mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-06-13 10:33:35 +00:00
rebase: bump github.com/hashicorp/vault/api from 1.1.1 to 1.2.0
Bumps [github.com/hashicorp/vault/api](https://github.com/hashicorp/vault) from 1.1.1 to 1.2.0. - [Release notes](https://github.com/hashicorp/vault/releases) - [Changelog](https://github.com/hashicorp/vault/blob/main/CHANGELOG.md) - [Commits](https://github.com/hashicorp/vault/compare/v1.1.1...v1.2.0) --- updated-dependencies: - dependency-name: github.com/hashicorp/vault/api dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] <support@github.com>
This commit is contained in:
committed by
mergify[bot]
parent
9bd9f5e91d
commit
5280b67327
540
vendor/github.com/armon/go-radix/radix.go
generated
vendored
Normal file
540
vendor/github.com/armon/go-radix/radix.go
generated
vendored
Normal file
@ -0,0 +1,540 @@
|
||||
package radix
|
||||
|
||||
import (
|
||||
"sort"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// WalkFn is used when walking the tree. Takes a
|
||||
// key and value, returning if iteration should
|
||||
// be terminated.
|
||||
type WalkFn func(s string, v interface{}) bool
|
||||
|
||||
// leafNode is used to represent a value
|
||||
type leafNode struct {
|
||||
key string
|
||||
val interface{}
|
||||
}
|
||||
|
||||
// edge is used to represent an edge node
|
||||
type edge struct {
|
||||
label byte
|
||||
node *node
|
||||
}
|
||||
|
||||
type node struct {
|
||||
// leaf is used to store possible leaf
|
||||
leaf *leafNode
|
||||
|
||||
// prefix is the common prefix we ignore
|
||||
prefix string
|
||||
|
||||
// Edges should be stored in-order for iteration.
|
||||
// We avoid a fully materialized slice to save memory,
|
||||
// since in most cases we expect to be sparse
|
||||
edges edges
|
||||
}
|
||||
|
||||
func (n *node) isLeaf() bool {
|
||||
return n.leaf != nil
|
||||
}
|
||||
|
||||
func (n *node) addEdge(e edge) {
|
||||
n.edges = append(n.edges, e)
|
||||
n.edges.Sort()
|
||||
}
|
||||
|
||||
func (n *node) updateEdge(label byte, node *node) {
|
||||
num := len(n.edges)
|
||||
idx := sort.Search(num, func(i int) bool {
|
||||
return n.edges[i].label >= label
|
||||
})
|
||||
if idx < num && n.edges[idx].label == label {
|
||||
n.edges[idx].node = node
|
||||
return
|
||||
}
|
||||
panic("replacing missing edge")
|
||||
}
|
||||
|
||||
func (n *node) getEdge(label byte) *node {
|
||||
num := len(n.edges)
|
||||
idx := sort.Search(num, func(i int) bool {
|
||||
return n.edges[i].label >= label
|
||||
})
|
||||
if idx < num && n.edges[idx].label == label {
|
||||
return n.edges[idx].node
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (n *node) delEdge(label byte) {
|
||||
num := len(n.edges)
|
||||
idx := sort.Search(num, func(i int) bool {
|
||||
return n.edges[i].label >= label
|
||||
})
|
||||
if idx < num && n.edges[idx].label == label {
|
||||
copy(n.edges[idx:], n.edges[idx+1:])
|
||||
n.edges[len(n.edges)-1] = edge{}
|
||||
n.edges = n.edges[:len(n.edges)-1]
|
||||
}
|
||||
}
|
||||
|
||||
type edges []edge
|
||||
|
||||
func (e edges) Len() int {
|
||||
return len(e)
|
||||
}
|
||||
|
||||
func (e edges) Less(i, j int) bool {
|
||||
return e[i].label < e[j].label
|
||||
}
|
||||
|
||||
func (e edges) Swap(i, j int) {
|
||||
e[i], e[j] = e[j], e[i]
|
||||
}
|
||||
|
||||
func (e edges) Sort() {
|
||||
sort.Sort(e)
|
||||
}
|
||||
|
||||
// Tree implements a radix tree. This can be treated as a
|
||||
// Dictionary abstract data type. The main advantage over
|
||||
// a standard hash map is prefix-based lookups and
|
||||
// ordered iteration,
|
||||
type Tree struct {
|
||||
root *node
|
||||
size int
|
||||
}
|
||||
|
||||
// New returns an empty Tree
|
||||
func New() *Tree {
|
||||
return NewFromMap(nil)
|
||||
}
|
||||
|
||||
// NewFromMap returns a new tree containing the keys
|
||||
// from an existing map
|
||||
func NewFromMap(m map[string]interface{}) *Tree {
|
||||
t := &Tree{root: &node{}}
|
||||
for k, v := range m {
|
||||
t.Insert(k, v)
|
||||
}
|
||||
return t
|
||||
}
|
||||
|
||||
// Len is used to return the number of elements in the tree
|
||||
func (t *Tree) Len() int {
|
||||
return t.size
|
||||
}
|
||||
|
||||
// longestPrefix finds the length of the shared prefix
|
||||
// of two strings
|
||||
func longestPrefix(k1, k2 string) int {
|
||||
max := len(k1)
|
||||
if l := len(k2); l < max {
|
||||
max = l
|
||||
}
|
||||
var i int
|
||||
for i = 0; i < max; i++ {
|
||||
if k1[i] != k2[i] {
|
||||
break
|
||||
}
|
||||
}
|
||||
return i
|
||||
}
|
||||
|
||||
// Insert is used to add a newentry or update
|
||||
// an existing entry. Returns if updated.
|
||||
func (t *Tree) Insert(s string, v interface{}) (interface{}, bool) {
|
||||
var parent *node
|
||||
n := t.root
|
||||
search := s
|
||||
for {
|
||||
// Handle key exhaution
|
||||
if len(search) == 0 {
|
||||
if n.isLeaf() {
|
||||
old := n.leaf.val
|
||||
n.leaf.val = v
|
||||
return old, true
|
||||
}
|
||||
|
||||
n.leaf = &leafNode{
|
||||
key: s,
|
||||
val: v,
|
||||
}
|
||||
t.size++
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// Look for the edge
|
||||
parent = n
|
||||
n = n.getEdge(search[0])
|
||||
|
||||
// No edge, create one
|
||||
if n == nil {
|
||||
e := edge{
|
||||
label: search[0],
|
||||
node: &node{
|
||||
leaf: &leafNode{
|
||||
key: s,
|
||||
val: v,
|
||||
},
|
||||
prefix: search,
|
||||
},
|
||||
}
|
||||
parent.addEdge(e)
|
||||
t.size++
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// Determine longest prefix of the search key on match
|
||||
commonPrefix := longestPrefix(search, n.prefix)
|
||||
if commonPrefix == len(n.prefix) {
|
||||
search = search[commonPrefix:]
|
||||
continue
|
||||
}
|
||||
|
||||
// Split the node
|
||||
t.size++
|
||||
child := &node{
|
||||
prefix: search[:commonPrefix],
|
||||
}
|
||||
parent.updateEdge(search[0], child)
|
||||
|
||||
// Restore the existing node
|
||||
child.addEdge(edge{
|
||||
label: n.prefix[commonPrefix],
|
||||
node: n,
|
||||
})
|
||||
n.prefix = n.prefix[commonPrefix:]
|
||||
|
||||
// Create a new leaf node
|
||||
leaf := &leafNode{
|
||||
key: s,
|
||||
val: v,
|
||||
}
|
||||
|
||||
// If the new key is a subset, add to to this node
|
||||
search = search[commonPrefix:]
|
||||
if len(search) == 0 {
|
||||
child.leaf = leaf
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// Create a new edge for the node
|
||||
child.addEdge(edge{
|
||||
label: search[0],
|
||||
node: &node{
|
||||
leaf: leaf,
|
||||
prefix: search,
|
||||
},
|
||||
})
|
||||
return nil, false
|
||||
}
|
||||
}
|
||||
|
||||
// Delete is used to delete a key, returning the previous
|
||||
// value and if it was deleted
|
||||
func (t *Tree) Delete(s string) (interface{}, bool) {
|
||||
var parent *node
|
||||
var label byte
|
||||
n := t.root
|
||||
search := s
|
||||
for {
|
||||
// Check for key exhaution
|
||||
if len(search) == 0 {
|
||||
if !n.isLeaf() {
|
||||
break
|
||||
}
|
||||
goto DELETE
|
||||
}
|
||||
|
||||
// Look for an edge
|
||||
parent = n
|
||||
label = search[0]
|
||||
n = n.getEdge(label)
|
||||
if n == nil {
|
||||
break
|
||||
}
|
||||
|
||||
// Consume the search prefix
|
||||
if strings.HasPrefix(search, n.prefix) {
|
||||
search = search[len(n.prefix):]
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
return nil, false
|
||||
|
||||
DELETE:
|
||||
// Delete the leaf
|
||||
leaf := n.leaf
|
||||
n.leaf = nil
|
||||
t.size--
|
||||
|
||||
// Check if we should delete this node from the parent
|
||||
if parent != nil && len(n.edges) == 0 {
|
||||
parent.delEdge(label)
|
||||
}
|
||||
|
||||
// Check if we should merge this node
|
||||
if n != t.root && len(n.edges) == 1 {
|
||||
n.mergeChild()
|
||||
}
|
||||
|
||||
// Check if we should merge the parent's other child
|
||||
if parent != nil && parent != t.root && len(parent.edges) == 1 && !parent.isLeaf() {
|
||||
parent.mergeChild()
|
||||
}
|
||||
|
||||
return leaf.val, true
|
||||
}
|
||||
|
||||
// DeletePrefix is used to delete the subtree under a prefix
|
||||
// Returns how many nodes were deleted
|
||||
// Use this to delete large subtrees efficiently
|
||||
func (t *Tree) DeletePrefix(s string) int {
|
||||
return t.deletePrefix(nil, t.root, s)
|
||||
}
|
||||
|
||||
// delete does a recursive deletion
|
||||
func (t *Tree) deletePrefix(parent, n *node, prefix string) int {
|
||||
// Check for key exhaustion
|
||||
if len(prefix) == 0 {
|
||||
// Remove the leaf node
|
||||
subTreeSize := 0
|
||||
//recursively walk from all edges of the node to be deleted
|
||||
recursiveWalk(n, func(s string, v interface{}) bool {
|
||||
subTreeSize++
|
||||
return false
|
||||
})
|
||||
if n.isLeaf() {
|
||||
n.leaf = nil
|
||||
}
|
||||
n.edges = nil // deletes the entire subtree
|
||||
|
||||
// Check if we should merge the parent's other child
|
||||
if parent != nil && parent != t.root && len(parent.edges) == 1 && !parent.isLeaf() {
|
||||
parent.mergeChild()
|
||||
}
|
||||
t.size -= subTreeSize
|
||||
return subTreeSize
|
||||
}
|
||||
|
||||
// Look for an edge
|
||||
label := prefix[0]
|
||||
child := n.getEdge(label)
|
||||
if child == nil || (!strings.HasPrefix(child.prefix, prefix) && !strings.HasPrefix(prefix, child.prefix)) {
|
||||
return 0
|
||||
}
|
||||
|
||||
// Consume the search prefix
|
||||
if len(child.prefix) > len(prefix) {
|
||||
prefix = prefix[len(prefix):]
|
||||
} else {
|
||||
prefix = prefix[len(child.prefix):]
|
||||
}
|
||||
return t.deletePrefix(n, child, prefix)
|
||||
}
|
||||
|
||||
func (n *node) mergeChild() {
|
||||
e := n.edges[0]
|
||||
child := e.node
|
||||
n.prefix = n.prefix + child.prefix
|
||||
n.leaf = child.leaf
|
||||
n.edges = child.edges
|
||||
}
|
||||
|
||||
// Get is used to lookup a specific key, returning
|
||||
// the value and if it was found
|
||||
func (t *Tree) Get(s string) (interface{}, bool) {
|
||||
n := t.root
|
||||
search := s
|
||||
for {
|
||||
// Check for key exhaution
|
||||
if len(search) == 0 {
|
||||
if n.isLeaf() {
|
||||
return n.leaf.val, true
|
||||
}
|
||||
break
|
||||
}
|
||||
|
||||
// Look for an edge
|
||||
n = n.getEdge(search[0])
|
||||
if n == nil {
|
||||
break
|
||||
}
|
||||
|
||||
// Consume the search prefix
|
||||
if strings.HasPrefix(search, n.prefix) {
|
||||
search = search[len(n.prefix):]
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// LongestPrefix is like Get, but instead of an
|
||||
// exact match, it will return the longest prefix match.
|
||||
func (t *Tree) LongestPrefix(s string) (string, interface{}, bool) {
|
||||
var last *leafNode
|
||||
n := t.root
|
||||
search := s
|
||||
for {
|
||||
// Look for a leaf node
|
||||
if n.isLeaf() {
|
||||
last = n.leaf
|
||||
}
|
||||
|
||||
// Check for key exhaution
|
||||
if len(search) == 0 {
|
||||
break
|
||||
}
|
||||
|
||||
// Look for an edge
|
||||
n = n.getEdge(search[0])
|
||||
if n == nil {
|
||||
break
|
||||
}
|
||||
|
||||
// Consume the search prefix
|
||||
if strings.HasPrefix(search, n.prefix) {
|
||||
search = search[len(n.prefix):]
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
if last != nil {
|
||||
return last.key, last.val, true
|
||||
}
|
||||
return "", nil, false
|
||||
}
|
||||
|
||||
// Minimum is used to return the minimum value in the tree
|
||||
func (t *Tree) Minimum() (string, interface{}, bool) {
|
||||
n := t.root
|
||||
for {
|
||||
if n.isLeaf() {
|
||||
return n.leaf.key, n.leaf.val, true
|
||||
}
|
||||
if len(n.edges) > 0 {
|
||||
n = n.edges[0].node
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
return "", nil, false
|
||||
}
|
||||
|
||||
// Maximum is used to return the maximum value in the tree
|
||||
func (t *Tree) Maximum() (string, interface{}, bool) {
|
||||
n := t.root
|
||||
for {
|
||||
if num := len(n.edges); num > 0 {
|
||||
n = n.edges[num-1].node
|
||||
continue
|
||||
}
|
||||
if n.isLeaf() {
|
||||
return n.leaf.key, n.leaf.val, true
|
||||
}
|
||||
break
|
||||
}
|
||||
return "", nil, false
|
||||
}
|
||||
|
||||
// Walk is used to walk the tree
|
||||
func (t *Tree) Walk(fn WalkFn) {
|
||||
recursiveWalk(t.root, fn)
|
||||
}
|
||||
|
||||
// WalkPrefix is used to walk the tree under a prefix
|
||||
func (t *Tree) WalkPrefix(prefix string, fn WalkFn) {
|
||||
n := t.root
|
||||
search := prefix
|
||||
for {
|
||||
// Check for key exhaution
|
||||
if len(search) == 0 {
|
||||
recursiveWalk(n, fn)
|
||||
return
|
||||
}
|
||||
|
||||
// Look for an edge
|
||||
n = n.getEdge(search[0])
|
||||
if n == nil {
|
||||
break
|
||||
}
|
||||
|
||||
// Consume the search prefix
|
||||
if strings.HasPrefix(search, n.prefix) {
|
||||
search = search[len(n.prefix):]
|
||||
|
||||
} else if strings.HasPrefix(n.prefix, search) {
|
||||
// Child may be under our search prefix
|
||||
recursiveWalk(n, fn)
|
||||
return
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// WalkPath is used to walk the tree, but only visiting nodes
|
||||
// from the root down to a given leaf. Where WalkPrefix walks
|
||||
// all the entries *under* the given prefix, this walks the
|
||||
// entries *above* the given prefix.
|
||||
func (t *Tree) WalkPath(path string, fn WalkFn) {
|
||||
n := t.root
|
||||
search := path
|
||||
for {
|
||||
// Visit the leaf values if any
|
||||
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
|
||||
return
|
||||
}
|
||||
|
||||
// Check for key exhaution
|
||||
if len(search) == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// Look for an edge
|
||||
n = n.getEdge(search[0])
|
||||
if n == nil {
|
||||
return
|
||||
}
|
||||
|
||||
// Consume the search prefix
|
||||
if strings.HasPrefix(search, n.prefix) {
|
||||
search = search[len(n.prefix):]
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// recursiveWalk is used to do a pre-order walk of a node
|
||||
// recursively. Returns true if the walk should be aborted
|
||||
func recursiveWalk(n *node, fn WalkFn) bool {
|
||||
// Visit the leaf values if any
|
||||
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
|
||||
return true
|
||||
}
|
||||
|
||||
// Recurse on the children
|
||||
for _, e := range n.edges {
|
||||
if recursiveWalk(e.node, fn) {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// ToMap is used to walk the tree and convert it into a map
|
||||
func (t *Tree) ToMap() map[string]interface{} {
|
||||
out := make(map[string]interface{}, t.size)
|
||||
t.Walk(func(k string, v interface{}) bool {
|
||||
out[k] = v
|
||||
return false
|
||||
})
|
||||
return out
|
||||
}
|
Reference in New Issue
Block a user