rebase: update go-ceph to v0.10.0

This commit updates the go-ceph to latest
release. More details about release at
https://github.com/ceph/go-ceph/releases/tag/v0.10.0

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
This commit is contained in:
Madhu Rajanna
2021-06-09 10:24:52 +05:30
committed by mergify[bot]
parent 17b0091cba
commit 5b7b5f1e3a
27 changed files with 1099 additions and 272 deletions

View File

@ -8,12 +8,13 @@ typedef void* voidptr;
import "C"
import (
"math"
"unsafe"
)
const (
// MaxIdx is the maximum index on 32 bit systems
MaxIdx = 1<<31 - 1 // 2GB, max int32 value, should be safe
MaxIdx = math.MaxInt32 // 2GB, max int32 value, should be safe
// PtrSize is the size of a pointer
PtrSize = C.sizeof_voidptr

View File

@ -0,0 +1,76 @@
package cutil
// The following code needs some explanation:
// This creates slices on top of the C memory buffers allocated before in
// order to safely and comfortably use them as arrays. First the void pointer
// is cast to a pointer to an array of the type that will be stored in the
// array. Because the size of an array is a constant, but the real array size
// is dynamic, we just use the biggest possible index value MaxIdx, to make
// sure it's always big enough. (Nothing is allocated by casting, so the size
// can be arbitrarily big.) So, if the array should store items of myType, the
// cast would be (*[MaxIdx]myItem)(myCMemPtr).
// From that array pointer a slice is created with the [start:end:capacity]
// syntax. The capacity must be set explicitly here, because by default it
// would be set to the size of the original array, which is MaxIdx, which
// doesn't reflect reality in this case. This results in definitions like:
// cSlice := (*[MaxIdx]myItem)(myCMemPtr)[:numOfItems:numOfItems]
////////// CPtr //////////
// CPtrCSlice is a C allocated slice of C pointers.
type CPtrCSlice []CPtr
// NewCPtrCSlice returns a CPtrSlice.
// Similar to CString it must be freed with slice.Free()
func NewCPtrCSlice(size int) CPtrCSlice {
if size == 0 {
return nil
}
cMem := Malloc(SizeT(size) * PtrSize)
cSlice := (*[MaxIdx]CPtr)(cMem)[:size:size]
return cSlice
}
// Ptr returns a pointer to CPtrSlice
func (v *CPtrCSlice) Ptr() CPtr {
if len(*v) == 0 {
return nil
}
return CPtr(&(*v)[0])
}
// Free frees a CPtrSlice
func (v *CPtrCSlice) Free() {
Free(v.Ptr())
*v = nil
}
////////// SizeT //////////
// SizeTCSlice is a C allocated slice of C.size_t.
type SizeTCSlice []SizeT
// NewSizeTCSlice returns a SizeTCSlice.
// Similar to CString it must be freed with slice.Free()
func NewSizeTCSlice(size int) SizeTCSlice {
if size == 0 {
return nil
}
cMem := Malloc(SizeT(size) * SizeTSize)
cSlice := (*[MaxIdx]SizeT)(cMem)[:size:size]
return cSlice
}
// Ptr returns a pointer to SizeTCSlice
func (v *SizeTCSlice) Ptr() CPtr {
if len(*v) == 0 {
return nil
}
return CPtr(&(*v)[0])
}
// Free frees a SizeTCSlice
func (v *SizeTCSlice) Free() {
Free(v.Ptr())
*v = nil
}

View File

@ -57,6 +57,17 @@ func (v *PtrGuard) Release() {
}
}
// The uintptrPtr() helper function below assumes that uintptr has the same size
// as a pointer, although in theory it could be larger. Therefore we use this
// constant expression to assert size equality as a safeguard at compile time.
// How it works: the difference of both sizes is converted into an 8 bit value
// and left-bit-shifted by 8. This always creates an overflow error at compile
// time, if the difference of the sizes is not 0.
const _ = uint8(unsafe.Sizeof(uintptr(0))-PtrSize) << 8 // size assert
func uintptrPtr(p *CPtr) *uintptr {
return (*uintptr)(unsafe.Pointer(p))
}
//go:uintptrescapes
// From https://golang.org/src/cmd/compile/internal/gc/lex.go:
@ -69,7 +80,7 @@ func (v *PtrGuard) Release() {
// Also see https://golang.org/cmd/compile/#hdr-Compiler_Directives
func storeUntilRelease(v *PtrGuard, cPtr *CPtr, goPtr uintptr) {
uip := (*uintptr)(unsafe.Pointer(cPtr))
uip := uintptrPtr(cPtr)
*uip = goPtr // store Go pointer in C memory at c_ptr
v.stored.Unlock() // send "stored" signal to main thread -->(1)
v.release.Lock() // wait for "release" signal from main thread when