vendor files

This commit is contained in:
Serguei Bezverkhi
2018-01-09 13:57:14 -05:00
parent 558bc6c02a
commit 7b24313bd6
16547 changed files with 4527373 additions and 0 deletions

73
vendor/k8s.io/apimachinery/pkg/api/resource/BUILD generated vendored Normal file
View File

@ -0,0 +1,73 @@
package(default_visibility = ["//visibility:public"])
load(
"@io_bazel_rules_go//go:def.bzl",
"go_library",
"go_test",
)
go_test(
name = "go_default_test",
srcs = [
"amount_test.go",
"math_test.go",
"quantity_proto_test.go",
"quantity_test.go",
"scale_int_test.go",
],
importpath = "k8s.io/apimachinery/pkg/api/resource",
library = ":go_default_library",
deps = [
"//vendor/github.com/google/gofuzz:go_default_library",
"//vendor/github.com/spf13/pflag:go_default_library",
"//vendor/gopkg.in/inf.v0:go_default_library",
],
)
go_library(
name = "go_default_library",
srcs = [
"amount.go",
"generated.pb.go",
"math.go",
"quantity.go",
"quantity_proto.go",
"scale_int.go",
"suffix.go",
"zz_generated.deepcopy.go",
],
importpath = "k8s.io/apimachinery/pkg/api/resource",
deps = [
"//vendor/github.com/go-openapi/spec:go_default_library",
"//vendor/github.com/gogo/protobuf/proto:go_default_library",
"//vendor/github.com/spf13/pflag:go_default_library",
"//vendor/gopkg.in/inf.v0:go_default_library",
"//vendor/k8s.io/kube-openapi/pkg/common:go_default_library",
],
)
go_test(
name = "go_default_xtest",
srcs = ["quantity_example_test.go"],
importpath = "k8s.io/apimachinery/pkg/api/resource_test",
deps = ["//vendor/k8s.io/apimachinery/pkg/api/resource:go_default_library"],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [":package-srcs"],
tags = ["automanaged"],
)
filegroup(
name = "go_default_library_protos",
srcs = ["generated.proto"],
visibility = ["//visibility:public"],
)

17
vendor/k8s.io/apimachinery/pkg/api/resource/OWNERS generated vendored Executable file
View File

@ -0,0 +1,17 @@
reviewers:
- thockin
- lavalamp
- smarterclayton
- wojtek-t
- derekwaynecarr
- mikedanese
- saad-ali
- janetkuo
- tallclair
- eparis
- timothysc
- jbeda
- xiang90
- mbohlool
- david-mcmahon
- goltermann

299
vendor/k8s.io/apimachinery/pkg/api/resource/amount.go generated vendored Normal file
View File

@ -0,0 +1,299 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math/big"
"strconv"
inf "gopkg.in/inf.v0"
)
// Scale is used for getting and setting the base-10 scaled value.
// Base-2 scales are omitted for mathematical simplicity.
// See Quantity.ScaledValue for more details.
type Scale int32
// infScale adapts a Scale value to an inf.Scale value.
func (s Scale) infScale() inf.Scale {
return inf.Scale(-s) // inf.Scale is upside-down
}
const (
Nano Scale = -9
Micro Scale = -6
Milli Scale = -3
Kilo Scale = 3
Mega Scale = 6
Giga Scale = 9
Tera Scale = 12
Peta Scale = 15
Exa Scale = 18
)
var (
Zero = int64Amount{}
// Used by quantity strings - treat as read only
zeroBytes = []byte("0")
)
// int64Amount represents a fixed precision numerator and arbitrary scale exponent. It is faster
// than operations on inf.Dec for values that can be represented as int64.
// +k8s:openapi-gen=true
type int64Amount struct {
value int64
scale Scale
}
// Sign returns 0 if the value is zero, -1 if it is less than 0, or 1 if it is greater than 0.
func (a int64Amount) Sign() int {
switch {
case a.value == 0:
return 0
case a.value > 0:
return 1
default:
return -1
}
}
// AsInt64 returns the current amount as an int64 at scale 0, or false if the value cannot be
// represented in an int64 OR would result in a loss of precision. This method is intended as
// an optimization to avoid calling AsDec.
func (a int64Amount) AsInt64() (int64, bool) {
if a.scale == 0 {
return a.value, true
}
if a.scale < 0 {
// TODO: attempt to reduce factors, although it is assumed that factors are reduced prior
// to the int64Amount being created.
return 0, false
}
return positiveScaleInt64(a.value, a.scale)
}
// AsScaledInt64 returns an int64 representing the value of this amount at the specified scale,
// rounding up, or false if that would result in overflow. (1e20).AsScaledInt64(1) would result
// in overflow because 1e19 is not representable as an int64. Note that setting a scale larger
// than the current value may result in loss of precision - i.e. (1e-6).AsScaledInt64(0) would
// return 1, because 0.000001 is rounded up to 1.
func (a int64Amount) AsScaledInt64(scale Scale) (result int64, ok bool) {
if a.scale < scale {
result, _ = negativeScaleInt64(a.value, scale-a.scale)
return result, true
}
return positiveScaleInt64(a.value, a.scale-scale)
}
// AsDec returns an inf.Dec representation of this value.
func (a int64Amount) AsDec() *inf.Dec {
var base inf.Dec
base.SetUnscaled(a.value)
base.SetScale(inf.Scale(-a.scale))
return &base
}
// Cmp returns 0 if a and b are equal, 1 if a is greater than b, or -1 if a is less than b.
func (a int64Amount) Cmp(b int64Amount) int {
switch {
case a.scale == b.scale:
// compare only the unscaled portion
case a.scale > b.scale:
result, remainder, exact := divideByScaleInt64(b.value, a.scale-b.scale)
if !exact {
return a.AsDec().Cmp(b.AsDec())
}
if result == a.value {
switch {
case remainder == 0:
return 0
case remainder > 0:
return -1
default:
return 1
}
}
b.value = result
default:
result, remainder, exact := divideByScaleInt64(a.value, b.scale-a.scale)
if !exact {
return a.AsDec().Cmp(b.AsDec())
}
if result == b.value {
switch {
case remainder == 0:
return 0
case remainder > 0:
return 1
default:
return -1
}
}
a.value = result
}
switch {
case a.value == b.value:
return 0
case a.value < b.value:
return -1
default:
return 1
}
}
// Add adds two int64Amounts together, matching scales. It will return false and not mutate
// a if overflow or underflow would result.
func (a *int64Amount) Add(b int64Amount) bool {
switch {
case b.value == 0:
return true
case a.value == 0:
a.value = b.value
a.scale = b.scale
return true
case a.scale == b.scale:
c, ok := int64Add(a.value, b.value)
if !ok {
return false
}
a.value = c
case a.scale > b.scale:
c, ok := positiveScaleInt64(a.value, a.scale-b.scale)
if !ok {
return false
}
c, ok = int64Add(c, b.value)
if !ok {
return false
}
a.scale = b.scale
a.value = c
default:
c, ok := positiveScaleInt64(b.value, b.scale-a.scale)
if !ok {
return false
}
c, ok = int64Add(a.value, c)
if !ok {
return false
}
a.value = c
}
return true
}
// Sub removes the value of b from the current amount, or returns false if underflow would result.
func (a *int64Amount) Sub(b int64Amount) bool {
return a.Add(int64Amount{value: -b.value, scale: b.scale})
}
// AsScale adjusts this amount to set a minimum scale, rounding up, and returns true iff no precision
// was lost. (1.1e5).AsScale(5) would return 1.1e5, but (1.1e5).AsScale(6) would return 1e6.
func (a int64Amount) AsScale(scale Scale) (int64Amount, bool) {
if a.scale >= scale {
return a, true
}
result, exact := negativeScaleInt64(a.value, scale-a.scale)
return int64Amount{value: result, scale: scale}, exact
}
// AsCanonicalBytes accepts a buffer to write the base-10 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. The value is adjusted
// until the exponent is a multiple of 3 - i.e. 1.1e5 would return "110", 3.
func (a int64Amount) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
mantissa := a.value
exponent = int32(a.scale)
amount, times := removeInt64Factors(mantissa, 10)
exponent += int32(times)
// make sure exponent is a multiple of 3
var ok bool
switch exponent % 3 {
case 1, -2:
amount, ok = int64MultiplyScale10(amount)
if !ok {
return infDecAmount{a.AsDec()}.AsCanonicalBytes(out)
}
exponent = exponent - 1
case 2, -1:
amount, ok = int64MultiplyScale100(amount)
if !ok {
return infDecAmount{a.AsDec()}.AsCanonicalBytes(out)
}
exponent = exponent - 2
}
return strconv.AppendInt(out, amount, 10), exponent
}
// AsCanonicalBase1024Bytes accepts a buffer to write the base-1024 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. 2048 is 2 * 1024 ^ 1 and would
// return []byte("2048"), 1.
func (a int64Amount) AsCanonicalBase1024Bytes(out []byte) (result []byte, exponent int32) {
value, ok := a.AsScaledInt64(0)
if !ok {
return infDecAmount{a.AsDec()}.AsCanonicalBase1024Bytes(out)
}
amount, exponent := removeInt64Factors(value, 1024)
return strconv.AppendInt(out, amount, 10), exponent
}
// infDecAmount implements common operations over an inf.Dec that are specific to the quantity
// representation.
type infDecAmount struct {
*inf.Dec
}
// AsScale adjusts this amount to set a minimum scale, rounding up, and returns true iff no precision
// was lost. (1.1e5).AsScale(5) would return 1.1e5, but (1.1e5).AsScale(6) would return 1e6.
func (a infDecAmount) AsScale(scale Scale) (infDecAmount, bool) {
tmp := &inf.Dec{}
tmp.Round(a.Dec, scale.infScale(), inf.RoundUp)
return infDecAmount{tmp}, tmp.Cmp(a.Dec) == 0
}
// AsCanonicalBytes accepts a buffer to write the base-10 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. The value is adjusted
// until the exponent is a multiple of 3 - i.e. 1.1e5 would return "110", 3.
func (a infDecAmount) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
mantissa := a.Dec.UnscaledBig()
exponent = int32(-a.Dec.Scale())
amount := big.NewInt(0).Set(mantissa)
// move all factors of 10 into the exponent for easy reasoning
amount, times := removeBigIntFactors(amount, bigTen)
exponent += times
// make sure exponent is a multiple of 3
for exponent%3 != 0 {
amount.Mul(amount, bigTen)
exponent--
}
return append(out, amount.String()...), exponent
}
// AsCanonicalBase1024Bytes accepts a buffer to write the base-1024 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. 2048 is 2 * 1024 ^ 1 and would
// return []byte("2048"), 1.
func (a infDecAmount) AsCanonicalBase1024Bytes(out []byte) (result []byte, exponent int32) {
tmp := &inf.Dec{}
tmp.Round(a.Dec, 0, inf.RoundUp)
amount, exponent := removeBigIntFactors(tmp.UnscaledBig(), big1024)
return append(out, amount.String()...), exponent
}

View File

@ -0,0 +1,133 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"testing"
)
func TestInt64AmountAsInt64(t *testing.T) {
for _, test := range []struct {
value int64
scale Scale
result int64
ok bool
}{
{100, 0, 100, true},
{100, 1, 1000, true},
{100, -5, 0, false},
{100, 100, 0, false},
} {
r, ok := int64Amount{value: test.value, scale: test.scale}.AsInt64()
if r != test.result {
t.Errorf("%v: unexpected result: %d", test, r)
}
if ok != test.ok {
t.Errorf("%v: unexpected ok: %t", test, ok)
}
}
}
func TestInt64AmountAdd(t *testing.T) {
for _, test := range []struct {
a, b, c int64Amount
ok bool
}{
{int64Amount{value: 100, scale: 1}, int64Amount{value: 10, scale: 2}, int64Amount{value: 200, scale: 1}, true},
{int64Amount{value: 100, scale: 1}, int64Amount{value: 1, scale: 2}, int64Amount{value: 110, scale: 1}, true},
{int64Amount{value: 100, scale: 1}, int64Amount{value: 1, scale: 100}, int64Amount{value: 1, scale: 100}, false},
{int64Amount{value: -5, scale: 2}, int64Amount{value: 50, scale: 1}, int64Amount{value: 0, scale: 1}, true},
{int64Amount{value: -5, scale: 2}, int64Amount{value: 5, scale: 2}, int64Amount{value: 0, scale: 2}, true},
{int64Amount{value: mostPositive, scale: -1}, int64Amount{value: 1, scale: -1}, int64Amount{value: 0, scale: -1}, false},
{int64Amount{value: mostPositive, scale: -1}, int64Amount{value: 0, scale: -1}, int64Amount{value: mostPositive, scale: -1}, true},
{int64Amount{value: mostPositive / 10, scale: 1}, int64Amount{value: 10, scale: 0}, int64Amount{value: mostPositive, scale: -1}, false},
} {
c := test.a
ok := c.Add(test.b)
if ok != test.ok {
t.Errorf("%v: unexpected ok: %t", test, ok)
}
if ok {
if c != test.c {
t.Errorf("%v: unexpected result: %d", test, c)
}
} else {
if c != test.a {
t.Errorf("%v: overflow addition mutated source: %d", test, c)
}
}
// addition is commutative
c = test.b
if ok := c.Add(test.a); ok != test.ok {
t.Errorf("%v: unexpected ok: %t", test, ok)
}
if ok {
if c != test.c {
t.Errorf("%v: unexpected result: %d", test, c)
}
} else {
if c != test.b {
t.Errorf("%v: overflow addition mutated source: %d", test, c)
}
}
}
}
func TestInt64AsCanonicalString(t *testing.T) {
for _, test := range []struct {
value int64
scale Scale
result string
exponent int32
}{
{100, 0, "100", 0},
{100, 1, "1", 3},
{100, -1, "10", 0},
{10800, -10, "1080", -9},
} {
r, exp := int64Amount{value: test.value, scale: test.scale}.AsCanonicalBytes(nil)
if string(r) != test.result {
t.Errorf("%v: unexpected result: %s", test, r)
}
if exp != test.exponent {
t.Errorf("%v: unexpected exponent: %d", test, exp)
}
}
}
func TestAmountSign(t *testing.T) {
table := []struct {
i int64Amount
expect int
}{
{int64Amount{value: -50, scale: 1}, -1},
{int64Amount{value: 0, scale: 1}, 0},
{int64Amount{value: 300, scale: 1}, 1},
{int64Amount{value: -50, scale: -8}, -1},
{int64Amount{value: 50, scale: -8}, 1},
{int64Amount{value: 0, scale: -8}, 0},
{int64Amount{value: -50, scale: 0}, -1},
{int64Amount{value: 50, scale: 0}, 1},
{int64Amount{value: 0, scale: 0}, 0},
}
for _, testCase := range table {
if result := testCase.i.Sign(); result != testCase.expect {
t.Errorf("i: %v, Expected: %v, Actual: %v", testCase.i, testCase.expect, result)
}
}
}

View File

@ -0,0 +1,77 @@
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Code generated by protoc-gen-gogo.
// source: k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/api/resource/generated.proto
// DO NOT EDIT!
/*
Package resource is a generated protocol buffer package.
It is generated from these files:
k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/api/resource/generated.proto
It has these top-level messages:
Quantity
*/
package resource
import proto "github.com/gogo/protobuf/proto"
import fmt "fmt"
import math "math"
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.GoGoProtoPackageIsVersion2 // please upgrade the proto package
func (m *Quantity) Reset() { *m = Quantity{} }
func (*Quantity) ProtoMessage() {}
func (*Quantity) Descriptor() ([]byte, []int) { return fileDescriptorGenerated, []int{0} }
func init() {
proto.RegisterType((*Quantity)(nil), "k8s.io.apimachinery.pkg.api.resource.Quantity")
}
func init() {
proto.RegisterFile("k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/api/resource/generated.proto", fileDescriptorGenerated)
}
var fileDescriptorGenerated = []byte{
// 255 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0x74, 0x8f, 0xa1, 0x4e, 0x03, 0x41,
0x10, 0x86, 0x77, 0x0d, 0x29, 0x95, 0x0d, 0x21, 0xa4, 0x62, 0xaf, 0x21, 0x08, 0x0c, 0x3b, 0x02,
0xd3, 0x20, 0xf1, 0x08, 0x90, 0xb8, 0xbb, 0xeb, 0xb0, 0xdd, 0x1c, 0xdd, 0xbd, 0xcc, 0xce, 0x92,
0xd4, 0x55, 0x22, 0x2b, 0x91, 0xbd, 0xb7, 0xa9, 0xac, 0xac, 0x40, 0x70, 0xcb, 0x8b, 0x90, 0x5e,
0xdb, 0x84, 0x90, 0xe0, 0xe6, 0xfb, 0x27, 0xdf, 0xe4, 0x9f, 0xfe, 0x43, 0x35, 0x0e, 0xda, 0x7a,
0xa8, 0x62, 0x81, 0xe4, 0x90, 0x31, 0xc0, 0x1b, 0xba, 0x89, 0x27, 0x38, 0x2c, 0xf2, 0xda, 0xce,
0xf2, 0x72, 0x6a, 0x1d, 0xd2, 0x1c, 0xea, 0xca, 0xec, 0x02, 0x20, 0x0c, 0x3e, 0x52, 0x89, 0x60,
0xd0, 0x21, 0xe5, 0x8c, 0x13, 0x5d, 0x93, 0x67, 0x3f, 0xb8, 0xda, 0x5b, 0xfa, 0xb7, 0xa5, 0xeb,
0xca, 0xec, 0x02, 0x7d, 0xb4, 0x86, 0x37, 0xc6, 0xf2, 0x34, 0x16, 0xba, 0xf4, 0x33, 0x30, 0xde,
0x78, 0xe8, 0xe4, 0x22, 0xbe, 0x74, 0xd4, 0x41, 0x37, 0xed, 0x8f, 0x0e, 0x6f, 0xff, 0xab, 0x12,
0xd9, 0xbe, 0x82, 0x75, 0x1c, 0x98, 0xfe, 0x36, 0xb9, 0x1c, 0xf7, 0x7b, 0x8f, 0x31, 0x77, 0x6c,
0x79, 0x3e, 0x38, 0xef, 0x9f, 0x04, 0x26, 0xeb, 0xcc, 0x85, 0x1c, 0xc9, 0xeb, 0xd3, 0xa7, 0x03,
0xdd, 0x9d, 0x7d, 0xac, 0x32, 0xf1, 0xde, 0x64, 0x62, 0xd9, 0x64, 0x62, 0xd5, 0x64, 0x62, 0xf1,
0x39, 0x12, 0xf7, 0x7a, 0xdd, 0x2a, 0xb1, 0x69, 0x95, 0xd8, 0xb6, 0x4a, 0x2c, 0x92, 0x92, 0xeb,
0xa4, 0xe4, 0x26, 0x29, 0xb9, 0x4d, 0x4a, 0x7e, 0x25, 0x25, 0x97, 0xdf, 0x4a, 0x3c, 0xf7, 0x8e,
0xdf, 0xfc, 0x04, 0x00, 0x00, 0xff, 0xff, 0x5f, 0x5e, 0xda, 0xf9, 0x43, 0x01, 0x00, 0x00,
}

View File

@ -0,0 +1,95 @@
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// This file was autogenerated by go-to-protobuf. Do not edit it manually!
syntax = 'proto2';
package k8s.io.apimachinery.pkg.api.resource;
import "k8s.io/apimachinery/pkg/util/intstr/generated.proto";
// Package-wide variables from generator "generated".
option go_package = "resource";
// Quantity is a fixed-point representation of a number.
// It provides convenient marshaling/unmarshaling in JSON and YAML,
// in addition to String() and Int64() accessors.
//
// The serialization format is:
//
// <quantity> ::= <signedNumber><suffix>
// (Note that <suffix> may be empty, from the "" case in <decimalSI>.)
// <digit> ::= 0 | 1 | ... | 9
// <digits> ::= <digit> | <digit><digits>
// <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
// <sign> ::= "+" | "-"
// <signedNumber> ::= <number> | <sign><number>
// <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI>
// <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei
// (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
// <decimalSI> ::= m | "" | k | M | G | T | P | E
// (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
//
// No matter which of the three exponent forms is used, no quantity may represent
// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
// places. Numbers larger or more precise will be capped or rounded up.
// (E.g.: 0.1m will rounded up to 1m.)
// This may be extended in the future if we require larger or smaller quantities.
//
// When a Quantity is parsed from a string, it will remember the type of suffix
// it had, and will use the same type again when it is serialized.
//
// Before serializing, Quantity will be put in "canonical form".
// This means that Exponent/suffix will be adjusted up or down (with a
// corresponding increase or decrease in Mantissa) such that:
// a. No precision is lost
// b. No fractional digits will be emitted
// c. The exponent (or suffix) is as large as possible.
// The sign will be omitted unless the number is negative.
//
// Examples:
// 1.5 will be serialized as "1500m"
// 1.5Gi will be serialized as "1536Mi"
//
// NOTE: We reserve the right to amend this canonical format, perhaps to
// allow 1.5 to be canonical.
// TODO: Remove above disclaimer after all bikeshedding about format is over,
// or after March 2015.
//
// Note that the quantity will NEVER be internally represented by a
// floating point number. That is the whole point of this exercise.
//
// Non-canonical values will still parse as long as they are well formed,
// but will be re-emitted in their canonical form. (So always use canonical
// form, or don't diff.)
//
// This format is intended to make it difficult to use these numbers without
// writing some sort of special handling code in the hopes that that will
// cause implementors to also use a fixed point implementation.
//
// +protobuf=true
// +protobuf.embed=string
// +protobuf.options.marshal=false
// +protobuf.options.(gogoproto.goproto_stringer)=false
// +k8s:deepcopy-gen=true
// +k8s:openapi-gen=true
message Quantity {
optional string string = 1;
}

314
vendor/k8s.io/apimachinery/pkg/api/resource/math.go generated vendored Normal file
View File

@ -0,0 +1,314 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math/big"
inf "gopkg.in/inf.v0"
)
const (
// maxInt64Factors is the highest value that will be checked when removing factors of 10 from an int64.
// It is also the maximum decimal digits that can be represented with an int64.
maxInt64Factors = 18
)
var (
// Commonly needed big.Int values-- treat as read only!
bigTen = big.NewInt(10)
bigZero = big.NewInt(0)
bigOne = big.NewInt(1)
bigThousand = big.NewInt(1000)
big1024 = big.NewInt(1024)
// Commonly needed inf.Dec values-- treat as read only!
decZero = inf.NewDec(0, 0)
decOne = inf.NewDec(1, 0)
decMinusOne = inf.NewDec(-1, 0)
decThousand = inf.NewDec(1000, 0)
dec1024 = inf.NewDec(1024, 0)
decMinus1024 = inf.NewDec(-1024, 0)
// Largest (in magnitude) number allowed.
maxAllowed = infDecAmount{inf.NewDec((1<<63)-1, 0)} // == max int64
// The maximum value we can represent milli-units for.
// Compare with the return value of Quantity.Value() to
// see if it's safe to use Quantity.MilliValue().
MaxMilliValue = int64(((1 << 63) - 1) / 1000)
)
const mostNegative = -(mostPositive + 1)
const mostPositive = 1<<63 - 1
// int64Add returns a+b, or false if that would overflow int64.
func int64Add(a, b int64) (int64, bool) {
c := a + b
switch {
case a > 0 && b > 0:
if c < 0 {
return 0, false
}
case a < 0 && b < 0:
if c > 0 {
return 0, false
}
if a == mostNegative && b == mostNegative {
return 0, false
}
}
return c, true
}
// int64Multiply returns a*b, or false if that would overflow or underflow int64.
func int64Multiply(a, b int64) (int64, bool) {
if a == 0 || b == 0 || a == 1 || b == 1 {
return a * b, true
}
if a == mostNegative || b == mostNegative {
return 0, false
}
c := a * b
return c, c/b == a
}
// int64MultiplyScale returns a*b, assuming b is greater than one, or false if that would overflow or underflow int64.
// Use when b is known to be greater than one.
func int64MultiplyScale(a int64, b int64) (int64, bool) {
if a == 0 || a == 1 {
return a * b, true
}
if a == mostNegative && b != 1 {
return 0, false
}
c := a * b
return c, c/b == a
}
// int64MultiplyScale10 multiplies a by 10, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 10) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale10(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 10, true
}
if a == mostNegative {
return 0, false
}
c := a * 10
return c, c/10 == a
}
// int64MultiplyScale100 multiplies a by 100, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 100) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale100(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 100, true
}
if a == mostNegative {
return 0, false
}
c := a * 100
return c, c/100 == a
}
// int64MultiplyScale1000 multiplies a by 1000, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 1000) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale1000(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 1000, true
}
if a == mostNegative {
return 0, false
}
c := a * 1000
return c, c/1000 == a
}
// positiveScaleInt64 multiplies base by 10^scale, returning false if the
// value overflows. Passing a negative scale is undefined.
func positiveScaleInt64(base int64, scale Scale) (int64, bool) {
switch scale {
case 0:
return base, true
case 1:
return int64MultiplyScale10(base)
case 2:
return int64MultiplyScale100(base)
case 3:
return int64MultiplyScale1000(base)
case 6:
return int64MultiplyScale(base, 1000000)
case 9:
return int64MultiplyScale(base, 1000000000)
default:
value := base
var ok bool
for i := Scale(0); i < scale; i++ {
if value, ok = int64MultiplyScale(value, 10); !ok {
return 0, false
}
}
return value, true
}
}
// negativeScaleInt64 reduces base by the provided scale, rounding up, until the
// value is zero or the scale is reached. Passing a negative scale is undefined.
// The value returned, if not exact, is rounded away from zero.
func negativeScaleInt64(base int64, scale Scale) (result int64, exact bool) {
if scale == 0 {
return base, true
}
value := base
var fraction bool
for i := Scale(0); i < scale; i++ {
if !fraction && value%10 != 0 {
fraction = true
}
value = value / 10
if value == 0 {
if fraction {
if base > 0 {
return 1, false
}
return -1, false
}
return 0, true
}
}
if fraction {
if base > 0 {
value += 1
} else {
value += -1
}
}
return value, !fraction
}
func pow10Int64(b int64) int64 {
switch b {
case 0:
return 1
case 1:
return 10
case 2:
return 100
case 3:
return 1000
case 4:
return 10000
case 5:
return 100000
case 6:
return 1000000
case 7:
return 10000000
case 8:
return 100000000
case 9:
return 1000000000
case 10:
return 10000000000
case 11:
return 100000000000
case 12:
return 1000000000000
case 13:
return 10000000000000
case 14:
return 100000000000000
case 15:
return 1000000000000000
case 16:
return 10000000000000000
case 17:
return 100000000000000000
case 18:
return 1000000000000000000
default:
return 0
}
}
// negativeScaleInt64 returns the result of dividing base by scale * 10 and the remainder, or
// false if no such division is possible. Dividing by negative scales is undefined.
func divideByScaleInt64(base int64, scale Scale) (result, remainder int64, exact bool) {
if scale == 0 {
return base, 0, true
}
// the max scale representable in base 10 in an int64 is 18 decimal places
if scale >= 18 {
return 0, base, false
}
divisor := pow10Int64(int64(scale))
return base / divisor, base % divisor, true
}
// removeInt64Factors divides in a loop; the return values have the property that
// value == result * base ^ scale
func removeInt64Factors(value int64, base int64) (result int64, times int32) {
times = 0
result = value
negative := result < 0
if negative {
result = -result
}
switch base {
// allow the compiler to optimize the common cases
case 10:
for result >= 10 && result%10 == 0 {
times++
result = result / 10
}
// allow the compiler to optimize the common cases
case 1024:
for result >= 1024 && result%1024 == 0 {
times++
result = result / 1024
}
default:
for result >= base && result%base == 0 {
times++
result = result / base
}
}
if negative {
result = -result
}
return result, times
}
// removeBigIntFactors divides in a loop; the return values have the property that
// d == result * factor ^ times
// d may be modified in place.
// If d == 0, then the return values will be (0, 0)
func removeBigIntFactors(d, factor *big.Int) (result *big.Int, times int32) {
q := big.NewInt(0)
m := big.NewInt(0)
for d.Cmp(bigZero) != 0 {
q.DivMod(d, factor, m)
if m.Cmp(bigZero) != 0 {
break
}
times++
d, q = q, d
}
return d, times
}

View File

@ -0,0 +1,211 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"testing"
)
func TestDetectOverflowAdd(t *testing.T) {
for _, test := range []struct {
a, b int64
c int64
ok bool
}{
{0, 0, 0, true},
{-1, 1, 0, true},
{0, 1, 1, true},
{2, 2, 4, true},
{2, -2, 0, true},
{-2, -2, -4, true},
{mostNegative, -1, 0, false},
{mostNegative, 1, mostNegative + 1, true},
{mostPositive, -1, mostPositive - 1, true},
{mostPositive, 1, 0, false},
{mostNegative, mostPositive, -1, true},
{mostPositive, mostNegative, -1, true},
{mostPositive, mostPositive, 0, false},
{mostNegative, mostNegative, 0, false},
{-mostPositive, mostNegative, 0, false},
{mostNegative, -mostPositive, 0, false},
{-mostPositive, -mostPositive, 0, false},
} {
c, ok := int64Add(test.a, test.b)
if c != test.c {
t.Errorf("%v: unexpected result: %d", test, c)
}
if ok != test.ok {
t.Errorf("%v: unexpected overflow: %t", test, ok)
}
// addition is commutative
d, ok2 := int64Add(test.b, test.a)
if c != d || ok != ok2 {
t.Errorf("%v: not commutative: %d %t", test, d, ok2)
}
}
}
func TestDetectOverflowMultiply(t *testing.T) {
for _, test := range []struct {
a, b int64
c int64
ok bool
}{
{0, 0, 0, true},
{-1, 1, -1, true},
{-1, -1, 1, true},
{1, 1, 1, true},
{0, 1, 0, true},
{1, 0, 0, true},
{2, 2, 4, true},
{2, -2, -4, true},
{-2, -2, 4, true},
{mostNegative, -1, 0, false},
{mostNegative, 1, mostNegative, true},
{mostPositive, -1, -mostPositive, true},
{mostPositive, 1, mostPositive, true},
{mostNegative, mostPositive, 0, false},
{mostPositive, mostNegative, 0, false},
{mostPositive, mostPositive, 1, false},
{mostNegative, mostNegative, 0, false},
{-mostPositive, mostNegative, 0, false},
{mostNegative, -mostPositive, 0, false},
{-mostPositive, -mostPositive, 1, false},
} {
c, ok := int64Multiply(test.a, test.b)
if c != test.c {
t.Errorf("%v: unexpected result: %d", test, c)
}
if ok != test.ok {
t.Errorf("%v: unexpected overflow: %t", test, ok)
}
// multiplication is commutative
d, ok2 := int64Multiply(test.b, test.a)
if c != d || ok != ok2 {
t.Errorf("%v: not commutative: %d %t", test, d, ok2)
}
}
}
func TestDetectOverflowScale(t *testing.T) {
for _, a := range []int64{0, -1, 1, 10, -10, mostPositive, mostNegative, -mostPositive} {
for _, b := range []int64{1, 2, 10, 100, 1000, mostPositive} {
expect, expectOk := int64Multiply(a, b)
c, ok := int64MultiplyScale(a, b)
if c != expect {
t.Errorf("%d*%d: unexpected result: %d", a, b, c)
}
if ok != expectOk {
t.Errorf("%d*%d: unexpected overflow: %t", a, b, ok)
}
}
for _, test := range []struct {
base int64
fn func(a int64) (int64, bool)
}{
{10, int64MultiplyScale10},
{100, int64MultiplyScale100},
{1000, int64MultiplyScale1000},
} {
expect, expectOk := int64Multiply(a, test.base)
c, ok := test.fn(a)
if c != expect {
t.Errorf("%d*%d: unexpected result: %d", a, test.base, c)
}
if ok != expectOk {
t.Errorf("%d*%d: unexpected overflow: %t", a, test.base, ok)
}
}
}
}
func TestRemoveInt64Factors(t *testing.T) {
for _, test := range []struct {
value int64
max int64
result int64
scale int32
}{
{100, 10, 1, 2},
{100, 10, 1, 2},
{100, 100, 1, 1},
{1, 10, 1, 0},
} {
r, s := removeInt64Factors(test.value, test.max)
if r != test.result {
t.Errorf("%v: unexpected result: %d", test, r)
}
if s != test.scale {
t.Errorf("%v: unexpected scale: %d", test, s)
}
}
}
func TestNegativeScaleInt64(t *testing.T) {
for _, test := range []struct {
base int64
scale Scale
result int64
exact bool
}{
{1234567, 0, 1234567, true},
{1234567, 1, 123457, false},
{1234567, 2, 12346, false},
{1234567, 3, 1235, false},
{1234567, 4, 124, false},
{-1234567, 0, -1234567, true},
{-1234567, 1, -123457, false},
{-1234567, 2, -12346, false},
{-1234567, 3, -1235, false},
{-1234567, 4, -124, false},
{1000, 0, 1000, true},
{1000, 1, 100, true},
{1000, 2, 10, true},
{1000, 3, 1, true},
{1000, 4, 1, false},
{-1000, 0, -1000, true},
{-1000, 1, -100, true},
{-1000, 2, -10, true},
{-1000, 3, -1, true},
{-1000, 4, -1, false},
{0, 0, 0, true},
{0, 1, 0, true},
{0, 2, 0, true},
// negative scale is undefined behavior
{1000, -1, 1000, true},
} {
result, exact := negativeScaleInt64(test.base, test.scale)
if result != test.result {
t.Errorf("%v: unexpected result: %d", test, result)
}
if exact != test.exact {
t.Errorf("%v: unexpected exact: %t", test, exact)
}
}
}

793
vendor/k8s.io/apimachinery/pkg/api/resource/quantity.go generated vendored Normal file
View File

@ -0,0 +1,793 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"bytes"
"errors"
"fmt"
"math/big"
"regexp"
"strconv"
"strings"
flag "github.com/spf13/pflag"
"github.com/go-openapi/spec"
inf "gopkg.in/inf.v0"
openapi "k8s.io/kube-openapi/pkg/common"
)
// Quantity is a fixed-point representation of a number.
// It provides convenient marshaling/unmarshaling in JSON and YAML,
// in addition to String() and Int64() accessors.
//
// The serialization format is:
//
// <quantity> ::= <signedNumber><suffix>
// (Note that <suffix> may be empty, from the "" case in <decimalSI>.)
// <digit> ::= 0 | 1 | ... | 9
// <digits> ::= <digit> | <digit><digits>
// <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
// <sign> ::= "+" | "-"
// <signedNumber> ::= <number> | <sign><number>
// <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI>
// <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei
// (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
// <decimalSI> ::= m | "" | k | M | G | T | P | E
// (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
//
// No matter which of the three exponent forms is used, no quantity may represent
// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
// places. Numbers larger or more precise will be capped or rounded up.
// (E.g.: 0.1m will rounded up to 1m.)
// This may be extended in the future if we require larger or smaller quantities.
//
// When a Quantity is parsed from a string, it will remember the type of suffix
// it had, and will use the same type again when it is serialized.
//
// Before serializing, Quantity will be put in "canonical form".
// This means that Exponent/suffix will be adjusted up or down (with a
// corresponding increase or decrease in Mantissa) such that:
// a. No precision is lost
// b. No fractional digits will be emitted
// c. The exponent (or suffix) is as large as possible.
// The sign will be omitted unless the number is negative.
//
// Examples:
// 1.5 will be serialized as "1500m"
// 1.5Gi will be serialized as "1536Mi"
//
// NOTE: We reserve the right to amend this canonical format, perhaps to
// allow 1.5 to be canonical.
// TODO: Remove above disclaimer after all bikeshedding about format is over,
// or after March 2015.
//
// Note that the quantity will NEVER be internally represented by a
// floating point number. That is the whole point of this exercise.
//
// Non-canonical values will still parse as long as they are well formed,
// but will be re-emitted in their canonical form. (So always use canonical
// form, or don't diff.)
//
// This format is intended to make it difficult to use these numbers without
// writing some sort of special handling code in the hopes that that will
// cause implementors to also use a fixed point implementation.
//
// +protobuf=true
// +protobuf.embed=string
// +protobuf.options.marshal=false
// +protobuf.options.(gogoproto.goproto_stringer)=false
// +k8s:deepcopy-gen=true
// +k8s:openapi-gen=true
type Quantity struct {
// i is the quantity in int64 scaled form, if d.Dec == nil
i int64Amount
// d is the quantity in inf.Dec form if d.Dec != nil
d infDecAmount
// s is the generated value of this quantity to avoid recalculation
s string
// Change Format at will. See the comment for Canonicalize for
// more details.
Format
}
// CanonicalValue allows a quantity amount to be converted to a string.
type CanonicalValue interface {
// AsCanonicalBytes returns a byte array representing the string representation
// of the value mantissa and an int32 representing its exponent in base-10. Callers may
// pass a byte slice to the method to avoid allocations.
AsCanonicalBytes(out []byte) ([]byte, int32)
// AsCanonicalBase1024Bytes returns a byte array representing the string representation
// of the value mantissa and an int32 representing its exponent in base-1024. Callers
// may pass a byte slice to the method to avoid allocations.
AsCanonicalBase1024Bytes(out []byte) ([]byte, int32)
}
// Format lists the three possible formattings of a quantity.
type Format string
const (
DecimalExponent = Format("DecimalExponent") // e.g., 12e6
BinarySI = Format("BinarySI") // e.g., 12Mi (12 * 2^20)
DecimalSI = Format("DecimalSI") // e.g., 12M (12 * 10^6)
)
// MustParse turns the given string into a quantity or panics; for tests
// or others cases where you know the string is valid.
func MustParse(str string) Quantity {
q, err := ParseQuantity(str)
if err != nil {
panic(fmt.Errorf("cannot parse '%v': %v", str, err))
}
return q
}
const (
// splitREString is used to separate a number from its suffix; as such,
// this is overly permissive, but that's OK-- it will be checked later.
splitREString = "^([+-]?[0-9.]+)([eEinumkKMGTP]*[-+]?[0-9]*)$"
)
var (
// splitRE is used to get the various parts of a number.
splitRE = regexp.MustCompile(splitREString)
// Errors that could happen while parsing a string.
ErrFormatWrong = errors.New("quantities must match the regular expression '" + splitREString + "'")
ErrNumeric = errors.New("unable to parse numeric part of quantity")
ErrSuffix = errors.New("unable to parse quantity's suffix")
)
// parseQuantityString is a fast scanner for quantity values.
func parseQuantityString(str string) (positive bool, value, num, denom, suffix string, err error) {
positive = true
pos := 0
end := len(str)
// handle leading sign
if pos < end {
switch str[0] {
case '-':
positive = false
pos++
case '+':
pos++
}
}
// strip leading zeros
Zeroes:
for i := pos; ; i++ {
if i >= end {
num = "0"
value = num
return
}
switch str[i] {
case '0':
pos++
default:
break Zeroes
}
}
// extract the numerator
Num:
for i := pos; ; i++ {
if i >= end {
num = str[pos:end]
value = str[0:end]
return
}
switch str[i] {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
default:
num = str[pos:i]
pos = i
break Num
}
}
// if we stripped all numerator positions, always return 0
if len(num) == 0 {
num = "0"
}
// handle a denominator
if pos < end && str[pos] == '.' {
pos++
Denom:
for i := pos; ; i++ {
if i >= end {
denom = str[pos:end]
value = str[0:end]
return
}
switch str[i] {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
default:
denom = str[pos:i]
pos = i
break Denom
}
}
// TODO: we currently allow 1.G, but we may not want to in the future.
// if len(denom) == 0 {
// err = ErrFormatWrong
// return
// }
}
value = str[0:pos]
// grab the elements of the suffix
suffixStart := pos
for i := pos; ; i++ {
if i >= end {
suffix = str[suffixStart:end]
return
}
if !strings.ContainsAny(str[i:i+1], "eEinumkKMGTP") {
pos = i
break
}
}
if pos < end {
switch str[pos] {
case '-', '+':
pos++
}
}
Suffix:
for i := pos; ; i++ {
if i >= end {
suffix = str[suffixStart:end]
return
}
switch str[i] {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
default:
break Suffix
}
}
// we encountered a non decimal in the Suffix loop, but the last character
// was not a valid exponent
err = ErrFormatWrong
return
}
// ParseQuantity turns str into a Quantity, or returns an error.
func ParseQuantity(str string) (Quantity, error) {
if len(str) == 0 {
return Quantity{}, ErrFormatWrong
}
if str == "0" {
return Quantity{Format: DecimalSI, s: str}, nil
}
positive, value, num, denom, suf, err := parseQuantityString(str)
if err != nil {
return Quantity{}, err
}
base, exponent, format, ok := quantitySuffixer.interpret(suffix(suf))
if !ok {
return Quantity{}, ErrSuffix
}
precision := int32(0)
scale := int32(0)
mantissa := int64(1)
switch format {
case DecimalExponent, DecimalSI:
scale = exponent
precision = maxInt64Factors - int32(len(num)+len(denom))
case BinarySI:
scale = 0
switch {
case exponent >= 0 && len(denom) == 0:
// only handle positive binary numbers with the fast path
mantissa = int64(int64(mantissa) << uint64(exponent))
// 1Mi (2^20) has ~6 digits of decimal precision, so exponent*3/10 -1 is roughly the precision
precision = 15 - int32(len(num)) - int32(float32(exponent)*3/10) - 1
default:
precision = -1
}
}
if precision >= 0 {
// if we have a denominator, shift the entire value to the left by the number of places in the
// denominator
scale -= int32(len(denom))
if scale >= int32(Nano) {
shifted := num + denom
var value int64
value, err := strconv.ParseInt(shifted, 10, 64)
if err != nil {
return Quantity{}, ErrNumeric
}
if result, ok := int64Multiply(value, int64(mantissa)); ok {
if !positive {
result = -result
}
// if the number is in canonical form, reuse the string
switch format {
case BinarySI:
if exponent%10 == 0 && (value&0x07 != 0) {
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
}
default:
if scale%3 == 0 && !strings.HasSuffix(shifted, "000") && shifted[0] != '0' {
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
}
}
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format}, nil
}
}
}
amount := new(inf.Dec)
if _, ok := amount.SetString(value); !ok {
return Quantity{}, ErrNumeric
}
// So that no one but us has to think about suffixes, remove it.
if base == 10 {
amount.SetScale(amount.Scale() + Scale(exponent).infScale())
} else if base == 2 {
// numericSuffix = 2 ** exponent
numericSuffix := big.NewInt(1).Lsh(bigOne, uint(exponent))
ub := amount.UnscaledBig()
amount.SetUnscaledBig(ub.Mul(ub, numericSuffix))
}
// Cap at min/max bounds.
sign := amount.Sign()
if sign == -1 {
amount.Neg(amount)
}
// This rounds non-zero values up to the minimum representable value, under the theory that
// if you want some resources, you should get some resources, even if you asked for way too small
// of an amount. Arguably, this should be inf.RoundHalfUp (normal rounding), but that would have
// the side effect of rounding values < .5n to zero.
if v, ok := amount.Unscaled(); v != int64(0) || !ok {
amount.Round(amount, Nano.infScale(), inf.RoundUp)
}
// The max is just a simple cap.
// TODO: this prevents accumulating quantities greater than int64, for instance quota across a cluster
if format == BinarySI && amount.Cmp(maxAllowed.Dec) > 0 {
amount.Set(maxAllowed.Dec)
}
if format == BinarySI && amount.Cmp(decOne) < 0 && amount.Cmp(decZero) > 0 {
// This avoids rounding and hopefully confusion, too.
format = DecimalSI
}
if sign == -1 {
amount.Neg(amount)
}
return Quantity{d: infDecAmount{amount}, Format: format}, nil
}
// DeepCopy returns a deep-copy of the Quantity value. Note that the method
// receiver is a value, so we can mutate it in-place and return it.
func (q Quantity) DeepCopy() Quantity {
if q.d.Dec != nil {
tmp := &inf.Dec{}
q.d.Dec = tmp.Set(q.d.Dec)
}
return q
}
// OpenAPIDefinition returns openAPI definition for this type.
func (_ Quantity) OpenAPIDefinition() openapi.OpenAPIDefinition {
return openapi.OpenAPIDefinition{
Schema: spec.Schema{
SchemaProps: spec.SchemaProps{
Type: []string{"string"},
Format: "",
},
},
}
}
// CanonicalizeBytes returns the canonical form of q and its suffix (see comment on Quantity).
//
// Note about BinarySI:
// * If q.Format is set to BinarySI and q.Amount represents a non-zero value between
// -1 and +1, it will be emitted as if q.Format were DecimalSI.
// * Otherwise, if q.Format is set to BinarySI, fractional parts of q.Amount will be
// rounded up. (1.1i becomes 2i.)
func (q *Quantity) CanonicalizeBytes(out []byte) (result, suffix []byte) {
if q.IsZero() {
return zeroBytes, nil
}
var rounded CanonicalValue
format := q.Format
switch format {
case DecimalExponent, DecimalSI:
case BinarySI:
if q.CmpInt64(-1024) > 0 && q.CmpInt64(1024) < 0 {
// This avoids rounding and hopefully confusion, too.
format = DecimalSI
} else {
var exact bool
if rounded, exact = q.AsScale(0); !exact {
// Don't lose precision-- show as DecimalSI
format = DecimalSI
}
}
default:
format = DecimalExponent
}
// TODO: If BinarySI formatting is requested but would cause rounding, upgrade to
// one of the other formats.
switch format {
case DecimalExponent, DecimalSI:
number, exponent := q.AsCanonicalBytes(out)
suffix, _ := quantitySuffixer.constructBytes(10, exponent, format)
return number, suffix
default:
// format must be BinarySI
number, exponent := rounded.AsCanonicalBase1024Bytes(out)
suffix, _ := quantitySuffixer.constructBytes(2, exponent*10, format)
return number, suffix
}
}
// AsInt64 returns a representation of the current value as an int64 if a fast conversion
// is possible. If false is returned, callers must use the inf.Dec form of this quantity.
func (q *Quantity) AsInt64() (int64, bool) {
if q.d.Dec != nil {
return 0, false
}
return q.i.AsInt64()
}
// ToDec promotes the quantity in place to use an inf.Dec representation and returns itself.
func (q *Quantity) ToDec() *Quantity {
if q.d.Dec == nil {
q.d.Dec = q.i.AsDec()
q.i = int64Amount{}
}
return q
}
// AsDec returns the quantity as represented by a scaled inf.Dec.
func (q *Quantity) AsDec() *inf.Dec {
if q.d.Dec != nil {
return q.d.Dec
}
q.d.Dec = q.i.AsDec()
q.i = int64Amount{}
return q.d.Dec
}
// AsCanonicalBytes returns the canonical byte representation of this quantity as a mantissa
// and base 10 exponent. The out byte slice may be passed to the method to avoid an extra
// allocation.
func (q *Quantity) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
if q.d.Dec != nil {
return q.d.AsCanonicalBytes(out)
}
return q.i.AsCanonicalBytes(out)
}
// IsZero returns true if the quantity is equal to zero.
func (q *Quantity) IsZero() bool {
if q.d.Dec != nil {
return q.d.Dec.Sign() == 0
}
return q.i.value == 0
}
// Sign returns 0 if the quantity is zero, -1 if the quantity is less than zero, or 1 if the
// quantity is greater than zero.
func (q *Quantity) Sign() int {
if q.d.Dec != nil {
return q.d.Dec.Sign()
}
return q.i.Sign()
}
// AsScaled returns the current value, rounded up to the provided scale, and returns
// false if the scale resulted in a loss of precision.
func (q *Quantity) AsScale(scale Scale) (CanonicalValue, bool) {
if q.d.Dec != nil {
return q.d.AsScale(scale)
}
return q.i.AsScale(scale)
}
// RoundUp updates the quantity to the provided scale, ensuring that the value is at
// least 1. False is returned if the rounding operation resulted in a loss of precision.
// Negative numbers are rounded away from zero (-9 scale 1 rounds to -10).
func (q *Quantity) RoundUp(scale Scale) bool {
if q.d.Dec != nil {
q.s = ""
d, exact := q.d.AsScale(scale)
q.d = d
return exact
}
// avoid clearing the string value if we have already calculated it
if q.i.scale >= scale {
return true
}
q.s = ""
i, exact := q.i.AsScale(scale)
q.i = i
return exact
}
// Add adds the provide y quantity to the current value. If the current value is zero,
// the format of the quantity will be updated to the format of y.
func (q *Quantity) Add(y Quantity) {
q.s = ""
if q.d.Dec == nil && y.d.Dec == nil {
if q.i.value == 0 {
q.Format = y.Format
}
if q.i.Add(y.i) {
return
}
} else if q.IsZero() {
q.Format = y.Format
}
q.ToDec().d.Dec.Add(q.d.Dec, y.AsDec())
}
// Sub subtracts the provided quantity from the current value in place. If the current
// value is zero, the format of the quantity will be updated to the format of y.
func (q *Quantity) Sub(y Quantity) {
q.s = ""
if q.IsZero() {
q.Format = y.Format
}
if q.d.Dec == nil && y.d.Dec == nil && q.i.Sub(y.i) {
return
}
q.ToDec().d.Dec.Sub(q.d.Dec, y.AsDec())
}
// Cmp returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
// quantity is greater than y.
func (q *Quantity) Cmp(y Quantity) int {
if q.d.Dec == nil && y.d.Dec == nil {
return q.i.Cmp(y.i)
}
return q.AsDec().Cmp(y.AsDec())
}
// CmpInt64 returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
// quantity is greater than y.
func (q *Quantity) CmpInt64(y int64) int {
if q.d.Dec != nil {
return q.d.Dec.Cmp(inf.NewDec(y, inf.Scale(0)))
}
return q.i.Cmp(int64Amount{value: y})
}
// Neg sets quantity to be the negative value of itself.
func (q *Quantity) Neg() {
q.s = ""
if q.d.Dec == nil {
q.i.value = -q.i.value
return
}
q.d.Dec.Neg(q.d.Dec)
}
// int64QuantityExpectedBytes is the expected width in bytes of the canonical string representation
// of most Quantity values.
const int64QuantityExpectedBytes = 18
// String formats the Quantity as a string, caching the result if not calculated.
// String is an expensive operation and caching this result significantly reduces the cost of
// normal parse / marshal operations on Quantity.
func (q *Quantity) String() string {
if len(q.s) == 0 {
result := make([]byte, 0, int64QuantityExpectedBytes)
number, suffix := q.CanonicalizeBytes(result)
number = append(number, suffix...)
q.s = string(number)
}
return q.s
}
// MarshalJSON implements the json.Marshaller interface.
func (q Quantity) MarshalJSON() ([]byte, error) {
if len(q.s) > 0 {
out := make([]byte, len(q.s)+2)
out[0], out[len(out)-1] = '"', '"'
copy(out[1:], q.s)
return out, nil
}
result := make([]byte, int64QuantityExpectedBytes, int64QuantityExpectedBytes)
result[0] = '"'
number, suffix := q.CanonicalizeBytes(result[1:1])
// if the same slice was returned to us that we passed in, avoid another allocation by copying number into
// the source slice and returning that
if len(number) > 0 && &number[0] == &result[1] && (len(number)+len(suffix)+2) <= int64QuantityExpectedBytes {
number = append(number, suffix...)
number = append(number, '"')
return result[:1+len(number)], nil
}
// if CanonicalizeBytes needed more space than our slice provided, we may need to allocate again so use
// append
result = result[:1]
result = append(result, number...)
result = append(result, suffix...)
result = append(result, '"')
return result, nil
}
// UnmarshalJSON implements the json.Unmarshaller interface.
// TODO: Remove support for leading/trailing whitespace
func (q *Quantity) UnmarshalJSON(value []byte) error {
l := len(value)
if l == 4 && bytes.Equal(value, []byte("null")) {
q.d.Dec = nil
q.i = int64Amount{}
return nil
}
if l >= 2 && value[0] == '"' && value[l-1] == '"' {
value = value[1 : l-1]
}
parsed, err := ParseQuantity(strings.TrimSpace(string(value)))
if err != nil {
return err
}
// This copy is safe because parsed will not be referred to again.
*q = parsed
return nil
}
// NewQuantity returns a new Quantity representing the given
// value in the given format.
func NewQuantity(value int64, format Format) *Quantity {
return &Quantity{
i: int64Amount{value: value},
Format: format,
}
}
// NewMilliQuantity returns a new Quantity representing the given
// value * 1/1000 in the given format. Note that BinarySI formatting
// will round fractional values, and will be changed to DecimalSI for
// values x where (-1 < x < 1) && (x != 0).
func NewMilliQuantity(value int64, format Format) *Quantity {
return &Quantity{
i: int64Amount{value: value, scale: -3},
Format: format,
}
}
// NewScaledQuantity returns a new Quantity representing the given
// value * 10^scale in DecimalSI format.
func NewScaledQuantity(value int64, scale Scale) *Quantity {
return &Quantity{
i: int64Amount{value: value, scale: scale},
Format: DecimalSI,
}
}
// Value returns the value of q; any fractional part will be lost.
func (q *Quantity) Value() int64 {
return q.ScaledValue(0)
}
// MilliValue returns the value of ceil(q * 1000); this could overflow an int64;
// if that's a concern, call Value() first to verify the number is small enough.
func (q *Quantity) MilliValue() int64 {
return q.ScaledValue(Milli)
}
// ScaledValue returns the value of ceil(q * 10^scale); this could overflow an int64.
// To detect overflow, call Value() first and verify the expected magnitude.
func (q *Quantity) ScaledValue(scale Scale) int64 {
if q.d.Dec == nil {
i, _ := q.i.AsScaledInt64(scale)
return i
}
dec := q.d.Dec
return scaledValue(dec.UnscaledBig(), int(dec.Scale()), int(scale.infScale()))
}
// Set sets q's value to be value.
func (q *Quantity) Set(value int64) {
q.SetScaled(value, 0)
}
// SetMilli sets q's value to be value * 1/1000.
func (q *Quantity) SetMilli(value int64) {
q.SetScaled(value, Milli)
}
// SetScaled sets q's value to be value * 10^scale
func (q *Quantity) SetScaled(value int64, scale Scale) {
q.s = ""
q.d.Dec = nil
q.i = int64Amount{value: value, scale: scale}
}
// Copy is a convenience function that makes a deep copy for you. Non-deep
// copies of quantities share pointers and you will regret that.
func (q *Quantity) Copy() *Quantity {
if q.d.Dec == nil {
return &Quantity{
s: q.s,
i: q.i,
Format: q.Format,
}
}
tmp := &inf.Dec{}
return &Quantity{
s: q.s,
d: infDecAmount{tmp.Set(q.d.Dec)},
Format: q.Format,
}
}
// qFlag is a helper type for the Flag function
type qFlag struct {
dest *Quantity
}
// Sets the value of the internal Quantity. (used by flag & pflag)
func (qf qFlag) Set(val string) error {
q, err := ParseQuantity(val)
if err != nil {
return err
}
// This copy is OK because q will not be referenced again.
*qf.dest = q
return nil
}
// Converts the value of the internal Quantity to a string. (used by flag & pflag)
func (qf qFlag) String() string {
return qf.dest.String()
}
// States the type of flag this is (Quantity). (used by pflag)
func (qf qFlag) Type() string {
return "quantity"
}
// QuantityFlag is a helper that makes a quantity flag (using standard flag package).
// Will panic if defaultValue is not a valid quantity.
func QuantityFlag(flagName, defaultValue, description string) *Quantity {
q := MustParse(defaultValue)
flag.Var(NewQuantityFlagValue(&q), flagName, description)
return &q
}
// NewQuantityFlagValue returns an object that can be used to back a flag,
// pointing at the given Quantity variable.
func NewQuantityFlagValue(q *Quantity) flag.Value {
return qFlag{q}
}

View File

@ -0,0 +1,59 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource_test
import (
"fmt"
"k8s.io/apimachinery/pkg/api/resource"
)
func ExampleFormat() {
memorySize := resource.NewQuantity(5*1024*1024*1024, resource.BinarySI)
fmt.Printf("memorySize = %v\n", memorySize)
diskSize := resource.NewQuantity(5*1000*1000*1000, resource.DecimalSI)
fmt.Printf("diskSize = %v\n", diskSize)
cores := resource.NewMilliQuantity(5300, resource.DecimalSI)
fmt.Printf("cores = %v\n", cores)
// Output:
// memorySize = 5Gi
// diskSize = 5G
// cores = 5300m
}
func ExampleMustParse() {
memorySize := resource.MustParse("5Gi")
fmt.Printf("memorySize = %v (%v)\n", memorySize.Value(), memorySize.Format)
diskSize := resource.MustParse("5G")
fmt.Printf("diskSize = %v (%v)\n", diskSize.Value(), diskSize.Format)
cores := resource.MustParse("5300m")
fmt.Printf("milliCores = %v (%v)\n", cores.MilliValue(), cores.Format)
cores2 := resource.MustParse("5.4")
fmt.Printf("milliCores = %v (%v)\n", cores2.MilliValue(), cores2.Format)
// Output:
// memorySize = 5368709120 (BinarySI)
// diskSize = 5000000000 (DecimalSI)
// milliCores = 5300 (DecimalSI)
// milliCores = 5400 (DecimalSI)
}

View File

@ -0,0 +1,284 @@
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"fmt"
"io"
"github.com/gogo/protobuf/proto"
)
var _ proto.Sizer = &Quantity{}
func (m *Quantity) Marshal() (data []byte, err error) {
size := m.Size()
data = make([]byte, size)
n, err := m.MarshalTo(data)
if err != nil {
return nil, err
}
return data[:n], nil
}
// MarshalTo is a customized version of the generated Protobuf unmarshaler for a struct
// with a single string field.
func (m *Quantity) MarshalTo(data []byte) (int, error) {
var i int
_ = i
var l int
_ = l
data[i] = 0xa
i++
// BEGIN CUSTOM MARSHAL
out := m.String()
i = encodeVarintGenerated(data, i, uint64(len(out)))
i += copy(data[i:], out)
// END CUSTOM MARSHAL
return i, nil
}
func encodeVarintGenerated(data []byte, offset int, v uint64) int {
for v >= 1<<7 {
data[offset] = uint8(v&0x7f | 0x80)
v >>= 7
offset++
}
data[offset] = uint8(v)
return offset + 1
}
func (m *Quantity) Size() (n int) {
var l int
_ = l
// BEGIN CUSTOM SIZE
l = len(m.String())
// END CUSTOM SIZE
n += 1 + l + sovGenerated(uint64(l))
return n
}
func sovGenerated(x uint64) (n int) {
for {
n++
x >>= 7
if x == 0 {
break
}
}
return n
}
// Unmarshal is a customized version of the generated Protobuf unmarshaler for a struct
// with a single string field.
func (m *Quantity) Unmarshal(data []byte) error {
l := len(data)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowGenerated
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return fmt.Errorf("proto: Quantity: wiretype end group for non-group")
}
if fieldNum <= 0 {
return fmt.Errorf("proto: Quantity: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 2 {
return fmt.Errorf("proto: wrong wireType = %d for field String_", wireType)
}
var stringLen uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowGenerated
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
stringLen |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
intStringLen := int(stringLen)
if intStringLen < 0 {
return ErrInvalidLengthGenerated
}
postIndex := iNdEx + intStringLen
if postIndex > l {
return io.ErrUnexpectedEOF
}
s := string(data[iNdEx:postIndex])
// BEGIN CUSTOM DECODE
p, err := ParseQuantity(s)
if err != nil {
return err
}
*m = p
// END CUSTOM DECODE
iNdEx = postIndex
default:
iNdEx = preIndex
skippy, err := skipGenerated(data[iNdEx:])
if err != nil {
return err
}
if skippy < 0 {
return ErrInvalidLengthGenerated
}
if (iNdEx + skippy) > l {
return io.ErrUnexpectedEOF
}
iNdEx += skippy
}
}
if iNdEx > l {
return io.ErrUnexpectedEOF
}
return nil
}
func skipGenerated(data []byte) (n int, err error) {
l := len(data)
iNdEx := 0
for iNdEx < l {
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowGenerated
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
wireType := int(wire & 0x7)
switch wireType {
case 0:
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowGenerated
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
iNdEx++
if data[iNdEx-1] < 0x80 {
break
}
}
return iNdEx, nil
case 1:
iNdEx += 8
return iNdEx, nil
case 2:
var length int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowGenerated
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
length |= (int(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
iNdEx += length
if length < 0 {
return 0, ErrInvalidLengthGenerated
}
return iNdEx, nil
case 3:
for {
var innerWire uint64
var start int = iNdEx
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowGenerated
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
innerWire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
innerWireType := int(innerWire & 0x7)
if innerWireType == 4 {
break
}
next, err := skipGenerated(data[start:])
if err != nil {
return 0, err
}
iNdEx = start + next
}
return iNdEx, nil
case 4:
return iNdEx, nil
case 5:
iNdEx += 4
return iNdEx, nil
default:
return 0, fmt.Errorf("proto: illegal wireType %d", wireType)
}
}
panic("unreachable")
}
var (
ErrInvalidLengthGenerated = fmt.Errorf("proto: negative length found during unmarshaling")
ErrIntOverflowGenerated = fmt.Errorf("proto: integer overflow")
)

View File

@ -0,0 +1,103 @@
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"testing"
inf "gopkg.in/inf.v0"
)
func TestQuantityProtoMarshal(t *testing.T) {
// Test when d is nil
table := []struct {
quantity string
expect Quantity
}{
{"0", Quantity{i: int64Amount{value: 0, scale: 0}, s: "0", Format: DecimalSI}},
{"100m", Quantity{i: int64Amount{value: 100, scale: -3}, s: "100m", Format: DecimalSI}},
{"50m", Quantity{i: int64Amount{value: 50, scale: -3}, s: "50m", Format: DecimalSI}},
{"10000T", Quantity{i: int64Amount{value: 10000, scale: 12}, s: "10000T", Format: DecimalSI}},
}
for _, testCase := range table {
q := MustParse(testCase.quantity)
// Won't currently get an error as MarshalTo can't return one
result, _ := q.Marshal()
q.MarshalTo(result)
if q.Cmp(testCase.expect) != 0 {
t.Errorf("Expected: %v, Actual: %v", testCase.expect, q)
}
}
// Test when i is {0,0}
table2 := []struct {
dec *inf.Dec
expect Quantity
}{
{dec(0, 0).Dec, Quantity{i: int64Amount{value: 0, scale: 0}, d: infDecAmount{dec(0, 0).Dec}, s: "0", Format: DecimalSI}},
{dec(10, 0).Dec, Quantity{i: int64Amount{value: 0, scale: 0}, d: infDecAmount{dec(10, 0).Dec}, s: "10", Format: DecimalSI}},
{dec(-10, 0).Dec, Quantity{i: int64Amount{value: 0, scale: 0}, d: infDecAmount{dec(-10, 0).Dec}, s: "-10", Format: DecimalSI}},
}
for _, testCase := range table2 {
q := Quantity{d: infDecAmount{testCase.dec}, Format: DecimalSI}
// Won't currently get an error as MarshalTo can't return one
result, _ := q.Marshal()
q.Unmarshal(result)
if q.Cmp(testCase.expect) != 0 {
t.Errorf("Expected: %v, Actual: %v", testCase.expect, q)
}
}
}
func TestQuantityProtoUnmarshal(t *testing.T) {
// Test when d is nil
table := []struct {
input Quantity
expect string
}{
{Quantity{i: int64Amount{value: 0, scale: 0}, s: "0", Format: DecimalSI}, "0"},
{Quantity{i: int64Amount{value: 100, scale: -3}, s: "100m", Format: DecimalSI}, "100m"},
{Quantity{i: int64Amount{value: 50, scale: -3}, s: "50m", Format: DecimalSI}, "50m"},
{Quantity{i: int64Amount{value: 10000, scale: 12}, s: "10000T", Format: DecimalSI}, "10000T"},
}
for _, testCase := range table {
var inputQ Quantity
expectQ := MustParse(testCase.expect)
inputByteArray, _ := testCase.input.Marshal()
inputQ.Unmarshal(inputByteArray)
if inputQ.Cmp(expectQ) != 0 {
t.Errorf("Expected: %v, Actual: %v", inputQ, expectQ)
}
}
// Test when i is {0,0}
table2 := []struct {
input Quantity
expect *inf.Dec
}{
{Quantity{i: int64Amount{value: 0, scale: 0}, d: infDecAmount{dec(0, 0).Dec}, s: "0", Format: DecimalSI}, dec(0, 0).Dec},
{Quantity{i: int64Amount{value: 0, scale: 0}, d: infDecAmount{dec(10, 0).Dec}, s: "10", Format: DecimalSI}, dec(10, 0).Dec},
{Quantity{i: int64Amount{value: 0, scale: 0}, d: infDecAmount{dec(-10, 0).Dec}, s: "-10", Format: DecimalSI}, dec(-10, 0).Dec},
}
for _, testCase := range table2 {
var inputQ Quantity
expectQ := Quantity{d: infDecAmount{testCase.expect}, Format: DecimalSI}
inputByteArray, _ := testCase.input.Marshal()
inputQ.Unmarshal(inputByteArray)
if inputQ.Cmp(expectQ) != 0 {
t.Errorf("Expected: %v, Actual: %v", inputQ, expectQ)
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,95 @@
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math"
"math/big"
"sync"
)
var (
// A sync pool to reduce allocation.
intPool sync.Pool
maxInt64 = big.NewInt(math.MaxInt64)
)
func init() {
intPool.New = func() interface{} {
return &big.Int{}
}
}
// scaledValue scales given unscaled value from scale to new Scale and returns
// an int64. It ALWAYS rounds up the result when scale down. The final result might
// overflow.
//
// scale, newScale represents the scale of the unscaled decimal.
// The mathematical value of the decimal is unscaled * 10**(-scale).
func scaledValue(unscaled *big.Int, scale, newScale int) int64 {
dif := scale - newScale
if dif == 0 {
return unscaled.Int64()
}
// Handle scale up
// This is an easy case, we do not need to care about rounding and overflow.
// If any intermediate operation causes overflow, the result will overflow.
if dif < 0 {
return unscaled.Int64() * int64(math.Pow10(-dif))
}
// Handle scale down
// We have to be careful about the intermediate operations.
// fast path when unscaled < max.Int64 and exp(10,dif) < max.Int64
const log10MaxInt64 = 19
if unscaled.Cmp(maxInt64) < 0 && dif < log10MaxInt64 {
divide := int64(math.Pow10(dif))
result := unscaled.Int64() / divide
mod := unscaled.Int64() % divide
if mod != 0 {
return result + 1
}
return result
}
// We should only convert back to int64 when getting the result.
divisor := intPool.Get().(*big.Int)
exp := intPool.Get().(*big.Int)
result := intPool.Get().(*big.Int)
defer func() {
intPool.Put(divisor)
intPool.Put(exp)
intPool.Put(result)
}()
// divisor = 10^(dif)
// TODO: create loop up table if exp costs too much.
divisor.Exp(bigTen, exp.SetInt64(int64(dif)), nil)
// reuse exp
remainder := exp
// result = unscaled / divisor
// remainder = unscaled % divisor
result.DivMod(unscaled, divisor, remainder)
if remainder.Sign() != 0 {
return result.Int64() + 1
}
return result.Int64()
}

View File

@ -0,0 +1,85 @@
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math"
"math/big"
"testing"
)
func TestScaledValueInternal(t *testing.T) {
tests := []struct {
unscaled *big.Int
scale int
newScale int
want int64
}{
// remain scale
{big.NewInt(1000), 0, 0, 1000},
// scale down
{big.NewInt(1000), 0, -3, 1},
{big.NewInt(1000), 3, 0, 1},
{big.NewInt(0), 3, 0, 0},
// always round up
{big.NewInt(999), 3, 0, 1},
{big.NewInt(500), 3, 0, 1},
{big.NewInt(499), 3, 0, 1},
{big.NewInt(1), 3, 0, 1},
// large scaled value does not lose precision
{big.NewInt(0).Sub(maxInt64, bigOne), 1, 0, (math.MaxInt64-1)/10 + 1},
// large intermidiate result.
{big.NewInt(1).Exp(big.NewInt(10), big.NewInt(100), nil), 100, 0, 1},
// scale up
{big.NewInt(0), 0, 3, 0},
{big.NewInt(1), 0, 3, 1000},
{big.NewInt(1), -3, 0, 1000},
{big.NewInt(1000), -3, 2, 100000000},
{big.NewInt(0).Div(big.NewInt(math.MaxInt64), bigThousand), 0, 3,
(math.MaxInt64 / 1000) * 1000},
}
for i, tt := range tests {
old := (&big.Int{}).Set(tt.unscaled)
got := scaledValue(tt.unscaled, tt.scale, tt.newScale)
if got != tt.want {
t.Errorf("#%d: got = %v, want %v", i, got, tt.want)
}
if tt.unscaled.Cmp(old) != 0 {
t.Errorf("#%d: unscaled = %v, want %v", i, tt.unscaled, old)
}
}
}
func BenchmarkScaledValueSmall(b *testing.B) {
s := big.NewInt(1000)
for i := 0; i < b.N; i++ {
scaledValue(s, 3, 0)
}
}
func BenchmarkScaledValueLarge(b *testing.B) {
s := big.NewInt(math.MaxInt64)
s.Mul(s, big.NewInt(1000))
for i := 0; i < b.N; i++ {
scaledValue(s, 10, 0)
}
}

198
vendor/k8s.io/apimachinery/pkg/api/resource/suffix.go generated vendored Normal file
View File

@ -0,0 +1,198 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"strconv"
)
type suffix string
// suffixer can interpret and construct suffixes.
type suffixer interface {
interpret(suffix) (base, exponent int32, fmt Format, ok bool)
construct(base, exponent int32, fmt Format) (s suffix, ok bool)
constructBytes(base, exponent int32, fmt Format) (s []byte, ok bool)
}
// quantitySuffixer handles suffixes for all three formats that quantity
// can handle.
var quantitySuffixer = newSuffixer()
type bePair struct {
base, exponent int32
}
type listSuffixer struct {
suffixToBE map[suffix]bePair
beToSuffix map[bePair]suffix
beToSuffixBytes map[bePair][]byte
}
func (ls *listSuffixer) addSuffix(s suffix, pair bePair) {
if ls.suffixToBE == nil {
ls.suffixToBE = map[suffix]bePair{}
}
if ls.beToSuffix == nil {
ls.beToSuffix = map[bePair]suffix{}
}
if ls.beToSuffixBytes == nil {
ls.beToSuffixBytes = map[bePair][]byte{}
}
ls.suffixToBE[s] = pair
ls.beToSuffix[pair] = s
ls.beToSuffixBytes[pair] = []byte(s)
}
func (ls *listSuffixer) lookup(s suffix) (base, exponent int32, ok bool) {
pair, ok := ls.suffixToBE[s]
if !ok {
return 0, 0, false
}
return pair.base, pair.exponent, true
}
func (ls *listSuffixer) construct(base, exponent int32) (s suffix, ok bool) {
s, ok = ls.beToSuffix[bePair{base, exponent}]
return
}
func (ls *listSuffixer) constructBytes(base, exponent int32) (s []byte, ok bool) {
s, ok = ls.beToSuffixBytes[bePair{base, exponent}]
return
}
type suffixHandler struct {
decSuffixes listSuffixer
binSuffixes listSuffixer
}
type fastLookup struct {
*suffixHandler
}
func (l fastLookup) interpret(s suffix) (base, exponent int32, format Format, ok bool) {
switch s {
case "":
return 10, 0, DecimalSI, true
case "n":
return 10, -9, DecimalSI, true
case "u":
return 10, -6, DecimalSI, true
case "m":
return 10, -3, DecimalSI, true
case "k":
return 10, 3, DecimalSI, true
case "M":
return 10, 6, DecimalSI, true
case "G":
return 10, 9, DecimalSI, true
}
return l.suffixHandler.interpret(s)
}
func newSuffixer() suffixer {
sh := &suffixHandler{}
// IMPORTANT: if you change this section you must change fastLookup
sh.binSuffixes.addSuffix("Ki", bePair{2, 10})
sh.binSuffixes.addSuffix("Mi", bePair{2, 20})
sh.binSuffixes.addSuffix("Gi", bePair{2, 30})
sh.binSuffixes.addSuffix("Ti", bePair{2, 40})
sh.binSuffixes.addSuffix("Pi", bePair{2, 50})
sh.binSuffixes.addSuffix("Ei", bePair{2, 60})
// Don't emit an error when trying to produce
// a suffix for 2^0.
sh.decSuffixes.addSuffix("", bePair{2, 0})
sh.decSuffixes.addSuffix("n", bePair{10, -9})
sh.decSuffixes.addSuffix("u", bePair{10, -6})
sh.decSuffixes.addSuffix("m", bePair{10, -3})
sh.decSuffixes.addSuffix("", bePair{10, 0})
sh.decSuffixes.addSuffix("k", bePair{10, 3})
sh.decSuffixes.addSuffix("M", bePair{10, 6})
sh.decSuffixes.addSuffix("G", bePair{10, 9})
sh.decSuffixes.addSuffix("T", bePair{10, 12})
sh.decSuffixes.addSuffix("P", bePair{10, 15})
sh.decSuffixes.addSuffix("E", bePair{10, 18})
return fastLookup{sh}
}
func (sh *suffixHandler) construct(base, exponent int32, fmt Format) (s suffix, ok bool) {
switch fmt {
case DecimalSI:
return sh.decSuffixes.construct(base, exponent)
case BinarySI:
return sh.binSuffixes.construct(base, exponent)
case DecimalExponent:
if base != 10 {
return "", false
}
if exponent == 0 {
return "", true
}
return suffix("e" + strconv.FormatInt(int64(exponent), 10)), true
}
return "", false
}
func (sh *suffixHandler) constructBytes(base, exponent int32, format Format) (s []byte, ok bool) {
switch format {
case DecimalSI:
return sh.decSuffixes.constructBytes(base, exponent)
case BinarySI:
return sh.binSuffixes.constructBytes(base, exponent)
case DecimalExponent:
if base != 10 {
return nil, false
}
if exponent == 0 {
return nil, true
}
result := make([]byte, 8, 8)
result[0] = 'e'
number := strconv.AppendInt(result[1:1], int64(exponent), 10)
if &result[1] == &number[0] {
return result[:1+len(number)], true
}
result = append(result[:1], number...)
return result, true
}
return nil, false
}
func (sh *suffixHandler) interpret(suffix suffix) (base, exponent int32, fmt Format, ok bool) {
// Try lookup tables first
if b, e, ok := sh.decSuffixes.lookup(suffix); ok {
return b, e, DecimalSI, true
}
if b, e, ok := sh.binSuffixes.lookup(suffix); ok {
return b, e, BinarySI, true
}
if len(suffix) > 1 && (suffix[0] == 'E' || suffix[0] == 'e') {
parsed, err := strconv.ParseInt(string(suffix[1:]), 10, 64)
if err != nil {
return 0, 0, DecimalExponent, false
}
return 10, int32(parsed), DecimalExponent, true
}
return 0, 0, DecimalExponent, false
}

View File

@ -0,0 +1,27 @@
// +build !ignore_autogenerated
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// This file was autogenerated by deepcopy-gen. Do not edit it manually!
package resource
// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
func (in *Quantity) DeepCopyInto(out *Quantity) {
*out = in.DeepCopy()
return
}