Rework multi-node-multi-writer feature

This commit reverts the initial implementation of the
multi-node-multi-writer feature:
  commit: b5b8e46460

It replaces that implementation with a more restrictive version that
only allows multi-node-multi-writer for volumes of type `block`

With this change there are no volume parameters required in the stoarge
class, we also fail any attempt to create a file based device with
multi-node-multi-write being specified, this way a user doesn't have to
wait until they try and do the publish before realizing it doesn't work.
This commit is contained in:
j-griffith
2019-03-13 18:18:04 -06:00
parent a164169fd3
commit 6ec1196f47
7 changed files with 152 additions and 5 deletions

View File

@ -114,3 +114,102 @@ To restore the snapshot to a new PVC, deploy
kubectl create -f pvc-restore.yaml
kubectl create -f pod-restore.yaml
```
## How to test RBD MULTI_NODE_MULTI_WRITER BLOCK feature
Requires feature-gates: `BlockVolume=true` `CSIBlockVolume=true`
*NOTE* The MULTI_NODE_MULTI_WRITER capability is only available for
Volumes that are of access_type `block`
*WARNING* This feature is strictly for workloads that know how to deal
with concurrent access to the Volume (eg Active/Passive applications).
Using RWX modes on non clustered file systems with applications trying
to simultaneously access the Volume will likely result in data corruption!
Following are examples for issuing a request for a `Block`
`ReadWriteMany` Claim, and using the resultant Claim for a POD
```yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: block-pvc
spec:
accessModes:
- ReadWriteMany
volumeMode: Block
resources:
requests:
storage: 1Gi
storageClassName: csi-rbd
```
Create a POD that uses this PVC:
```yaml
apiVersion: v1
kind: Pod
metadata:
name: my-pod
spec:
containers:
- name: my-container
image: debian
command: ["/bin/bash", "-c"]
args: [ "tail -f /dev/null" ]
volumeDevices:
- devicePath: /dev/rbdblock
name: my-volume
imagePullPolicy: IfNotPresent
volumes:
- name: my-volume
persistentVolumeClaim:
claimName: block-pvc
```
Now, we can create a second POD (ensure the POD is scheduled on a different
node; multiwriter single node works without this feature) that also uses this
PVC at the same time, again wait for the pod to enter running state, and verify
the block device is available.
```yaml
apiVersion: v1
kind: Pod
metadata:
name: another-pod
spec:
containers:
- name: my-container
image: debian
command: ["/bin/bash", "-c"]
args: [ "tail -f /dev/null" ]
volumeDevices:
- devicePath: /dev/rbdblock
name: my-volume
imagePullPolicy: IfNotPresent
volumes:
- name: my-volume
persistentVolumeClaim:
claimName: block-pvc
```
Wait for the PODs to enter Running state, check that our block device
is available in the container at `/dev/rdbblock` in both containers:
```bash
$ kubectl exec -it my-pod -- fdisk -l /dev/rbdblock
Disk /dev/rbdblock: 1 GiB, 1073741824 bytes, 2097152 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 4194304 bytes / 4194304 bytes
```
```bash
$ kubectl exec -it another-pod -- fdisk -l /dev/rbdblock
Disk /dev/rbdblock: 1 GiB, 1073741824 bytes, 2097152 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 4194304 bytes / 4194304 bytes
```