rebase: update kubernetes to v1.20.0

updated kubernetes packages to latest
release.

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
This commit is contained in:
Madhu Rajanna
2020-12-17 17:58:29 +05:30
committed by mergify[bot]
parent 4abe128bd8
commit 83559144b1
1624 changed files with 247222 additions and 160270 deletions

202
vendor/k8s.io/kubelet/LICENSE generated vendored Normal file
View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

345
vendor/k8s.io/kubelet/pkg/apis/stats/v1alpha1/types.go generated vendored Normal file
View File

@ -0,0 +1,345 @@
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package v1alpha1
import (
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
)
// Summary is a top-level container for holding NodeStats and PodStats.
type Summary struct {
// Overall node stats.
Node NodeStats `json:"node"`
// Per-pod stats.
Pods []PodStats `json:"pods"`
}
// NodeStats holds node-level unprocessed sample stats.
type NodeStats struct {
// Reference to the measured Node.
NodeName string `json:"nodeName"`
// Stats of system daemons tracked as raw containers.
// The system containers are named according to the SystemContainer* constants.
// +optional
// +patchMergeKey=name
// +patchStrategy=merge
SystemContainers []ContainerStats `json:"systemContainers,omitempty" patchStrategy:"merge" patchMergeKey:"name"`
// The time at which data collection for the node-scoped (i.e. aggregate) stats was (re)started.
StartTime metav1.Time `json:"startTime"`
// Stats pertaining to CPU resources.
// +optional
CPU *CPUStats `json:"cpu,omitempty"`
// Stats pertaining to memory (RAM) resources.
// +optional
Memory *MemoryStats `json:"memory,omitempty"`
// Stats pertaining to network resources.
// +optional
Network *NetworkStats `json:"network,omitempty"`
// Stats pertaining to total usage of filesystem resources on the rootfs used by node k8s components.
// NodeFs.Used is the total bytes used on the filesystem.
// +optional
Fs *FsStats `json:"fs,omitempty"`
// Stats about the underlying container runtime.
// +optional
Runtime *RuntimeStats `json:"runtime,omitempty"`
// Stats about the rlimit of system.
// +optional
Rlimit *RlimitStats `json:"rlimit,omitempty"`
}
// RlimitStats are stats rlimit of OS.
type RlimitStats struct {
Time metav1.Time `json:"time"`
// The max PID of OS.
MaxPID *int64 `json:"maxpid,omitempty"`
// The number of running process in the OS.
NumOfRunningProcesses *int64 `json:"curproc,omitempty"`
}
// RuntimeStats are stats pertaining to the underlying container runtime.
type RuntimeStats struct {
// Stats about the underlying filesystem where container images are stored.
// This filesystem could be the same as the primary (root) filesystem.
// Usage here refers to the total number of bytes occupied by images on the filesystem.
// +optional
ImageFs *FsStats `json:"imageFs,omitempty"`
}
const (
// SystemContainerKubelet is the container name for the system container tracking Kubelet usage.
SystemContainerKubelet = "kubelet"
// SystemContainerRuntime is the container name for the system container tracking the runtime (e.g. docker) usage.
SystemContainerRuntime = "runtime"
// SystemContainerMisc is the container name for the system container tracking non-kubernetes processes.
SystemContainerMisc = "misc"
// SystemContainerPods is the container name for the system container tracking user pods.
SystemContainerPods = "pods"
)
// ProcessStats are stats pertaining to processes.
type ProcessStats struct {
// Number of processes
// +optional
ProcessCount *uint64 `json:"process_count,omitempty"`
}
// PodStats holds pod-level unprocessed sample stats.
type PodStats struct {
// Reference to the measured Pod.
PodRef PodReference `json:"podRef"`
// The time at which data collection for the pod-scoped (e.g. network) stats was (re)started.
StartTime metav1.Time `json:"startTime"`
// Stats of containers in the measured pod.
// +patchMergeKey=name
// +patchStrategy=merge
Containers []ContainerStats `json:"containers" patchStrategy:"merge" patchMergeKey:"name"`
// Stats pertaining to CPU resources consumed by pod cgroup (which includes all containers' resource usage and pod overhead).
// +optional
CPU *CPUStats `json:"cpu,omitempty"`
// Stats pertaining to memory (RAM) resources consumed by pod cgroup (which includes all containers' resource usage and pod overhead).
// +optional
Memory *MemoryStats `json:"memory,omitempty"`
// Stats pertaining to network resources.
// +optional
Network *NetworkStats `json:"network,omitempty"`
// Stats pertaining to volume usage of filesystem resources.
// VolumeStats.UsedBytes is the number of bytes used by the Volume
// +optional
// +patchMergeKey=name
// +patchStrategy=merge
VolumeStats []VolumeStats `json:"volume,omitempty" patchStrategy:"merge" patchMergeKey:"name"`
// EphemeralStorage reports the total filesystem usage for the containers and emptyDir-backed volumes in the measured Pod.
// +optional
EphemeralStorage *FsStats `json:"ephemeral-storage,omitempty"`
// ProcessStats pertaining to processes.
// +optional
ProcessStats *ProcessStats `json:"process_stats,omitempty"`
}
// ContainerStats holds container-level unprocessed sample stats.
type ContainerStats struct {
// Reference to the measured container.
Name string `json:"name"`
// The time at which data collection for this container was (re)started.
StartTime metav1.Time `json:"startTime"`
// Stats pertaining to CPU resources.
// +optional
CPU *CPUStats `json:"cpu,omitempty"`
// Stats pertaining to memory (RAM) resources.
// +optional
Memory *MemoryStats `json:"memory,omitempty"`
// Metrics for Accelerators. Each Accelerator corresponds to one element in the array.
Accelerators []AcceleratorStats `json:"accelerators,omitempty"`
// Stats pertaining to container rootfs usage of filesystem resources.
// Rootfs.UsedBytes is the number of bytes used for the container write layer.
// +optional
Rootfs *FsStats `json:"rootfs,omitempty"`
// Stats pertaining to container logs usage of filesystem resources.
// Logs.UsedBytes is the number of bytes used for the container logs.
// +optional
Logs *FsStats `json:"logs,omitempty"`
// User defined metrics that are exposed by containers in the pod. Typically, we expect only one container in the pod to be exposing user defined metrics. In the event of multiple containers exposing metrics, they will be combined here.
// +patchMergeKey=name
// +patchStrategy=merge
UserDefinedMetrics []UserDefinedMetric `json:"userDefinedMetrics,omitempty" patchStrategy:"merge" patchMergeKey:"name"`
}
// PodReference contains enough information to locate the referenced pod.
type PodReference struct {
Name string `json:"name"`
Namespace string `json:"namespace"`
UID string `json:"uid"`
}
// InterfaceStats contains resource value data about interface.
type InterfaceStats struct {
// The name of the interface
Name string `json:"name"`
// Cumulative count of bytes received.
// +optional
RxBytes *uint64 `json:"rxBytes,omitempty"`
// Cumulative count of receive errors encountered.
// +optional
RxErrors *uint64 `json:"rxErrors,omitempty"`
// Cumulative count of bytes transmitted.
// +optional
TxBytes *uint64 `json:"txBytes,omitempty"`
// Cumulative count of transmit errors encountered.
// +optional
TxErrors *uint64 `json:"txErrors,omitempty"`
}
// NetworkStats contains data about network resources.
type NetworkStats struct {
// The time at which these stats were updated.
Time metav1.Time `json:"time"`
// Stats for the default interface, if found
InterfaceStats `json:",inline"`
Interfaces []InterfaceStats `json:"interfaces,omitempty"`
}
// CPUStats contains data about CPU usage.
type CPUStats struct {
// The time at which these stats were updated.
Time metav1.Time `json:"time"`
// Total CPU usage (sum of all cores) averaged over the sample window.
// The "core" unit can be interpreted as CPU core-nanoseconds per second.
// +optional
UsageNanoCores *uint64 `json:"usageNanoCores,omitempty"`
// Cumulative CPU usage (sum of all cores) since object creation.
// +optional
UsageCoreNanoSeconds *uint64 `json:"usageCoreNanoSeconds,omitempty"`
}
// MemoryStats contains data about memory usage.
type MemoryStats struct {
// The time at which these stats were updated.
Time metav1.Time `json:"time"`
// Available memory for use. This is defined as the memory limit - workingSetBytes.
// If memory limit is undefined, the available bytes is omitted.
// +optional
AvailableBytes *uint64 `json:"availableBytes,omitempty"`
// Total memory in use. This includes all memory regardless of when it was accessed.
// +optional
UsageBytes *uint64 `json:"usageBytes,omitempty"`
// The amount of working set memory. This includes recently accessed memory,
// dirty memory, and kernel memory. WorkingSetBytes is <= UsageBytes
// +optional
WorkingSetBytes *uint64 `json:"workingSetBytes,omitempty"`
// The amount of anonymous and swap cache memory (includes transparent
// hugepages).
// +optional
RSSBytes *uint64 `json:"rssBytes,omitempty"`
// Cumulative number of minor page faults.
// +optional
PageFaults *uint64 `json:"pageFaults,omitempty"`
// Cumulative number of major page faults.
// +optional
MajorPageFaults *uint64 `json:"majorPageFaults,omitempty"`
}
// AcceleratorStats contains stats for accelerators attached to the container.
type AcceleratorStats struct {
// Make of the accelerator (nvidia, amd, google etc.)
Make string `json:"make"`
// Model of the accelerator (tesla-p100, tesla-k80 etc.)
Model string `json:"model"`
// ID of the accelerator.
ID string `json:"id"`
// Total accelerator memory.
// unit: bytes
MemoryTotal uint64 `json:"memoryTotal"`
// Total accelerator memory allocated.
// unit: bytes
MemoryUsed uint64 `json:"memoryUsed"`
// Percent of time over the past sample period (10s) during which
// the accelerator was actively processing.
DutyCycle uint64 `json:"dutyCycle"`
}
// VolumeStats contains data about Volume filesystem usage.
type VolumeStats struct {
// Embedded FsStats
FsStats `json:",inline"`
// Name is the name given to the Volume
// +optional
Name string `json:"name,omitempty"`
// Reference to the PVC, if one exists
// +optional
PVCRef *PVCReference `json:"pvcRef,omitempty"`
}
// PVCReference contains enough information to describe the referenced PVC.
type PVCReference struct {
Name string `json:"name"`
Namespace string `json:"namespace"`
}
// FsStats contains data about filesystem usage.
type FsStats struct {
// The time at which these stats were updated.
Time metav1.Time `json:"time"`
// AvailableBytes represents the storage space available (bytes) for the filesystem.
// +optional
AvailableBytes *uint64 `json:"availableBytes,omitempty"`
// CapacityBytes represents the total capacity (bytes) of the filesystems underlying storage.
// +optional
CapacityBytes *uint64 `json:"capacityBytes,omitempty"`
// UsedBytes represents the bytes used for a specific task on the filesystem.
// This may differ from the total bytes used on the filesystem and may not equal CapacityBytes - AvailableBytes.
// e.g. For ContainerStats.Rootfs this is the bytes used by the container rootfs on the filesystem.
// +optional
UsedBytes *uint64 `json:"usedBytes,omitempty"`
// InodesFree represents the free inodes in the filesystem.
// +optional
InodesFree *uint64 `json:"inodesFree,omitempty"`
// Inodes represents the total inodes in the filesystem.
// +optional
Inodes *uint64 `json:"inodes,omitempty"`
// InodesUsed represents the inodes used by the filesystem
// This may not equal Inodes - InodesFree because this filesystem may share inodes with other "filesystems"
// e.g. For ContainerStats.Rootfs, this is the inodes used only by that container, and does not count inodes used by other containers.
InodesUsed *uint64 `json:"inodesUsed,omitempty"`
}
// UserDefinedMetricType defines how the metric should be interpreted by the user.
type UserDefinedMetricType string
const (
// MetricGauge is an instantaneous value. May increase or decrease.
MetricGauge UserDefinedMetricType = "gauge"
// MetricCumulative is a counter-like value that is only expected to increase.
MetricCumulative UserDefinedMetricType = "cumulative"
// MetricDelta is a rate over a time period.
MetricDelta UserDefinedMetricType = "delta"
)
// UserDefinedMetricDescriptor contains metadata that describes a user defined metric.
type UserDefinedMetricDescriptor struct {
// The name of the metric.
Name string `json:"name"`
// Type of the metric.
Type UserDefinedMetricType `json:"type"`
// Display Units for the stats.
Units string `json:"units"`
// Metadata labels associated with this metric.
// +optional
Labels map[string]string `json:"labels,omitempty"`
}
// UserDefinedMetric represents a metric defined and generated by users.
type UserDefinedMetric struct {
UserDefinedMetricDescriptor `json:",inline"`
// The time at which these stats were updated.
Time metav1.Time `json:"time"`
// Value of the metric. Float64s have 53 bit precision.
// We do not foresee any metrics exceeding that value.
Value float64 `json:"value"`
}