s to (%s)", description, recv.Type())()
|
||||
}
|
||||
fn := &Function{
|
||||
name: name,
|
||||
method: sel,
|
||||
object: obj,
|
||||
Signature: sig,
|
||||
Synthetic: description,
|
||||
Prog: prog,
|
||||
pos: obj.Pos(),
|
||||
}
|
||||
fn.startBody()
|
||||
fn.addSpilledParam(recv)
|
||||
createParams(fn, start)
|
||||
|
||||
indices := sel.Index()
|
||||
|
||||
var v Value = fn.Locals[0] // spilled receiver
|
||||
if isPointer(sel.Recv()) {
|
||||
v = emitLoad(fn, v)
|
||||
|
||||
// For simple indirection wrappers, perform an informative nil-check:
|
||||
// "value method (T).f called using nil *T pointer"
|
||||
if len(indices) == 1 && !isPointer(recvType(obj)) {
|
||||
var c Call
|
||||
c.Call.Value = &Builtin{
|
||||
name: "ssa:wrapnilchk",
|
||||
sig: types.NewSignature(nil,
|
||||
types.NewTuple(anonVar(sel.Recv()), anonVar(tString), anonVar(tString)),
|
||||
types.NewTuple(anonVar(sel.Recv())), false),
|
||||
}
|
||||
c.Call.Args = []Value{
|
||||
v,
|
||||
stringConst(deref(sel.Recv()).String()),
|
||||
stringConst(sel.Obj().Name()),
|
||||
}
|
||||
c.setType(v.Type())
|
||||
v = fn.emit(&c)
|
||||
}
|
||||
}
|
||||
|
||||
// Invariant: v is a pointer, either
|
||||
// value of *A receiver param, or
|
||||
// address of A spilled receiver.
|
||||
|
||||
// We use pointer arithmetic (FieldAddr possibly followed by
|
||||
// Load) in preference to value extraction (Field possibly
|
||||
// preceded by Load).
|
||||
|
||||
v = emitImplicitSelections(fn, v, indices[:len(indices)-1])
|
||||
|
||||
// Invariant: v is a pointer, either
|
||||
// value of implicit *C field, or
|
||||
// address of implicit C field.
|
||||
|
||||
var c Call
|
||||
if r := recvType(obj); !isInterface(r) { // concrete method
|
||||
if !isPointer(r) {
|
||||
v = emitLoad(fn, v)
|
||||
}
|
||||
c.Call.Value = prog.declaredFunc(obj)
|
||||
c.Call.Args = append(c.Call.Args, v)
|
||||
} else {
|
||||
c.Call.Method = obj
|
||||
c.Call.Value = emitLoad(fn, v)
|
||||
}
|
||||
for _, arg := range fn.Params[1:] {
|
||||
c.Call.Args = append(c.Call.Args, arg)
|
||||
}
|
||||
emitTailCall(fn, &c)
|
||||
fn.finishBody()
|
||||
return fn
|
||||
}
|
||||
|
||||
// createParams creates parameters for wrapper method fn based on its
|
||||
// Signature.Params, which do not include the receiver.
|
||||
// start is the index of the first regular parameter to use.
|
||||
//
|
||||
func createParams(fn *Function, start int) {
|
||||
tparams := fn.Signature.Params()
|
||||
for i, n := start, tparams.Len(); i < n; i++ {
|
||||
fn.addParamObj(tparams.At(i))
|
||||
}
|
||||
}
|
||||
|
||||
// -- bounds -----------------------------------------------------------
|
||||
|
||||
// makeBound returns a bound method wrapper (or "bound"), a synthetic
|
||||
// function that delegates to a concrete or interface method denoted
|
||||
// by obj. The resulting function has no receiver, but has one free
|
||||
// variable which will be used as the method's receiver in the
|
||||
// tail-call.
|
||||
//
|
||||
// Use MakeClosure with such a wrapper to construct a bound method
|
||||
// closure. e.g.:
|
||||
//
|
||||
// type T int or: type T interface { meth() }
|
||||
// func (t T) meth()
|
||||
// var t T
|
||||
// f := t.meth
|
||||
// f() // calls t.meth()
|
||||
//
|
||||
// f is a closure of a synthetic wrapper defined as if by:
|
||||
//
|
||||
// f := func() { return t.meth() }
|
||||
//
|
||||
// Unlike makeWrapper, makeBound need perform no indirection or field
|
||||
// selections because that can be done before the closure is
|
||||
// constructed.
|
||||
//
|
||||
// EXCLUSIVE_LOCKS_ACQUIRED(meth.Prog.methodsMu)
|
||||
//
|
||||
func makeBound(prog *Program, obj *types.Func) *Function {
|
||||
prog.methodsMu.Lock()
|
||||
defer prog.methodsMu.Unlock()
|
||||
fn, ok := prog.bounds[obj]
|
||||
if !ok {
|
||||
description := fmt.Sprintf("bound method wrapper for %s", obj)
|
||||
if prog.mode&LogSource != 0 {
|
||||
defer logStack("%s", description)()
|
||||
}
|
||||
fn = &Function{
|
||||
name: obj.Name() + "$bound",
|
||||
object: obj,
|
||||
Signature: changeRecv(obj.Type().(*types.Signature), nil), // drop receiver
|
||||
Synthetic: description,
|
||||
Prog: prog,
|
||||
pos: obj.Pos(),
|
||||
}
|
||||
|
||||
fv := &FreeVar{name: "recv", typ: recvType(obj), parent: fn}
|
||||
fn.FreeVars = []*FreeVar{fv}
|
||||
fn.startBody()
|
||||
createParams(fn, 0)
|
||||
var c Call
|
||||
|
||||
if !isInterface(recvType(obj)) { // concrete
|
||||
c.Call.Value = prog.declaredFunc(obj)
|
||||
c.Call.Args = []Value{fv}
|
||||
} else {
|
||||
c.Call.Value = fv
|
||||
c.Call.Method = obj
|
||||
}
|
||||
for _, arg := range fn.Params {
|
||||
c.Call.Args = append(c.Call.Args, arg)
|
||||
}
|
||||
emitTailCall(fn, &c)
|
||||
fn.finishBody()
|
||||
|
||||
prog.bounds[obj] = fn
|
||||
}
|
||||
return fn
|
||||
}
|
||||
|
||||
// -- thunks -----------------------------------------------------------
|
||||
|
||||
// makeThunk returns a thunk, a synthetic function that delegates to a
|
||||
// concrete or interface method denoted by sel.Obj(). The resulting
|
||||
// function has no receiver, but has an additional (first) regular
|
||||
// parameter.
|
||||
//
|
||||
// Precondition: sel.Kind() == types.MethodExpr.
|
||||
//
|
||||
// type T int or: type T interface { meth() }
|
||||
// func (t T) meth()
|
||||
// f := T.meth
|
||||
// var t T
|
||||
// f(t) // calls t.meth()
|
||||
//
|
||||
// f is a synthetic wrapper defined as if by:
|
||||
//
|
||||
// f := func(t T) { return t.meth() }
|
||||
//
|
||||
// TODO(adonovan): opt: currently the stub is created even when used
|
||||
// directly in a function call: C.f(i, 0). This is less efficient
|
||||
// than inlining the stub.
|
||||
//
|
||||
// EXCLUSIVE_LOCKS_ACQUIRED(meth.Prog.methodsMu)
|
||||
//
|
||||
func makeThunk(prog *Program, sel *types.Selection) *Function {
|
||||
if sel.Kind() != types.MethodExpr {
|
||||
panic(sel)
|
||||
}
|
||||
|
||||
key := selectionKey{
|
||||
kind: sel.Kind(),
|
||||
recv: sel.Recv(),
|
||||
obj: sel.Obj(),
|
||||
index: fmt.Sprint(sel.Index()),
|
||||
indirect: sel.Indirect(),
|
||||
}
|
||||
|
||||
prog.methodsMu.Lock()
|
||||
defer prog.methodsMu.Unlock()
|
||||
|
||||
// Canonicalize key.recv to avoid constructing duplicate thunks.
|
||||
canonRecv, ok := prog.canon.At(key.recv).(types.Type)
|
||||
if !ok {
|
||||
canonRecv = key.recv
|
||||
prog.canon.Set(key.recv, canonRecv)
|
||||
}
|
||||
key.recv = canonRecv
|
||||
|
||||
fn, ok := prog.thunks[key]
|
||||
if !ok {
|
||||
fn = makeWrapper(prog, sel)
|
||||
if fn.Signature.Recv() != nil {
|
||||
panic(fn) // unexpected receiver
|
||||
}
|
||||
prog.thunks[key] = fn
|
||||
}
|
||||
return fn
|
||||
}
|
||||
|
||||
func changeRecv(s *types.Signature, recv *types.Var) *types.Signature {
|
||||
return types.NewSignature(recv, s.Params(), s.Results(), s.Variadic())
|
||||
}
|
||||
|
||||
// selectionKey is like types.Selection but a usable map key.
|
||||
type selectionKey struct {
|
||||
kind types.SelectionKind
|
||||
recv types.Type // canonicalized via Program.canon
|
||||
obj types.Object
|
||||
index string
|
||||
indirect bool
|
||||
}
|
5
vendor/honnef.co/go/tools/ssa/write.go
vendored
Normal file
5
vendor/honnef.co/go/tools/ssa/write.go
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
package ssa
|
||||
|
||||
func NewJump(parent *BasicBlock) *Jump {
|
||||
return &Jump{anInstruction{parent}}
|
||||
}
|
Reference in New Issue
Block a user