added vendors

This commit is contained in:
mickymiek
2018-12-19 15:29:25 +01:00
parent 12e6881669
commit 8ee6bc4b91
2952 changed files with 1124359 additions and 1 deletions

219
vendor/golang.org/x/crypto/openpgp/armor/armor.go generated vendored Normal file
View File

@ -0,0 +1,219 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package armor implements OpenPGP ASCII Armor, see RFC 4880. OpenPGP Armor is
// very similar to PEM except that it has an additional CRC checksum.
package armor // import "golang.org/x/crypto/openpgp/armor"
import (
"bufio"
"bytes"
"encoding/base64"
"golang.org/x/crypto/openpgp/errors"
"io"
)
// A Block represents an OpenPGP armored structure.
//
// The encoded form is:
// -----BEGIN Type-----
// Headers
//
// base64-encoded Bytes
// '=' base64 encoded checksum
// -----END Type-----
// where Headers is a possibly empty sequence of Key: Value lines.
//
// Since the armored data can be very large, this package presents a streaming
// interface.
type Block struct {
Type string // The type, taken from the preamble (i.e. "PGP SIGNATURE").
Header map[string]string // Optional headers.
Body io.Reader // A Reader from which the contents can be read
lReader lineReader
oReader openpgpReader
}
var ArmorCorrupt error = errors.StructuralError("armor invalid")
const crc24Init = 0xb704ce
const crc24Poly = 0x1864cfb
const crc24Mask = 0xffffff
// crc24 calculates the OpenPGP checksum as specified in RFC 4880, section 6.1
func crc24(crc uint32, d []byte) uint32 {
for _, b := range d {
crc ^= uint32(b) << 16
for i := 0; i < 8; i++ {
crc <<= 1
if crc&0x1000000 != 0 {
crc ^= crc24Poly
}
}
}
return crc
}
var armorStart = []byte("-----BEGIN ")
var armorEnd = []byte("-----END ")
var armorEndOfLine = []byte("-----")
// lineReader wraps a line based reader. It watches for the end of an armor
// block and records the expected CRC value.
type lineReader struct {
in *bufio.Reader
buf []byte
eof bool
crc uint32
}
func (l *lineReader) Read(p []byte) (n int, err error) {
if l.eof {
return 0, io.EOF
}
if len(l.buf) > 0 {
n = copy(p, l.buf)
l.buf = l.buf[n:]
return
}
line, isPrefix, err := l.in.ReadLine()
if err != nil {
return
}
if isPrefix {
return 0, ArmorCorrupt
}
if len(line) == 5 && line[0] == '=' {
// This is the checksum line
var expectedBytes [3]byte
var m int
m, err = base64.StdEncoding.Decode(expectedBytes[0:], line[1:])
if m != 3 || err != nil {
return
}
l.crc = uint32(expectedBytes[0])<<16 |
uint32(expectedBytes[1])<<8 |
uint32(expectedBytes[2])
line, _, err = l.in.ReadLine()
if err != nil && err != io.EOF {
return
}
if !bytes.HasPrefix(line, armorEnd) {
return 0, ArmorCorrupt
}
l.eof = true
return 0, io.EOF
}
if len(line) > 96 {
return 0, ArmorCorrupt
}
n = copy(p, line)
bytesToSave := len(line) - n
if bytesToSave > 0 {
if cap(l.buf) < bytesToSave {
l.buf = make([]byte, 0, bytesToSave)
}
l.buf = l.buf[0:bytesToSave]
copy(l.buf, line[n:])
}
return
}
// openpgpReader passes Read calls to the underlying base64 decoder, but keeps
// a running CRC of the resulting data and checks the CRC against the value
// found by the lineReader at EOF.
type openpgpReader struct {
lReader *lineReader
b64Reader io.Reader
currentCRC uint32
}
func (r *openpgpReader) Read(p []byte) (n int, err error) {
n, err = r.b64Reader.Read(p)
r.currentCRC = crc24(r.currentCRC, p[:n])
if err == io.EOF {
if r.lReader.crc != uint32(r.currentCRC&crc24Mask) {
return 0, ArmorCorrupt
}
}
return
}
// Decode reads a PGP armored block from the given Reader. It will ignore
// leading garbage. If it doesn't find a block, it will return nil, io.EOF. The
// given Reader is not usable after calling this function: an arbitrary amount
// of data may have been read past the end of the block.
func Decode(in io.Reader) (p *Block, err error) {
r := bufio.NewReaderSize(in, 100)
var line []byte
ignoreNext := false
TryNextBlock:
p = nil
// Skip leading garbage
for {
ignoreThis := ignoreNext
line, ignoreNext, err = r.ReadLine()
if err != nil {
return
}
if ignoreNext || ignoreThis {
continue
}
line = bytes.TrimSpace(line)
if len(line) > len(armorStart)+len(armorEndOfLine) && bytes.HasPrefix(line, armorStart) {
break
}
}
p = new(Block)
p.Type = string(line[len(armorStart) : len(line)-len(armorEndOfLine)])
p.Header = make(map[string]string)
nextIsContinuation := false
var lastKey string
// Read headers
for {
isContinuation := nextIsContinuation
line, nextIsContinuation, err = r.ReadLine()
if err != nil {
p = nil
return
}
if isContinuation {
p.Header[lastKey] += string(line)
continue
}
line = bytes.TrimSpace(line)
if len(line) == 0 {
break
}
i := bytes.Index(line, []byte(": "))
if i == -1 {
goto TryNextBlock
}
lastKey = string(line[:i])
p.Header[lastKey] = string(line[i+2:])
}
p.lReader.in = r
p.oReader.currentCRC = crc24Init
p.oReader.lReader = &p.lReader
p.oReader.b64Reader = base64.NewDecoder(base64.StdEncoding, &p.lReader)
p.Body = &p.oReader
return
}

95
vendor/golang.org/x/crypto/openpgp/armor/armor_test.go generated vendored Normal file
View File

@ -0,0 +1,95 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package armor
import (
"bytes"
"hash/adler32"
"io/ioutil"
"testing"
)
func TestDecodeEncode(t *testing.T) {
buf := bytes.NewBuffer([]byte(armorExample1))
result, err := Decode(buf)
if err != nil {
t.Error(err)
}
expectedType := "PGP SIGNATURE"
if result.Type != expectedType {
t.Errorf("result.Type: got:%s want:%s", result.Type, expectedType)
}
if len(result.Header) != 1 {
t.Errorf("len(result.Header): got:%d want:1", len(result.Header))
}
v, ok := result.Header["Version"]
if !ok || v != "GnuPG v1.4.10 (GNU/Linux)" {
t.Errorf("result.Header: got:%#v", result.Header)
}
contents, err := ioutil.ReadAll(result.Body)
if err != nil {
t.Error(err)
}
if adler32.Checksum(contents) != 0x27b144be {
t.Errorf("contents: got: %x", contents)
}
buf = bytes.NewBuffer(nil)
w, err := Encode(buf, result.Type, result.Header)
if err != nil {
t.Error(err)
}
_, err = w.Write(contents)
if err != nil {
t.Error(err)
}
w.Close()
if !bytes.Equal(buf.Bytes(), []byte(armorExample1)) {
t.Errorf("got: %s\nwant: %s", string(buf.Bytes()), armorExample1)
}
}
func TestLongHeader(t *testing.T) {
buf := bytes.NewBuffer([]byte(armorLongLine))
result, err := Decode(buf)
if err != nil {
t.Error(err)
return
}
value, ok := result.Header["Version"]
if !ok {
t.Errorf("missing Version header")
}
if value != longValueExpected {
t.Errorf("got: %s want: %s", value, longValueExpected)
}
}
const armorExample1 = `-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
iJwEAAECAAYFAk1Fv/0ACgkQo01+GMIMMbsYTwQAiAw+QAaNfY6WBdplZ/uMAccm
4g+81QPmTSGHnetSb6WBiY13kVzK4HQiZH8JSkmmroMLuGeJwsRTEL4wbjRyUKEt
p1xwUZDECs234F1xiG5enc5SGlRtP7foLBz9lOsjx+LEcA4sTl5/2eZR9zyFZqWW
TxRjs+fJCIFuo71xb1g=
=/teI
-----END PGP SIGNATURE-----`
const armorLongLine = `-----BEGIN PGP SIGNATURE-----
Version: 0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz
iQEcBAABAgAGBQJMtFESAAoJEKsQXJGvOPsVj40H/1WW6jaMXv4BW+1ueDSMDwM8
kx1fLOXbVM5/Kn5LStZNt1jWWnpxdz7eq3uiqeCQjmqUoRde3YbB2EMnnwRbAhpp
cacnAvy9ZQ78OTxUdNW1mhX5bS6q1MTEJnl+DcyigD70HG/yNNQD7sOPMdYQw0TA
byQBwmLwmTsuZsrYqB68QyLHI+DUugn+kX6Hd2WDB62DKa2suoIUIHQQCd/ofwB3
WfCYInXQKKOSxu2YOg2Eb4kLNhSMc1i9uKUWAH+sdgJh7NBgdoE4MaNtBFkHXRvv
okWuf3+xA9ksp1npSY/mDvgHijmjvtpRDe6iUeqfCn8N9u9CBg8geANgaG8+QA4=
=wfQG
-----END PGP SIGNATURE-----`
const longValueExpected = "0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqrstuvwxyz"

160
vendor/golang.org/x/crypto/openpgp/armor/encode.go generated vendored Normal file
View File

@ -0,0 +1,160 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package armor
import (
"encoding/base64"
"io"
)
var armorHeaderSep = []byte(": ")
var blockEnd = []byte("\n=")
var newline = []byte("\n")
var armorEndOfLineOut = []byte("-----\n")
// writeSlices writes its arguments to the given Writer.
func writeSlices(out io.Writer, slices ...[]byte) (err error) {
for _, s := range slices {
_, err = out.Write(s)
if err != nil {
return err
}
}
return
}
// lineBreaker breaks data across several lines, all of the same byte length
// (except possibly the last). Lines are broken with a single '\n'.
type lineBreaker struct {
lineLength int
line []byte
used int
out io.Writer
haveWritten bool
}
func newLineBreaker(out io.Writer, lineLength int) *lineBreaker {
return &lineBreaker{
lineLength: lineLength,
line: make([]byte, lineLength),
used: 0,
out: out,
}
}
func (l *lineBreaker) Write(b []byte) (n int, err error) {
n = len(b)
if n == 0 {
return
}
if l.used == 0 && l.haveWritten {
_, err = l.out.Write([]byte{'\n'})
if err != nil {
return
}
}
if l.used+len(b) < l.lineLength {
l.used += copy(l.line[l.used:], b)
return
}
l.haveWritten = true
_, err = l.out.Write(l.line[0:l.used])
if err != nil {
return
}
excess := l.lineLength - l.used
l.used = 0
_, err = l.out.Write(b[0:excess])
if err != nil {
return
}
_, err = l.Write(b[excess:])
return
}
func (l *lineBreaker) Close() (err error) {
if l.used > 0 {
_, err = l.out.Write(l.line[0:l.used])
if err != nil {
return
}
}
return
}
// encoding keeps track of a running CRC24 over the data which has been written
// to it and outputs a OpenPGP checksum when closed, followed by an armor
// trailer.
//
// It's built into a stack of io.Writers:
// encoding -> base64 encoder -> lineBreaker -> out
type encoding struct {
out io.Writer
breaker *lineBreaker
b64 io.WriteCloser
crc uint32
blockType []byte
}
func (e *encoding) Write(data []byte) (n int, err error) {
e.crc = crc24(e.crc, data)
return e.b64.Write(data)
}
func (e *encoding) Close() (err error) {
err = e.b64.Close()
if err != nil {
return
}
e.breaker.Close()
var checksumBytes [3]byte
checksumBytes[0] = byte(e.crc >> 16)
checksumBytes[1] = byte(e.crc >> 8)
checksumBytes[2] = byte(e.crc)
var b64ChecksumBytes [4]byte
base64.StdEncoding.Encode(b64ChecksumBytes[:], checksumBytes[:])
return writeSlices(e.out, blockEnd, b64ChecksumBytes[:], newline, armorEnd, e.blockType, armorEndOfLine)
}
// Encode returns a WriteCloser which will encode the data written to it in
// OpenPGP armor.
func Encode(out io.Writer, blockType string, headers map[string]string) (w io.WriteCloser, err error) {
bType := []byte(blockType)
err = writeSlices(out, armorStart, bType, armorEndOfLineOut)
if err != nil {
return
}
for k, v := range headers {
err = writeSlices(out, []byte(k), armorHeaderSep, []byte(v), newline)
if err != nil {
return
}
}
_, err = out.Write(newline)
if err != nil {
return
}
e := &encoding{
out: out,
breaker: newLineBreaker(out, 64),
crc: crc24Init,
blockType: bType,
}
e.b64 = base64.NewEncoder(base64.StdEncoding, e.breaker)
return e, nil
}

59
vendor/golang.org/x/crypto/openpgp/canonical_text.go generated vendored Normal file
View File

@ -0,0 +1,59 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import "hash"
// NewCanonicalTextHash reformats text written to it into the canonical
// form and then applies the hash h. See RFC 4880, section 5.2.1.
func NewCanonicalTextHash(h hash.Hash) hash.Hash {
return &canonicalTextHash{h, 0}
}
type canonicalTextHash struct {
h hash.Hash
s int
}
var newline = []byte{'\r', '\n'}
func (cth *canonicalTextHash) Write(buf []byte) (int, error) {
start := 0
for i, c := range buf {
switch cth.s {
case 0:
if c == '\r' {
cth.s = 1
} else if c == '\n' {
cth.h.Write(buf[start:i])
cth.h.Write(newline)
start = i + 1
}
case 1:
cth.s = 0
}
}
cth.h.Write(buf[start:])
return len(buf), nil
}
func (cth *canonicalTextHash) Sum(in []byte) []byte {
return cth.h.Sum(in)
}
func (cth *canonicalTextHash) Reset() {
cth.h.Reset()
cth.s = 0
}
func (cth *canonicalTextHash) Size() int {
return cth.h.Size()
}
func (cth *canonicalTextHash) BlockSize() int {
return cth.h.BlockSize()
}

View File

@ -0,0 +1,52 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"bytes"
"testing"
)
type recordingHash struct {
buf *bytes.Buffer
}
func (r recordingHash) Write(b []byte) (n int, err error) {
return r.buf.Write(b)
}
func (r recordingHash) Sum(in []byte) []byte {
return append(in, r.buf.Bytes()...)
}
func (r recordingHash) Reset() {
panic("shouldn't be called")
}
func (r recordingHash) Size() int {
panic("shouldn't be called")
}
func (r recordingHash) BlockSize() int {
panic("shouldn't be called")
}
func testCanonicalText(t *testing.T, input, expected string) {
r := recordingHash{bytes.NewBuffer(nil)}
c := NewCanonicalTextHash(r)
c.Write([]byte(input))
result := c.Sum(nil)
if expected != string(result) {
t.Errorf("input: %x got: %x want: %x", input, result, expected)
}
}
func TestCanonicalText(t *testing.T) {
testCanonicalText(t, "foo\n", "foo\r\n")
testCanonicalText(t, "foo", "foo")
testCanonicalText(t, "foo\r\n", "foo\r\n")
testCanonicalText(t, "foo\r\nbar", "foo\r\nbar")
testCanonicalText(t, "foo\r\nbar\n\n", "foo\r\nbar\r\n\r\n")
}

View File

@ -0,0 +1,399 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package clearsign generates and processes OpenPGP, clear-signed data. See
// RFC 4880, section 7.
//
// Clearsigned messages are cryptographically signed, but the contents of the
// message are kept in plaintext so that it can be read without special tools.
package clearsign // import "golang.org/x/crypto/openpgp/clearsign"
import (
"bufio"
"bytes"
"crypto"
"fmt"
"hash"
"io"
"net/textproto"
"strconv"
"golang.org/x/crypto/openpgp/armor"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/packet"
)
// A Block represents a clearsigned message. A signature on a Block can
// be checked by passing Bytes into openpgp.CheckDetachedSignature.
type Block struct {
Headers textproto.MIMEHeader // Optional message headers
Plaintext []byte // The original message text
Bytes []byte // The signed message
ArmoredSignature *armor.Block // The signature block
}
// start is the marker which denotes the beginning of a clearsigned message.
var start = []byte("\n-----BEGIN PGP SIGNED MESSAGE-----")
// dashEscape is prefixed to any lines that begin with a hyphen so that they
// can't be confused with endText.
var dashEscape = []byte("- ")
// endText is a marker which denotes the end of the message and the start of
// an armored signature.
var endText = []byte("-----BEGIN PGP SIGNATURE-----")
// end is a marker which denotes the end of the armored signature.
var end = []byte("\n-----END PGP SIGNATURE-----")
var crlf = []byte("\r\n")
var lf = byte('\n')
// getLine returns the first \r\n or \n delineated line from the given byte
// array. The line does not include the \r\n or \n. The remainder of the byte
// array (also not including the new line bytes) is also returned and this will
// always be smaller than the original argument.
func getLine(data []byte) (line, rest []byte) {
i := bytes.Index(data, []byte{'\n'})
var j int
if i < 0 {
i = len(data)
j = i
} else {
j = i + 1
if i > 0 && data[i-1] == '\r' {
i--
}
}
return data[0:i], data[j:]
}
// Decode finds the first clearsigned message in data and returns it, as well
// as the suffix of data which remains after the message.
func Decode(data []byte) (b *Block, rest []byte) {
// start begins with a newline. However, at the very beginning of
// the byte array, we'll accept the start string without it.
rest = data
if bytes.HasPrefix(data, start[1:]) {
rest = rest[len(start)-1:]
} else if i := bytes.Index(data, start); i >= 0 {
rest = rest[i+len(start):]
} else {
return nil, data
}
// Consume the start line.
_, rest = getLine(rest)
var line []byte
b = &Block{
Headers: make(textproto.MIMEHeader),
}
// Next come a series of header lines.
for {
// This loop terminates because getLine's second result is
// always smaller than its argument.
if len(rest) == 0 {
return nil, data
}
// An empty line marks the end of the headers.
if line, rest = getLine(rest); len(line) == 0 {
break
}
i := bytes.Index(line, []byte{':'})
if i == -1 {
return nil, data
}
key, val := line[0:i], line[i+1:]
key = bytes.TrimSpace(key)
val = bytes.TrimSpace(val)
b.Headers.Add(string(key), string(val))
}
firstLine := true
for {
start := rest
line, rest = getLine(rest)
if len(line) == 0 && len(rest) == 0 {
// No armored data was found, so this isn't a complete message.
return nil, data
}
if bytes.Equal(line, endText) {
// Back up to the start of the line because armor expects to see the
// header line.
rest = start
break
}
// The final CRLF isn't included in the hash so we don't write it until
// we've seen the next line.
if firstLine {
firstLine = false
} else {
b.Bytes = append(b.Bytes, crlf...)
}
if bytes.HasPrefix(line, dashEscape) {
line = line[2:]
}
line = bytes.TrimRight(line, " \t")
b.Bytes = append(b.Bytes, line...)
b.Plaintext = append(b.Plaintext, line...)
b.Plaintext = append(b.Plaintext, lf)
}
// We want to find the extent of the armored data (including any newlines at
// the end).
i := bytes.Index(rest, end)
if i == -1 {
return nil, data
}
i += len(end)
for i < len(rest) && (rest[i] == '\r' || rest[i] == '\n') {
i++
}
armored := rest[:i]
rest = rest[i:]
var err error
b.ArmoredSignature, err = armor.Decode(bytes.NewBuffer(armored))
if err != nil {
return nil, data
}
return b, rest
}
// A dashEscaper is an io.WriteCloser which processes the body of a clear-signed
// message. The clear-signed message is written to buffered and a hash, suitable
// for signing, is maintained in h.
//
// When closed, an armored signature is created and written to complete the
// message.
type dashEscaper struct {
buffered *bufio.Writer
hashers []hash.Hash // one per key in privateKeys
hashType crypto.Hash
toHash io.Writer // writes to all the hashes in hashers
atBeginningOfLine bool
isFirstLine bool
whitespace []byte
byteBuf []byte // a one byte buffer to save allocations
privateKeys []*packet.PrivateKey
config *packet.Config
}
func (d *dashEscaper) Write(data []byte) (n int, err error) {
for _, b := range data {
d.byteBuf[0] = b
if d.atBeginningOfLine {
// The final CRLF isn't included in the hash so we have to wait
// until this point (the start of the next line) before writing it.
if !d.isFirstLine {
d.toHash.Write(crlf)
}
d.isFirstLine = false
}
// Any whitespace at the end of the line has to be removed so we
// buffer it until we find out whether there's more on this line.
if b == ' ' || b == '\t' || b == '\r' {
d.whitespace = append(d.whitespace, b)
d.atBeginningOfLine = false
continue
}
if d.atBeginningOfLine {
// At the beginning of a line, hyphens have to be escaped.
if b == '-' {
// The signature isn't calculated over the dash-escaped text so
// the escape is only written to buffered.
if _, err = d.buffered.Write(dashEscape); err != nil {
return
}
d.toHash.Write(d.byteBuf)
d.atBeginningOfLine = false
} else if b == '\n' {
// Nothing to do because we delay writing CRLF to the hash.
} else {
d.toHash.Write(d.byteBuf)
d.atBeginningOfLine = false
}
if err = d.buffered.WriteByte(b); err != nil {
return
}
} else {
if b == '\n' {
// We got a raw \n. Drop any trailing whitespace and write a
// CRLF.
d.whitespace = d.whitespace[:0]
// We delay writing CRLF to the hash until the start of the
// next line.
if err = d.buffered.WriteByte(b); err != nil {
return
}
d.atBeginningOfLine = true
} else {
// Any buffered whitespace wasn't at the end of the line so
// we need to write it out.
if len(d.whitespace) > 0 {
d.toHash.Write(d.whitespace)
if _, err = d.buffered.Write(d.whitespace); err != nil {
return
}
d.whitespace = d.whitespace[:0]
}
d.toHash.Write(d.byteBuf)
if err = d.buffered.WriteByte(b); err != nil {
return
}
}
}
}
n = len(data)
return
}
func (d *dashEscaper) Close() (err error) {
if !d.atBeginningOfLine {
if err = d.buffered.WriteByte(lf); err != nil {
return
}
}
out, err := armor.Encode(d.buffered, "PGP SIGNATURE", nil)
if err != nil {
return
}
t := d.config.Now()
for i, k := range d.privateKeys {
sig := new(packet.Signature)
sig.SigType = packet.SigTypeText
sig.PubKeyAlgo = k.PubKeyAlgo
sig.Hash = d.hashType
sig.CreationTime = t
sig.IssuerKeyId = &k.KeyId
if err = sig.Sign(d.hashers[i], k, d.config); err != nil {
return
}
if err = sig.Serialize(out); err != nil {
return
}
}
if err = out.Close(); err != nil {
return
}
if err = d.buffered.Flush(); err != nil {
return
}
return
}
// Encode returns a WriteCloser which will clear-sign a message with privateKey
// and write it to w. If config is nil, sensible defaults are used.
func Encode(w io.Writer, privateKey *packet.PrivateKey, config *packet.Config) (plaintext io.WriteCloser, err error) {
return EncodeMulti(w, []*packet.PrivateKey{privateKey}, config)
}
// EncodeMulti returns a WriteCloser which will clear-sign a message with all the
// private keys indicated and write it to w. If config is nil, sensible defaults
// are used.
func EncodeMulti(w io.Writer, privateKeys []*packet.PrivateKey, config *packet.Config) (plaintext io.WriteCloser, err error) {
for _, k := range privateKeys {
if k.Encrypted {
return nil, errors.InvalidArgumentError(fmt.Sprintf("signing key %s is encrypted", k.KeyIdString()))
}
}
hashType := config.Hash()
name := nameOfHash(hashType)
if len(name) == 0 {
return nil, errors.UnsupportedError("unknown hash type: " + strconv.Itoa(int(hashType)))
}
if !hashType.Available() {
return nil, errors.UnsupportedError("unsupported hash type: " + strconv.Itoa(int(hashType)))
}
var hashers []hash.Hash
var ws []io.Writer
for range privateKeys {
h := hashType.New()
hashers = append(hashers, h)
ws = append(ws, h)
}
toHash := io.MultiWriter(ws...)
buffered := bufio.NewWriter(w)
// start has a \n at the beginning that we don't want here.
if _, err = buffered.Write(start[1:]); err != nil {
return
}
if err = buffered.WriteByte(lf); err != nil {
return
}
if _, err = buffered.WriteString("Hash: "); err != nil {
return
}
if _, err = buffered.WriteString(name); err != nil {
return
}
if err = buffered.WriteByte(lf); err != nil {
return
}
if err = buffered.WriteByte(lf); err != nil {
return
}
plaintext = &dashEscaper{
buffered: buffered,
hashers: hashers,
hashType: hashType,
toHash: toHash,
atBeginningOfLine: true,
isFirstLine: true,
byteBuf: make([]byte, 1),
privateKeys: privateKeys,
config: config,
}
return
}
// nameOfHash returns the OpenPGP name for the given hash, or the empty string
// if the name isn't known. See RFC 4880, section 9.4.
func nameOfHash(h crypto.Hash) string {
switch h {
case crypto.MD5:
return "MD5"
case crypto.SHA1:
return "SHA1"
case crypto.RIPEMD160:
return "RIPEMD160"
case crypto.SHA224:
return "SHA224"
case crypto.SHA256:
return "SHA256"
case crypto.SHA384:
return "SHA384"
case crypto.SHA512:
return "SHA512"
}
return ""
}

View File

@ -0,0 +1,278 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package clearsign
import (
"bytes"
"fmt"
"testing"
"golang.org/x/crypto/openpgp"
"golang.org/x/crypto/openpgp/packet"
)
func testParse(t *testing.T, input []byte, expected, expectedPlaintext string) {
b, rest := Decode(input)
if b == nil {
t.Fatal("failed to decode clearsign message")
}
if !bytes.Equal(rest, []byte("trailing")) {
t.Errorf("unexpected remaining bytes returned: %s", string(rest))
}
if b.ArmoredSignature.Type != "PGP SIGNATURE" {
t.Errorf("bad armor type, got:%s, want:PGP SIGNATURE", b.ArmoredSignature.Type)
}
if !bytes.Equal(b.Bytes, []byte(expected)) {
t.Errorf("bad body, got:%x want:%x", b.Bytes, expected)
}
if !bytes.Equal(b.Plaintext, []byte(expectedPlaintext)) {
t.Errorf("bad plaintext, got:%x want:%x", b.Plaintext, expectedPlaintext)
}
keyring, err := openpgp.ReadArmoredKeyRing(bytes.NewBufferString(signingKey))
if err != nil {
t.Errorf("failed to parse public key: %s", err)
}
if _, err := openpgp.CheckDetachedSignature(keyring, bytes.NewBuffer(b.Bytes), b.ArmoredSignature.Body); err != nil {
t.Errorf("failed to check signature: %s", err)
}
}
func TestParse(t *testing.T) {
testParse(t, clearsignInput, "Hello world\r\nline 2", "Hello world\nline 2\n")
testParse(t, clearsignInput2, "\r\n\r\n(This message has a couple of blank lines at the start and end.)\r\n\r\n", "\n\n(This message has a couple of blank lines at the start and end.)\n\n\n")
}
func TestParseInvalid(t *testing.T) {
if b, _ := Decode(clearsignInput3); b != nil {
t.Fatal("decoded a bad clearsigned message without any error")
}
}
func TestParseWithNoNewlineAtEnd(t *testing.T) {
input := clearsignInput
input = input[:len(input)-len("trailing")-1]
b, rest := Decode(input)
if b == nil {
t.Fatal("failed to decode clearsign message")
}
if len(rest) > 0 {
t.Errorf("unexpected remaining bytes returned: %s", string(rest))
}
}
var signingTests = []struct {
in, signed, plaintext string
}{
{"", "", ""},
{"a", "a", "a\n"},
{"a\n", "a", "a\n"},
{"-a\n", "-a", "-a\n"},
{"--a\nb", "--a\r\nb", "--a\nb\n"},
// leading whitespace
{" a\n", " a", " a\n"},
{" a\n", " a", " a\n"},
// trailing whitespace (should be stripped)
{"a \n", "a", "a\n"},
{"a ", "a", "a\n"},
// whitespace-only lines (should be stripped)
{" \n", "", "\n"},
{" ", "", "\n"},
{"a\n \n \nb\n", "a\r\n\r\n\r\nb", "a\n\n\nb\n"},
}
func TestSigning(t *testing.T) {
keyring, err := openpgp.ReadArmoredKeyRing(bytes.NewBufferString(signingKey))
if err != nil {
t.Errorf("failed to parse public key: %s", err)
}
for i, test := range signingTests {
var buf bytes.Buffer
plaintext, err := Encode(&buf, keyring[0].PrivateKey, nil)
if err != nil {
t.Errorf("#%d: error from Encode: %s", i, err)
continue
}
if _, err := plaintext.Write([]byte(test.in)); err != nil {
t.Errorf("#%d: error from Write: %s", i, err)
continue
}
if err := plaintext.Close(); err != nil {
t.Fatalf("#%d: error from Close: %s", i, err)
continue
}
b, _ := Decode(buf.Bytes())
if b == nil {
t.Errorf("#%d: failed to decode clearsign message", i)
continue
}
if !bytes.Equal(b.Bytes, []byte(test.signed)) {
t.Errorf("#%d: bad result, got:%x, want:%x", i, b.Bytes, test.signed)
continue
}
if !bytes.Equal(b.Plaintext, []byte(test.plaintext)) {
t.Errorf("#%d: bad result, got:%x, want:%x", i, b.Plaintext, test.plaintext)
continue
}
if _, err := openpgp.CheckDetachedSignature(keyring, bytes.NewBuffer(b.Bytes), b.ArmoredSignature.Body); err != nil {
t.Errorf("#%d: failed to check signature: %s", i, err)
}
}
}
// We use this to make test keys, so that they aren't all the same.
type quickRand byte
func (qr *quickRand) Read(p []byte) (int, error) {
for i := range p {
p[i] = byte(*qr)
}
*qr++
return len(p), nil
}
func TestMultiSign(t *testing.T) {
zero := quickRand(0)
config := packet.Config{Rand: &zero}
for nKeys := 0; nKeys < 4; nKeys++ {
nextTest:
for nExtra := 0; nExtra < 4; nExtra++ {
var signKeys []*packet.PrivateKey
var verifyKeys openpgp.EntityList
desc := fmt.Sprintf("%d keys; %d of which will be used to verify", nKeys+nExtra, nKeys)
for i := 0; i < nKeys+nExtra; i++ {
e, err := openpgp.NewEntity("name", "comment", "email", &config)
if err != nil {
t.Errorf("cannot create key: %v", err)
continue nextTest
}
if i < nKeys {
verifyKeys = append(verifyKeys, e)
}
signKeys = append(signKeys, e.PrivateKey)
}
input := []byte("this is random text\r\n4 17")
var output bytes.Buffer
w, err := EncodeMulti(&output, signKeys, nil)
if err != nil {
t.Errorf("EncodeMulti (%s) failed: %v", desc, err)
}
if _, err := w.Write(input); err != nil {
t.Errorf("Write(%q) to signer (%s) failed: %v", string(input), desc, err)
}
if err := w.Close(); err != nil {
t.Errorf("Close() of signer (%s) failed: %v", desc, err)
}
block, _ := Decode(output.Bytes())
if string(block.Bytes) != string(input) {
t.Errorf("Inline data didn't match original; got %q want %q", string(block.Bytes), string(input))
}
_, err = openpgp.CheckDetachedSignature(verifyKeys, bytes.NewReader(block.Bytes), block.ArmoredSignature.Body)
if nKeys == 0 {
if err == nil {
t.Errorf("verifying inline (%s) succeeded; want failure", desc)
}
} else {
if err != nil {
t.Errorf("verifying inline (%s) failed (%v); want success", desc, err)
}
}
}
}
}
var clearsignInput = []byte(`
;lasjlkfdsa
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
Hello world
line 2
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
iJwEAQECAAYFAk8kMuEACgkQO9o98PRieSpMsAQAhmY/vwmNpflrPgmfWsYhk5O8
pjnBUzZwqTDoDeINjZEoPDSpQAHGhjFjgaDx/Gj4fAl0dM4D0wuUEBb6QOrwflog
2A2k9kfSOMOtk0IH/H5VuFN1Mie9L/erYXjTQIptv9t9J7NoRBMU0QOOaFU0JaO9
MyTpno24AjIAGb+mH1U=
=hIJ6
-----END PGP SIGNATURE-----
trailing`)
var clearsignInput2 = []byte(`
asdlfkjasdlkfjsadf
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA256
(This message has a couple of blank lines at the start and end.)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iJwEAQEIAAYFAlPpSREACgkQO9o98PRieSpZTAP+M8QUoCt/7Rf3YbXPcdzIL32v
pt1I+cMNeopzfLy0u4ioEFi8s5VkwpL1AFmirvgViCwlf82inoRxzZRiW05JQ5LI
ESEzeCoy2LIdRCQ2hcrG8pIUPzUO4TqO5D/dMbdHwNH4h5nNmGJUAEG6FpURlPm+
qZg6BaTvOxepqOxnhVU=
=e+C6
-----END PGP SIGNATURE-----
trailing`)
var clearsignInput3 = []byte(`
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA256
(This message was truncated.)
`)
var signingKey = `-----BEGIN PGP PRIVATE KEY BLOCK-----
Version: GnuPG v1.4.10 (GNU/Linux)
lQHYBE2rFNoBBADFwqWQIW/DSqcB4yCQqnAFTJ27qS5AnB46ccAdw3u4Greeu3Bp
idpoHdjULy7zSKlwR1EA873dO/k/e11Ml3dlAFUinWeejWaK2ugFP6JjiieSsrKn
vWNicdCS4HTWn0X4sjl0ZiAygw6GNhqEQ3cpLeL0g8E9hnYzJKQ0LWJa0QARAQAB
AAP/TB81EIo2VYNmTq0pK1ZXwUpxCrvAAIG3hwKjEzHcbQznsjNvPUihZ+NZQ6+X
0HCfPAdPkGDCLCb6NavcSW+iNnLTrdDnSI6+3BbIONqWWdRDYJhqZCkqmG6zqSfL
IdkJgCw94taUg5BWP/AAeQrhzjChvpMQTVKQL5mnuZbUCeMCAN5qrYMP2S9iKdnk
VANIFj7656ARKt/nf4CBzxcpHTyB8+d2CtPDKCmlJP6vL8t58Jmih+kHJMvC0dzn
gr5f5+sCAOOe5gt9e0am7AvQWhdbHVfJU0TQJx+m2OiCJAqGTB1nvtBLHdJnfdC9
TnXXQ6ZXibqLyBies/xeY2sCKL5qtTMCAKnX9+9d/5yQxRyrQUHt1NYhaXZnJbHx
q4ytu0eWz+5i68IYUSK69jJ1NWPM0T6SkqpB3KCAIv68VFm9PxqG1KmhSrQIVGVz
dCBLZXmIuAQTAQIAIgUCTasU2gIbAwYLCQgHAwIGFQgCCQoLBBYCAwECHgECF4AA
CgkQO9o98PRieSoLhgQAkLEZex02Qt7vGhZzMwuN0R22w3VwyYyjBx+fM3JFETy1
ut4xcLJoJfIaF5ZS38UplgakHG0FQ+b49i8dMij0aZmDqGxrew1m4kBfjXw9B/v+
eIqpODryb6cOSwyQFH0lQkXC040pjq9YqDsO5w0WYNXYKDnzRV0p4H1pweo2VDid
AdgETasU2gEEAN46UPeWRqKHvA99arOxee38fBt2CI08iiWyI8T3J6ivtFGixSqV
bRcPxYO/qLpVe5l84Nb3X71GfVXlc9hyv7CD6tcowL59hg1E/DC5ydI8K8iEpUmK
/UnHdIY5h8/kqgGxkY/T/hgp5fRQgW1ZoZxLajVlMRZ8W4tFtT0DeA+JABEBAAEA
A/0bE1jaaZKj6ndqcw86jd+QtD1SF+Cf21CWRNeLKnUds4FRRvclzTyUMuWPkUeX
TaNNsUOFqBsf6QQ2oHUBBK4VCHffHCW4ZEX2cd6umz7mpHW6XzN4DECEzOVksXtc
lUC1j4UB91DC/RNQqwX1IV2QLSwssVotPMPqhOi0ZLNY7wIA3n7DWKInxYZZ4K+6
rQ+POsz6brEoRHwr8x6XlHenq1Oki855pSa1yXIARoTrSJkBtn5oI+f8AzrnN0BN
oyeQAwIA/7E++3HDi5aweWrViiul9cd3rcsS0dEnksPhvS0ozCJiHsq/6GFmy7J8
QSHZPteedBnZyNp5jR+H7cIfVN3KgwH/Skq4PsuPhDq5TKK6i8Pc1WW8MA6DXTdU
nLkX7RGmMwjC0DBf7KWAlPjFaONAX3a8ndnz//fy1q7u2l9AZwrj1qa1iJ8EGAEC
AAkFAk2rFNoCGwwACgkQO9o98PRieSo2/QP/WTzr4ioINVsvN1akKuekmEMI3LAp
BfHwatufxxP1U+3Si/6YIk7kuPB9Hs+pRqCXzbvPRrI8NHZBmc8qIGthishdCYad
AHcVnXjtxrULkQFGbGvhKURLvS9WnzD/m1K2zzwxzkPTzT9/Yf06O6Mal5AdugPL
VrM0m72/jnpKo04=
=zNCn
-----END PGP PRIVATE KEY BLOCK-----
`

122
vendor/golang.org/x/crypto/openpgp/elgamal/elgamal.go generated vendored Normal file
View File

@ -0,0 +1,122 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package elgamal implements ElGamal encryption, suitable for OpenPGP,
// as specified in "A Public-Key Cryptosystem and a Signature Scheme Based on
// Discrete Logarithms," IEEE Transactions on Information Theory, v. IT-31,
// n. 4, 1985, pp. 469-472.
//
// This form of ElGamal embeds PKCS#1 v1.5 padding, which may make it
// unsuitable for other protocols. RSA should be used in preference in any
// case.
package elgamal // import "golang.org/x/crypto/openpgp/elgamal"
import (
"crypto/rand"
"crypto/subtle"
"errors"
"io"
"math/big"
)
// PublicKey represents an ElGamal public key.
type PublicKey struct {
G, P, Y *big.Int
}
// PrivateKey represents an ElGamal private key.
type PrivateKey struct {
PublicKey
X *big.Int
}
// Encrypt encrypts the given message to the given public key. The result is a
// pair of integers. Errors can result from reading random, or because msg is
// too large to be encrypted to the public key.
func Encrypt(random io.Reader, pub *PublicKey, msg []byte) (c1, c2 *big.Int, err error) {
pLen := (pub.P.BitLen() + 7) / 8
if len(msg) > pLen-11 {
err = errors.New("elgamal: message too long")
return
}
// EM = 0x02 || PS || 0x00 || M
em := make([]byte, pLen-1)
em[0] = 2
ps, mm := em[1:len(em)-len(msg)-1], em[len(em)-len(msg):]
err = nonZeroRandomBytes(ps, random)
if err != nil {
return
}
em[len(em)-len(msg)-1] = 0
copy(mm, msg)
m := new(big.Int).SetBytes(em)
k, err := rand.Int(random, pub.P)
if err != nil {
return
}
c1 = new(big.Int).Exp(pub.G, k, pub.P)
s := new(big.Int).Exp(pub.Y, k, pub.P)
c2 = s.Mul(s, m)
c2.Mod(c2, pub.P)
return
}
// Decrypt takes two integers, resulting from an ElGamal encryption, and
// returns the plaintext of the message. An error can result only if the
// ciphertext is invalid. Users should keep in mind that this is a padding
// oracle and thus, if exposed to an adaptive chosen ciphertext attack, can
// be used to break the cryptosystem. See ``Chosen Ciphertext Attacks
// Against Protocols Based on the RSA Encryption Standard PKCS #1'', Daniel
// Bleichenbacher, Advances in Cryptology (Crypto '98),
func Decrypt(priv *PrivateKey, c1, c2 *big.Int) (msg []byte, err error) {
s := new(big.Int).Exp(c1, priv.X, priv.P)
s.ModInverse(s, priv.P)
s.Mul(s, c2)
s.Mod(s, priv.P)
em := s.Bytes()
firstByteIsTwo := subtle.ConstantTimeByteEq(em[0], 2)
// The remainder of the plaintext must be a string of non-zero random
// octets, followed by a 0, followed by the message.
// lookingForIndex: 1 iff we are still looking for the zero.
// index: the offset of the first zero byte.
var lookingForIndex, index int
lookingForIndex = 1
for i := 1; i < len(em); i++ {
equals0 := subtle.ConstantTimeByteEq(em[i], 0)
index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
}
if firstByteIsTwo != 1 || lookingForIndex != 0 || index < 9 {
return nil, errors.New("elgamal: decryption error")
}
return em[index+1:], nil
}
// nonZeroRandomBytes fills the given slice with non-zero random octets.
func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
_, err = io.ReadFull(rand, s)
if err != nil {
return
}
for i := 0; i < len(s); i++ {
for s[i] == 0 {
_, err = io.ReadFull(rand, s[i:i+1])
if err != nil {
return
}
}
}
return
}

View File

@ -0,0 +1,49 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package elgamal
import (
"bytes"
"crypto/rand"
"math/big"
"testing"
)
// This is the 1024-bit MODP group from RFC 5114, section 2.1:
const primeHex = "B10B8F96A080E01DDE92DE5EAE5D54EC52C99FBCFB06A3C69A6A9DCA52D23B616073E28675A23D189838EF1E2EE652C013ECB4AEA906112324975C3CD49B83BFACCBDD7D90C4BD7098488E9C219A73724EFFD6FAE5644738FAA31A4FF55BCCC0A151AF5F0DC8B4BD45BF37DF365C1A65E68CFDA76D4DA708DF1FB2BC2E4A4371"
const generatorHex = "A4D1CBD5C3FD34126765A442EFB99905F8104DD258AC507FD6406CFF14266D31266FEA1E5C41564B777E690F5504F213160217B4B01B886A5E91547F9E2749F4D7FBD7D3B9A92EE1909D0D2263F80A76A6A24C087A091F531DBF0A0169B6A28AD662A4D18E73AFA32D779D5918D08BC8858F4DCEF97C2A24855E6EEB22B3B2E5"
func fromHex(hex string) *big.Int {
n, ok := new(big.Int).SetString(hex, 16)
if !ok {
panic("failed to parse hex number")
}
return n
}
func TestEncryptDecrypt(t *testing.T) {
priv := &PrivateKey{
PublicKey: PublicKey{
G: fromHex(generatorHex),
P: fromHex(primeHex),
},
X: fromHex("42"),
}
priv.Y = new(big.Int).Exp(priv.G, priv.X, priv.P)
message := []byte("hello world")
c1, c2, err := Encrypt(rand.Reader, &priv.PublicKey, message)
if err != nil {
t.Errorf("error encrypting: %s", err)
}
message2, err := Decrypt(priv, c1, c2)
if err != nil {
t.Errorf("error decrypting: %s", err)
}
if !bytes.Equal(message2, message) {
t.Errorf("decryption failed, got: %x, want: %x", message2, message)
}
}

72
vendor/golang.org/x/crypto/openpgp/errors/errors.go generated vendored Normal file
View File

@ -0,0 +1,72 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package errors contains common error types for the OpenPGP packages.
package errors // import "golang.org/x/crypto/openpgp/errors"
import (
"strconv"
)
// A StructuralError is returned when OpenPGP data is found to be syntactically
// invalid.
type StructuralError string
func (s StructuralError) Error() string {
return "openpgp: invalid data: " + string(s)
}
// UnsupportedError indicates that, although the OpenPGP data is valid, it
// makes use of currently unimplemented features.
type UnsupportedError string
func (s UnsupportedError) Error() string {
return "openpgp: unsupported feature: " + string(s)
}
// InvalidArgumentError indicates that the caller is in error and passed an
// incorrect value.
type InvalidArgumentError string
func (i InvalidArgumentError) Error() string {
return "openpgp: invalid argument: " + string(i)
}
// SignatureError indicates that a syntactically valid signature failed to
// validate.
type SignatureError string
func (b SignatureError) Error() string {
return "openpgp: invalid signature: " + string(b)
}
type keyIncorrectError int
func (ki keyIncorrectError) Error() string {
return "openpgp: incorrect key"
}
var ErrKeyIncorrect error = keyIncorrectError(0)
type unknownIssuerError int
func (unknownIssuerError) Error() string {
return "openpgp: signature made by unknown entity"
}
var ErrUnknownIssuer error = unknownIssuerError(0)
type keyRevokedError int
func (keyRevokedError) Error() string {
return "openpgp: signature made by revoked key"
}
var ErrKeyRevoked error = keyRevokedError(0)
type UnknownPacketTypeError uint8
func (upte UnknownPacketTypeError) Error() string {
return "openpgp: unknown packet type: " + strconv.Itoa(int(upte))
}

693
vendor/golang.org/x/crypto/openpgp/keys.go generated vendored Normal file
View File

@ -0,0 +1,693 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"crypto/rsa"
"io"
"time"
"golang.org/x/crypto/openpgp/armor"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/packet"
)
// PublicKeyType is the armor type for a PGP public key.
var PublicKeyType = "PGP PUBLIC KEY BLOCK"
// PrivateKeyType is the armor type for a PGP private key.
var PrivateKeyType = "PGP PRIVATE KEY BLOCK"
// An Entity represents the components of an OpenPGP key: a primary public key
// (which must be a signing key), one or more identities claimed by that key,
// and zero or more subkeys, which may be encryption keys.
type Entity struct {
PrimaryKey *packet.PublicKey
PrivateKey *packet.PrivateKey
Identities map[string]*Identity // indexed by Identity.Name
Revocations []*packet.Signature
Subkeys []Subkey
}
// An Identity represents an identity claimed by an Entity and zero or more
// assertions by other entities about that claim.
type Identity struct {
Name string // by convention, has the form "Full Name (comment) <email@example.com>"
UserId *packet.UserId
SelfSignature *packet.Signature
Signatures []*packet.Signature
}
// A Subkey is an additional public key in an Entity. Subkeys can be used for
// encryption.
type Subkey struct {
PublicKey *packet.PublicKey
PrivateKey *packet.PrivateKey
Sig *packet.Signature
}
// A Key identifies a specific public key in an Entity. This is either the
// Entity's primary key or a subkey.
type Key struct {
Entity *Entity
PublicKey *packet.PublicKey
PrivateKey *packet.PrivateKey
SelfSignature *packet.Signature
}
// A KeyRing provides access to public and private keys.
type KeyRing interface {
// KeysById returns the set of keys that have the given key id.
KeysById(id uint64) []Key
// KeysByIdAndUsage returns the set of keys with the given id
// that also meet the key usage given by requiredUsage.
// The requiredUsage is expressed as the bitwise-OR of
// packet.KeyFlag* values.
KeysByIdUsage(id uint64, requiredUsage byte) []Key
// DecryptionKeys returns all private keys that are valid for
// decryption.
DecryptionKeys() []Key
}
// primaryIdentity returns the Identity marked as primary or the first identity
// if none are so marked.
func (e *Entity) primaryIdentity() *Identity {
var firstIdentity *Identity
for _, ident := range e.Identities {
if firstIdentity == nil {
firstIdentity = ident
}
if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
return ident
}
}
return firstIdentity
}
// encryptionKey returns the best candidate Key for encrypting a message to the
// given Entity.
func (e *Entity) encryptionKey(now time.Time) (Key, bool) {
candidateSubkey := -1
// Iterate the keys to find the newest key
var maxTime time.Time
for i, subkey := range e.Subkeys {
if subkey.Sig.FlagsValid &&
subkey.Sig.FlagEncryptCommunications &&
subkey.PublicKey.PubKeyAlgo.CanEncrypt() &&
!subkey.Sig.KeyExpired(now) &&
(maxTime.IsZero() || subkey.Sig.CreationTime.After(maxTime)) {
candidateSubkey = i
maxTime = subkey.Sig.CreationTime
}
}
if candidateSubkey != -1 {
subkey := e.Subkeys[candidateSubkey]
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true
}
// If we don't have any candidate subkeys for encryption and
// the primary key doesn't have any usage metadata then we
// assume that the primary key is ok. Or, if the primary key is
// marked as ok to encrypt to, then we can obviously use it.
i := e.primaryIdentity()
if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagEncryptCommunications &&
e.PrimaryKey.PubKeyAlgo.CanEncrypt() &&
!i.SelfSignature.KeyExpired(now) {
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true
}
// This Entity appears to be signing only.
return Key{}, false
}
// signingKey return the best candidate Key for signing a message with this
// Entity.
func (e *Entity) signingKey(now time.Time) (Key, bool) {
candidateSubkey := -1
for i, subkey := range e.Subkeys {
if subkey.Sig.FlagsValid &&
subkey.Sig.FlagSign &&
subkey.PublicKey.PubKeyAlgo.CanSign() &&
!subkey.Sig.KeyExpired(now) {
candidateSubkey = i
break
}
}
if candidateSubkey != -1 {
subkey := e.Subkeys[candidateSubkey]
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true
}
// If we have no candidate subkey then we assume that it's ok to sign
// with the primary key.
i := e.primaryIdentity()
if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagSign &&
!i.SelfSignature.KeyExpired(now) {
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true
}
return Key{}, false
}
// An EntityList contains one or more Entities.
type EntityList []*Entity
// KeysById returns the set of keys that have the given key id.
func (el EntityList) KeysById(id uint64) (keys []Key) {
for _, e := range el {
if e.PrimaryKey.KeyId == id {
var selfSig *packet.Signature
for _, ident := range e.Identities {
if selfSig == nil {
selfSig = ident.SelfSignature
} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
selfSig = ident.SelfSignature
break
}
}
keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig})
}
for _, subKey := range e.Subkeys {
if subKey.PublicKey.KeyId == id {
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig})
}
}
}
return
}
// KeysByIdAndUsage returns the set of keys with the given id that also meet
// the key usage given by requiredUsage. The requiredUsage is expressed as
// the bitwise-OR of packet.KeyFlag* values.
func (el EntityList) KeysByIdUsage(id uint64, requiredUsage byte) (keys []Key) {
for _, key := range el.KeysById(id) {
if len(key.Entity.Revocations) > 0 {
continue
}
if key.SelfSignature.RevocationReason != nil {
continue
}
if key.SelfSignature.FlagsValid && requiredUsage != 0 {
var usage byte
if key.SelfSignature.FlagCertify {
usage |= packet.KeyFlagCertify
}
if key.SelfSignature.FlagSign {
usage |= packet.KeyFlagSign
}
if key.SelfSignature.FlagEncryptCommunications {
usage |= packet.KeyFlagEncryptCommunications
}
if key.SelfSignature.FlagEncryptStorage {
usage |= packet.KeyFlagEncryptStorage
}
if usage&requiredUsage != requiredUsage {
continue
}
}
keys = append(keys, key)
}
return
}
// DecryptionKeys returns all private keys that are valid for decryption.
func (el EntityList) DecryptionKeys() (keys []Key) {
for _, e := range el {
for _, subKey := range e.Subkeys {
if subKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) {
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig})
}
}
}
return
}
// ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file.
func ReadArmoredKeyRing(r io.Reader) (EntityList, error) {
block, err := armor.Decode(r)
if err == io.EOF {
return nil, errors.InvalidArgumentError("no armored data found")
}
if err != nil {
return nil, err
}
if block.Type != PublicKeyType && block.Type != PrivateKeyType {
return nil, errors.InvalidArgumentError("expected public or private key block, got: " + block.Type)
}
return ReadKeyRing(block.Body)
}
// ReadKeyRing reads one or more public/private keys. Unsupported keys are
// ignored as long as at least a single valid key is found.
func ReadKeyRing(r io.Reader) (el EntityList, err error) {
packets := packet.NewReader(r)
var lastUnsupportedError error
for {
var e *Entity
e, err = ReadEntity(packets)
if err != nil {
// TODO: warn about skipped unsupported/unreadable keys
if _, ok := err.(errors.UnsupportedError); ok {
lastUnsupportedError = err
err = readToNextPublicKey(packets)
} else if _, ok := err.(errors.StructuralError); ok {
// Skip unreadable, badly-formatted keys
lastUnsupportedError = err
err = readToNextPublicKey(packets)
}
if err == io.EOF {
err = nil
break
}
if err != nil {
el = nil
break
}
} else {
el = append(el, e)
}
}
if len(el) == 0 && err == nil {
err = lastUnsupportedError
}
return
}
// readToNextPublicKey reads packets until the start of the entity and leaves
// the first packet of the new entity in the Reader.
func readToNextPublicKey(packets *packet.Reader) (err error) {
var p packet.Packet
for {
p, err = packets.Next()
if err == io.EOF {
return
} else if err != nil {
if _, ok := err.(errors.UnsupportedError); ok {
err = nil
continue
}
return
}
if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey {
packets.Unread(p)
return
}
}
}
// ReadEntity reads an entity (public key, identities, subkeys etc) from the
// given Reader.
func ReadEntity(packets *packet.Reader) (*Entity, error) {
e := new(Entity)
e.Identities = make(map[string]*Identity)
p, err := packets.Next()
if err != nil {
return nil, err
}
var ok bool
if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok {
if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok {
packets.Unread(p)
return nil, errors.StructuralError("first packet was not a public/private key")
}
e.PrimaryKey = &e.PrivateKey.PublicKey
}
if !e.PrimaryKey.PubKeyAlgo.CanSign() {
return nil, errors.StructuralError("primary key cannot be used for signatures")
}
var revocations []*packet.Signature
EachPacket:
for {
p, err := packets.Next()
if err == io.EOF {
break
} else if err != nil {
return nil, err
}
switch pkt := p.(type) {
case *packet.UserId:
if err := addUserID(e, packets, pkt); err != nil {
return nil, err
}
case *packet.Signature:
if pkt.SigType == packet.SigTypeKeyRevocation {
revocations = append(revocations, pkt)
} else if pkt.SigType == packet.SigTypeDirectSignature {
// TODO: RFC4880 5.2.1 permits signatures
// directly on keys (eg. to bind additional
// revocation keys).
}
// Else, ignoring the signature as it does not follow anything
// we would know to attach it to.
case *packet.PrivateKey:
if pkt.IsSubkey == false {
packets.Unread(p)
break EachPacket
}
err = addSubkey(e, packets, &pkt.PublicKey, pkt)
if err != nil {
return nil, err
}
case *packet.PublicKey:
if pkt.IsSubkey == false {
packets.Unread(p)
break EachPacket
}
err = addSubkey(e, packets, pkt, nil)
if err != nil {
return nil, err
}
default:
// we ignore unknown packets
}
}
if len(e.Identities) == 0 {
return nil, errors.StructuralError("entity without any identities")
}
for _, revocation := range revocations {
err = e.PrimaryKey.VerifyRevocationSignature(revocation)
if err == nil {
e.Revocations = append(e.Revocations, revocation)
} else {
// TODO: RFC 4880 5.2.3.15 defines revocation keys.
return nil, errors.StructuralError("revocation signature signed by alternate key")
}
}
return e, nil
}
func addUserID(e *Entity, packets *packet.Reader, pkt *packet.UserId) error {
// Make a new Identity object, that we might wind up throwing away.
// We'll only add it if we get a valid self-signature over this
// userID.
identity := new(Identity)
identity.Name = pkt.Id
identity.UserId = pkt
for {
p, err := packets.Next()
if err == io.EOF {
break
} else if err != nil {
return err
}
sig, ok := p.(*packet.Signature)
if !ok {
packets.Unread(p)
break
}
if (sig.SigType == packet.SigTypePositiveCert || sig.SigType == packet.SigTypeGenericCert) && sig.IssuerKeyId != nil && *sig.IssuerKeyId == e.PrimaryKey.KeyId {
if err = e.PrimaryKey.VerifyUserIdSignature(pkt.Id, e.PrimaryKey, sig); err != nil {
return errors.StructuralError("user ID self-signature invalid: " + err.Error())
}
identity.SelfSignature = sig
e.Identities[pkt.Id] = identity
} else {
identity.Signatures = append(identity.Signatures, sig)
}
}
return nil
}
func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) error {
var subKey Subkey
subKey.PublicKey = pub
subKey.PrivateKey = priv
for {
p, err := packets.Next()
if err == io.EOF {
break
} else if err != nil {
return errors.StructuralError("subkey signature invalid: " + err.Error())
}
sig, ok := p.(*packet.Signature)
if !ok {
packets.Unread(p)
break
}
if sig.SigType != packet.SigTypeSubkeyBinding && sig.SigType != packet.SigTypeSubkeyRevocation {
return errors.StructuralError("subkey signature with wrong type")
}
if err := e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, sig); err != nil {
return errors.StructuralError("subkey signature invalid: " + err.Error())
}
switch sig.SigType {
case packet.SigTypeSubkeyRevocation:
subKey.Sig = sig
case packet.SigTypeSubkeyBinding:
if shouldReplaceSubkeySig(subKey.Sig, sig) {
subKey.Sig = sig
}
}
}
if subKey.Sig == nil {
return errors.StructuralError("subkey packet not followed by signature")
}
e.Subkeys = append(e.Subkeys, subKey)
return nil
}
func shouldReplaceSubkeySig(existingSig, potentialNewSig *packet.Signature) bool {
if potentialNewSig == nil {
return false
}
if existingSig == nil {
return true
}
if existingSig.SigType == packet.SigTypeSubkeyRevocation {
return false // never override a revocation signature
}
return potentialNewSig.CreationTime.After(existingSig.CreationTime)
}
const defaultRSAKeyBits = 2048
// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a
// single identity composed of the given full name, comment and email, any of
// which may be empty but must not contain any of "()<>\x00".
// If config is nil, sensible defaults will be used.
func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) {
currentTime := config.Now()
bits := defaultRSAKeyBits
if config != nil && config.RSABits != 0 {
bits = config.RSABits
}
uid := packet.NewUserId(name, comment, email)
if uid == nil {
return nil, errors.InvalidArgumentError("user id field contained invalid characters")
}
signingPriv, err := rsa.GenerateKey(config.Random(), bits)
if err != nil {
return nil, err
}
encryptingPriv, err := rsa.GenerateKey(config.Random(), bits)
if err != nil {
return nil, err
}
e := &Entity{
PrimaryKey: packet.NewRSAPublicKey(currentTime, &signingPriv.PublicKey),
PrivateKey: packet.NewRSAPrivateKey(currentTime, signingPriv),
Identities: make(map[string]*Identity),
}
isPrimaryId := true
e.Identities[uid.Id] = &Identity{
Name: uid.Id,
UserId: uid,
SelfSignature: &packet.Signature{
CreationTime: currentTime,
SigType: packet.SigTypePositiveCert,
PubKeyAlgo: packet.PubKeyAlgoRSA,
Hash: config.Hash(),
IsPrimaryId: &isPrimaryId,
FlagsValid: true,
FlagSign: true,
FlagCertify: true,
IssuerKeyId: &e.PrimaryKey.KeyId,
},
}
err = e.Identities[uid.Id].SelfSignature.SignUserId(uid.Id, e.PrimaryKey, e.PrivateKey, config)
if err != nil {
return nil, err
}
// If the user passes in a DefaultHash via packet.Config,
// set the PreferredHash for the SelfSignature.
if config != nil && config.DefaultHash != 0 {
e.Identities[uid.Id].SelfSignature.PreferredHash = []uint8{hashToHashId(config.DefaultHash)}
}
// Likewise for DefaultCipher.
if config != nil && config.DefaultCipher != 0 {
e.Identities[uid.Id].SelfSignature.PreferredSymmetric = []uint8{uint8(config.DefaultCipher)}
}
e.Subkeys = make([]Subkey, 1)
e.Subkeys[0] = Subkey{
PublicKey: packet.NewRSAPublicKey(currentTime, &encryptingPriv.PublicKey),
PrivateKey: packet.NewRSAPrivateKey(currentTime, encryptingPriv),
Sig: &packet.Signature{
CreationTime: currentTime,
SigType: packet.SigTypeSubkeyBinding,
PubKeyAlgo: packet.PubKeyAlgoRSA,
Hash: config.Hash(),
FlagsValid: true,
FlagEncryptStorage: true,
FlagEncryptCommunications: true,
IssuerKeyId: &e.PrimaryKey.KeyId,
},
}
e.Subkeys[0].PublicKey.IsSubkey = true
e.Subkeys[0].PrivateKey.IsSubkey = true
err = e.Subkeys[0].Sig.SignKey(e.Subkeys[0].PublicKey, e.PrivateKey, config)
if err != nil {
return nil, err
}
return e, nil
}
// SerializePrivate serializes an Entity, including private key material, but
// excluding signatures from other entities, to the given Writer.
// Identities and subkeys are re-signed in case they changed since NewEntry.
// If config is nil, sensible defaults will be used.
func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error) {
err = e.PrivateKey.Serialize(w)
if err != nil {
return
}
for _, ident := range e.Identities {
err = ident.UserId.Serialize(w)
if err != nil {
return
}
err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey, config)
if err != nil {
return
}
err = ident.SelfSignature.Serialize(w)
if err != nil {
return
}
}
for _, subkey := range e.Subkeys {
err = subkey.PrivateKey.Serialize(w)
if err != nil {
return
}
err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config)
if err != nil {
return
}
err = subkey.Sig.Serialize(w)
if err != nil {
return
}
}
return nil
}
// Serialize writes the public part of the given Entity to w, including
// signatures from other entities. No private key material will be output.
func (e *Entity) Serialize(w io.Writer) error {
err := e.PrimaryKey.Serialize(w)
if err != nil {
return err
}
for _, ident := range e.Identities {
err = ident.UserId.Serialize(w)
if err != nil {
return err
}
err = ident.SelfSignature.Serialize(w)
if err != nil {
return err
}
for _, sig := range ident.Signatures {
err = sig.Serialize(w)
if err != nil {
return err
}
}
}
for _, subkey := range e.Subkeys {
err = subkey.PublicKey.Serialize(w)
if err != nil {
return err
}
err = subkey.Sig.Serialize(w)
if err != nil {
return err
}
}
return nil
}
// SignIdentity adds a signature to e, from signer, attesting that identity is
// associated with e. The provided identity must already be an element of
// e.Identities and the private key of signer must have been decrypted if
// necessary.
// If config is nil, sensible defaults will be used.
func (e *Entity) SignIdentity(identity string, signer *Entity, config *packet.Config) error {
if signer.PrivateKey == nil {
return errors.InvalidArgumentError("signing Entity must have a private key")
}
if signer.PrivateKey.Encrypted {
return errors.InvalidArgumentError("signing Entity's private key must be decrypted")
}
ident, ok := e.Identities[identity]
if !ok {
return errors.InvalidArgumentError("given identity string not found in Entity")
}
sig := &packet.Signature{
SigType: packet.SigTypeGenericCert,
PubKeyAlgo: signer.PrivateKey.PubKeyAlgo,
Hash: config.Hash(),
CreationTime: config.Now(),
IssuerKeyId: &signer.PrivateKey.KeyId,
}
if err := sig.SignUserId(identity, e.PrimaryKey, signer.PrivateKey, config); err != nil {
return err
}
ident.Signatures = append(ident.Signatures, sig)
return nil
}

200
vendor/golang.org/x/crypto/openpgp/keys_data_test.go generated vendored Normal file

File diff suppressed because one or more lines are too long

495
vendor/golang.org/x/crypto/openpgp/keys_test.go generated vendored Normal file
View File

@ -0,0 +1,495 @@
package openpgp
import (
"bytes"
"crypto"
"strings"
"testing"
"time"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/packet"
)
func TestKeyExpiry(t *testing.T) {
kring, err := ReadKeyRing(readerFromHex(expiringKeyHex))
if err != nil {
t.Fatal(err)
}
entity := kring[0]
const timeFormat = "2006-01-02"
time1, _ := time.Parse(timeFormat, "2013-07-01")
// The expiringKeyHex key is structured as:
//
// pub 1024R/5E237D8C created: 2013-07-01 expires: 2013-07-31 usage: SC
// sub 1024R/1ABB25A0 created: 2013-07-01 23:11:07 +0200 CEST expires: 2013-07-08 usage: E
// sub 1024R/96A672F5 created: 2013-07-01 23:11:23 +0200 CEST expires: 2013-07-31 usage: E
//
// So this should select the newest, non-expired encryption key.
key, _ := entity.encryptionKey(time1)
if id, expected := key.PublicKey.KeyIdShortString(), "96A672F5"; id != expected {
t.Errorf("Expected key %s at time %s, but got key %s", expected, time1.Format(timeFormat), id)
}
// Once the first encryption subkey has expired, the second should be
// selected.
time2, _ := time.Parse(timeFormat, "2013-07-09")
key, _ = entity.encryptionKey(time2)
if id, expected := key.PublicKey.KeyIdShortString(), "96A672F5"; id != expected {
t.Errorf("Expected key %s at time %s, but got key %s", expected, time2.Format(timeFormat), id)
}
// Once all the keys have expired, nothing should be returned.
time3, _ := time.Parse(timeFormat, "2013-08-01")
if key, ok := entity.encryptionKey(time3); ok {
t.Errorf("Expected no key at time %s, but got key %s", time3.Format(timeFormat), key.PublicKey.KeyIdShortString())
}
}
func TestMissingCrossSignature(t *testing.T) {
// This public key has a signing subkey, but the subkey does not
// contain a cross-signature.
keys, err := ReadArmoredKeyRing(bytes.NewBufferString(missingCrossSignatureKey))
if len(keys) != 0 {
t.Errorf("Accepted key with missing cross signature")
}
if err == nil {
t.Fatal("Failed to detect error in keyring with missing cross signature")
}
structural, ok := err.(errors.StructuralError)
if !ok {
t.Fatalf("Unexpected class of error: %T. Wanted StructuralError", err)
}
const expectedMsg = "signing subkey is missing cross-signature"
if !strings.Contains(string(structural), expectedMsg) {
t.Fatalf("Unexpected error: %q. Expected it to contain %q", err, expectedMsg)
}
}
func TestInvalidCrossSignature(t *testing.T) {
// This public key has a signing subkey, and the subkey has an
// embedded cross-signature. However, the cross-signature does
// not correctly validate over the primary and subkey.
keys, err := ReadArmoredKeyRing(bytes.NewBufferString(invalidCrossSignatureKey))
if len(keys) != 0 {
t.Errorf("Accepted key with invalid cross signature")
}
if err == nil {
t.Fatal("Failed to detect error in keyring with an invalid cross signature")
}
structural, ok := err.(errors.StructuralError)
if !ok {
t.Fatalf("Unexpected class of error: %T. Wanted StructuralError", err)
}
const expectedMsg = "subkey signature invalid"
if !strings.Contains(string(structural), expectedMsg) {
t.Fatalf("Unexpected error: %q. Expected it to contain %q", err, expectedMsg)
}
}
func TestGoodCrossSignature(t *testing.T) {
// This public key has a signing subkey, and the subkey has an
// embedded cross-signature which correctly validates over the
// primary and subkey.
keys, err := ReadArmoredKeyRing(bytes.NewBufferString(goodCrossSignatureKey))
if err != nil {
t.Fatal(err)
}
if len(keys) != 1 {
t.Errorf("Failed to accept key with good cross signature, %d", len(keys))
}
if len(keys[0].Subkeys) != 1 {
t.Errorf("Failed to accept good subkey, %d", len(keys[0].Subkeys))
}
}
func TestRevokedUserID(t *testing.T) {
// This key contains 2 UIDs, one of which is revoked:
// [ultimate] (1) Golang Gopher <no-reply@golang.com>
// [ revoked] (2) Golang Gopher <revoked@golang.com>
keys, err := ReadArmoredKeyRing(bytes.NewBufferString(revokedUserIDKey))
if err != nil {
t.Fatal(err)
}
if len(keys) != 1 {
t.Fatal("Failed to read key with a revoked user id")
}
var identities []*Identity
for _, identity := range keys[0].Identities {
identities = append(identities, identity)
}
if numIdentities, numExpected := len(identities), 1; numIdentities != numExpected {
t.Errorf("obtained %d identities, expected %d", numIdentities, numExpected)
}
if identityName, expectedName := identities[0].Name, "Golang Gopher <no-reply@golang.com>"; identityName != expectedName {
t.Errorf("obtained identity %s expected %s", identityName, expectedName)
}
}
// TestExternallyRevokableKey attempts to load and parse a key with a third party revocation permission.
func TestExternallyRevocableKey(t *testing.T) {
kring, err := ReadKeyRing(readerFromHex(subkeyUsageHex))
if err != nil {
t.Fatal(err)
}
// The 0xA42704B92866382A key can be revoked by 0xBE3893CB843D0FE70C
// according to this signature that appears within the key:
// :signature packet: algo 1, keyid A42704B92866382A
// version 4, created 1396409682, md5len 0, sigclass 0x1f
// digest algo 2, begin of digest a9 84
// hashed subpkt 2 len 4 (sig created 2014-04-02)
// hashed subpkt 12 len 22 (revocation key: c=80 a=1 f=CE094AA433F7040BB2DDF0BE3893CB843D0FE70C)
// hashed subpkt 7 len 1 (not revocable)
// subpkt 16 len 8 (issuer key ID A42704B92866382A)
// data: [1024 bits]
id := uint64(0xA42704B92866382A)
keys := kring.KeysById(id)
if len(keys) != 1 {
t.Errorf("Expected to find key id %X, but got %d matches", id, len(keys))
}
}
func TestKeyRevocation(t *testing.T) {
kring, err := ReadKeyRing(readerFromHex(revokedKeyHex))
if err != nil {
t.Fatal(err)
}
// revokedKeyHex contains these keys:
// pub 1024R/9A34F7C0 2014-03-25 [revoked: 2014-03-25]
// sub 1024R/1BA3CD60 2014-03-25 [revoked: 2014-03-25]
ids := []uint64{0xA401D9F09A34F7C0, 0x5CD3BE0A1BA3CD60}
for _, id := range ids {
keys := kring.KeysById(id)
if len(keys) != 1 {
t.Errorf("Expected KeysById to find revoked key %X, but got %d matches", id, len(keys))
}
keys = kring.KeysByIdUsage(id, 0)
if len(keys) != 0 {
t.Errorf("Expected KeysByIdUsage to filter out revoked key %X, but got %d matches", id, len(keys))
}
}
}
func TestKeyWithRevokedSubKey(t *testing.T) {
// This key contains a revoked sub key:
// pub rsa1024/0x4CBD826C39074E38 2018-06-14 [SC]
// Key fingerprint = 3F95 169F 3FFA 7D3F 2B47 6F0C 4CBD 826C 3907 4E38
// uid Golang Gopher <no-reply@golang.com>
// sub rsa1024/0x945DB1AF61D85727 2018-06-14 [S] [revoked: 2018-06-14]
keys, err := ReadArmoredKeyRing(bytes.NewBufferString(keyWithSubKey))
if err != nil {
t.Fatal(err)
}
if len(keys) != 1 {
t.Fatal("Failed to read key with a sub key")
}
identity := keys[0].Identities["Golang Gopher <no-reply@golang.com>"]
// Test for an issue where Subkey Binding Signatures (RFC 4880 5.2.1) were added to the identity
// preceding the Subkey Packet if the Subkey Packet was followed by more than one signature.
// For example, the current key has the following layout:
// PUBKEY UID SELFSIG SUBKEY REV SELFSIG
// The last SELFSIG would be added to the UID's signatures. This is wrong.
if numIdentitySigs, numExpected := len(identity.Signatures), 0; numIdentitySigs != numExpected {
t.Fatalf("got %d identity signatures, expected %d", numIdentitySigs, numExpected)
}
if numSubKeys, numExpected := len(keys[0].Subkeys), 1; numSubKeys != numExpected {
t.Fatalf("got %d subkeys, expected %d", numSubKeys, numExpected)
}
subKey := keys[0].Subkeys[0]
if subKey.Sig == nil {
t.Fatalf("subkey signature is nil")
}
}
func TestSubkeyRevocation(t *testing.T) {
kring, err := ReadKeyRing(readerFromHex(revokedSubkeyHex))
if err != nil {
t.Fatal(err)
}
// revokedSubkeyHex contains these keys:
// pub 1024R/4EF7E4BECCDE97F0 2014-03-25
// sub 1024R/D63636E2B96AE423 2014-03-25
// sub 1024D/DBCE4EE19529437F 2014-03-25
// sub 1024R/677815E371C2FD23 2014-03-25 [revoked: 2014-03-25]
validKeys := []uint64{0x4EF7E4BECCDE97F0, 0xD63636E2B96AE423, 0xDBCE4EE19529437F}
revokedKey := uint64(0x677815E371C2FD23)
for _, id := range validKeys {
keys := kring.KeysById(id)
if len(keys) != 1 {
t.Errorf("Expected KeysById to find key %X, but got %d matches", id, len(keys))
}
keys = kring.KeysByIdUsage(id, 0)
if len(keys) != 1 {
t.Errorf("Expected KeysByIdUsage to find key %X, but got %d matches", id, len(keys))
}
}
keys := kring.KeysById(revokedKey)
if len(keys) != 1 {
t.Errorf("Expected KeysById to find key %X, but got %d matches", revokedKey, len(keys))
}
keys = kring.KeysByIdUsage(revokedKey, 0)
if len(keys) != 0 {
t.Errorf("Expected KeysByIdUsage to filter out revoked key %X, but got %d matches", revokedKey, len(keys))
}
}
func TestKeyWithSubKeyAndBadSelfSigOrder(t *testing.T) {
// This key was altered so that the self signatures following the
// subkey are in a sub-optimal order.
//
// Note: Should someone have to create a similar key again, look into
// gpgsplit, gpg --dearmor, and gpg --enarmor.
//
// The packet ordering is the following:
// PUBKEY UID UIDSELFSIG SUBKEY SELFSIG1 SELFSIG2
//
// Where:
// SELFSIG1 expires on 2018-06-14 and was created first
// SELFSIG2 does not expire and was created after SELFSIG1
//
// Test for RFC 4880 5.2.3.3:
// > An implementation that encounters multiple self-signatures on the
// > same object may resolve the ambiguity in any way it sees fit, but it
// > is RECOMMENDED that priority be given to the most recent self-
// > signature.
//
// This means that we should keep SELFSIG2.
keys, err := ReadArmoredKeyRing(bytes.NewBufferString(keyWithSubKeyAndBadSelfSigOrder))
if err != nil {
t.Fatal(err)
}
if len(keys) != 1 {
t.Fatal("Failed to read key with a sub key and a bad selfsig packet order")
}
key := keys[0]
if numKeys, expected := len(key.Subkeys), 1; numKeys != expected {
t.Fatalf("Read %d subkeys, expected %d", numKeys, expected)
}
subKey := key.Subkeys[0]
if lifetime := subKey.Sig.KeyLifetimeSecs; lifetime != nil {
t.Errorf("The signature has a key lifetime (%d), but it should be nil", *lifetime)
}
}
func TestKeyUsage(t *testing.T) {
kring, err := ReadKeyRing(readerFromHex(subkeyUsageHex))
if err != nil {
t.Fatal(err)
}
// subkeyUsageHex contains these keys:
// pub 1024R/2866382A created: 2014-04-01 expires: never usage: SC
// sub 1024R/936C9153 created: 2014-04-01 expires: never usage: E
// sub 1024R/64D5F5BB created: 2014-04-02 expires: never usage: E
// sub 1024D/BC0BA992 created: 2014-04-02 expires: never usage: S
certifiers := []uint64{0xA42704B92866382A}
signers := []uint64{0xA42704B92866382A, 0x42CE2C64BC0BA992}
encrypters := []uint64{0x09C0C7D9936C9153, 0xC104E98664D5F5BB}
for _, id := range certifiers {
keys := kring.KeysByIdUsage(id, packet.KeyFlagCertify)
if len(keys) == 1 {
if keys[0].PublicKey.KeyId != id {
t.Errorf("Expected to find certifier key id %X, but got %X", id, keys[0].PublicKey.KeyId)
}
} else {
t.Errorf("Expected one match for certifier key id %X, but got %d matches", id, len(keys))
}
}
for _, id := range signers {
keys := kring.KeysByIdUsage(id, packet.KeyFlagSign)
if len(keys) == 1 {
if keys[0].PublicKey.KeyId != id {
t.Errorf("Expected to find signing key id %X, but got %X", id, keys[0].PublicKey.KeyId)
}
} else {
t.Errorf("Expected one match for signing key id %X, but got %d matches", id, len(keys))
}
// This keyring contains no encryption keys that are also good for signing.
keys = kring.KeysByIdUsage(id, packet.KeyFlagEncryptStorage|packet.KeyFlagEncryptCommunications)
if len(keys) != 0 {
t.Errorf("Unexpected match for encryption key id %X", id)
}
}
for _, id := range encrypters {
keys := kring.KeysByIdUsage(id, packet.KeyFlagEncryptStorage|packet.KeyFlagEncryptCommunications)
if len(keys) == 1 {
if keys[0].PublicKey.KeyId != id {
t.Errorf("Expected to find encryption key id %X, but got %X", id, keys[0].PublicKey.KeyId)
}
} else {
t.Errorf("Expected one match for encryption key id %X, but got %d matches", id, len(keys))
}
// This keyring contains no encryption keys that are also good for signing.
keys = kring.KeysByIdUsage(id, packet.KeyFlagSign)
if len(keys) != 0 {
t.Errorf("Unexpected match for signing key id %X", id)
}
}
}
func TestIdVerification(t *testing.T) {
kring, err := ReadKeyRing(readerFromHex(testKeys1And2PrivateHex))
if err != nil {
t.Fatal(err)
}
if err := kring[1].PrivateKey.Decrypt([]byte("passphrase")); err != nil {
t.Fatal(err)
}
const identity = "Test Key 1 (RSA)"
if err := kring[0].SignIdentity(identity, kring[1], nil); err != nil {
t.Fatal(err)
}
ident, ok := kring[0].Identities[identity]
if !ok {
t.Fatal("identity missing from key after signing")
}
checked := false
for _, sig := range ident.Signatures {
if sig.IssuerKeyId == nil || *sig.IssuerKeyId != kring[1].PrimaryKey.KeyId {
continue
}
if err := kring[1].PrimaryKey.VerifyUserIdSignature(identity, kring[0].PrimaryKey, sig); err != nil {
t.Fatalf("error verifying new identity signature: %s", err)
}
checked = true
break
}
if !checked {
t.Fatal("didn't find identity signature in Entity")
}
}
func TestNewEntityWithPreferredHash(t *testing.T) {
c := &packet.Config{
DefaultHash: crypto.SHA256,
}
entity, err := NewEntity("Golang Gopher", "Test Key", "no-reply@golang.com", c)
if err != nil {
t.Fatal(err)
}
for _, identity := range entity.Identities {
if len(identity.SelfSignature.PreferredHash) == 0 {
t.Fatal("didn't find a preferred hash in self signature")
}
ph := hashToHashId(c.DefaultHash)
if identity.SelfSignature.PreferredHash[0] != ph {
t.Fatalf("Expected preferred hash to be %d, got %d", ph, identity.SelfSignature.PreferredHash[0])
}
}
}
func TestNewEntityWithoutPreferredHash(t *testing.T) {
entity, err := NewEntity("Golang Gopher", "Test Key", "no-reply@golang.com", nil)
if err != nil {
t.Fatal(err)
}
for _, identity := range entity.Identities {
if len(identity.SelfSignature.PreferredHash) != 0 {
t.Fatalf("Expected preferred hash to be empty but got length %d", len(identity.SelfSignature.PreferredHash))
}
}
}
func TestNewEntityCorrectName(t *testing.T) {
entity, err := NewEntity("Golang Gopher", "Test Key", "no-reply@golang.com", nil)
if err != nil {
t.Fatal(err)
}
if len(entity.Identities) != 1 {
t.Fatalf("len(entity.Identities) = %d, want 1", len(entity.Identities))
}
var got string
for _, i := range entity.Identities {
got = i.Name
}
want := "Golang Gopher (Test Key) <no-reply@golang.com>"
if got != want {
t.Fatalf("Identity.Name = %q, want %q", got, want)
}
}
func TestNewEntityWithPreferredSymmetric(t *testing.T) {
c := &packet.Config{
DefaultCipher: packet.CipherAES256,
}
entity, err := NewEntity("Golang Gopher", "Test Key", "no-reply@golang.com", c)
if err != nil {
t.Fatal(err)
}
for _, identity := range entity.Identities {
if len(identity.SelfSignature.PreferredSymmetric) == 0 {
t.Fatal("didn't find a preferred cipher in self signature")
}
if identity.SelfSignature.PreferredSymmetric[0] != uint8(c.DefaultCipher) {
t.Fatalf("Expected preferred cipher to be %d, got %d", uint8(c.DefaultCipher), identity.SelfSignature.PreferredSymmetric[0])
}
}
}
func TestNewEntityWithoutPreferredSymmetric(t *testing.T) {
entity, err := NewEntity("Golang Gopher", "Test Key", "no-reply@golang.com", nil)
if err != nil {
t.Fatal(err)
}
for _, identity := range entity.Identities {
if len(identity.SelfSignature.PreferredSymmetric) != 0 {
t.Fatalf("Expected preferred cipher to be empty but got length %d", len(identity.SelfSignature.PreferredSymmetric))
}
}
}
func TestNewEntityPublicSerialization(t *testing.T) {
entity, err := NewEntity("Golang Gopher", "Test Key", "no-reply@golang.com", nil)
if err != nil {
t.Fatal(err)
}
serializedEntity := bytes.NewBuffer(nil)
entity.Serialize(serializedEntity)
_, err = ReadEntity(packet.NewReader(bytes.NewBuffer(serializedEntity.Bytes())))
if err != nil {
t.Fatal(err)
}
}

123
vendor/golang.org/x/crypto/openpgp/packet/compressed.go generated vendored Normal file
View File

@ -0,0 +1,123 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"compress/bzip2"
"compress/flate"
"compress/zlib"
"golang.org/x/crypto/openpgp/errors"
"io"
"strconv"
)
// Compressed represents a compressed OpenPGP packet. The decompressed contents
// will contain more OpenPGP packets. See RFC 4880, section 5.6.
type Compressed struct {
Body io.Reader
}
const (
NoCompression = flate.NoCompression
BestSpeed = flate.BestSpeed
BestCompression = flate.BestCompression
DefaultCompression = flate.DefaultCompression
)
// CompressionConfig contains compressor configuration settings.
type CompressionConfig struct {
// Level is the compression level to use. It must be set to
// between -1 and 9, with -1 causing the compressor to use the
// default compression level, 0 causing the compressor to use
// no compression and 1 to 9 representing increasing (better,
// slower) compression levels. If Level is less than -1 or
// more then 9, a non-nil error will be returned during
// encryption. See the constants above for convenient common
// settings for Level.
Level int
}
func (c *Compressed) parse(r io.Reader) error {
var buf [1]byte
_, err := readFull(r, buf[:])
if err != nil {
return err
}
switch buf[0] {
case 1:
c.Body = flate.NewReader(r)
case 2:
c.Body, err = zlib.NewReader(r)
case 3:
c.Body = bzip2.NewReader(r)
default:
err = errors.UnsupportedError("unknown compression algorithm: " + strconv.Itoa(int(buf[0])))
}
return err
}
// compressedWriterCloser represents the serialized compression stream
// header and the compressor. Its Close() method ensures that both the
// compressor and serialized stream header are closed. Its Write()
// method writes to the compressor.
type compressedWriteCloser struct {
sh io.Closer // Stream Header
c io.WriteCloser // Compressor
}
func (cwc compressedWriteCloser) Write(p []byte) (int, error) {
return cwc.c.Write(p)
}
func (cwc compressedWriteCloser) Close() (err error) {
err = cwc.c.Close()
if err != nil {
return err
}
return cwc.sh.Close()
}
// SerializeCompressed serializes a compressed data packet to w and
// returns a WriteCloser to which the literal data packets themselves
// can be written and which MUST be closed on completion. If cc is
// nil, sensible defaults will be used to configure the compression
// algorithm.
func SerializeCompressed(w io.WriteCloser, algo CompressionAlgo, cc *CompressionConfig) (literaldata io.WriteCloser, err error) {
compressed, err := serializeStreamHeader(w, packetTypeCompressed)
if err != nil {
return
}
_, err = compressed.Write([]byte{uint8(algo)})
if err != nil {
return
}
level := DefaultCompression
if cc != nil {
level = cc.Level
}
var compressor io.WriteCloser
switch algo {
case CompressionZIP:
compressor, err = flate.NewWriter(compressed, level)
case CompressionZLIB:
compressor, err = zlib.NewWriterLevel(compressed, level)
default:
s := strconv.Itoa(int(algo))
err = errors.UnsupportedError("Unsupported compression algorithm: " + s)
}
if err != nil {
return
}
literaldata = compressedWriteCloser{compressed, compressor}
return
}

View File

@ -0,0 +1,41 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"encoding/hex"
"io"
"io/ioutil"
"testing"
)
func TestCompressed(t *testing.T) {
packet, err := Read(readerFromHex(compressedHex))
if err != nil {
t.Errorf("failed to read Compressed: %s", err)
return
}
c, ok := packet.(*Compressed)
if !ok {
t.Error("didn't find Compressed packet")
return
}
contents, err := ioutil.ReadAll(c.Body)
if err != nil && err != io.EOF {
t.Error(err)
return
}
expected, _ := hex.DecodeString(compressedExpectedHex)
if !bytes.Equal(expected, contents) {
t.Errorf("got:%x want:%x", contents, expected)
}
}
const compressedHex = "a3013b2d90c4e02b72e25f727e5e496a5e49b11e1700"
const compressedExpectedHex = "cb1062004d14c8fe636f6e74656e74732e0a"

91
vendor/golang.org/x/crypto/openpgp/packet/config.go generated vendored Normal file
View File

@ -0,0 +1,91 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"crypto/rand"
"io"
"time"
)
// Config collects a number of parameters along with sensible defaults.
// A nil *Config is valid and results in all default values.
type Config struct {
// Rand provides the source of entropy.
// If nil, the crypto/rand Reader is used.
Rand io.Reader
// DefaultHash is the default hash function to be used.
// If zero, SHA-256 is used.
DefaultHash crypto.Hash
// DefaultCipher is the cipher to be used.
// If zero, AES-128 is used.
DefaultCipher CipherFunction
// Time returns the current time as the number of seconds since the
// epoch. If Time is nil, time.Now is used.
Time func() time.Time
// DefaultCompressionAlgo is the compression algorithm to be
// applied to the plaintext before encryption. If zero, no
// compression is done.
DefaultCompressionAlgo CompressionAlgo
// CompressionConfig configures the compression settings.
CompressionConfig *CompressionConfig
// S2KCount is only used for symmetric encryption. It
// determines the strength of the passphrase stretching when
// the said passphrase is hashed to produce a key. S2KCount
// should be between 1024 and 65011712, inclusive. If Config
// is nil or S2KCount is 0, the value 65536 used. Not all
// values in the above range can be represented. S2KCount will
// be rounded up to the next representable value if it cannot
// be encoded exactly. When set, it is strongly encrouraged to
// use a value that is at least 65536. See RFC 4880 Section
// 3.7.1.3.
S2KCount int
// RSABits is the number of bits in new RSA keys made with NewEntity.
// If zero, then 2048 bit keys are created.
RSABits int
}
func (c *Config) Random() io.Reader {
if c == nil || c.Rand == nil {
return rand.Reader
}
return c.Rand
}
func (c *Config) Hash() crypto.Hash {
if c == nil || uint(c.DefaultHash) == 0 {
return crypto.SHA256
}
return c.DefaultHash
}
func (c *Config) Cipher() CipherFunction {
if c == nil || uint8(c.DefaultCipher) == 0 {
return CipherAES128
}
return c.DefaultCipher
}
func (c *Config) Now() time.Time {
if c == nil || c.Time == nil {
return time.Now()
}
return c.Time()
}
func (c *Config) Compression() CompressionAlgo {
if c == nil {
return CompressionNone
}
return c.DefaultCompressionAlgo
}
func (c *Config) PasswordHashIterations() int {
if c == nil || c.S2KCount == 0 {
return 0
}
return c.S2KCount
}

View File

@ -0,0 +1,206 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto/rsa"
"encoding/binary"
"io"
"math/big"
"strconv"
"golang.org/x/crypto/openpgp/elgamal"
"golang.org/x/crypto/openpgp/errors"
)
const encryptedKeyVersion = 3
// EncryptedKey represents a public-key encrypted session key. See RFC 4880,
// section 5.1.
type EncryptedKey struct {
KeyId uint64
Algo PublicKeyAlgorithm
CipherFunc CipherFunction // only valid after a successful Decrypt
Key []byte // only valid after a successful Decrypt
encryptedMPI1, encryptedMPI2 parsedMPI
}
func (e *EncryptedKey) parse(r io.Reader) (err error) {
var buf [10]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
if buf[0] != encryptedKeyVersion {
return errors.UnsupportedError("unknown EncryptedKey version " + strconv.Itoa(int(buf[0])))
}
e.KeyId = binary.BigEndian.Uint64(buf[1:9])
e.Algo = PublicKeyAlgorithm(buf[9])
switch e.Algo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r)
if err != nil {
return
}
case PubKeyAlgoElGamal:
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r)
if err != nil {
return
}
e.encryptedMPI2.bytes, e.encryptedMPI2.bitLength, err = readMPI(r)
if err != nil {
return
}
}
_, err = consumeAll(r)
return
}
func checksumKeyMaterial(key []byte) uint16 {
var checksum uint16
for _, v := range key {
checksum += uint16(v)
}
return checksum
}
// Decrypt decrypts an encrypted session key with the given private key. The
// private key must have been decrypted first.
// If config is nil, sensible defaults will be used.
func (e *EncryptedKey) Decrypt(priv *PrivateKey, config *Config) error {
var err error
var b []byte
// TODO(agl): use session key decryption routines here to avoid
// padding oracle attacks.
switch priv.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
k := priv.PrivateKey.(*rsa.PrivateKey)
b, err = rsa.DecryptPKCS1v15(config.Random(), k, padToKeySize(&k.PublicKey, e.encryptedMPI1.bytes))
case PubKeyAlgoElGamal:
c1 := new(big.Int).SetBytes(e.encryptedMPI1.bytes)
c2 := new(big.Int).SetBytes(e.encryptedMPI2.bytes)
b, err = elgamal.Decrypt(priv.PrivateKey.(*elgamal.PrivateKey), c1, c2)
default:
err = errors.InvalidArgumentError("cannot decrypted encrypted session key with private key of type " + strconv.Itoa(int(priv.PubKeyAlgo)))
}
if err != nil {
return err
}
e.CipherFunc = CipherFunction(b[0])
e.Key = b[1 : len(b)-2]
expectedChecksum := uint16(b[len(b)-2])<<8 | uint16(b[len(b)-1])
checksum := checksumKeyMaterial(e.Key)
if checksum != expectedChecksum {
return errors.StructuralError("EncryptedKey checksum incorrect")
}
return nil
}
// Serialize writes the encrypted key packet, e, to w.
func (e *EncryptedKey) Serialize(w io.Writer) error {
var mpiLen int
switch e.Algo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
mpiLen = 2 + len(e.encryptedMPI1.bytes)
case PubKeyAlgoElGamal:
mpiLen = 2 + len(e.encryptedMPI1.bytes) + 2 + len(e.encryptedMPI2.bytes)
default:
return errors.InvalidArgumentError("don't know how to serialize encrypted key type " + strconv.Itoa(int(e.Algo)))
}
serializeHeader(w, packetTypeEncryptedKey, 1 /* version */ +8 /* key id */ +1 /* algo */ +mpiLen)
w.Write([]byte{encryptedKeyVersion})
binary.Write(w, binary.BigEndian, e.KeyId)
w.Write([]byte{byte(e.Algo)})
switch e.Algo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
writeMPIs(w, e.encryptedMPI1)
case PubKeyAlgoElGamal:
writeMPIs(w, e.encryptedMPI1, e.encryptedMPI2)
default:
panic("internal error")
}
return nil
}
// SerializeEncryptedKey serializes an encrypted key packet to w that contains
// key, encrypted to pub.
// If config is nil, sensible defaults will be used.
func SerializeEncryptedKey(w io.Writer, pub *PublicKey, cipherFunc CipherFunction, key []byte, config *Config) error {
var buf [10]byte
buf[0] = encryptedKeyVersion
binary.BigEndian.PutUint64(buf[1:9], pub.KeyId)
buf[9] = byte(pub.PubKeyAlgo)
keyBlock := make([]byte, 1 /* cipher type */ +len(key)+2 /* checksum */)
keyBlock[0] = byte(cipherFunc)
copy(keyBlock[1:], key)
checksum := checksumKeyMaterial(key)
keyBlock[1+len(key)] = byte(checksum >> 8)
keyBlock[1+len(key)+1] = byte(checksum)
switch pub.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
return serializeEncryptedKeyRSA(w, config.Random(), buf, pub.PublicKey.(*rsa.PublicKey), keyBlock)
case PubKeyAlgoElGamal:
return serializeEncryptedKeyElGamal(w, config.Random(), buf, pub.PublicKey.(*elgamal.PublicKey), keyBlock)
case PubKeyAlgoDSA, PubKeyAlgoRSASignOnly:
return errors.InvalidArgumentError("cannot encrypt to public key of type " + strconv.Itoa(int(pub.PubKeyAlgo)))
}
return errors.UnsupportedError("encrypting a key to public key of type " + strconv.Itoa(int(pub.PubKeyAlgo)))
}
func serializeEncryptedKeyRSA(w io.Writer, rand io.Reader, header [10]byte, pub *rsa.PublicKey, keyBlock []byte) error {
cipherText, err := rsa.EncryptPKCS1v15(rand, pub, keyBlock)
if err != nil {
return errors.InvalidArgumentError("RSA encryption failed: " + err.Error())
}
packetLen := 10 /* header length */ + 2 /* mpi size */ + len(cipherText)
err = serializeHeader(w, packetTypeEncryptedKey, packetLen)
if err != nil {
return err
}
_, err = w.Write(header[:])
if err != nil {
return err
}
return writeMPI(w, 8*uint16(len(cipherText)), cipherText)
}
func serializeEncryptedKeyElGamal(w io.Writer, rand io.Reader, header [10]byte, pub *elgamal.PublicKey, keyBlock []byte) error {
c1, c2, err := elgamal.Encrypt(rand, pub, keyBlock)
if err != nil {
return errors.InvalidArgumentError("ElGamal encryption failed: " + err.Error())
}
packetLen := 10 /* header length */
packetLen += 2 /* mpi size */ + (c1.BitLen()+7)/8
packetLen += 2 /* mpi size */ + (c2.BitLen()+7)/8
err = serializeHeader(w, packetTypeEncryptedKey, packetLen)
if err != nil {
return err
}
_, err = w.Write(header[:])
if err != nil {
return err
}
err = writeBig(w, c1)
if err != nil {
return err
}
return writeBig(w, c2)
}

View File

@ -0,0 +1,151 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto/rsa"
"encoding/hex"
"fmt"
"math/big"
"testing"
)
func bigFromBase10(s string) *big.Int {
b, ok := new(big.Int).SetString(s, 10)
if !ok {
panic("bigFromBase10 failed")
}
return b
}
var encryptedKeyPub = rsa.PublicKey{
E: 65537,
N: bigFromBase10("115804063926007623305902631768113868327816898845124614648849934718568541074358183759250136204762053879858102352159854352727097033322663029387610959884180306668628526686121021235757016368038585212410610742029286439607686208110250133174279811431933746643015923132833417396844716207301518956640020862630546868823"),
}
var encryptedKeyRSAPriv = &rsa.PrivateKey{
PublicKey: encryptedKeyPub,
D: bigFromBase10("32355588668219869544751561565313228297765464314098552250409557267371233892496951383426602439009993875125222579159850054973310859166139474359774543943714622292329487391199285040721944491839695981199720170366763547754915493640685849961780092241140181198779299712578774460837139360803883139311171713302987058393"),
}
var encryptedKeyPriv = &PrivateKey{
PublicKey: PublicKey{
PubKeyAlgo: PubKeyAlgoRSA,
},
PrivateKey: encryptedKeyRSAPriv,
}
func TestDecryptingEncryptedKey(t *testing.T) {
for i, encryptedKeyHex := range []string{
"c18c032a67d68660df41c70104005789d0de26b6a50c985a02a13131ca829c413a35d0e6fa8d6842599252162808ac7439c72151c8c6183e76923fe3299301414d0c25a2f06a2257db3839e7df0ec964773f6e4c4ac7ff3b48c444237166dd46ba8ff443a5410dc670cb486672fdbe7c9dfafb75b4fea83af3a204fe2a7dfa86bd20122b4f3d2646cbeecb8f7be8",
// MPI can be shorter than the length of the key.
"c18b032a67d68660df41c70103f8e520c52ae9807183c669ce26e772e482dc5d8cf60e6f59316e145be14d2e5221ee69550db1d5618a8cb002a719f1f0b9345bde21536d410ec90ba86cac37748dec7933eb7f9873873b2d61d3321d1cd44535014f6df58f7bc0c7afb5edc38e1a974428997d2f747f9a173bea9ca53079b409517d332df62d805564cffc9be6",
} {
const expectedKeyHex = "d930363f7e0308c333b9618617ea728963d8df993665ae7be1092d4926fd864b"
p, err := Read(readerFromHex(encryptedKeyHex))
if err != nil {
t.Errorf("#%d: error from Read: %s", i, err)
return
}
ek, ok := p.(*EncryptedKey)
if !ok {
t.Errorf("#%d: didn't parse an EncryptedKey, got %#v", i, p)
return
}
if ek.KeyId != 0x2a67d68660df41c7 || ek.Algo != PubKeyAlgoRSA {
t.Errorf("#%d: unexpected EncryptedKey contents: %#v", i, ek)
return
}
err = ek.Decrypt(encryptedKeyPriv, nil)
if err != nil {
t.Errorf("#%d: error from Decrypt: %s", i, err)
return
}
if ek.CipherFunc != CipherAES256 {
t.Errorf("#%d: unexpected EncryptedKey contents: %#v", i, ek)
return
}
keyHex := fmt.Sprintf("%x", ek.Key)
if keyHex != expectedKeyHex {
t.Errorf("#%d: bad key, got %s want %s", i, keyHex, expectedKeyHex)
}
}
}
func TestEncryptingEncryptedKey(t *testing.T) {
key := []byte{1, 2, 3, 4}
const expectedKeyHex = "01020304"
const keyId = 42
pub := &PublicKey{
PublicKey: &encryptedKeyPub,
KeyId: keyId,
PubKeyAlgo: PubKeyAlgoRSAEncryptOnly,
}
buf := new(bytes.Buffer)
err := SerializeEncryptedKey(buf, pub, CipherAES128, key, nil)
if err != nil {
t.Errorf("error writing encrypted key packet: %s", err)
}
p, err := Read(buf)
if err != nil {
t.Errorf("error from Read: %s", err)
return
}
ek, ok := p.(*EncryptedKey)
if !ok {
t.Errorf("didn't parse an EncryptedKey, got %#v", p)
return
}
if ek.KeyId != keyId || ek.Algo != PubKeyAlgoRSAEncryptOnly {
t.Errorf("unexpected EncryptedKey contents: %#v", ek)
return
}
err = ek.Decrypt(encryptedKeyPriv, nil)
if err != nil {
t.Errorf("error from Decrypt: %s", err)
return
}
if ek.CipherFunc != CipherAES128 {
t.Errorf("unexpected EncryptedKey contents: %#v", ek)
return
}
keyHex := fmt.Sprintf("%x", ek.Key)
if keyHex != expectedKeyHex {
t.Errorf("bad key, got %s want %s", keyHex, expectedKeyHex)
}
}
func TestSerializingEncryptedKey(t *testing.T) {
const encryptedKeyHex = "c18c032a67d68660df41c70104005789d0de26b6a50c985a02a13131ca829c413a35d0e6fa8d6842599252162808ac7439c72151c8c6183e76923fe3299301414d0c25a2f06a2257db3839e7df0ec964773f6e4c4ac7ff3b48c444237166dd46ba8ff443a5410dc670cb486672fdbe7c9dfafb75b4fea83af3a204fe2a7dfa86bd20122b4f3d2646cbeecb8f7be8"
p, err := Read(readerFromHex(encryptedKeyHex))
if err != nil {
t.Fatalf("error from Read: %s", err)
}
ek, ok := p.(*EncryptedKey)
if !ok {
t.Fatalf("didn't parse an EncryptedKey, got %#v", p)
}
var buf bytes.Buffer
ek.Serialize(&buf)
if bufHex := hex.EncodeToString(buf.Bytes()); bufHex != encryptedKeyHex {
t.Fatalf("serialization of encrypted key differed from original. Original was %s, but reserialized as %s", encryptedKeyHex, bufHex)
}
}

89
vendor/golang.org/x/crypto/openpgp/packet/literal.go generated vendored Normal file
View File

@ -0,0 +1,89 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"encoding/binary"
"io"
)
// LiteralData represents an encrypted file. See RFC 4880, section 5.9.
type LiteralData struct {
IsBinary bool
FileName string
Time uint32 // Unix epoch time. Either creation time or modification time. 0 means undefined.
Body io.Reader
}
// ForEyesOnly returns whether the contents of the LiteralData have been marked
// as especially sensitive.
func (l *LiteralData) ForEyesOnly() bool {
return l.FileName == "_CONSOLE"
}
func (l *LiteralData) parse(r io.Reader) (err error) {
var buf [256]byte
_, err = readFull(r, buf[:2])
if err != nil {
return
}
l.IsBinary = buf[0] == 'b'
fileNameLen := int(buf[1])
_, err = readFull(r, buf[:fileNameLen])
if err != nil {
return
}
l.FileName = string(buf[:fileNameLen])
_, err = readFull(r, buf[:4])
if err != nil {
return
}
l.Time = binary.BigEndian.Uint32(buf[:4])
l.Body = r
return
}
// SerializeLiteral serializes a literal data packet to w and returns a
// WriteCloser to which the data itself can be written and which MUST be closed
// on completion. The fileName is truncated to 255 bytes.
func SerializeLiteral(w io.WriteCloser, isBinary bool, fileName string, time uint32) (plaintext io.WriteCloser, err error) {
var buf [4]byte
buf[0] = 't'
if isBinary {
buf[0] = 'b'
}
if len(fileName) > 255 {
fileName = fileName[:255]
}
buf[1] = byte(len(fileName))
inner, err := serializeStreamHeader(w, packetTypeLiteralData)
if err != nil {
return
}
_, err = inner.Write(buf[:2])
if err != nil {
return
}
_, err = inner.Write([]byte(fileName))
if err != nil {
return
}
binary.BigEndian.PutUint32(buf[:], time)
_, err = inner.Write(buf[:])
if err != nil {
return
}
plaintext = inner
return
}

143
vendor/golang.org/x/crypto/openpgp/packet/ocfb.go generated vendored Normal file
View File

@ -0,0 +1,143 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// OpenPGP CFB Mode. http://tools.ietf.org/html/rfc4880#section-13.9
package packet
import (
"crypto/cipher"
)
type ocfbEncrypter struct {
b cipher.Block
fre []byte
outUsed int
}
// An OCFBResyncOption determines if the "resynchronization step" of OCFB is
// performed.
type OCFBResyncOption bool
const (
OCFBResync OCFBResyncOption = true
OCFBNoResync OCFBResyncOption = false
)
// NewOCFBEncrypter returns a cipher.Stream which encrypts data with OpenPGP's
// cipher feedback mode using the given cipher.Block, and an initial amount of
// ciphertext. randData must be random bytes and be the same length as the
// cipher.Block's block size. Resync determines if the "resynchronization step"
// from RFC 4880, 13.9 step 7 is performed. Different parts of OpenPGP vary on
// this point.
func NewOCFBEncrypter(block cipher.Block, randData []byte, resync OCFBResyncOption) (cipher.Stream, []byte) {
blockSize := block.BlockSize()
if len(randData) != blockSize {
return nil, nil
}
x := &ocfbEncrypter{
b: block,
fre: make([]byte, blockSize),
outUsed: 0,
}
prefix := make([]byte, blockSize+2)
block.Encrypt(x.fre, x.fre)
for i := 0; i < blockSize; i++ {
prefix[i] = randData[i] ^ x.fre[i]
}
block.Encrypt(x.fre, prefix[:blockSize])
prefix[blockSize] = x.fre[0] ^ randData[blockSize-2]
prefix[blockSize+1] = x.fre[1] ^ randData[blockSize-1]
if resync {
block.Encrypt(x.fre, prefix[2:])
} else {
x.fre[0] = prefix[blockSize]
x.fre[1] = prefix[blockSize+1]
x.outUsed = 2
}
return x, prefix
}
func (x *ocfbEncrypter) XORKeyStream(dst, src []byte) {
for i := 0; i < len(src); i++ {
if x.outUsed == len(x.fre) {
x.b.Encrypt(x.fre, x.fre)
x.outUsed = 0
}
x.fre[x.outUsed] ^= src[i]
dst[i] = x.fre[x.outUsed]
x.outUsed++
}
}
type ocfbDecrypter struct {
b cipher.Block
fre []byte
outUsed int
}
// NewOCFBDecrypter returns a cipher.Stream which decrypts data with OpenPGP's
// cipher feedback mode using the given cipher.Block. Prefix must be the first
// blockSize + 2 bytes of the ciphertext, where blockSize is the cipher.Block's
// block size. If an incorrect key is detected then nil is returned. On
// successful exit, blockSize+2 bytes of decrypted data are written into
// prefix. Resync determines if the "resynchronization step" from RFC 4880,
// 13.9 step 7 is performed. Different parts of OpenPGP vary on this point.
func NewOCFBDecrypter(block cipher.Block, prefix []byte, resync OCFBResyncOption) cipher.Stream {
blockSize := block.BlockSize()
if len(prefix) != blockSize+2 {
return nil
}
x := &ocfbDecrypter{
b: block,
fre: make([]byte, blockSize),
outUsed: 0,
}
prefixCopy := make([]byte, len(prefix))
copy(prefixCopy, prefix)
block.Encrypt(x.fre, x.fre)
for i := 0; i < blockSize; i++ {
prefixCopy[i] ^= x.fre[i]
}
block.Encrypt(x.fre, prefix[:blockSize])
prefixCopy[blockSize] ^= x.fre[0]
prefixCopy[blockSize+1] ^= x.fre[1]
if prefixCopy[blockSize-2] != prefixCopy[blockSize] ||
prefixCopy[blockSize-1] != prefixCopy[blockSize+1] {
return nil
}
if resync {
block.Encrypt(x.fre, prefix[2:])
} else {
x.fre[0] = prefix[blockSize]
x.fre[1] = prefix[blockSize+1]
x.outUsed = 2
}
copy(prefix, prefixCopy)
return x
}
func (x *ocfbDecrypter) XORKeyStream(dst, src []byte) {
for i := 0; i < len(src); i++ {
if x.outUsed == len(x.fre) {
x.b.Encrypt(x.fre, x.fre)
x.outUsed = 0
}
c := src[i]
dst[i] = x.fre[x.outUsed] ^ src[i]
x.fre[x.outUsed] = c
x.outUsed++
}
}

46
vendor/golang.org/x/crypto/openpgp/packet/ocfb_test.go generated vendored Normal file
View File

@ -0,0 +1,46 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto/aes"
"crypto/rand"
"testing"
)
var commonKey128 = []byte{0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c}
func testOCFB(t *testing.T, resync OCFBResyncOption) {
block, err := aes.NewCipher(commonKey128)
if err != nil {
t.Error(err)
return
}
plaintext := []byte("this is the plaintext, which is long enough to span several blocks.")
randData := make([]byte, block.BlockSize())
rand.Reader.Read(randData)
ocfb, prefix := NewOCFBEncrypter(block, randData, resync)
ciphertext := make([]byte, len(plaintext))
ocfb.XORKeyStream(ciphertext, plaintext)
ocfbdec := NewOCFBDecrypter(block, prefix, resync)
if ocfbdec == nil {
t.Errorf("NewOCFBDecrypter failed (resync: %t)", resync)
return
}
plaintextCopy := make([]byte, len(plaintext))
ocfbdec.XORKeyStream(plaintextCopy, ciphertext)
if !bytes.Equal(plaintextCopy, plaintext) {
t.Errorf("got: %x, want: %x (resync: %t)", plaintextCopy, plaintext, resync)
}
}
func TestOCFB(t *testing.T) {
testOCFB(t, OCFBNoResync)
testOCFB(t, OCFBResync)
}

View File

@ -0,0 +1,73 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"encoding/binary"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
"io"
"strconv"
)
// OnePassSignature represents a one-pass signature packet. See RFC 4880,
// section 5.4.
type OnePassSignature struct {
SigType SignatureType
Hash crypto.Hash
PubKeyAlgo PublicKeyAlgorithm
KeyId uint64
IsLast bool
}
const onePassSignatureVersion = 3
func (ops *OnePassSignature) parse(r io.Reader) (err error) {
var buf [13]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
if buf[0] != onePassSignatureVersion {
err = errors.UnsupportedError("one-pass-signature packet version " + strconv.Itoa(int(buf[0])))
}
var ok bool
ops.Hash, ok = s2k.HashIdToHash(buf[2])
if !ok {
return errors.UnsupportedError("hash function: " + strconv.Itoa(int(buf[2])))
}
ops.SigType = SignatureType(buf[1])
ops.PubKeyAlgo = PublicKeyAlgorithm(buf[3])
ops.KeyId = binary.BigEndian.Uint64(buf[4:12])
ops.IsLast = buf[12] != 0
return
}
// Serialize marshals the given OnePassSignature to w.
func (ops *OnePassSignature) Serialize(w io.Writer) error {
var buf [13]byte
buf[0] = onePassSignatureVersion
buf[1] = uint8(ops.SigType)
var ok bool
buf[2], ok = s2k.HashToHashId(ops.Hash)
if !ok {
return errors.UnsupportedError("hash type: " + strconv.Itoa(int(ops.Hash)))
}
buf[3] = uint8(ops.PubKeyAlgo)
binary.BigEndian.PutUint64(buf[4:12], ops.KeyId)
if ops.IsLast {
buf[12] = 1
}
if err := serializeHeader(w, packetTypeOnePassSignature, len(buf)); err != nil {
return err
}
_, err := w.Write(buf[:])
return err
}

162
vendor/golang.org/x/crypto/openpgp/packet/opaque.go generated vendored Normal file
View File

@ -0,0 +1,162 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"io"
"io/ioutil"
"golang.org/x/crypto/openpgp/errors"
)
// OpaquePacket represents an OpenPGP packet as raw, unparsed data. This is
// useful for splitting and storing the original packet contents separately,
// handling unsupported packet types or accessing parts of the packet not yet
// implemented by this package.
type OpaquePacket struct {
// Packet type
Tag uint8
// Reason why the packet was parsed opaquely
Reason error
// Binary contents of the packet data
Contents []byte
}
func (op *OpaquePacket) parse(r io.Reader) (err error) {
op.Contents, err = ioutil.ReadAll(r)
return
}
// Serialize marshals the packet to a writer in its original form, including
// the packet header.
func (op *OpaquePacket) Serialize(w io.Writer) (err error) {
err = serializeHeader(w, packetType(op.Tag), len(op.Contents))
if err == nil {
_, err = w.Write(op.Contents)
}
return
}
// Parse attempts to parse the opaque contents into a structure supported by
// this package. If the packet is not known then the result will be another
// OpaquePacket.
func (op *OpaquePacket) Parse() (p Packet, err error) {
hdr := bytes.NewBuffer(nil)
err = serializeHeader(hdr, packetType(op.Tag), len(op.Contents))
if err != nil {
op.Reason = err
return op, err
}
p, err = Read(io.MultiReader(hdr, bytes.NewBuffer(op.Contents)))
if err != nil {
op.Reason = err
p = op
}
return
}
// OpaqueReader reads OpaquePackets from an io.Reader.
type OpaqueReader struct {
r io.Reader
}
func NewOpaqueReader(r io.Reader) *OpaqueReader {
return &OpaqueReader{r: r}
}
// Read the next OpaquePacket.
func (or *OpaqueReader) Next() (op *OpaquePacket, err error) {
tag, _, contents, err := readHeader(or.r)
if err != nil {
return
}
op = &OpaquePacket{Tag: uint8(tag), Reason: err}
err = op.parse(contents)
if err != nil {
consumeAll(contents)
}
return
}
// OpaqueSubpacket represents an unparsed OpenPGP subpacket,
// as found in signature and user attribute packets.
type OpaqueSubpacket struct {
SubType uint8
Contents []byte
}
// OpaqueSubpackets extracts opaque, unparsed OpenPGP subpackets from
// their byte representation.
func OpaqueSubpackets(contents []byte) (result []*OpaqueSubpacket, err error) {
var (
subHeaderLen int
subPacket *OpaqueSubpacket
)
for len(contents) > 0 {
subHeaderLen, subPacket, err = nextSubpacket(contents)
if err != nil {
break
}
result = append(result, subPacket)
contents = contents[subHeaderLen+len(subPacket.Contents):]
}
return
}
func nextSubpacket(contents []byte) (subHeaderLen int, subPacket *OpaqueSubpacket, err error) {
// RFC 4880, section 5.2.3.1
var subLen uint32
if len(contents) < 1 {
goto Truncated
}
subPacket = &OpaqueSubpacket{}
switch {
case contents[0] < 192:
subHeaderLen = 2 // 1 length byte, 1 subtype byte
if len(contents) < subHeaderLen {
goto Truncated
}
subLen = uint32(contents[0])
contents = contents[1:]
case contents[0] < 255:
subHeaderLen = 3 // 2 length bytes, 1 subtype
if len(contents) < subHeaderLen {
goto Truncated
}
subLen = uint32(contents[0]-192)<<8 + uint32(contents[1]) + 192
contents = contents[2:]
default:
subHeaderLen = 6 // 5 length bytes, 1 subtype
if len(contents) < subHeaderLen {
goto Truncated
}
subLen = uint32(contents[1])<<24 |
uint32(contents[2])<<16 |
uint32(contents[3])<<8 |
uint32(contents[4])
contents = contents[5:]
}
if subLen > uint32(len(contents)) || subLen == 0 {
goto Truncated
}
subPacket.SubType = contents[0]
subPacket.Contents = contents[1:subLen]
return
Truncated:
err = errors.StructuralError("subpacket truncated")
return
}
func (osp *OpaqueSubpacket) Serialize(w io.Writer) (err error) {
buf := make([]byte, 6)
n := serializeSubpacketLength(buf, len(osp.Contents)+1)
buf[n] = osp.SubType
if _, err = w.Write(buf[:n+1]); err != nil {
return
}
_, err = w.Write(osp.Contents)
return
}

View File

@ -0,0 +1,67 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"encoding/hex"
"io"
"testing"
)
// Test packet.Read error handling in OpaquePacket.Parse,
// which attempts to re-read an OpaquePacket as a supported
// Packet type.
func TestOpaqueParseReason(t *testing.T) {
buf, err := hex.DecodeString(UnsupportedKeyHex)
if err != nil {
t.Fatal(err)
}
or := NewOpaqueReader(bytes.NewBuffer(buf))
count := 0
badPackets := 0
var uid *UserId
for {
op, err := or.Next()
if err == io.EOF {
break
} else if err != nil {
t.Errorf("#%d: opaque read error: %v", count, err)
break
}
// try to parse opaque packet
p, err := op.Parse()
switch pkt := p.(type) {
case *UserId:
uid = pkt
case *OpaquePacket:
// If an OpaquePacket can't re-parse, packet.Read
// certainly had its reasons.
if pkt.Reason == nil {
t.Errorf("#%d: opaque packet, no reason", count)
} else {
badPackets++
}
}
count++
}
const expectedBad = 3
// Test post-conditions, make sure we actually parsed packets as expected.
if badPackets != expectedBad {
t.Errorf("unexpected # unparseable packets: %d (want %d)", badPackets, expectedBad)
}
if uid == nil {
t.Errorf("failed to find expected UID in unsupported keyring")
} else if uid.Id != "Armin M. Warda <warda@nephilim.ruhr.de>" {
t.Errorf("unexpected UID: %v", uid.Id)
}
}
// This key material has public key and signature packet versions modified to
// an unsupported value (1), so that trying to parse the OpaquePacket to
// a typed packet will get an error. It also contains a GnuPG trust packet.
// (Created with: od -An -t x1 pubring.gpg | xargs | sed 's/ //g')
const UnsupportedKeyHex = `988d012e7a18a20000010400d6ac00d92b89c1f4396c243abb9b76d2e9673ad63483291fed88e22b82e255e441c078c6abbbf7d2d195e50b62eeaa915b85b0ec20c225ce2c64c167cacb6e711daf2e45da4a8356a059b8160e3b3628ac0dd8437b31f06d53d6e8ea4214d4a26406a6b63e1001406ef23e0bb3069fac9a99a91f77dfafd5de0f188a5da5e3c9000511b42741726d696e204d2e205761726461203c7761726461406e657068696c696d2e727568722e64653e8900950105102e8936c705d1eb399e58489901013f0e03ff5a0c4f421e34fcfa388129166420c08cd76987bcdec6f01bd0271459a85cc22048820dd4e44ac2c7d23908d540f54facf1b36b0d9c20488781ce9dca856531e76e2e846826e9951338020a03a09b57aa5faa82e9267458bd76105399885ac35af7dc1cbb6aaed7c39e1039f3b5beda2c0e916bd38560509bab81235d1a0ead83b0020000`

551
vendor/golang.org/x/crypto/openpgp/packet/packet.go generated vendored Normal file
View File

@ -0,0 +1,551 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package packet implements parsing and serialization of OpenPGP packets, as
// specified in RFC 4880.
package packet // import "golang.org/x/crypto/openpgp/packet"
import (
"bufio"
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/rsa"
"io"
"math/big"
"golang.org/x/crypto/cast5"
"golang.org/x/crypto/openpgp/errors"
)
// readFull is the same as io.ReadFull except that reading zero bytes returns
// ErrUnexpectedEOF rather than EOF.
func readFull(r io.Reader, buf []byte) (n int, err error) {
n, err = io.ReadFull(r, buf)
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return
}
// readLength reads an OpenPGP length from r. See RFC 4880, section 4.2.2.
func readLength(r io.Reader) (length int64, isPartial bool, err error) {
var buf [4]byte
_, err = readFull(r, buf[:1])
if err != nil {
return
}
switch {
case buf[0] < 192:
length = int64(buf[0])
case buf[0] < 224:
length = int64(buf[0]-192) << 8
_, err = readFull(r, buf[0:1])
if err != nil {
return
}
length += int64(buf[0]) + 192
case buf[0] < 255:
length = int64(1) << (buf[0] & 0x1f)
isPartial = true
default:
_, err = readFull(r, buf[0:4])
if err != nil {
return
}
length = int64(buf[0])<<24 |
int64(buf[1])<<16 |
int64(buf[2])<<8 |
int64(buf[3])
}
return
}
// partialLengthReader wraps an io.Reader and handles OpenPGP partial lengths.
// The continuation lengths are parsed and removed from the stream and EOF is
// returned at the end of the packet. See RFC 4880, section 4.2.2.4.
type partialLengthReader struct {
r io.Reader
remaining int64
isPartial bool
}
func (r *partialLengthReader) Read(p []byte) (n int, err error) {
for r.remaining == 0 {
if !r.isPartial {
return 0, io.EOF
}
r.remaining, r.isPartial, err = readLength(r.r)
if err != nil {
return 0, err
}
}
toRead := int64(len(p))
if toRead > r.remaining {
toRead = r.remaining
}
n, err = r.r.Read(p[:int(toRead)])
r.remaining -= int64(n)
if n < int(toRead) && err == io.EOF {
err = io.ErrUnexpectedEOF
}
return
}
// partialLengthWriter writes a stream of data using OpenPGP partial lengths.
// See RFC 4880, section 4.2.2.4.
type partialLengthWriter struct {
w io.WriteCloser
lengthByte [1]byte
}
func (w *partialLengthWriter) Write(p []byte) (n int, err error) {
for len(p) > 0 {
for power := uint(14); power < 32; power-- {
l := 1 << power
if len(p) >= l {
w.lengthByte[0] = 224 + uint8(power)
_, err = w.w.Write(w.lengthByte[:])
if err != nil {
return
}
var m int
m, err = w.w.Write(p[:l])
n += m
if err != nil {
return
}
p = p[l:]
break
}
}
}
return
}
func (w *partialLengthWriter) Close() error {
w.lengthByte[0] = 0
_, err := w.w.Write(w.lengthByte[:])
if err != nil {
return err
}
return w.w.Close()
}
// A spanReader is an io.LimitReader, but it returns ErrUnexpectedEOF if the
// underlying Reader returns EOF before the limit has been reached.
type spanReader struct {
r io.Reader
n int64
}
func (l *spanReader) Read(p []byte) (n int, err error) {
if l.n <= 0 {
return 0, io.EOF
}
if int64(len(p)) > l.n {
p = p[0:l.n]
}
n, err = l.r.Read(p)
l.n -= int64(n)
if l.n > 0 && err == io.EOF {
err = io.ErrUnexpectedEOF
}
return
}
// readHeader parses a packet header and returns an io.Reader which will return
// the contents of the packet. See RFC 4880, section 4.2.
func readHeader(r io.Reader) (tag packetType, length int64, contents io.Reader, err error) {
var buf [4]byte
_, err = io.ReadFull(r, buf[:1])
if err != nil {
return
}
if buf[0]&0x80 == 0 {
err = errors.StructuralError("tag byte does not have MSB set")
return
}
if buf[0]&0x40 == 0 {
// Old format packet
tag = packetType((buf[0] & 0x3f) >> 2)
lengthType := buf[0] & 3
if lengthType == 3 {
length = -1
contents = r
return
}
lengthBytes := 1 << lengthType
_, err = readFull(r, buf[0:lengthBytes])
if err != nil {
return
}
for i := 0; i < lengthBytes; i++ {
length <<= 8
length |= int64(buf[i])
}
contents = &spanReader{r, length}
return
}
// New format packet
tag = packetType(buf[0] & 0x3f)
length, isPartial, err := readLength(r)
if err != nil {
return
}
if isPartial {
contents = &partialLengthReader{
remaining: length,
isPartial: true,
r: r,
}
length = -1
} else {
contents = &spanReader{r, length}
}
return
}
// serializeHeader writes an OpenPGP packet header to w. See RFC 4880, section
// 4.2.
func serializeHeader(w io.Writer, ptype packetType, length int) (err error) {
var buf [6]byte
var n int
buf[0] = 0x80 | 0x40 | byte(ptype)
if length < 192 {
buf[1] = byte(length)
n = 2
} else if length < 8384 {
length -= 192
buf[1] = 192 + byte(length>>8)
buf[2] = byte(length)
n = 3
} else {
buf[1] = 255
buf[2] = byte(length >> 24)
buf[3] = byte(length >> 16)
buf[4] = byte(length >> 8)
buf[5] = byte(length)
n = 6
}
_, err = w.Write(buf[:n])
return
}
// serializeStreamHeader writes an OpenPGP packet header to w where the
// length of the packet is unknown. It returns a io.WriteCloser which can be
// used to write the contents of the packet. See RFC 4880, section 4.2.
func serializeStreamHeader(w io.WriteCloser, ptype packetType) (out io.WriteCloser, err error) {
var buf [1]byte
buf[0] = 0x80 | 0x40 | byte(ptype)
_, err = w.Write(buf[:])
if err != nil {
return
}
out = &partialLengthWriter{w: w}
return
}
// Packet represents an OpenPGP packet. Users are expected to try casting
// instances of this interface to specific packet types.
type Packet interface {
parse(io.Reader) error
}
// consumeAll reads from the given Reader until error, returning the number of
// bytes read.
func consumeAll(r io.Reader) (n int64, err error) {
var m int
var buf [1024]byte
for {
m, err = r.Read(buf[:])
n += int64(m)
if err == io.EOF {
err = nil
return
}
if err != nil {
return
}
}
}
// packetType represents the numeric ids of the different OpenPGP packet types. See
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-2
type packetType uint8
const (
packetTypeEncryptedKey packetType = 1
packetTypeSignature packetType = 2
packetTypeSymmetricKeyEncrypted packetType = 3
packetTypeOnePassSignature packetType = 4
packetTypePrivateKey packetType = 5
packetTypePublicKey packetType = 6
packetTypePrivateSubkey packetType = 7
packetTypeCompressed packetType = 8
packetTypeSymmetricallyEncrypted packetType = 9
packetTypeLiteralData packetType = 11
packetTypeUserId packetType = 13
packetTypePublicSubkey packetType = 14
packetTypeUserAttribute packetType = 17
packetTypeSymmetricallyEncryptedMDC packetType = 18
)
// peekVersion detects the version of a public key packet about to
// be read. A bufio.Reader at the original position of the io.Reader
// is returned.
func peekVersion(r io.Reader) (bufr *bufio.Reader, ver byte, err error) {
bufr = bufio.NewReader(r)
var verBuf []byte
if verBuf, err = bufr.Peek(1); err != nil {
return
}
ver = verBuf[0]
return
}
// Read reads a single OpenPGP packet from the given io.Reader. If there is an
// error parsing a packet, the whole packet is consumed from the input.
func Read(r io.Reader) (p Packet, err error) {
tag, _, contents, err := readHeader(r)
if err != nil {
return
}
switch tag {
case packetTypeEncryptedKey:
p = new(EncryptedKey)
case packetTypeSignature:
var version byte
// Detect signature version
if contents, version, err = peekVersion(contents); err != nil {
return
}
if version < 4 {
p = new(SignatureV3)
} else {
p = new(Signature)
}
case packetTypeSymmetricKeyEncrypted:
p = new(SymmetricKeyEncrypted)
case packetTypeOnePassSignature:
p = new(OnePassSignature)
case packetTypePrivateKey, packetTypePrivateSubkey:
pk := new(PrivateKey)
if tag == packetTypePrivateSubkey {
pk.IsSubkey = true
}
p = pk
case packetTypePublicKey, packetTypePublicSubkey:
var version byte
if contents, version, err = peekVersion(contents); err != nil {
return
}
isSubkey := tag == packetTypePublicSubkey
if version < 4 {
p = &PublicKeyV3{IsSubkey: isSubkey}
} else {
p = &PublicKey{IsSubkey: isSubkey}
}
case packetTypeCompressed:
p = new(Compressed)
case packetTypeSymmetricallyEncrypted:
p = new(SymmetricallyEncrypted)
case packetTypeLiteralData:
p = new(LiteralData)
case packetTypeUserId:
p = new(UserId)
case packetTypeUserAttribute:
p = new(UserAttribute)
case packetTypeSymmetricallyEncryptedMDC:
se := new(SymmetricallyEncrypted)
se.MDC = true
p = se
default:
err = errors.UnknownPacketTypeError(tag)
}
if p != nil {
err = p.parse(contents)
}
if err != nil {
consumeAll(contents)
}
return
}
// SignatureType represents the different semantic meanings of an OpenPGP
// signature. See RFC 4880, section 5.2.1.
type SignatureType uint8
const (
SigTypeBinary SignatureType = 0
SigTypeText = 1
SigTypeGenericCert = 0x10
SigTypePersonaCert = 0x11
SigTypeCasualCert = 0x12
SigTypePositiveCert = 0x13
SigTypeSubkeyBinding = 0x18
SigTypePrimaryKeyBinding = 0x19
SigTypeDirectSignature = 0x1F
SigTypeKeyRevocation = 0x20
SigTypeSubkeyRevocation = 0x28
)
// PublicKeyAlgorithm represents the different public key system specified for
// OpenPGP. See
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-12
type PublicKeyAlgorithm uint8
const (
PubKeyAlgoRSA PublicKeyAlgorithm = 1
PubKeyAlgoElGamal PublicKeyAlgorithm = 16
PubKeyAlgoDSA PublicKeyAlgorithm = 17
// RFC 6637, Section 5.
PubKeyAlgoECDH PublicKeyAlgorithm = 18
PubKeyAlgoECDSA PublicKeyAlgorithm = 19
// Deprecated in RFC 4880, Section 13.5. Use key flags instead.
PubKeyAlgoRSAEncryptOnly PublicKeyAlgorithm = 2
PubKeyAlgoRSASignOnly PublicKeyAlgorithm = 3
)
// CanEncrypt returns true if it's possible to encrypt a message to a public
// key of the given type.
func (pka PublicKeyAlgorithm) CanEncrypt() bool {
switch pka {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoElGamal:
return true
}
return false
}
// CanSign returns true if it's possible for a public key of the given type to
// sign a message.
func (pka PublicKeyAlgorithm) CanSign() bool {
switch pka {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA:
return true
}
return false
}
// CipherFunction represents the different block ciphers specified for OpenPGP. See
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-13
type CipherFunction uint8
const (
Cipher3DES CipherFunction = 2
CipherCAST5 CipherFunction = 3
CipherAES128 CipherFunction = 7
CipherAES192 CipherFunction = 8
CipherAES256 CipherFunction = 9
)
// KeySize returns the key size, in bytes, of cipher.
func (cipher CipherFunction) KeySize() int {
switch cipher {
case Cipher3DES:
return 24
case CipherCAST5:
return cast5.KeySize
case CipherAES128:
return 16
case CipherAES192:
return 24
case CipherAES256:
return 32
}
return 0
}
// blockSize returns the block size, in bytes, of cipher.
func (cipher CipherFunction) blockSize() int {
switch cipher {
case Cipher3DES:
return des.BlockSize
case CipherCAST5:
return 8
case CipherAES128, CipherAES192, CipherAES256:
return 16
}
return 0
}
// new returns a fresh instance of the given cipher.
func (cipher CipherFunction) new(key []byte) (block cipher.Block) {
switch cipher {
case Cipher3DES:
block, _ = des.NewTripleDESCipher(key)
case CipherCAST5:
block, _ = cast5.NewCipher(key)
case CipherAES128, CipherAES192, CipherAES256:
block, _ = aes.NewCipher(key)
}
return
}
// readMPI reads a big integer from r. The bit length returned is the bit
// length that was specified in r. This is preserved so that the integer can be
// reserialized exactly.
func readMPI(r io.Reader) (mpi []byte, bitLength uint16, err error) {
var buf [2]byte
_, err = readFull(r, buf[0:])
if err != nil {
return
}
bitLength = uint16(buf[0])<<8 | uint16(buf[1])
numBytes := (int(bitLength) + 7) / 8
mpi = make([]byte, numBytes)
_, err = readFull(r, mpi)
// According to RFC 4880 3.2. we should check that the MPI has no leading
// zeroes (at least when not an encrypted MPI?), but this implementation
// does generate leading zeroes, so we keep accepting them.
return
}
// writeMPI serializes a big integer to w.
func writeMPI(w io.Writer, bitLength uint16, mpiBytes []byte) (err error) {
// Note that we can produce leading zeroes, in violation of RFC 4880 3.2.
// Implementations seem to be tolerant of them, and stripping them would
// make it complex to guarantee matching re-serialization.
_, err = w.Write([]byte{byte(bitLength >> 8), byte(bitLength)})
if err == nil {
_, err = w.Write(mpiBytes)
}
return
}
// writeBig serializes a *big.Int to w.
func writeBig(w io.Writer, i *big.Int) error {
return writeMPI(w, uint16(i.BitLen()), i.Bytes())
}
// padToKeySize left-pads a MPI with zeroes to match the length of the
// specified RSA public.
func padToKeySize(pub *rsa.PublicKey, b []byte) []byte {
k := (pub.N.BitLen() + 7) / 8
if len(b) >= k {
return b
}
bb := make([]byte, k)
copy(bb[len(bb)-len(b):], b)
return bb
}
// CompressionAlgo Represents the different compression algorithms
// supported by OpenPGP (except for BZIP2, which is not currently
// supported). See Section 9.3 of RFC 4880.
type CompressionAlgo uint8
const (
CompressionNone CompressionAlgo = 0
CompressionZIP CompressionAlgo = 1
CompressionZLIB CompressionAlgo = 2
)

View File

@ -0,0 +1,255 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"encoding/hex"
"fmt"
"golang.org/x/crypto/openpgp/errors"
"io"
"io/ioutil"
"testing"
)
func TestReadFull(t *testing.T) {
var out [4]byte
b := bytes.NewBufferString("foo")
n, err := readFull(b, out[:3])
if n != 3 || err != nil {
t.Errorf("full read failed n:%d err:%s", n, err)
}
b = bytes.NewBufferString("foo")
n, err = readFull(b, out[:4])
if n != 3 || err != io.ErrUnexpectedEOF {
t.Errorf("partial read failed n:%d err:%s", n, err)
}
b = bytes.NewBuffer(nil)
n, err = readFull(b, out[:3])
if n != 0 || err != io.ErrUnexpectedEOF {
t.Errorf("empty read failed n:%d err:%s", n, err)
}
}
func readerFromHex(s string) io.Reader {
data, err := hex.DecodeString(s)
if err != nil {
panic("readerFromHex: bad input")
}
return bytes.NewBuffer(data)
}
var readLengthTests = []struct {
hexInput string
length int64
isPartial bool
err error
}{
{"", 0, false, io.ErrUnexpectedEOF},
{"1f", 31, false, nil},
{"c0", 0, false, io.ErrUnexpectedEOF},
{"c101", 256 + 1 + 192, false, nil},
{"e0", 1, true, nil},
{"e1", 2, true, nil},
{"e2", 4, true, nil},
{"ff", 0, false, io.ErrUnexpectedEOF},
{"ff00", 0, false, io.ErrUnexpectedEOF},
{"ff0000", 0, false, io.ErrUnexpectedEOF},
{"ff000000", 0, false, io.ErrUnexpectedEOF},
{"ff00000000", 0, false, nil},
{"ff01020304", 16909060, false, nil},
}
func TestReadLength(t *testing.T) {
for i, test := range readLengthTests {
length, isPartial, err := readLength(readerFromHex(test.hexInput))
if test.err != nil {
if err != test.err {
t.Errorf("%d: expected different error got:%s want:%s", i, err, test.err)
}
continue
}
if err != nil {
t.Errorf("%d: unexpected error: %s", i, err)
continue
}
if length != test.length || isPartial != test.isPartial {
t.Errorf("%d: bad result got:(%d,%t) want:(%d,%t)", i, length, isPartial, test.length, test.isPartial)
}
}
}
var partialLengthReaderTests = []struct {
hexInput string
err error
hexOutput string
}{
{"e0", io.ErrUnexpectedEOF, ""},
{"e001", io.ErrUnexpectedEOF, ""},
{"e0010102", nil, "0102"},
{"ff00000000", nil, ""},
{"e10102e1030400", nil, "01020304"},
{"e101", io.ErrUnexpectedEOF, ""},
}
func TestPartialLengthReader(t *testing.T) {
for i, test := range partialLengthReaderTests {
r := &partialLengthReader{readerFromHex(test.hexInput), 0, true}
out, err := ioutil.ReadAll(r)
if test.err != nil {
if err != test.err {
t.Errorf("%d: expected different error got:%s want:%s", i, err, test.err)
}
continue
}
if err != nil {
t.Errorf("%d: unexpected error: %s", i, err)
continue
}
got := fmt.Sprintf("%x", out)
if got != test.hexOutput {
t.Errorf("%d: got:%s want:%s", i, test.hexOutput, got)
}
}
}
var readHeaderTests = []struct {
hexInput string
structuralError bool
unexpectedEOF bool
tag int
length int64
hexOutput string
}{
{"", false, false, 0, 0, ""},
{"7f", true, false, 0, 0, ""},
// Old format headers
{"80", false, true, 0, 0, ""},
{"8001", false, true, 0, 1, ""},
{"800102", false, false, 0, 1, "02"},
{"81000102", false, false, 0, 1, "02"},
{"820000000102", false, false, 0, 1, "02"},
{"860000000102", false, false, 1, 1, "02"},
{"83010203", false, false, 0, -1, "010203"},
// New format headers
{"c0", false, true, 0, 0, ""},
{"c000", false, false, 0, 0, ""},
{"c00102", false, false, 0, 1, "02"},
{"c0020203", false, false, 0, 2, "0203"},
{"c00202", false, true, 0, 2, ""},
{"c3020203", false, false, 3, 2, "0203"},
}
func TestReadHeader(t *testing.T) {
for i, test := range readHeaderTests {
tag, length, contents, err := readHeader(readerFromHex(test.hexInput))
if test.structuralError {
if _, ok := err.(errors.StructuralError); ok {
continue
}
t.Errorf("%d: expected StructuralError, got:%s", i, err)
continue
}
if err != nil {
if len(test.hexInput) == 0 && err == io.EOF {
continue
}
if !test.unexpectedEOF || err != io.ErrUnexpectedEOF {
t.Errorf("%d: unexpected error from readHeader: %s", i, err)
}
continue
}
if int(tag) != test.tag || length != test.length {
t.Errorf("%d: got:(%d,%d) want:(%d,%d)", i, int(tag), length, test.tag, test.length)
continue
}
body, err := ioutil.ReadAll(contents)
if err != nil {
if !test.unexpectedEOF || err != io.ErrUnexpectedEOF {
t.Errorf("%d: unexpected error from contents: %s", i, err)
}
continue
}
if test.unexpectedEOF {
t.Errorf("%d: expected ErrUnexpectedEOF from contents but got no error", i)
continue
}
got := fmt.Sprintf("%x", body)
if got != test.hexOutput {
t.Errorf("%d: got:%s want:%s", i, got, test.hexOutput)
}
}
}
func TestSerializeHeader(t *testing.T) {
tag := packetTypePublicKey
lengths := []int{0, 1, 2, 64, 192, 193, 8000, 8384, 8385, 10000}
for _, length := range lengths {
buf := bytes.NewBuffer(nil)
serializeHeader(buf, tag, length)
tag2, length2, _, err := readHeader(buf)
if err != nil {
t.Errorf("length %d, err: %s", length, err)
}
if tag2 != tag {
t.Errorf("length %d, tag incorrect (got %d, want %d)", length, tag2, tag)
}
if int(length2) != length {
t.Errorf("length %d, length incorrect (got %d)", length, length2)
}
}
}
func TestPartialLengths(t *testing.T) {
buf := bytes.NewBuffer(nil)
w := new(partialLengthWriter)
w.w = noOpCloser{buf}
const maxChunkSize = 64
var b [maxChunkSize]byte
var n uint8
for l := 1; l <= maxChunkSize; l++ {
for i := 0; i < l; i++ {
b[i] = n
n++
}
m, err := w.Write(b[:l])
if m != l {
t.Errorf("short write got: %d want: %d", m, l)
}
if err != nil {
t.Errorf("error from write: %s", err)
}
}
w.Close()
want := (maxChunkSize * (maxChunkSize + 1)) / 2
copyBuf := bytes.NewBuffer(nil)
r := &partialLengthReader{buf, 0, true}
m, err := io.Copy(copyBuf, r)
if m != int64(want) {
t.Errorf("short copy got: %d want: %d", m, want)
}
if err != nil {
t.Errorf("error from copy: %s", err)
}
copyBytes := copyBuf.Bytes()
for i := 0; i < want; i++ {
if copyBytes[i] != uint8(i) {
t.Errorf("bad pattern in copy at %d", i)
break
}
}
}

View File

@ -0,0 +1,385 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/cipher"
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"crypto/sha1"
"io"
"io/ioutil"
"math/big"
"strconv"
"time"
"golang.org/x/crypto/openpgp/elgamal"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
// PrivateKey represents a possibly encrypted private key. See RFC 4880,
// section 5.5.3.
type PrivateKey struct {
PublicKey
Encrypted bool // if true then the private key is unavailable until Decrypt has been called.
encryptedData []byte
cipher CipherFunction
s2k func(out, in []byte)
PrivateKey interface{} // An *{rsa|dsa|ecdsa}.PrivateKey or a crypto.Signer.
sha1Checksum bool
iv []byte
}
func NewRSAPrivateKey(currentTime time.Time, priv *rsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewRSAPublicKey(currentTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewDSAPrivateKey(currentTime time.Time, priv *dsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewDSAPublicKey(currentTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewElGamalPrivateKey(currentTime time.Time, priv *elgamal.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewElGamalPublicKey(currentTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewECDSAPrivateKey(currentTime time.Time, priv *ecdsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewECDSAPublicKey(currentTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
// NewSignerPrivateKey creates a PrivateKey from a crypto.Signer that
// implements RSA or ECDSA.
func NewSignerPrivateKey(currentTime time.Time, signer crypto.Signer) *PrivateKey {
pk := new(PrivateKey)
// In general, the public Keys should be used as pointers. We still
// type-switch on the values, for backwards-compatibility.
switch pubkey := signer.Public().(type) {
case *rsa.PublicKey:
pk.PublicKey = *NewRSAPublicKey(currentTime, pubkey)
case rsa.PublicKey:
pk.PublicKey = *NewRSAPublicKey(currentTime, &pubkey)
case *ecdsa.PublicKey:
pk.PublicKey = *NewECDSAPublicKey(currentTime, pubkey)
case ecdsa.PublicKey:
pk.PublicKey = *NewECDSAPublicKey(currentTime, &pubkey)
default:
panic("openpgp: unknown crypto.Signer type in NewSignerPrivateKey")
}
pk.PrivateKey = signer
return pk
}
func (pk *PrivateKey) parse(r io.Reader) (err error) {
err = (&pk.PublicKey).parse(r)
if err != nil {
return
}
var buf [1]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
s2kType := buf[0]
switch s2kType {
case 0:
pk.s2k = nil
pk.Encrypted = false
case 254, 255:
_, err = readFull(r, buf[:])
if err != nil {
return
}
pk.cipher = CipherFunction(buf[0])
pk.Encrypted = true
pk.s2k, err = s2k.Parse(r)
if err != nil {
return
}
if s2kType == 254 {
pk.sha1Checksum = true
}
default:
return errors.UnsupportedError("deprecated s2k function in private key")
}
if pk.Encrypted {
blockSize := pk.cipher.blockSize()
if blockSize == 0 {
return errors.UnsupportedError("unsupported cipher in private key: " + strconv.Itoa(int(pk.cipher)))
}
pk.iv = make([]byte, blockSize)
_, err = readFull(r, pk.iv)
if err != nil {
return
}
}
pk.encryptedData, err = ioutil.ReadAll(r)
if err != nil {
return
}
if !pk.Encrypted {
return pk.parsePrivateKey(pk.encryptedData)
}
return
}
func mod64kHash(d []byte) uint16 {
var h uint16
for _, b := range d {
h += uint16(b)
}
return h
}
func (pk *PrivateKey) Serialize(w io.Writer) (err error) {
// TODO(agl): support encrypted private keys
buf := bytes.NewBuffer(nil)
err = pk.PublicKey.serializeWithoutHeaders(buf)
if err != nil {
return
}
buf.WriteByte(0 /* no encryption */)
privateKeyBuf := bytes.NewBuffer(nil)
switch priv := pk.PrivateKey.(type) {
case *rsa.PrivateKey:
err = serializeRSAPrivateKey(privateKeyBuf, priv)
case *dsa.PrivateKey:
err = serializeDSAPrivateKey(privateKeyBuf, priv)
case *elgamal.PrivateKey:
err = serializeElGamalPrivateKey(privateKeyBuf, priv)
case *ecdsa.PrivateKey:
err = serializeECDSAPrivateKey(privateKeyBuf, priv)
default:
err = errors.InvalidArgumentError("unknown private key type")
}
if err != nil {
return
}
ptype := packetTypePrivateKey
contents := buf.Bytes()
privateKeyBytes := privateKeyBuf.Bytes()
if pk.IsSubkey {
ptype = packetTypePrivateSubkey
}
err = serializeHeader(w, ptype, len(contents)+len(privateKeyBytes)+2)
if err != nil {
return
}
_, err = w.Write(contents)
if err != nil {
return
}
_, err = w.Write(privateKeyBytes)
if err != nil {
return
}
checksum := mod64kHash(privateKeyBytes)
var checksumBytes [2]byte
checksumBytes[0] = byte(checksum >> 8)
checksumBytes[1] = byte(checksum)
_, err = w.Write(checksumBytes[:])
return
}
func serializeRSAPrivateKey(w io.Writer, priv *rsa.PrivateKey) error {
err := writeBig(w, priv.D)
if err != nil {
return err
}
err = writeBig(w, priv.Primes[1])
if err != nil {
return err
}
err = writeBig(w, priv.Primes[0])
if err != nil {
return err
}
return writeBig(w, priv.Precomputed.Qinv)
}
func serializeDSAPrivateKey(w io.Writer, priv *dsa.PrivateKey) error {
return writeBig(w, priv.X)
}
func serializeElGamalPrivateKey(w io.Writer, priv *elgamal.PrivateKey) error {
return writeBig(w, priv.X)
}
func serializeECDSAPrivateKey(w io.Writer, priv *ecdsa.PrivateKey) error {
return writeBig(w, priv.D)
}
// Decrypt decrypts an encrypted private key using a passphrase.
func (pk *PrivateKey) Decrypt(passphrase []byte) error {
if !pk.Encrypted {
return nil
}
key := make([]byte, pk.cipher.KeySize())
pk.s2k(key, passphrase)
block := pk.cipher.new(key)
cfb := cipher.NewCFBDecrypter(block, pk.iv)
data := make([]byte, len(pk.encryptedData))
cfb.XORKeyStream(data, pk.encryptedData)
if pk.sha1Checksum {
if len(data) < sha1.Size {
return errors.StructuralError("truncated private key data")
}
h := sha1.New()
h.Write(data[:len(data)-sha1.Size])
sum := h.Sum(nil)
if !bytes.Equal(sum, data[len(data)-sha1.Size:]) {
return errors.StructuralError("private key checksum failure")
}
data = data[:len(data)-sha1.Size]
} else {
if len(data) < 2 {
return errors.StructuralError("truncated private key data")
}
var sum uint16
for i := 0; i < len(data)-2; i++ {
sum += uint16(data[i])
}
if data[len(data)-2] != uint8(sum>>8) ||
data[len(data)-1] != uint8(sum) {
return errors.StructuralError("private key checksum failure")
}
data = data[:len(data)-2]
}
return pk.parsePrivateKey(data)
}
func (pk *PrivateKey) parsePrivateKey(data []byte) (err error) {
switch pk.PublicKey.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoRSAEncryptOnly:
return pk.parseRSAPrivateKey(data)
case PubKeyAlgoDSA:
return pk.parseDSAPrivateKey(data)
case PubKeyAlgoElGamal:
return pk.parseElGamalPrivateKey(data)
case PubKeyAlgoECDSA:
return pk.parseECDSAPrivateKey(data)
}
panic("impossible")
}
func (pk *PrivateKey) parseRSAPrivateKey(data []byte) (err error) {
rsaPub := pk.PublicKey.PublicKey.(*rsa.PublicKey)
rsaPriv := new(rsa.PrivateKey)
rsaPriv.PublicKey = *rsaPub
buf := bytes.NewBuffer(data)
d, _, err := readMPI(buf)
if err != nil {
return
}
p, _, err := readMPI(buf)
if err != nil {
return
}
q, _, err := readMPI(buf)
if err != nil {
return
}
rsaPriv.D = new(big.Int).SetBytes(d)
rsaPriv.Primes = make([]*big.Int, 2)
rsaPriv.Primes[0] = new(big.Int).SetBytes(p)
rsaPriv.Primes[1] = new(big.Int).SetBytes(q)
if err := rsaPriv.Validate(); err != nil {
return err
}
rsaPriv.Precompute()
pk.PrivateKey = rsaPriv
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) parseDSAPrivateKey(data []byte) (err error) {
dsaPub := pk.PublicKey.PublicKey.(*dsa.PublicKey)
dsaPriv := new(dsa.PrivateKey)
dsaPriv.PublicKey = *dsaPub
buf := bytes.NewBuffer(data)
x, _, err := readMPI(buf)
if err != nil {
return
}
dsaPriv.X = new(big.Int).SetBytes(x)
pk.PrivateKey = dsaPriv
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) parseElGamalPrivateKey(data []byte) (err error) {
pub := pk.PublicKey.PublicKey.(*elgamal.PublicKey)
priv := new(elgamal.PrivateKey)
priv.PublicKey = *pub
buf := bytes.NewBuffer(data)
x, _, err := readMPI(buf)
if err != nil {
return
}
priv.X = new(big.Int).SetBytes(x)
pk.PrivateKey = priv
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) {
ecdsaPub := pk.PublicKey.PublicKey.(*ecdsa.PublicKey)
buf := bytes.NewBuffer(data)
d, _, err := readMPI(buf)
if err != nil {
return
}
pk.PrivateKey = &ecdsa.PrivateKey{
PublicKey: *ecdsaPub,
D: new(big.Int).SetBytes(d),
}
pk.Encrypted = false
pk.encryptedData = nil
return nil
}

View File

@ -0,0 +1,249 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"encoding/hex"
"hash"
"testing"
"time"
)
var privateKeyTests = []struct {
privateKeyHex string
creationTime time.Time
}{
{
privKeyRSAHex,
time.Unix(0x4cc349a8, 0),
},
{
privKeyElGamalHex,
time.Unix(0x4df9ee1a, 0),
},
}
func TestPrivateKeyRead(t *testing.T) {
for i, test := range privateKeyTests {
packet, err := Read(readerFromHex(test.privateKeyHex))
if err != nil {
t.Errorf("#%d: failed to parse: %s", i, err)
continue
}
privKey := packet.(*PrivateKey)
if !privKey.Encrypted {
t.Errorf("#%d: private key isn't encrypted", i)
continue
}
err = privKey.Decrypt([]byte("wrong password"))
if err == nil {
t.Errorf("#%d: decrypted with incorrect key", i)
continue
}
err = privKey.Decrypt([]byte("testing"))
if err != nil {
t.Errorf("#%d: failed to decrypt: %s", i, err)
continue
}
if !privKey.CreationTime.Equal(test.creationTime) || privKey.Encrypted {
t.Errorf("#%d: bad result, got: %#v", i, privKey)
}
}
}
func populateHash(hashFunc crypto.Hash, msg []byte) (hash.Hash, error) {
h := hashFunc.New()
if _, err := h.Write(msg); err != nil {
return nil, err
}
return h, nil
}
func TestRSAPrivateKey(t *testing.T) {
privKeyDER, _ := hex.DecodeString(pkcs1PrivKeyHex)
rsaPriv, err := x509.ParsePKCS1PrivateKey(privKeyDER)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
if err := NewRSAPrivateKey(time.Now(), rsaPriv).Serialize(&buf); err != nil {
t.Fatal(err)
}
p, err := Read(&buf)
if err != nil {
t.Fatal(err)
}
priv, ok := p.(*PrivateKey)
if !ok {
t.Fatal("didn't parse private key")
}
sig := &Signature{
PubKeyAlgo: PubKeyAlgoRSA,
Hash: crypto.SHA256,
}
msg := []byte("Hello World!")
h, err := populateHash(sig.Hash, msg)
if err != nil {
t.Fatal(err)
}
if err := sig.Sign(h, priv, nil); err != nil {
t.Fatal(err)
}
if h, err = populateHash(sig.Hash, msg); err != nil {
t.Fatal(err)
}
if err := priv.VerifySignature(h, sig); err != nil {
t.Fatal(err)
}
}
func TestECDSAPrivateKey(t *testing.T) {
ecdsaPriv, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
if err := NewECDSAPrivateKey(time.Now(), ecdsaPriv).Serialize(&buf); err != nil {
t.Fatal(err)
}
p, err := Read(&buf)
if err != nil {
t.Fatal(err)
}
priv, ok := p.(*PrivateKey)
if !ok {
t.Fatal("didn't parse private key")
}
sig := &Signature{
PubKeyAlgo: PubKeyAlgoECDSA,
Hash: crypto.SHA256,
}
msg := []byte("Hello World!")
h, err := populateHash(sig.Hash, msg)
if err != nil {
t.Fatal(err)
}
if err := sig.Sign(h, priv, nil); err != nil {
t.Fatal(err)
}
if h, err = populateHash(sig.Hash, msg); err != nil {
t.Fatal(err)
}
if err := priv.VerifySignature(h, sig); err != nil {
t.Fatal(err)
}
}
type rsaSigner struct {
*rsa.PrivateKey
}
func TestRSASignerPrivateKey(t *testing.T) {
rsaPriv, err := rsa.GenerateKey(rand.Reader, 1024)
if err != nil {
t.Fatal(err)
}
priv := NewSignerPrivateKey(time.Now(), &rsaSigner{rsaPriv})
sig := &Signature{
PubKeyAlgo: PubKeyAlgoRSA,
Hash: crypto.SHA256,
}
msg := []byte("Hello World!")
h, err := populateHash(sig.Hash, msg)
if err != nil {
t.Fatal(err)
}
if err := sig.Sign(h, priv, nil); err != nil {
t.Fatal(err)
}
if h, err = populateHash(sig.Hash, msg); err != nil {
t.Fatal(err)
}
if err := priv.VerifySignature(h, sig); err != nil {
t.Fatal(err)
}
}
type ecdsaSigner struct {
*ecdsa.PrivateKey
}
func TestECDSASignerPrivateKey(t *testing.T) {
ecdsaPriv, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
t.Fatal(err)
}
priv := NewSignerPrivateKey(time.Now(), &ecdsaSigner{ecdsaPriv})
if priv.PubKeyAlgo != PubKeyAlgoECDSA {
t.Fatal("NewSignerPrivateKey should have made an ECSDA private key")
}
sig := &Signature{
PubKeyAlgo: PubKeyAlgoECDSA,
Hash: crypto.SHA256,
}
msg := []byte("Hello World!")
h, err := populateHash(sig.Hash, msg)
if err != nil {
t.Fatal(err)
}
if err := sig.Sign(h, priv, nil); err != nil {
t.Fatal(err)
}
if h, err = populateHash(sig.Hash, msg); err != nil {
t.Fatal(err)
}
if err := priv.VerifySignature(h, sig); err != nil {
t.Fatal(err)
}
}
func TestIssue11505(t *testing.T) {
// parsing a rsa private key with p or q == 1 used to panic due to a divide by zero
_, _ = Read(readerFromHex("9c3004303030300100000011303030000000000000010130303030303030303030303030303030303030303030303030303030303030303030303030303030303030"))
}
// Generated with `gpg --export-secret-keys "Test Key 2"`
const privKeyRSAHex = "9501fe044cc349a8010400b70ca0010e98c090008d45d1ee8f9113bd5861fd57b88bacb7c68658747663f1e1a3b5a98f32fda6472373c024b97359cd2efc88ff60f77751adfbf6af5e615e6a1408cfad8bf0cea30b0d5f53aa27ad59089ba9b15b7ebc2777a25d7b436144027e3bcd203909f147d0e332b240cf63d3395f5dfe0df0a6c04e8655af7eacdf0011010001fe0303024a252e7d475fd445607de39a265472aa74a9320ba2dac395faa687e9e0336aeb7e9a7397e511b5afd9dc84557c80ac0f3d4d7bfec5ae16f20d41c8c84a04552a33870b930420e230e179564f6d19bb153145e76c33ae993886c388832b0fa042ddda7f133924f3854481533e0ede31d51278c0519b29abc3bf53da673e13e3e1214b52413d179d7f66deee35cac8eacb060f78379d70ef4af8607e68131ff529439668fc39c9ce6dfef8a5ac234d234802cbfb749a26107db26406213ae5c06d4673253a3cbee1fcbae58d6ab77e38d6e2c0e7c6317c48e054edadb5a40d0d48acb44643d998139a8a66bb820be1f3f80185bc777d14b5954b60effe2448a036d565c6bc0b915fcea518acdd20ab07bc1529f561c58cd044f723109b93f6fd99f876ff891d64306b5d08f48bab59f38695e9109c4dec34013ba3153488ce070268381ba923ee1eb77125b36afcb4347ec3478c8f2735b06ef17351d872e577fa95d0c397c88c71b59629a36aec"
// Generated by `gpg --export-secret-keys` followed by a manual extraction of
// the ElGamal subkey from the packets.
const privKeyElGamalHex = "9d0157044df9ee1a100400eb8e136a58ec39b582629cdadf830bc64e0a94ed8103ca8bb247b27b11b46d1d25297ef4bcc3071785ba0c0bedfe89eabc5287fcc0edf81ab5896c1c8e4b20d27d79813c7aede75320b33eaeeaa586edc00fd1036c10133e6ba0ff277245d0d59d04b2b3421b7244aca5f4a8d870c6f1c1fbff9e1c26699a860b9504f35ca1d700030503fd1ededd3b840795be6d9ccbe3c51ee42e2f39233c432b831ddd9c4e72b7025a819317e47bf94f9ee316d7273b05d5fcf2999c3a681f519b1234bbfa6d359b4752bd9c3f77d6b6456cde152464763414ca130f4e91d91041432f90620fec0e6d6b5116076c2985d5aeaae13be492b9b329efcaf7ee25120159a0a30cd976b42d7afe030302dae7eb80db744d4960c4df930d57e87fe81412eaace9f900e6c839817a614ddb75ba6603b9417c33ea7b6c93967dfa2bcff3fa3c74a5ce2c962db65b03aece14c96cbd0038fc"
// pkcs1PrivKeyHex is a PKCS#1, RSA private key.
// Generated by `openssl genrsa 1024 | openssl rsa -outform DER | xxd -p`
const pkcs1PrivKeyHex = "3082025d02010002818100e98edfa1c3b35884a54d0b36a6a603b0290fa85e49e30fa23fc94fef9c6790bc4849928607aa48d809da326fb42a969d06ad756b98b9c1a90f5d4a2b6d0ac05953c97f4da3120164a21a679793ce181c906dc01d235cc085ddcdf6ea06c389b6ab8885dfd685959e693138856a68a7e5db263337ff82a088d583a897cf2d59e9020301000102818100b6d5c9eb70b02d5369b3ee5b520a14490b5bde8a317d36f7e4c74b7460141311d1e5067735f8f01d6f5908b2b96fbd881f7a1ab9a84d82753e39e19e2d36856be960d05ac9ef8e8782ea1b6d65aee28fdfe1d61451e8cff0adfe84322f12cf455028b581cf60eb9e0e140ba5d21aeba6c2634d7c65318b9a665fc01c3191ca21024100fa5e818da3705b0fa33278bb28d4b6f6050388af2d4b75ec9375dd91ccf2e7d7068086a8b82a8f6282e4fbbdb8a7f2622eb97295249d87acea7f5f816f54d347024100eecf9406d7dc49cdfb95ab1eff4064de84c7a30f64b2798936a0d2018ba9eb52e4b636f82e96c49cc63b80b675e91e40d1b2e4017d4b9adaf33ab3d9cf1c214f024100c173704ace742c082323066226a4655226819a85304c542b9dacbeacbf5d1881ee863485fcf6f59f3a604f9b42289282067447f2b13dfeed3eab7851fc81e0550240741fc41f3fc002b382eed8730e33c5d8de40256e4accee846667f536832f711ab1d4590e7db91a8a116ac5bff3be13d3f9243ff2e976662aa9b395d907f8e9c9024046a5696c9ef882363e06c9fa4e2f5b580906452befba03f4a99d0f873697ef1f851d2226ca7934b30b7c3e80cb634a67172bbbf4781735fe3e09263e2dd723e7"

753
vendor/golang.org/x/crypto/openpgp/packet/public_key.go generated vendored Normal file
View File

@ -0,0 +1,753 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"crypto/sha1"
_ "crypto/sha256"
_ "crypto/sha512"
"encoding/binary"
"fmt"
"hash"
"io"
"math/big"
"strconv"
"time"
"golang.org/x/crypto/openpgp/elgamal"
"golang.org/x/crypto/openpgp/errors"
)
var (
// NIST curve P-256
oidCurveP256 []byte = []byte{0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07}
// NIST curve P-384
oidCurveP384 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x22}
// NIST curve P-521
oidCurveP521 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x23}
)
const maxOIDLength = 8
// ecdsaKey stores the algorithm-specific fields for ECDSA keys.
// as defined in RFC 6637, Section 9.
type ecdsaKey struct {
// oid contains the OID byte sequence identifying the elliptic curve used
oid []byte
// p contains the elliptic curve point that represents the public key
p parsedMPI
}
// parseOID reads the OID for the curve as defined in RFC 6637, Section 9.
func parseOID(r io.Reader) (oid []byte, err error) {
buf := make([]byte, maxOIDLength)
if _, err = readFull(r, buf[:1]); err != nil {
return
}
oidLen := buf[0]
if int(oidLen) > len(buf) {
err = errors.UnsupportedError("invalid oid length: " + strconv.Itoa(int(oidLen)))
return
}
oid = buf[:oidLen]
_, err = readFull(r, oid)
return
}
func (f *ecdsaKey) parse(r io.Reader) (err error) {
if f.oid, err = parseOID(r); err != nil {
return err
}
f.p.bytes, f.p.bitLength, err = readMPI(r)
return
}
func (f *ecdsaKey) serialize(w io.Writer) (err error) {
buf := make([]byte, maxOIDLength+1)
buf[0] = byte(len(f.oid))
copy(buf[1:], f.oid)
if _, err = w.Write(buf[:len(f.oid)+1]); err != nil {
return
}
return writeMPIs(w, f.p)
}
func (f *ecdsaKey) newECDSA() (*ecdsa.PublicKey, error) {
var c elliptic.Curve
if bytes.Equal(f.oid, oidCurveP256) {
c = elliptic.P256()
} else if bytes.Equal(f.oid, oidCurveP384) {
c = elliptic.P384()
} else if bytes.Equal(f.oid, oidCurveP521) {
c = elliptic.P521()
} else {
return nil, errors.UnsupportedError(fmt.Sprintf("unsupported oid: %x", f.oid))
}
x, y := elliptic.Unmarshal(c, f.p.bytes)
if x == nil {
return nil, errors.UnsupportedError("failed to parse EC point")
}
return &ecdsa.PublicKey{Curve: c, X: x, Y: y}, nil
}
func (f *ecdsaKey) byteLen() int {
return 1 + len(f.oid) + 2 + len(f.p.bytes)
}
type kdfHashFunction byte
type kdfAlgorithm byte
// ecdhKdf stores key derivation function parameters
// used for ECDH encryption. See RFC 6637, Section 9.
type ecdhKdf struct {
KdfHash kdfHashFunction
KdfAlgo kdfAlgorithm
}
func (f *ecdhKdf) parse(r io.Reader) (err error) {
buf := make([]byte, 1)
if _, err = readFull(r, buf); err != nil {
return
}
kdfLen := int(buf[0])
if kdfLen < 3 {
return errors.UnsupportedError("Unsupported ECDH KDF length: " + strconv.Itoa(kdfLen))
}
buf = make([]byte, kdfLen)
if _, err = readFull(r, buf); err != nil {
return
}
reserved := int(buf[0])
f.KdfHash = kdfHashFunction(buf[1])
f.KdfAlgo = kdfAlgorithm(buf[2])
if reserved != 0x01 {
return errors.UnsupportedError("Unsupported KDF reserved field: " + strconv.Itoa(reserved))
}
return
}
func (f *ecdhKdf) serialize(w io.Writer) (err error) {
buf := make([]byte, 4)
// See RFC 6637, Section 9, Algorithm-Specific Fields for ECDH keys.
buf[0] = byte(0x03) // Length of the following fields
buf[1] = byte(0x01) // Reserved for future extensions, must be 1 for now
buf[2] = byte(f.KdfHash)
buf[3] = byte(f.KdfAlgo)
_, err = w.Write(buf[:])
return
}
func (f *ecdhKdf) byteLen() int {
return 4
}
// PublicKey represents an OpenPGP public key. See RFC 4880, section 5.5.2.
type PublicKey struct {
CreationTime time.Time
PubKeyAlgo PublicKeyAlgorithm
PublicKey interface{} // *rsa.PublicKey, *dsa.PublicKey or *ecdsa.PublicKey
Fingerprint [20]byte
KeyId uint64
IsSubkey bool
n, e, p, q, g, y parsedMPI
// RFC 6637 fields
ec *ecdsaKey
ecdh *ecdhKdf
}
// signingKey provides a convenient abstraction over signature verification
// for v3 and v4 public keys.
type signingKey interface {
SerializeSignaturePrefix(io.Writer)
serializeWithoutHeaders(io.Writer) error
}
func fromBig(n *big.Int) parsedMPI {
return parsedMPI{
bytes: n.Bytes(),
bitLength: uint16(n.BitLen()),
}
}
// NewRSAPublicKey returns a PublicKey that wraps the given rsa.PublicKey.
func NewRSAPublicKey(creationTime time.Time, pub *rsa.PublicKey) *PublicKey {
pk := &PublicKey{
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoRSA,
PublicKey: pub,
n: fromBig(pub.N),
e: fromBig(big.NewInt(int64(pub.E))),
}
pk.setFingerPrintAndKeyId()
return pk
}
// NewDSAPublicKey returns a PublicKey that wraps the given dsa.PublicKey.
func NewDSAPublicKey(creationTime time.Time, pub *dsa.PublicKey) *PublicKey {
pk := &PublicKey{
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoDSA,
PublicKey: pub,
p: fromBig(pub.P),
q: fromBig(pub.Q),
g: fromBig(pub.G),
y: fromBig(pub.Y),
}
pk.setFingerPrintAndKeyId()
return pk
}
// NewElGamalPublicKey returns a PublicKey that wraps the given elgamal.PublicKey.
func NewElGamalPublicKey(creationTime time.Time, pub *elgamal.PublicKey) *PublicKey {
pk := &PublicKey{
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoElGamal,
PublicKey: pub,
p: fromBig(pub.P),
g: fromBig(pub.G),
y: fromBig(pub.Y),
}
pk.setFingerPrintAndKeyId()
return pk
}
func NewECDSAPublicKey(creationTime time.Time, pub *ecdsa.PublicKey) *PublicKey {
pk := &PublicKey{
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoECDSA,
PublicKey: pub,
ec: new(ecdsaKey),
}
switch pub.Curve {
case elliptic.P256():
pk.ec.oid = oidCurveP256
case elliptic.P384():
pk.ec.oid = oidCurveP384
case elliptic.P521():
pk.ec.oid = oidCurveP521
default:
panic("unknown elliptic curve")
}
pk.ec.p.bytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y)
// The bit length is 3 (for the 0x04 specifying an uncompressed key)
// plus two field elements (for x and y), which are rounded up to the
// nearest byte. See https://tools.ietf.org/html/rfc6637#section-6
fieldBytes := (pub.Curve.Params().BitSize + 7) & ^7
pk.ec.p.bitLength = uint16(3 + fieldBytes + fieldBytes)
pk.setFingerPrintAndKeyId()
return pk
}
func (pk *PublicKey) parse(r io.Reader) (err error) {
// RFC 4880, section 5.5.2
var buf [6]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
if buf[0] != 4 {
return errors.UnsupportedError("public key version")
}
pk.CreationTime = time.Unix(int64(uint32(buf[1])<<24|uint32(buf[2])<<16|uint32(buf[3])<<8|uint32(buf[4])), 0)
pk.PubKeyAlgo = PublicKeyAlgorithm(buf[5])
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
err = pk.parseRSA(r)
case PubKeyAlgoDSA:
err = pk.parseDSA(r)
case PubKeyAlgoElGamal:
err = pk.parseElGamal(r)
case PubKeyAlgoECDSA:
pk.ec = new(ecdsaKey)
if err = pk.ec.parse(r); err != nil {
return err
}
pk.PublicKey, err = pk.ec.newECDSA()
case PubKeyAlgoECDH:
pk.ec = new(ecdsaKey)
if err = pk.ec.parse(r); err != nil {
return
}
pk.ecdh = new(ecdhKdf)
if err = pk.ecdh.parse(r); err != nil {
return
}
// The ECDH key is stored in an ecdsa.PublicKey for convenience.
pk.PublicKey, err = pk.ec.newECDSA()
default:
err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo)))
}
if err != nil {
return
}
pk.setFingerPrintAndKeyId()
return
}
func (pk *PublicKey) setFingerPrintAndKeyId() {
// RFC 4880, section 12.2
fingerPrint := sha1.New()
pk.SerializeSignaturePrefix(fingerPrint)
pk.serializeWithoutHeaders(fingerPrint)
copy(pk.Fingerprint[:], fingerPrint.Sum(nil))
pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20])
}
// parseRSA parses RSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKey) parseRSA(r io.Reader) (err error) {
pk.n.bytes, pk.n.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.e.bytes, pk.e.bitLength, err = readMPI(r)
if err != nil {
return
}
if len(pk.e.bytes) > 3 {
err = errors.UnsupportedError("large public exponent")
return
}
rsa := &rsa.PublicKey{
N: new(big.Int).SetBytes(pk.n.bytes),
E: 0,
}
for i := 0; i < len(pk.e.bytes); i++ {
rsa.E <<= 8
rsa.E |= int(pk.e.bytes[i])
}
pk.PublicKey = rsa
return
}
// parseDSA parses DSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKey) parseDSA(r io.Reader) (err error) {
pk.p.bytes, pk.p.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.q.bytes, pk.q.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.g.bytes, pk.g.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.y.bytes, pk.y.bitLength, err = readMPI(r)
if err != nil {
return
}
dsa := new(dsa.PublicKey)
dsa.P = new(big.Int).SetBytes(pk.p.bytes)
dsa.Q = new(big.Int).SetBytes(pk.q.bytes)
dsa.G = new(big.Int).SetBytes(pk.g.bytes)
dsa.Y = new(big.Int).SetBytes(pk.y.bytes)
pk.PublicKey = dsa
return
}
// parseElGamal parses ElGamal public key material from the given Reader. See
// RFC 4880, section 5.5.2.
func (pk *PublicKey) parseElGamal(r io.Reader) (err error) {
pk.p.bytes, pk.p.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.g.bytes, pk.g.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.y.bytes, pk.y.bitLength, err = readMPI(r)
if err != nil {
return
}
elgamal := new(elgamal.PublicKey)
elgamal.P = new(big.Int).SetBytes(pk.p.bytes)
elgamal.G = new(big.Int).SetBytes(pk.g.bytes)
elgamal.Y = new(big.Int).SetBytes(pk.y.bytes)
pk.PublicKey = elgamal
return
}
// SerializeSignaturePrefix writes the prefix for this public key to the given Writer.
// The prefix is used when calculating a signature over this public key. See
// RFC 4880, section 5.2.4.
func (pk *PublicKey) SerializeSignaturePrefix(h io.Writer) {
var pLength uint16
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
pLength += 2 + uint16(len(pk.n.bytes))
pLength += 2 + uint16(len(pk.e.bytes))
case PubKeyAlgoDSA:
pLength += 2 + uint16(len(pk.p.bytes))
pLength += 2 + uint16(len(pk.q.bytes))
pLength += 2 + uint16(len(pk.g.bytes))
pLength += 2 + uint16(len(pk.y.bytes))
case PubKeyAlgoElGamal:
pLength += 2 + uint16(len(pk.p.bytes))
pLength += 2 + uint16(len(pk.g.bytes))
pLength += 2 + uint16(len(pk.y.bytes))
case PubKeyAlgoECDSA:
pLength += uint16(pk.ec.byteLen())
case PubKeyAlgoECDH:
pLength += uint16(pk.ec.byteLen())
pLength += uint16(pk.ecdh.byteLen())
default:
panic("unknown public key algorithm")
}
pLength += 6
h.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)})
return
}
func (pk *PublicKey) Serialize(w io.Writer) (err error) {
length := 6 // 6 byte header
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
length += 2 + len(pk.n.bytes)
length += 2 + len(pk.e.bytes)
case PubKeyAlgoDSA:
length += 2 + len(pk.p.bytes)
length += 2 + len(pk.q.bytes)
length += 2 + len(pk.g.bytes)
length += 2 + len(pk.y.bytes)
case PubKeyAlgoElGamal:
length += 2 + len(pk.p.bytes)
length += 2 + len(pk.g.bytes)
length += 2 + len(pk.y.bytes)
case PubKeyAlgoECDSA:
length += pk.ec.byteLen()
case PubKeyAlgoECDH:
length += pk.ec.byteLen()
length += pk.ecdh.byteLen()
default:
panic("unknown public key algorithm")
}
packetType := packetTypePublicKey
if pk.IsSubkey {
packetType = packetTypePublicSubkey
}
err = serializeHeader(w, packetType, length)
if err != nil {
return
}
return pk.serializeWithoutHeaders(w)
}
// serializeWithoutHeaders marshals the PublicKey to w in the form of an
// OpenPGP public key packet, not including the packet header.
func (pk *PublicKey) serializeWithoutHeaders(w io.Writer) (err error) {
var buf [6]byte
buf[0] = 4
t := uint32(pk.CreationTime.Unix())
buf[1] = byte(t >> 24)
buf[2] = byte(t >> 16)
buf[3] = byte(t >> 8)
buf[4] = byte(t)
buf[5] = byte(pk.PubKeyAlgo)
_, err = w.Write(buf[:])
if err != nil {
return
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
return writeMPIs(w, pk.n, pk.e)
case PubKeyAlgoDSA:
return writeMPIs(w, pk.p, pk.q, pk.g, pk.y)
case PubKeyAlgoElGamal:
return writeMPIs(w, pk.p, pk.g, pk.y)
case PubKeyAlgoECDSA:
return pk.ec.serialize(w)
case PubKeyAlgoECDH:
if err = pk.ec.serialize(w); err != nil {
return
}
return pk.ecdh.serialize(w)
}
return errors.InvalidArgumentError("bad public-key algorithm")
}
// CanSign returns true iff this public key can generate signatures
func (pk *PublicKey) CanSign() bool {
return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly && pk.PubKeyAlgo != PubKeyAlgoElGamal
}
// VerifySignature returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err error) {
if !pk.CanSign() {
return errors.InvalidArgumentError("public key cannot generate signatures")
}
signed.Write(sig.HashSuffix)
hashBytes := signed.Sum(nil)
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
return errors.SignatureError("hash tag doesn't match")
}
if pk.PubKeyAlgo != sig.PubKeyAlgo {
return errors.InvalidArgumentError("public key and signature use different algorithms")
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
rsaPublicKey, _ := pk.PublicKey.(*rsa.PublicKey)
err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, padToKeySize(rsaPublicKey, sig.RSASignature.bytes))
if err != nil {
return errors.SignatureError("RSA verification failure")
}
return nil
case PubKeyAlgoDSA:
dsaPublicKey, _ := pk.PublicKey.(*dsa.PublicKey)
// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8
if len(hashBytes) > subgroupSize {
hashBytes = hashBytes[:subgroupSize]
}
if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.bytes), new(big.Int).SetBytes(sig.DSASigS.bytes)) {
return errors.SignatureError("DSA verification failure")
}
return nil
case PubKeyAlgoECDSA:
ecdsaPublicKey := pk.PublicKey.(*ecdsa.PublicKey)
if !ecdsa.Verify(ecdsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.ECDSASigR.bytes), new(big.Int).SetBytes(sig.ECDSASigS.bytes)) {
return errors.SignatureError("ECDSA verification failure")
}
return nil
default:
return errors.SignatureError("Unsupported public key algorithm used in signature")
}
}
// VerifySignatureV3 returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKey) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err error) {
if !pk.CanSign() {
return errors.InvalidArgumentError("public key cannot generate signatures")
}
suffix := make([]byte, 5)
suffix[0] = byte(sig.SigType)
binary.BigEndian.PutUint32(suffix[1:], uint32(sig.CreationTime.Unix()))
signed.Write(suffix)
hashBytes := signed.Sum(nil)
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
return errors.SignatureError("hash tag doesn't match")
}
if pk.PubKeyAlgo != sig.PubKeyAlgo {
return errors.InvalidArgumentError("public key and signature use different algorithms")
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
rsaPublicKey := pk.PublicKey.(*rsa.PublicKey)
if err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, padToKeySize(rsaPublicKey, sig.RSASignature.bytes)); err != nil {
return errors.SignatureError("RSA verification failure")
}
return
case PubKeyAlgoDSA:
dsaPublicKey := pk.PublicKey.(*dsa.PublicKey)
// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8
if len(hashBytes) > subgroupSize {
hashBytes = hashBytes[:subgroupSize]
}
if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.bytes), new(big.Int).SetBytes(sig.DSASigS.bytes)) {
return errors.SignatureError("DSA verification failure")
}
return nil
default:
panic("shouldn't happen")
}
}
// keySignatureHash returns a Hash of the message that needs to be signed for
// pk to assert a subkey relationship to signed.
func keySignatureHash(pk, signed signingKey, hashFunc crypto.Hash) (h hash.Hash, err error) {
if !hashFunc.Available() {
return nil, errors.UnsupportedError("hash function")
}
h = hashFunc.New()
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.serializeWithoutHeaders(h)
signed.SerializeSignaturePrefix(h)
signed.serializeWithoutHeaders(h)
return
}
// VerifyKeySignature returns nil iff sig is a valid signature, made by this
// public key, of signed.
func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) error {
h, err := keySignatureHash(pk, signed, sig.Hash)
if err != nil {
return err
}
if err = pk.VerifySignature(h, sig); err != nil {
return err
}
if sig.FlagSign {
// Signing subkeys must be cross-signed. See
// https://www.gnupg.org/faq/subkey-cross-certify.html.
if sig.EmbeddedSignature == nil {
return errors.StructuralError("signing subkey is missing cross-signature")
}
// Verify the cross-signature. This is calculated over the same
// data as the main signature, so we cannot just recursively
// call signed.VerifyKeySignature(...)
if h, err = keySignatureHash(pk, signed, sig.EmbeddedSignature.Hash); err != nil {
return errors.StructuralError("error while hashing for cross-signature: " + err.Error())
}
if err := signed.VerifySignature(h, sig.EmbeddedSignature); err != nil {
return errors.StructuralError("error while verifying cross-signature: " + err.Error())
}
}
return nil
}
func keyRevocationHash(pk signingKey, hashFunc crypto.Hash) (h hash.Hash, err error) {
if !hashFunc.Available() {
return nil, errors.UnsupportedError("hash function")
}
h = hashFunc.New()
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.serializeWithoutHeaders(h)
return
}
// VerifyRevocationSignature returns nil iff sig is a valid signature, made by this
// public key.
func (pk *PublicKey) VerifyRevocationSignature(sig *Signature) (err error) {
h, err := keyRevocationHash(pk, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignature(h, sig)
}
// userIdSignatureHash returns a Hash of the message that needs to be signed
// to assert that pk is a valid key for id.
func userIdSignatureHash(id string, pk *PublicKey, hashFunc crypto.Hash) (h hash.Hash, err error) {
if !hashFunc.Available() {
return nil, errors.UnsupportedError("hash function")
}
h = hashFunc.New()
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.serializeWithoutHeaders(h)
var buf [5]byte
buf[0] = 0xb4
buf[1] = byte(len(id) >> 24)
buf[2] = byte(len(id) >> 16)
buf[3] = byte(len(id) >> 8)
buf[4] = byte(len(id))
h.Write(buf[:])
h.Write([]byte(id))
return
}
// VerifyUserIdSignature returns nil iff sig is a valid signature, made by this
// public key, that id is the identity of pub.
func (pk *PublicKey) VerifyUserIdSignature(id string, pub *PublicKey, sig *Signature) (err error) {
h, err := userIdSignatureHash(id, pub, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignature(h, sig)
}
// VerifyUserIdSignatureV3 returns nil iff sig is a valid signature, made by this
// public key, that id is the identity of pub.
func (pk *PublicKey) VerifyUserIdSignatureV3(id string, pub *PublicKey, sig *SignatureV3) (err error) {
h, err := userIdSignatureV3Hash(id, pub, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignatureV3(h, sig)
}
// KeyIdString returns the public key's fingerprint in capital hex
// (e.g. "6C7EE1B8621CC013").
func (pk *PublicKey) KeyIdString() string {
return fmt.Sprintf("%X", pk.Fingerprint[12:20])
}
// KeyIdShortString returns the short form of public key's fingerprint
// in capital hex, as shown by gpg --list-keys (e.g. "621CC013").
func (pk *PublicKey) KeyIdShortString() string {
return fmt.Sprintf("%X", pk.Fingerprint[16:20])
}
// A parsedMPI is used to store the contents of a big integer, along with the
// bit length that was specified in the original input. This allows the MPI to
// be reserialized exactly.
type parsedMPI struct {
bytes []byte
bitLength uint16
}
// writeMPIs is a utility function for serializing several big integers to the
// given Writer.
func writeMPIs(w io.Writer, mpis ...parsedMPI) (err error) {
for _, mpi := range mpis {
err = writeMPI(w, mpi.bitLength, mpi.bytes)
if err != nil {
return
}
}
return
}
// BitLength returns the bit length for the given public key.
func (pk *PublicKey) BitLength() (bitLength uint16, err error) {
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
bitLength = pk.n.bitLength
case PubKeyAlgoDSA:
bitLength = pk.p.bitLength
case PubKeyAlgoElGamal:
bitLength = pk.p.bitLength
default:
err = errors.InvalidArgumentError("bad public-key algorithm")
}
return
}

View File

@ -0,0 +1,228 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"encoding/hex"
"math/big"
"testing"
"time"
)
var pubKeyTests = []struct {
hexData string
hexFingerprint string
creationTime time.Time
pubKeyAlgo PublicKeyAlgorithm
keyId uint64
keyIdString string
keyIdShort string
}{
{rsaPkDataHex, rsaFingerprintHex, time.Unix(0x4d3c5c10, 0), PubKeyAlgoRSA, 0xa34d7e18c20c31bb, "A34D7E18C20C31BB", "C20C31BB"},
{dsaPkDataHex, dsaFingerprintHex, time.Unix(0x4d432f89, 0), PubKeyAlgoDSA, 0x8e8fbe54062f19ed, "8E8FBE54062F19ED", "062F19ED"},
{ecdsaPkDataHex, ecdsaFingerprintHex, time.Unix(0x5071c294, 0), PubKeyAlgoECDSA, 0x43fe956c542ca00b, "43FE956C542CA00B", "542CA00B"},
}
func TestPublicKeyRead(t *testing.T) {
for i, test := range pubKeyTests {
packet, err := Read(readerFromHex(test.hexData))
if err != nil {
t.Errorf("#%d: Read error: %s", i, err)
continue
}
pk, ok := packet.(*PublicKey)
if !ok {
t.Errorf("#%d: failed to parse, got: %#v", i, packet)
continue
}
if pk.PubKeyAlgo != test.pubKeyAlgo {
t.Errorf("#%d: bad public key algorithm got:%x want:%x", i, pk.PubKeyAlgo, test.pubKeyAlgo)
}
if !pk.CreationTime.Equal(test.creationTime) {
t.Errorf("#%d: bad creation time got:%v want:%v", i, pk.CreationTime, test.creationTime)
}
expectedFingerprint, _ := hex.DecodeString(test.hexFingerprint)
if !bytes.Equal(expectedFingerprint, pk.Fingerprint[:]) {
t.Errorf("#%d: bad fingerprint got:%x want:%x", i, pk.Fingerprint[:], expectedFingerprint)
}
if pk.KeyId != test.keyId {
t.Errorf("#%d: bad keyid got:%x want:%x", i, pk.KeyId, test.keyId)
}
if g, e := pk.KeyIdString(), test.keyIdString; g != e {
t.Errorf("#%d: bad KeyIdString got:%q want:%q", i, g, e)
}
if g, e := pk.KeyIdShortString(), test.keyIdShort; g != e {
t.Errorf("#%d: bad KeyIdShortString got:%q want:%q", i, g, e)
}
}
}
func TestPublicKeySerialize(t *testing.T) {
for i, test := range pubKeyTests {
packet, err := Read(readerFromHex(test.hexData))
if err != nil {
t.Errorf("#%d: Read error: %s", i, err)
continue
}
pk, ok := packet.(*PublicKey)
if !ok {
t.Errorf("#%d: failed to parse, got: %#v", i, packet)
continue
}
serializeBuf := bytes.NewBuffer(nil)
err = pk.Serialize(serializeBuf)
if err != nil {
t.Errorf("#%d: failed to serialize: %s", i, err)
continue
}
packet, err = Read(serializeBuf)
if err != nil {
t.Errorf("#%d: Read error (from serialized data): %s", i, err)
continue
}
pk, ok = packet.(*PublicKey)
if !ok {
t.Errorf("#%d: failed to parse serialized data, got: %#v", i, packet)
continue
}
}
}
func TestEcc384Serialize(t *testing.T) {
r := readerFromHex(ecc384PubHex)
var w bytes.Buffer
for i := 0; i < 2; i++ {
// Public key
p, err := Read(r)
if err != nil {
t.Error(err)
}
pubkey := p.(*PublicKey)
if !bytes.Equal(pubkey.ec.oid, []byte{0x2b, 0x81, 0x04, 0x00, 0x22}) {
t.Errorf("Unexpected pubkey OID: %x", pubkey.ec.oid)
}
if !bytes.Equal(pubkey.ec.p.bytes[:5], []byte{0x04, 0xf6, 0xb8, 0xc5, 0xac}) {
t.Errorf("Unexpected pubkey P[:5]: %x", pubkey.ec.p.bytes)
}
if pubkey.KeyId != 0x098033880F54719F {
t.Errorf("Unexpected pubkey ID: %x", pubkey.KeyId)
}
err = pubkey.Serialize(&w)
if err != nil {
t.Error(err)
}
// User ID
p, err = Read(r)
if err != nil {
t.Error(err)
}
uid := p.(*UserId)
if uid.Id != "ec_dsa_dh_384 <openpgp@brainhub.org>" {
t.Error("Unexpected UID:", uid.Id)
}
err = uid.Serialize(&w)
if err != nil {
t.Error(err)
}
// User ID Sig
p, err = Read(r)
if err != nil {
t.Error(err)
}
uidSig := p.(*Signature)
err = pubkey.VerifyUserIdSignature(uid.Id, pubkey, uidSig)
if err != nil {
t.Error(err, ": UID")
}
err = uidSig.Serialize(&w)
if err != nil {
t.Error(err)
}
// Subkey
p, err = Read(r)
if err != nil {
t.Error(err)
}
subkey := p.(*PublicKey)
if !bytes.Equal(subkey.ec.oid, []byte{0x2b, 0x81, 0x04, 0x00, 0x22}) {
t.Errorf("Unexpected subkey OID: %x", subkey.ec.oid)
}
if !bytes.Equal(subkey.ec.p.bytes[:5], []byte{0x04, 0x2f, 0xaa, 0x84, 0x02}) {
t.Errorf("Unexpected subkey P[:5]: %x", subkey.ec.p.bytes)
}
if subkey.ecdh.KdfHash != 0x09 {
t.Error("Expected KDF hash function SHA384 (0x09), got", subkey.ecdh.KdfHash)
}
if subkey.ecdh.KdfAlgo != 0x09 {
t.Error("Expected KDF symmetric alg AES256 (0x09), got", subkey.ecdh.KdfAlgo)
}
if subkey.KeyId != 0xAA8B938F9A201946 {
t.Errorf("Unexpected subkey ID: %x", subkey.KeyId)
}
err = subkey.Serialize(&w)
if err != nil {
t.Error(err)
}
// Subkey Sig
p, err = Read(r)
if err != nil {
t.Error(err)
}
subkeySig := p.(*Signature)
err = pubkey.VerifyKeySignature(subkey, subkeySig)
if err != nil {
t.Error(err)
}
err = subkeySig.Serialize(&w)
if err != nil {
t.Error(err)
}
// Now read back what we've written again
r = bytes.NewBuffer(w.Bytes())
w.Reset()
}
}
func TestP256KeyID(t *testing.T) {
// Confirm that key IDs are correctly calculated for ECC keys.
ecdsaPub := &ecdsa.PublicKey{
Curve: elliptic.P256(),
X: fromHex("81fbbc20eea9e8d1c3ceabb0a8185925b113d1ac42cd5c78403bd83da19235c6"),
Y: fromHex("5ed6db13d91db34507d0129bf88981878d29adbf8fcd1720afdb767bb3fcaaff"),
}
pub := NewECDSAPublicKey(time.Unix(1297309478, 0), ecdsaPub)
const want = uint64(0xd01055fbcadd268e)
if pub.KeyId != want {
t.Errorf("want key ID: %x, got %x", want, pub.KeyId)
}
}
func fromHex(hex string) *big.Int {
n, ok := new(big.Int).SetString(hex, 16)
if !ok {
panic("bad hex number: " + hex)
}
return n
}
const rsaFingerprintHex = "5fb74b1d03b1e3cb31bc2f8aa34d7e18c20c31bb"
const rsaPkDataHex = "988d044d3c5c10010400b1d13382944bd5aba23a4312968b5095d14f947f600eb478e14a6fcb16b0e0cac764884909c020bc495cfcc39a935387c661507bdb236a0612fb582cac3af9b29cc2c8c70090616c41b662f4da4c1201e195472eb7f4ae1ccbcbf9940fe21d985e379a5563dde5b9a23d35f1cfaa5790da3b79db26f23695107bfaca8e7b5bcd0011010001"
const dsaFingerprintHex = "eece4c094db002103714c63c8e8fbe54062f19ed"
const dsaPkDataHex = "9901a2044d432f89110400cd581334f0d7a1e1bdc8b9d6d8c0baf68793632735d2bb0903224cbaa1dfbf35a60ee7a13b92643421e1eb41aa8d79bea19a115a677f6b8ba3c7818ce53a6c2a24a1608bd8b8d6e55c5090cbde09dd26e356267465ae25e69ec8bdd57c7bbb2623e4d73336f73a0a9098f7f16da2e25252130fd694c0e8070c55a812a423ae7f00a0ebf50e70c2f19c3520a551bd4b08d30f23530d3d03ff7d0bf4a53a64a09dc5e6e6e35854b7d70c882b0c60293401958b1bd9e40abec3ea05ba87cf64899299d4bd6aa7f459c201d3fbbd6c82004bdc5e8a9eb8082d12054cc90fa9d4ec251a843236a588bf49552441817436c4f43326966fe85447d4e6d0acf8fa1ef0f014730770603ad7634c3088dc52501c237328417c31c89ed70400b2f1a98b0bf42f11fefc430704bebbaa41d9f355600c3facee1e490f64208e0e094ea55e3a598a219a58500bf78ac677b670a14f4e47e9cf8eab4f368cc1ddcaa18cc59309d4cc62dd4f680e73e6cc3e1ce87a84d0925efbcb26c575c093fc42eecf45135fabf6403a25c2016e1774c0484e440a18319072c617cc97ac0a3bb0"
const ecdsaFingerprintHex = "9892270b38b8980b05c8d56d43fe956c542ca00b"
const ecdsaPkDataHex = "9893045071c29413052b8104002304230401f4867769cedfa52c325018896245443968e52e51d0c2df8d939949cb5b330f2921711fbee1c9b9dddb95d15cb0255e99badeddda7cc23d9ddcaacbc290969b9f24019375d61c2e4e3b36953a28d8b2bc95f78c3f1d592fb24499be348656a7b17e3963187b4361afe497bc5f9f81213f04069f8e1fb9e6a6290ae295ca1a92b894396cb4"
// Source: https://sites.google.com/site/brainhub/pgpecckeys#TOC-ECC-NIST-P-384-key
const ecc384PubHex = `99006f044d53059213052b81040022030304f6b8c5aced5b84ef9f4a209db2e4a9dfb70d28cb8c10ecd57674a9fa5a67389942b62d5e51367df4c7bfd3f8e500feecf07ed265a621a8ebbbe53e947ec78c677eba143bd1533c2b350e1c29f82313e1e1108eba063be1e64b10e6950e799c2db42465635f6473615f64685f333834203c6f70656e70677040627261696e6875622e6f72673e8900cb04101309005305024d530592301480000000002000077072656665727265642d656d61696c2d656e636f64696e67407067702e636f6d7067706d696d65040b090807021901051b03000000021602051e010000000415090a08000a0910098033880f54719fca2b0180aa37350968bd5f115afd8ce7bc7b103822152dbff06d0afcda835329510905b98cb469ba208faab87c7412b799e7b633017f58364ea480e8a1a3f253a0c5f22c446e8be9a9fce6210136ee30811abbd49139de28b5bdf8dc36d06ae748579e9ff503b90073044d53059212052b810400220303042faa84024a20b6735c4897efa5bfb41bf85b7eefeab5ca0cb9ffc8ea04a46acb25534a577694f9e25340a4ab5223a9dd1eda530c8aa2e6718db10d7e672558c7736fe09369ea5739a2a3554bf16d41faa50562f11c6d39bbd5dffb6b9a9ec9180301090989008404181309000c05024d530592051b0c000000000a0910098033880f54719f80970180eee7a6d8fcee41ee4f9289df17f9bcf9d955dca25c583b94336f3a2b2d4986dc5cf417b8d2dc86f741a9e1a6d236c0e3017d1c76575458a0cfb93ae8a2b274fcc65ceecd7a91eec83656ba13219969f06945b48c56bd04152c3a0553c5f2f4bd1267`

View File

@ -0,0 +1,279 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"crypto/md5"
"crypto/rsa"
"encoding/binary"
"fmt"
"hash"
"io"
"math/big"
"strconv"
"time"
"golang.org/x/crypto/openpgp/errors"
)
// PublicKeyV3 represents older, version 3 public keys. These keys are less secure and
// should not be used for signing or encrypting. They are supported here only for
// parsing version 3 key material and validating signatures.
// See RFC 4880, section 5.5.2.
type PublicKeyV3 struct {
CreationTime time.Time
DaysToExpire uint16
PubKeyAlgo PublicKeyAlgorithm
PublicKey *rsa.PublicKey
Fingerprint [16]byte
KeyId uint64
IsSubkey bool
n, e parsedMPI
}
// newRSAPublicKeyV3 returns a PublicKey that wraps the given rsa.PublicKey.
// Included here for testing purposes only. RFC 4880, section 5.5.2:
// "an implementation MUST NOT generate a V3 key, but MAY accept it."
func newRSAPublicKeyV3(creationTime time.Time, pub *rsa.PublicKey) *PublicKeyV3 {
pk := &PublicKeyV3{
CreationTime: creationTime,
PublicKey: pub,
n: fromBig(pub.N),
e: fromBig(big.NewInt(int64(pub.E))),
}
pk.setFingerPrintAndKeyId()
return pk
}
func (pk *PublicKeyV3) parse(r io.Reader) (err error) {
// RFC 4880, section 5.5.2
var buf [8]byte
if _, err = readFull(r, buf[:]); err != nil {
return
}
if buf[0] < 2 || buf[0] > 3 {
return errors.UnsupportedError("public key version")
}
pk.CreationTime = time.Unix(int64(uint32(buf[1])<<24|uint32(buf[2])<<16|uint32(buf[3])<<8|uint32(buf[4])), 0)
pk.DaysToExpire = binary.BigEndian.Uint16(buf[5:7])
pk.PubKeyAlgo = PublicKeyAlgorithm(buf[7])
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
err = pk.parseRSA(r)
default:
err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo)))
}
if err != nil {
return
}
pk.setFingerPrintAndKeyId()
return
}
func (pk *PublicKeyV3) setFingerPrintAndKeyId() {
// RFC 4880, section 12.2
fingerPrint := md5.New()
fingerPrint.Write(pk.n.bytes)
fingerPrint.Write(pk.e.bytes)
fingerPrint.Sum(pk.Fingerprint[:0])
pk.KeyId = binary.BigEndian.Uint64(pk.n.bytes[len(pk.n.bytes)-8:])
}
// parseRSA parses RSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKeyV3) parseRSA(r io.Reader) (err error) {
if pk.n.bytes, pk.n.bitLength, err = readMPI(r); err != nil {
return
}
if pk.e.bytes, pk.e.bitLength, err = readMPI(r); err != nil {
return
}
// RFC 4880 Section 12.2 requires the low 8 bytes of the
// modulus to form the key id.
if len(pk.n.bytes) < 8 {
return errors.StructuralError("v3 public key modulus is too short")
}
if len(pk.e.bytes) > 3 {
err = errors.UnsupportedError("large public exponent")
return
}
rsa := &rsa.PublicKey{N: new(big.Int).SetBytes(pk.n.bytes)}
for i := 0; i < len(pk.e.bytes); i++ {
rsa.E <<= 8
rsa.E |= int(pk.e.bytes[i])
}
pk.PublicKey = rsa
return
}
// SerializeSignaturePrefix writes the prefix for this public key to the given Writer.
// The prefix is used when calculating a signature over this public key. See
// RFC 4880, section 5.2.4.
func (pk *PublicKeyV3) SerializeSignaturePrefix(w io.Writer) {
var pLength uint16
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
pLength += 2 + uint16(len(pk.n.bytes))
pLength += 2 + uint16(len(pk.e.bytes))
default:
panic("unknown public key algorithm")
}
pLength += 6
w.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)})
return
}
func (pk *PublicKeyV3) Serialize(w io.Writer) (err error) {
length := 8 // 8 byte header
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
length += 2 + len(pk.n.bytes)
length += 2 + len(pk.e.bytes)
default:
panic("unknown public key algorithm")
}
packetType := packetTypePublicKey
if pk.IsSubkey {
packetType = packetTypePublicSubkey
}
if err = serializeHeader(w, packetType, length); err != nil {
return
}
return pk.serializeWithoutHeaders(w)
}
// serializeWithoutHeaders marshals the PublicKey to w in the form of an
// OpenPGP public key packet, not including the packet header.
func (pk *PublicKeyV3) serializeWithoutHeaders(w io.Writer) (err error) {
var buf [8]byte
// Version 3
buf[0] = 3
// Creation time
t := uint32(pk.CreationTime.Unix())
buf[1] = byte(t >> 24)
buf[2] = byte(t >> 16)
buf[3] = byte(t >> 8)
buf[4] = byte(t)
// Days to expire
buf[5] = byte(pk.DaysToExpire >> 8)
buf[6] = byte(pk.DaysToExpire)
// Public key algorithm
buf[7] = byte(pk.PubKeyAlgo)
if _, err = w.Write(buf[:]); err != nil {
return
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
return writeMPIs(w, pk.n, pk.e)
}
return errors.InvalidArgumentError("bad public-key algorithm")
}
// CanSign returns true iff this public key can generate signatures
func (pk *PublicKeyV3) CanSign() bool {
return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly
}
// VerifySignatureV3 returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKeyV3) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err error) {
if !pk.CanSign() {
return errors.InvalidArgumentError("public key cannot generate signatures")
}
suffix := make([]byte, 5)
suffix[0] = byte(sig.SigType)
binary.BigEndian.PutUint32(suffix[1:], uint32(sig.CreationTime.Unix()))
signed.Write(suffix)
hashBytes := signed.Sum(nil)
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
return errors.SignatureError("hash tag doesn't match")
}
if pk.PubKeyAlgo != sig.PubKeyAlgo {
return errors.InvalidArgumentError("public key and signature use different algorithms")
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
if err = rsa.VerifyPKCS1v15(pk.PublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes); err != nil {
return errors.SignatureError("RSA verification failure")
}
return
default:
// V3 public keys only support RSA.
panic("shouldn't happen")
}
}
// VerifyUserIdSignatureV3 returns nil iff sig is a valid signature, made by this
// public key, that id is the identity of pub.
func (pk *PublicKeyV3) VerifyUserIdSignatureV3(id string, pub *PublicKeyV3, sig *SignatureV3) (err error) {
h, err := userIdSignatureV3Hash(id, pk, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignatureV3(h, sig)
}
// VerifyKeySignatureV3 returns nil iff sig is a valid signature, made by this
// public key, of signed.
func (pk *PublicKeyV3) VerifyKeySignatureV3(signed *PublicKeyV3, sig *SignatureV3) (err error) {
h, err := keySignatureHash(pk, signed, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignatureV3(h, sig)
}
// userIdSignatureV3Hash returns a Hash of the message that needs to be signed
// to assert that pk is a valid key for id.
func userIdSignatureV3Hash(id string, pk signingKey, hfn crypto.Hash) (h hash.Hash, err error) {
if !hfn.Available() {
return nil, errors.UnsupportedError("hash function")
}
h = hfn.New()
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.serializeWithoutHeaders(h)
h.Write([]byte(id))
return
}
// KeyIdString returns the public key's fingerprint in capital hex
// (e.g. "6C7EE1B8621CC013").
func (pk *PublicKeyV3) KeyIdString() string {
return fmt.Sprintf("%X", pk.KeyId)
}
// KeyIdShortString returns the short form of public key's fingerprint
// in capital hex, as shown by gpg --list-keys (e.g. "621CC013").
func (pk *PublicKeyV3) KeyIdShortString() string {
return fmt.Sprintf("%X", pk.KeyId&0xFFFFFFFF)
}
// BitLength returns the bit length for the given public key.
func (pk *PublicKeyV3) BitLength() (bitLength uint16, err error) {
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
bitLength = pk.n.bitLength
default:
err = errors.InvalidArgumentError("bad public-key algorithm")
}
return
}

View File

@ -0,0 +1,82 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"encoding/hex"
"testing"
"time"
)
var pubKeyV3Test = struct {
hexFingerprint string
creationTime time.Time
pubKeyAlgo PublicKeyAlgorithm
keyId uint64
keyIdString string
keyIdShort string
}{
"103BECF5BD1E837C89D19E98487767F7",
time.Unix(779753634, 0),
PubKeyAlgoRSA,
0xDE0F188A5DA5E3C9,
"DE0F188A5DA5E3C9",
"5DA5E3C9"}
func TestPublicKeyV3Read(t *testing.T) {
i, test := 0, pubKeyV3Test
packet, err := Read(v3KeyReader(t))
if err != nil {
t.Fatalf("#%d: Read error: %s", i, err)
}
pk, ok := packet.(*PublicKeyV3)
if !ok {
t.Fatalf("#%d: failed to parse, got: %#v", i, packet)
}
if pk.PubKeyAlgo != test.pubKeyAlgo {
t.Errorf("#%d: bad public key algorithm got:%x want:%x", i, pk.PubKeyAlgo, test.pubKeyAlgo)
}
if !pk.CreationTime.Equal(test.creationTime) {
t.Errorf("#%d: bad creation time got:%v want:%v", i, pk.CreationTime, test.creationTime)
}
expectedFingerprint, _ := hex.DecodeString(test.hexFingerprint)
if !bytes.Equal(expectedFingerprint, pk.Fingerprint[:]) {
t.Errorf("#%d: bad fingerprint got:%x want:%x", i, pk.Fingerprint[:], expectedFingerprint)
}
if pk.KeyId != test.keyId {
t.Errorf("#%d: bad keyid got:%x want:%x", i, pk.KeyId, test.keyId)
}
if g, e := pk.KeyIdString(), test.keyIdString; g != e {
t.Errorf("#%d: bad KeyIdString got:%q want:%q", i, g, e)
}
if g, e := pk.KeyIdShortString(), test.keyIdShort; g != e {
t.Errorf("#%d: bad KeyIdShortString got:%q want:%q", i, g, e)
}
}
func TestPublicKeyV3Serialize(t *testing.T) {
//for i, test := range pubKeyV3Tests {
i := 0
packet, err := Read(v3KeyReader(t))
if err != nil {
t.Fatalf("#%d: Read error: %s", i, err)
}
pk, ok := packet.(*PublicKeyV3)
if !ok {
t.Fatalf("#%d: failed to parse, got: %#v", i, packet)
}
var serializeBuf bytes.Buffer
if err = pk.Serialize(&serializeBuf); err != nil {
t.Fatalf("#%d: failed to serialize: %s", i, err)
}
if packet, err = Read(bytes.NewBuffer(serializeBuf.Bytes())); err != nil {
t.Fatalf("#%d: Read error (from serialized data): %s", i, err)
}
if pk, ok = packet.(*PublicKeyV3); !ok {
t.Fatalf("#%d: failed to parse serialized data, got: %#v", i, packet)
}
}

76
vendor/golang.org/x/crypto/openpgp/packet/reader.go generated vendored Normal file
View File

@ -0,0 +1,76 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"golang.org/x/crypto/openpgp/errors"
"io"
)
// Reader reads packets from an io.Reader and allows packets to be 'unread' so
// that they result from the next call to Next.
type Reader struct {
q []Packet
readers []io.Reader
}
// New io.Readers are pushed when a compressed or encrypted packet is processed
// and recursively treated as a new source of packets. However, a carefully
// crafted packet can trigger an infinite recursive sequence of packets. See
// http://mumble.net/~campbell/misc/pgp-quine
// https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4402
// This constant limits the number of recursive packets that may be pushed.
const maxReaders = 32
// Next returns the most recently unread Packet, or reads another packet from
// the top-most io.Reader. Unknown packet types are skipped.
func (r *Reader) Next() (p Packet, err error) {
if len(r.q) > 0 {
p = r.q[len(r.q)-1]
r.q = r.q[:len(r.q)-1]
return
}
for len(r.readers) > 0 {
p, err = Read(r.readers[len(r.readers)-1])
if err == nil {
return
}
if err == io.EOF {
r.readers = r.readers[:len(r.readers)-1]
continue
}
if _, ok := err.(errors.UnknownPacketTypeError); !ok {
return nil, err
}
}
return nil, io.EOF
}
// Push causes the Reader to start reading from a new io.Reader. When an EOF
// error is seen from the new io.Reader, it is popped and the Reader continues
// to read from the next most recent io.Reader. Push returns a StructuralError
// if pushing the reader would exceed the maximum recursion level, otherwise it
// returns nil.
func (r *Reader) Push(reader io.Reader) (err error) {
if len(r.readers) >= maxReaders {
return errors.StructuralError("too many layers of packets")
}
r.readers = append(r.readers, reader)
return nil
}
// Unread causes the given Packet to be returned from the next call to Next.
func (r *Reader) Unread(p Packet) {
r.q = append(r.q, p)
}
func NewReader(r io.Reader) *Reader {
return &Reader{
q: nil,
readers: []io.Reader{r},
}
}

731
vendor/golang.org/x/crypto/openpgp/packet/signature.go generated vendored Normal file
View File

@ -0,0 +1,731 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"encoding/asn1"
"encoding/binary"
"hash"
"io"
"math/big"
"strconv"
"time"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
const (
// See RFC 4880, section 5.2.3.21 for details.
KeyFlagCertify = 1 << iota
KeyFlagSign
KeyFlagEncryptCommunications
KeyFlagEncryptStorage
)
// Signature represents a signature. See RFC 4880, section 5.2.
type Signature struct {
SigType SignatureType
PubKeyAlgo PublicKeyAlgorithm
Hash crypto.Hash
// HashSuffix is extra data that is hashed in after the signed data.
HashSuffix []byte
// HashTag contains the first two bytes of the hash for fast rejection
// of bad signed data.
HashTag [2]byte
CreationTime time.Time
RSASignature parsedMPI
DSASigR, DSASigS parsedMPI
ECDSASigR, ECDSASigS parsedMPI
// rawSubpackets contains the unparsed subpackets, in order.
rawSubpackets []outputSubpacket
// The following are optional so are nil when not included in the
// signature.
SigLifetimeSecs, KeyLifetimeSecs *uint32
PreferredSymmetric, PreferredHash, PreferredCompression []uint8
IssuerKeyId *uint64
IsPrimaryId *bool
// FlagsValid is set if any flags were given. See RFC 4880, section
// 5.2.3.21 for details.
FlagsValid bool
FlagCertify, FlagSign, FlagEncryptCommunications, FlagEncryptStorage bool
// RevocationReason is set if this signature has been revoked.
// See RFC 4880, section 5.2.3.23 for details.
RevocationReason *uint8
RevocationReasonText string
// MDC is set if this signature has a feature packet that indicates
// support for MDC subpackets.
MDC bool
// EmbeddedSignature, if non-nil, is a signature of the parent key, by
// this key. This prevents an attacker from claiming another's signing
// subkey as their own.
EmbeddedSignature *Signature
outSubpackets []outputSubpacket
}
func (sig *Signature) parse(r io.Reader) (err error) {
// RFC 4880, section 5.2.3
var buf [5]byte
_, err = readFull(r, buf[:1])
if err != nil {
return
}
if buf[0] != 4 {
err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0])))
return
}
_, err = readFull(r, buf[:5])
if err != nil {
return
}
sig.SigType = SignatureType(buf[0])
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[1])
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA:
default:
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
return
}
var ok bool
sig.Hash, ok = s2k.HashIdToHash(buf[2])
if !ok {
return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2])))
}
hashedSubpacketsLength := int(buf[3])<<8 | int(buf[4])
l := 6 + hashedSubpacketsLength
sig.HashSuffix = make([]byte, l+6)
sig.HashSuffix[0] = 4
copy(sig.HashSuffix[1:], buf[:5])
hashedSubpackets := sig.HashSuffix[6:l]
_, err = readFull(r, hashedSubpackets)
if err != nil {
return
}
// See RFC 4880, section 5.2.4
trailer := sig.HashSuffix[l:]
trailer[0] = 4
trailer[1] = 0xff
trailer[2] = uint8(l >> 24)
trailer[3] = uint8(l >> 16)
trailer[4] = uint8(l >> 8)
trailer[5] = uint8(l)
err = parseSignatureSubpackets(sig, hashedSubpackets, true)
if err != nil {
return
}
_, err = readFull(r, buf[:2])
if err != nil {
return
}
unhashedSubpacketsLength := int(buf[0])<<8 | int(buf[1])
unhashedSubpackets := make([]byte, unhashedSubpacketsLength)
_, err = readFull(r, unhashedSubpackets)
if err != nil {
return
}
err = parseSignatureSubpackets(sig, unhashedSubpackets, false)
if err != nil {
return
}
_, err = readFull(r, sig.HashTag[:2])
if err != nil {
return
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sig.RSASignature.bytes, sig.RSASignature.bitLength, err = readMPI(r)
case PubKeyAlgoDSA:
sig.DSASigR.bytes, sig.DSASigR.bitLength, err = readMPI(r)
if err == nil {
sig.DSASigS.bytes, sig.DSASigS.bitLength, err = readMPI(r)
}
case PubKeyAlgoECDSA:
sig.ECDSASigR.bytes, sig.ECDSASigR.bitLength, err = readMPI(r)
if err == nil {
sig.ECDSASigS.bytes, sig.ECDSASigS.bitLength, err = readMPI(r)
}
default:
panic("unreachable")
}
return
}
// parseSignatureSubpackets parses subpackets of the main signature packet. See
// RFC 4880, section 5.2.3.1.
func parseSignatureSubpackets(sig *Signature, subpackets []byte, isHashed bool) (err error) {
for len(subpackets) > 0 {
subpackets, err = parseSignatureSubpacket(sig, subpackets, isHashed)
if err != nil {
return
}
}
if sig.CreationTime.IsZero() {
err = errors.StructuralError("no creation time in signature")
}
return
}
type signatureSubpacketType uint8
const (
creationTimeSubpacket signatureSubpacketType = 2
signatureExpirationSubpacket signatureSubpacketType = 3
keyExpirationSubpacket signatureSubpacketType = 9
prefSymmetricAlgosSubpacket signatureSubpacketType = 11
issuerSubpacket signatureSubpacketType = 16
prefHashAlgosSubpacket signatureSubpacketType = 21
prefCompressionSubpacket signatureSubpacketType = 22
primaryUserIdSubpacket signatureSubpacketType = 25
keyFlagsSubpacket signatureSubpacketType = 27
reasonForRevocationSubpacket signatureSubpacketType = 29
featuresSubpacket signatureSubpacketType = 30
embeddedSignatureSubpacket signatureSubpacketType = 32
)
// parseSignatureSubpacket parses a single subpacket. len(subpacket) is >= 1.
func parseSignatureSubpacket(sig *Signature, subpacket []byte, isHashed bool) (rest []byte, err error) {
// RFC 4880, section 5.2.3.1
var (
length uint32
packetType signatureSubpacketType
isCritical bool
)
switch {
case subpacket[0] < 192:
length = uint32(subpacket[0])
subpacket = subpacket[1:]
case subpacket[0] < 255:
if len(subpacket) < 2 {
goto Truncated
}
length = uint32(subpacket[0]-192)<<8 + uint32(subpacket[1]) + 192
subpacket = subpacket[2:]
default:
if len(subpacket) < 5 {
goto Truncated
}
length = uint32(subpacket[1])<<24 |
uint32(subpacket[2])<<16 |
uint32(subpacket[3])<<8 |
uint32(subpacket[4])
subpacket = subpacket[5:]
}
if length > uint32(len(subpacket)) {
goto Truncated
}
rest = subpacket[length:]
subpacket = subpacket[:length]
if len(subpacket) == 0 {
err = errors.StructuralError("zero length signature subpacket")
return
}
packetType = signatureSubpacketType(subpacket[0] & 0x7f)
isCritical = subpacket[0]&0x80 == 0x80
subpacket = subpacket[1:]
sig.rawSubpackets = append(sig.rawSubpackets, outputSubpacket{isHashed, packetType, isCritical, subpacket})
switch packetType {
case creationTimeSubpacket:
if !isHashed {
err = errors.StructuralError("signature creation time in non-hashed area")
return
}
if len(subpacket) != 4 {
err = errors.StructuralError("signature creation time not four bytes")
return
}
t := binary.BigEndian.Uint32(subpacket)
sig.CreationTime = time.Unix(int64(t), 0)
case signatureExpirationSubpacket:
// Signature expiration time, section 5.2.3.10
if !isHashed {
return
}
if len(subpacket) != 4 {
err = errors.StructuralError("expiration subpacket with bad length")
return
}
sig.SigLifetimeSecs = new(uint32)
*sig.SigLifetimeSecs = binary.BigEndian.Uint32(subpacket)
case keyExpirationSubpacket:
// Key expiration time, section 5.2.3.6
if !isHashed {
return
}
if len(subpacket) != 4 {
err = errors.StructuralError("key expiration subpacket with bad length")
return
}
sig.KeyLifetimeSecs = new(uint32)
*sig.KeyLifetimeSecs = binary.BigEndian.Uint32(subpacket)
case prefSymmetricAlgosSubpacket:
// Preferred symmetric algorithms, section 5.2.3.7
if !isHashed {
return
}
sig.PreferredSymmetric = make([]byte, len(subpacket))
copy(sig.PreferredSymmetric, subpacket)
case issuerSubpacket:
// Issuer, section 5.2.3.5
if len(subpacket) != 8 {
err = errors.StructuralError("issuer subpacket with bad length")
return
}
sig.IssuerKeyId = new(uint64)
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket)
case prefHashAlgosSubpacket:
// Preferred hash algorithms, section 5.2.3.8
if !isHashed {
return
}
sig.PreferredHash = make([]byte, len(subpacket))
copy(sig.PreferredHash, subpacket)
case prefCompressionSubpacket:
// Preferred compression algorithms, section 5.2.3.9
if !isHashed {
return
}
sig.PreferredCompression = make([]byte, len(subpacket))
copy(sig.PreferredCompression, subpacket)
case primaryUserIdSubpacket:
// Primary User ID, section 5.2.3.19
if !isHashed {
return
}
if len(subpacket) != 1 {
err = errors.StructuralError("primary user id subpacket with bad length")
return
}
sig.IsPrimaryId = new(bool)
if subpacket[0] > 0 {
*sig.IsPrimaryId = true
}
case keyFlagsSubpacket:
// Key flags, section 5.2.3.21
if !isHashed {
return
}
if len(subpacket) == 0 {
err = errors.StructuralError("empty key flags subpacket")
return
}
sig.FlagsValid = true
if subpacket[0]&KeyFlagCertify != 0 {
sig.FlagCertify = true
}
if subpacket[0]&KeyFlagSign != 0 {
sig.FlagSign = true
}
if subpacket[0]&KeyFlagEncryptCommunications != 0 {
sig.FlagEncryptCommunications = true
}
if subpacket[0]&KeyFlagEncryptStorage != 0 {
sig.FlagEncryptStorage = true
}
case reasonForRevocationSubpacket:
// Reason For Revocation, section 5.2.3.23
if !isHashed {
return
}
if len(subpacket) == 0 {
err = errors.StructuralError("empty revocation reason subpacket")
return
}
sig.RevocationReason = new(uint8)
*sig.RevocationReason = subpacket[0]
sig.RevocationReasonText = string(subpacket[1:])
case featuresSubpacket:
// Features subpacket, section 5.2.3.24 specifies a very general
// mechanism for OpenPGP implementations to signal support for new
// features. In practice, the subpacket is used exclusively to
// indicate support for MDC-protected encryption.
sig.MDC = len(subpacket) >= 1 && subpacket[0]&1 == 1
case embeddedSignatureSubpacket:
// Only usage is in signatures that cross-certify
// signing subkeys. section 5.2.3.26 describes the
// format, with its usage described in section 11.1
if sig.EmbeddedSignature != nil {
err = errors.StructuralError("Cannot have multiple embedded signatures")
return
}
sig.EmbeddedSignature = new(Signature)
// Embedded signatures are required to be v4 signatures see
// section 12.1. However, we only parse v4 signatures in this
// file anyway.
if err := sig.EmbeddedSignature.parse(bytes.NewBuffer(subpacket)); err != nil {
return nil, err
}
if sigType := sig.EmbeddedSignature.SigType; sigType != SigTypePrimaryKeyBinding {
return nil, errors.StructuralError("cross-signature has unexpected type " + strconv.Itoa(int(sigType)))
}
default:
if isCritical {
err = errors.UnsupportedError("unknown critical signature subpacket type " + strconv.Itoa(int(packetType)))
return
}
}
return
Truncated:
err = errors.StructuralError("signature subpacket truncated")
return
}
// subpacketLengthLength returns the length, in bytes, of an encoded length value.
func subpacketLengthLength(length int) int {
if length < 192 {
return 1
}
if length < 16320 {
return 2
}
return 5
}
// serializeSubpacketLength marshals the given length into to.
func serializeSubpacketLength(to []byte, length int) int {
// RFC 4880, Section 4.2.2.
if length < 192 {
to[0] = byte(length)
return 1
}
if length < 16320 {
length -= 192
to[0] = byte((length >> 8) + 192)
to[1] = byte(length)
return 2
}
to[0] = 255
to[1] = byte(length >> 24)
to[2] = byte(length >> 16)
to[3] = byte(length >> 8)
to[4] = byte(length)
return 5
}
// subpacketsLength returns the serialized length, in bytes, of the given
// subpackets.
func subpacketsLength(subpackets []outputSubpacket, hashed bool) (length int) {
for _, subpacket := range subpackets {
if subpacket.hashed == hashed {
length += subpacketLengthLength(len(subpacket.contents) + 1)
length += 1 // type byte
length += len(subpacket.contents)
}
}
return
}
// serializeSubpackets marshals the given subpackets into to.
func serializeSubpackets(to []byte, subpackets []outputSubpacket, hashed bool) {
for _, subpacket := range subpackets {
if subpacket.hashed == hashed {
n := serializeSubpacketLength(to, len(subpacket.contents)+1)
to[n] = byte(subpacket.subpacketType)
to = to[1+n:]
n = copy(to, subpacket.contents)
to = to[n:]
}
}
return
}
// KeyExpired returns whether sig is a self-signature of a key that has
// expired.
func (sig *Signature) KeyExpired(currentTime time.Time) bool {
if sig.KeyLifetimeSecs == nil {
return false
}
expiry := sig.CreationTime.Add(time.Duration(*sig.KeyLifetimeSecs) * time.Second)
return currentTime.After(expiry)
}
// buildHashSuffix constructs the HashSuffix member of sig in preparation for signing.
func (sig *Signature) buildHashSuffix() (err error) {
hashedSubpacketsLen := subpacketsLength(sig.outSubpackets, true)
var ok bool
l := 6 + hashedSubpacketsLen
sig.HashSuffix = make([]byte, l+6)
sig.HashSuffix[0] = 4
sig.HashSuffix[1] = uint8(sig.SigType)
sig.HashSuffix[2] = uint8(sig.PubKeyAlgo)
sig.HashSuffix[3], ok = s2k.HashToHashId(sig.Hash)
if !ok {
sig.HashSuffix = nil
return errors.InvalidArgumentError("hash cannot be represented in OpenPGP: " + strconv.Itoa(int(sig.Hash)))
}
sig.HashSuffix[4] = byte(hashedSubpacketsLen >> 8)
sig.HashSuffix[5] = byte(hashedSubpacketsLen)
serializeSubpackets(sig.HashSuffix[6:l], sig.outSubpackets, true)
trailer := sig.HashSuffix[l:]
trailer[0] = 4
trailer[1] = 0xff
trailer[2] = byte(l >> 24)
trailer[3] = byte(l >> 16)
trailer[4] = byte(l >> 8)
trailer[5] = byte(l)
return
}
func (sig *Signature) signPrepareHash(h hash.Hash) (digest []byte, err error) {
err = sig.buildHashSuffix()
if err != nil {
return
}
h.Write(sig.HashSuffix)
digest = h.Sum(nil)
copy(sig.HashTag[:], digest)
return
}
// Sign signs a message with a private key. The hash, h, must contain
// the hash of the message to be signed and will be mutated by this function.
// On success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey, config *Config) (err error) {
sig.outSubpackets = sig.buildSubpackets()
digest, err := sig.signPrepareHash(h)
if err != nil {
return
}
switch priv.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
// supports both *rsa.PrivateKey and crypto.Signer
sig.RSASignature.bytes, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
sig.RSASignature.bitLength = uint16(8 * len(sig.RSASignature.bytes))
case PubKeyAlgoDSA:
dsaPriv := priv.PrivateKey.(*dsa.PrivateKey)
// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
subgroupSize := (dsaPriv.Q.BitLen() + 7) / 8
if len(digest) > subgroupSize {
digest = digest[:subgroupSize]
}
r, s, err := dsa.Sign(config.Random(), dsaPriv, digest)
if err == nil {
sig.DSASigR.bytes = r.Bytes()
sig.DSASigR.bitLength = uint16(8 * len(sig.DSASigR.bytes))
sig.DSASigS.bytes = s.Bytes()
sig.DSASigS.bitLength = uint16(8 * len(sig.DSASigS.bytes))
}
case PubKeyAlgoECDSA:
var r, s *big.Int
if pk, ok := priv.PrivateKey.(*ecdsa.PrivateKey); ok {
// direct support, avoid asn1 wrapping/unwrapping
r, s, err = ecdsa.Sign(config.Random(), pk, digest)
} else {
var b []byte
b, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
if err == nil {
r, s, err = unwrapECDSASig(b)
}
}
if err == nil {
sig.ECDSASigR = fromBig(r)
sig.ECDSASigS = fromBig(s)
}
default:
err = errors.UnsupportedError("public key algorithm: " + strconv.Itoa(int(sig.PubKeyAlgo)))
}
return
}
// unwrapECDSASig parses the two integer components of an ASN.1-encoded ECDSA
// signature.
func unwrapECDSASig(b []byte) (r, s *big.Int, err error) {
var ecsdaSig struct {
R, S *big.Int
}
_, err = asn1.Unmarshal(b, &ecsdaSig)
if err != nil {
return
}
return ecsdaSig.R, ecsdaSig.S, nil
}
// SignUserId computes a signature from priv, asserting that pub is a valid
// key for the identity id. On success, the signature is stored in sig. Call
// Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignUserId(id string, pub *PublicKey, priv *PrivateKey, config *Config) error {
h, err := userIdSignatureHash(id, pub, sig.Hash)
if err != nil {
return err
}
return sig.Sign(h, priv, config)
}
// SignKey computes a signature from priv, asserting that pub is a subkey. On
// success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignKey(pub *PublicKey, priv *PrivateKey, config *Config) error {
h, err := keySignatureHash(&priv.PublicKey, pub, sig.Hash)
if err != nil {
return err
}
return sig.Sign(h, priv, config)
}
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been
// called first.
func (sig *Signature) Serialize(w io.Writer) (err error) {
if len(sig.outSubpackets) == 0 {
sig.outSubpackets = sig.rawSubpackets
}
if sig.RSASignature.bytes == nil && sig.DSASigR.bytes == nil && sig.ECDSASigR.bytes == nil {
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize")
}
sigLength := 0
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sigLength = 2 + len(sig.RSASignature.bytes)
case PubKeyAlgoDSA:
sigLength = 2 + len(sig.DSASigR.bytes)
sigLength += 2 + len(sig.DSASigS.bytes)
case PubKeyAlgoECDSA:
sigLength = 2 + len(sig.ECDSASigR.bytes)
sigLength += 2 + len(sig.ECDSASigS.bytes)
default:
panic("impossible")
}
unhashedSubpacketsLen := subpacketsLength(sig.outSubpackets, false)
length := len(sig.HashSuffix) - 6 /* trailer not included */ +
2 /* length of unhashed subpackets */ + unhashedSubpacketsLen +
2 /* hash tag */ + sigLength
err = serializeHeader(w, packetTypeSignature, length)
if err != nil {
return
}
_, err = w.Write(sig.HashSuffix[:len(sig.HashSuffix)-6])
if err != nil {
return
}
unhashedSubpackets := make([]byte, 2+unhashedSubpacketsLen)
unhashedSubpackets[0] = byte(unhashedSubpacketsLen >> 8)
unhashedSubpackets[1] = byte(unhashedSubpacketsLen)
serializeSubpackets(unhashedSubpackets[2:], sig.outSubpackets, false)
_, err = w.Write(unhashedSubpackets)
if err != nil {
return
}
_, err = w.Write(sig.HashTag[:])
if err != nil {
return
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
err = writeMPIs(w, sig.RSASignature)
case PubKeyAlgoDSA:
err = writeMPIs(w, sig.DSASigR, sig.DSASigS)
case PubKeyAlgoECDSA:
err = writeMPIs(w, sig.ECDSASigR, sig.ECDSASigS)
default:
panic("impossible")
}
return
}
// outputSubpacket represents a subpacket to be marshaled.
type outputSubpacket struct {
hashed bool // true if this subpacket is in the hashed area.
subpacketType signatureSubpacketType
isCritical bool
contents []byte
}
func (sig *Signature) buildSubpackets() (subpackets []outputSubpacket) {
creationTime := make([]byte, 4)
binary.BigEndian.PutUint32(creationTime, uint32(sig.CreationTime.Unix()))
subpackets = append(subpackets, outputSubpacket{true, creationTimeSubpacket, false, creationTime})
if sig.IssuerKeyId != nil {
keyId := make([]byte, 8)
binary.BigEndian.PutUint64(keyId, *sig.IssuerKeyId)
subpackets = append(subpackets, outputSubpacket{true, issuerSubpacket, false, keyId})
}
if sig.SigLifetimeSecs != nil && *sig.SigLifetimeSecs != 0 {
sigLifetime := make([]byte, 4)
binary.BigEndian.PutUint32(sigLifetime, *sig.SigLifetimeSecs)
subpackets = append(subpackets, outputSubpacket{true, signatureExpirationSubpacket, true, sigLifetime})
}
// Key flags may only appear in self-signatures or certification signatures.
if sig.FlagsValid {
var flags byte
if sig.FlagCertify {
flags |= KeyFlagCertify
}
if sig.FlagSign {
flags |= KeyFlagSign
}
if sig.FlagEncryptCommunications {
flags |= KeyFlagEncryptCommunications
}
if sig.FlagEncryptStorage {
flags |= KeyFlagEncryptStorage
}
subpackets = append(subpackets, outputSubpacket{true, keyFlagsSubpacket, false, []byte{flags}})
}
// The following subpackets may only appear in self-signatures
if sig.KeyLifetimeSecs != nil && *sig.KeyLifetimeSecs != 0 {
keyLifetime := make([]byte, 4)
binary.BigEndian.PutUint32(keyLifetime, *sig.KeyLifetimeSecs)
subpackets = append(subpackets, outputSubpacket{true, keyExpirationSubpacket, true, keyLifetime})
}
if sig.IsPrimaryId != nil && *sig.IsPrimaryId {
subpackets = append(subpackets, outputSubpacket{true, primaryUserIdSubpacket, false, []byte{1}})
}
if len(sig.PreferredSymmetric) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefSymmetricAlgosSubpacket, false, sig.PreferredSymmetric})
}
if len(sig.PreferredHash) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefHashAlgosSubpacket, false, sig.PreferredHash})
}
if len(sig.PreferredCompression) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefCompressionSubpacket, false, sig.PreferredCompression})
}
return
}

View File

@ -0,0 +1,78 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"encoding/hex"
"testing"
)
func TestSignatureRead(t *testing.T) {
packet, err := Read(readerFromHex(signatureDataHex))
if err != nil {
t.Error(err)
return
}
sig, ok := packet.(*Signature)
if !ok || sig.SigType != SigTypeBinary || sig.PubKeyAlgo != PubKeyAlgoRSA || sig.Hash != crypto.SHA1 {
t.Errorf("failed to parse, got: %#v", packet)
}
}
func TestSignatureReserialize(t *testing.T) {
packet, _ := Read(readerFromHex(signatureDataHex))
sig := packet.(*Signature)
out := new(bytes.Buffer)
err := sig.Serialize(out)
if err != nil {
t.Errorf("error reserializing: %s", err)
return
}
expected, _ := hex.DecodeString(signatureDataHex)
if !bytes.Equal(expected, out.Bytes()) {
t.Errorf("output doesn't match input (got vs expected):\n%s\n%s", hex.Dump(out.Bytes()), hex.Dump(expected))
}
}
func TestSignUserId(t *testing.T) {
sig := &Signature{
SigType: SigTypeGenericCert,
PubKeyAlgo: PubKeyAlgoRSA,
Hash: 0, // invalid hash function
}
packet, err := Read(readerFromHex(rsaPkDataHex))
if err != nil {
t.Fatalf("failed to deserialize public key: %v", err)
}
pubKey := packet.(*PublicKey)
packet, err = Read(readerFromHex(privKeyRSAHex))
if err != nil {
t.Fatalf("failed to deserialize private key: %v", err)
}
privKey := packet.(*PrivateKey)
err = sig.SignUserId("", pubKey, privKey, nil)
if err == nil {
t.Errorf("did not receive an error when expected")
}
sig.Hash = crypto.SHA256
err = privKey.Decrypt([]byte("testing"))
if err != nil {
t.Fatalf("failed to decrypt private key: %v", err)
}
err = sig.SignUserId("", pubKey, privKey, nil)
if err != nil {
t.Errorf("failed to sign user id: %v", err)
}
}
const signatureDataHex = "c2c05c04000102000605024cb45112000a0910ab105c91af38fb158f8d07ff5596ea368c5efe015bed6e78348c0f033c931d5f2ce5db54ce7f2a7e4b4ad64db758d65a7a71773edeab7ba2a9e0908e6a94a1175edd86c1d843279f045b021a6971a72702fcbd650efc393c5474d5b59a15f96d2eaad4c4c426797e0dcca2803ef41c6ff234d403eec38f31d610c344c06f2401c262f0993b2e66cad8a81ebc4322c723e0d4ba09fe917e8777658307ad8329adacba821420741009dfe87f007759f0982275d028a392c6ed983a0d846f890b36148c7358bdb8a516007fac760261ecd06076813831a36d0459075d1befa245ae7f7fb103d92ca759e9498fe60ef8078a39a3beda510deea251ea9f0a7f0df6ef42060f20780360686f3e400e"

View File

@ -0,0 +1,146 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"encoding/binary"
"fmt"
"io"
"strconv"
"time"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
// SignatureV3 represents older version 3 signatures. These signatures are less secure
// than version 4 and should not be used to create new signatures. They are included
// here for backwards compatibility to read and validate with older key material.
// See RFC 4880, section 5.2.2.
type SignatureV3 struct {
SigType SignatureType
CreationTime time.Time
IssuerKeyId uint64
PubKeyAlgo PublicKeyAlgorithm
Hash crypto.Hash
HashTag [2]byte
RSASignature parsedMPI
DSASigR, DSASigS parsedMPI
}
func (sig *SignatureV3) parse(r io.Reader) (err error) {
// RFC 4880, section 5.2.2
var buf [8]byte
if _, err = readFull(r, buf[:1]); err != nil {
return
}
if buf[0] < 2 || buf[0] > 3 {
err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0])))
return
}
if _, err = readFull(r, buf[:1]); err != nil {
return
}
if buf[0] != 5 {
err = errors.UnsupportedError(
"invalid hashed material length " + strconv.Itoa(int(buf[0])))
return
}
// Read hashed material: signature type + creation time
if _, err = readFull(r, buf[:5]); err != nil {
return
}
sig.SigType = SignatureType(buf[0])
t := binary.BigEndian.Uint32(buf[1:5])
sig.CreationTime = time.Unix(int64(t), 0)
// Eight-octet Key ID of signer.
if _, err = readFull(r, buf[:8]); err != nil {
return
}
sig.IssuerKeyId = binary.BigEndian.Uint64(buf[:])
// Public-key and hash algorithm
if _, err = readFull(r, buf[:2]); err != nil {
return
}
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[0])
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA:
default:
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
return
}
var ok bool
if sig.Hash, ok = s2k.HashIdToHash(buf[1]); !ok {
return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2])))
}
// Two-octet field holding left 16 bits of signed hash value.
if _, err = readFull(r, sig.HashTag[:2]); err != nil {
return
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sig.RSASignature.bytes, sig.RSASignature.bitLength, err = readMPI(r)
case PubKeyAlgoDSA:
if sig.DSASigR.bytes, sig.DSASigR.bitLength, err = readMPI(r); err != nil {
return
}
sig.DSASigS.bytes, sig.DSASigS.bitLength, err = readMPI(r)
default:
panic("unreachable")
}
return
}
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been
// called first.
func (sig *SignatureV3) Serialize(w io.Writer) (err error) {
buf := make([]byte, 8)
// Write the sig type and creation time
buf[0] = byte(sig.SigType)
binary.BigEndian.PutUint32(buf[1:5], uint32(sig.CreationTime.Unix()))
if _, err = w.Write(buf[:5]); err != nil {
return
}
// Write the issuer long key ID
binary.BigEndian.PutUint64(buf[:8], sig.IssuerKeyId)
if _, err = w.Write(buf[:8]); err != nil {
return
}
// Write public key algorithm, hash ID, and hash value
buf[0] = byte(sig.PubKeyAlgo)
hashId, ok := s2k.HashToHashId(sig.Hash)
if !ok {
return errors.UnsupportedError(fmt.Sprintf("hash function %v", sig.Hash))
}
buf[1] = hashId
copy(buf[2:4], sig.HashTag[:])
if _, err = w.Write(buf[:4]); err != nil {
return
}
if sig.RSASignature.bytes == nil && sig.DSASigR.bytes == nil {
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize")
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
err = writeMPIs(w, sig.RSASignature)
case PubKeyAlgoDSA:
err = writeMPIs(w, sig.DSASigR, sig.DSASigS)
default:
panic("impossible")
}
return
}

View File

@ -0,0 +1,92 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"encoding/hex"
"io"
"io/ioutil"
"testing"
"golang.org/x/crypto/openpgp/armor"
)
func TestSignatureV3Read(t *testing.T) {
r := v3KeyReader(t)
Read(r) // Skip public key
Read(r) // Skip uid
packet, err := Read(r) // Signature
if err != nil {
t.Error(err)
return
}
sig, ok := packet.(*SignatureV3)
if !ok || sig.SigType != SigTypeGenericCert || sig.PubKeyAlgo != PubKeyAlgoRSA || sig.Hash != crypto.MD5 {
t.Errorf("failed to parse, got: %#v", packet)
}
}
func TestSignatureV3Reserialize(t *testing.T) {
r := v3KeyReader(t)
Read(r) // Skip public key
Read(r) // Skip uid
packet, err := Read(r)
if err != nil {
t.Error(err)
return
}
sig := packet.(*SignatureV3)
out := new(bytes.Buffer)
if err = sig.Serialize(out); err != nil {
t.Errorf("error reserializing: %s", err)
return
}
expected, err := ioutil.ReadAll(v3KeyReader(t))
if err != nil {
t.Error(err)
return
}
expected = expected[4+141+4+39:] // See pgpdump offsets below, this is where the sig starts
if !bytes.Equal(expected, out.Bytes()) {
t.Errorf("output doesn't match input (got vs expected):\n%s\n%s", hex.Dump(out.Bytes()), hex.Dump(expected))
}
}
func v3KeyReader(t *testing.T) io.Reader {
armorBlock, err := armor.Decode(bytes.NewBufferString(keySigV3Armor))
if err != nil {
t.Fatalf("armor Decode failed: %v", err)
}
return armorBlock.Body
}
// keySigV3Armor is some V3 public key I found in an SKS dump.
// Old: Public Key Packet(tag 6)(141 bytes)
// Ver 4 - new
// Public key creation time - Fri Sep 16 17:13:54 CDT 1994
// Pub alg - unknown(pub 0)
// Unknown public key(pub 0)
// Old: User ID Packet(tag 13)(39 bytes)
// User ID - Armin M. Warda <warda@nephilim.ruhr.de>
// Old: Signature Packet(tag 2)(149 bytes)
// Ver 4 - new
// Sig type - unknown(05)
// Pub alg - ElGamal Encrypt-Only(pub 16)
// Hash alg - unknown(hash 46)
// Hashed Sub: unknown(sub 81, critical)(1988 bytes)
const keySigV3Armor = `-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: SKS 1.0.10
mI0CLnoYogAAAQQA1qwA2SuJwfQ5bCQ6u5t20ulnOtY0gykf7YjiK4LiVeRBwHjGq7v30tGV
5Qti7qqRW4Ww7CDCJc4sZMFnystucR2vLkXaSoNWoFm4Fg47NiisDdhDezHwbVPW6OpCFNSi
ZAamtj4QAUBu8j4LswafrJqZqR9336/V3g8Yil2l48kABRG0J0FybWluIE0uIFdhcmRhIDx3
YXJkYUBuZXBoaWxpbS5ydWhyLmRlPoiVAgUQLok2xwXR6zmeWEiZAQE/DgP/WgxPQh40/Po4
gSkWZCDAjNdph7zexvAb0CcUWahcwiBIgg3U5ErCx9I5CNVA9U+s8bNrDZwgSIeBzp3KhWUx
524uhGgm6ZUTOAIKA6CbV6pfqoLpJnRYvXYQU5mIWsNa99wcu2qu18OeEDnztb7aLA6Ra9OF
YFCbq4EjXRoOrYM=
=LPjs
-----END PGP PUBLIC KEY BLOCK-----`

View File

@ -0,0 +1,155 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto/cipher"
"io"
"strconv"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
// This is the largest session key that we'll support. Since no 512-bit cipher
// has even been seriously used, this is comfortably large.
const maxSessionKeySizeInBytes = 64
// SymmetricKeyEncrypted represents a passphrase protected session key. See RFC
// 4880, section 5.3.
type SymmetricKeyEncrypted struct {
CipherFunc CipherFunction
s2k func(out, in []byte)
encryptedKey []byte
}
const symmetricKeyEncryptedVersion = 4
func (ske *SymmetricKeyEncrypted) parse(r io.Reader) error {
// RFC 4880, section 5.3.
var buf [2]byte
if _, err := readFull(r, buf[:]); err != nil {
return err
}
if buf[0] != symmetricKeyEncryptedVersion {
return errors.UnsupportedError("SymmetricKeyEncrypted version")
}
ske.CipherFunc = CipherFunction(buf[1])
if ske.CipherFunc.KeySize() == 0 {
return errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(buf[1])))
}
var err error
ske.s2k, err = s2k.Parse(r)
if err != nil {
return err
}
encryptedKey := make([]byte, maxSessionKeySizeInBytes)
// The session key may follow. We just have to try and read to find
// out. If it exists then we limit it to maxSessionKeySizeInBytes.
n, err := readFull(r, encryptedKey)
if err != nil && err != io.ErrUnexpectedEOF {
return err
}
if n != 0 {
if n == maxSessionKeySizeInBytes {
return errors.UnsupportedError("oversized encrypted session key")
}
ske.encryptedKey = encryptedKey[:n]
}
return nil
}
// Decrypt attempts to decrypt an encrypted session key and returns the key and
// the cipher to use when decrypting a subsequent Symmetrically Encrypted Data
// packet.
func (ske *SymmetricKeyEncrypted) Decrypt(passphrase []byte) ([]byte, CipherFunction, error) {
key := make([]byte, ske.CipherFunc.KeySize())
ske.s2k(key, passphrase)
if len(ske.encryptedKey) == 0 {
return key, ske.CipherFunc, nil
}
// the IV is all zeros
iv := make([]byte, ske.CipherFunc.blockSize())
c := cipher.NewCFBDecrypter(ske.CipherFunc.new(key), iv)
plaintextKey := make([]byte, len(ske.encryptedKey))
c.XORKeyStream(plaintextKey, ske.encryptedKey)
cipherFunc := CipherFunction(plaintextKey[0])
if cipherFunc.blockSize() == 0 {
return nil, ske.CipherFunc, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(cipherFunc)))
}
plaintextKey = plaintextKey[1:]
if l, cipherKeySize := len(plaintextKey), cipherFunc.KeySize(); l != cipherFunc.KeySize() {
return nil, cipherFunc, errors.StructuralError("length of decrypted key (" + strconv.Itoa(l) + ") " +
"not equal to cipher keysize (" + strconv.Itoa(cipherKeySize) + ")")
}
return plaintextKey, cipherFunc, nil
}
// SerializeSymmetricKeyEncrypted serializes a symmetric key packet to w. The
// packet contains a random session key, encrypted by a key derived from the
// given passphrase. The session key is returned and must be passed to
// SerializeSymmetricallyEncrypted.
// If config is nil, sensible defaults will be used.
func SerializeSymmetricKeyEncrypted(w io.Writer, passphrase []byte, config *Config) (key []byte, err error) {
cipherFunc := config.Cipher()
keySize := cipherFunc.KeySize()
if keySize == 0 {
return nil, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(cipherFunc)))
}
s2kBuf := new(bytes.Buffer)
keyEncryptingKey := make([]byte, keySize)
// s2k.Serialize salts and stretches the passphrase, and writes the
// resulting key to keyEncryptingKey and the s2k descriptor to s2kBuf.
err = s2k.Serialize(s2kBuf, keyEncryptingKey, config.Random(), passphrase, &s2k.Config{Hash: config.Hash(), S2KCount: config.PasswordHashIterations()})
if err != nil {
return
}
s2kBytes := s2kBuf.Bytes()
packetLength := 2 /* header */ + len(s2kBytes) + 1 /* cipher type */ + keySize
err = serializeHeader(w, packetTypeSymmetricKeyEncrypted, packetLength)
if err != nil {
return
}
var buf [2]byte
buf[0] = symmetricKeyEncryptedVersion
buf[1] = byte(cipherFunc)
_, err = w.Write(buf[:])
if err != nil {
return
}
_, err = w.Write(s2kBytes)
if err != nil {
return
}
sessionKey := make([]byte, keySize)
_, err = io.ReadFull(config.Random(), sessionKey)
if err != nil {
return
}
iv := make([]byte, cipherFunc.blockSize())
c := cipher.NewCFBEncrypter(cipherFunc.new(keyEncryptingKey), iv)
encryptedCipherAndKey := make([]byte, keySize+1)
c.XORKeyStream(encryptedCipherAndKey, buf[1:])
c.XORKeyStream(encryptedCipherAndKey[1:], sessionKey)
_, err = w.Write(encryptedCipherAndKey)
if err != nil {
return
}
key = sessionKey
return
}

View File

@ -0,0 +1,117 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"encoding/hex"
"io"
"io/ioutil"
"testing"
)
func TestSymmetricKeyEncrypted(t *testing.T) {
buf := readerFromHex(symmetricallyEncryptedHex)
packet, err := Read(buf)
if err != nil {
t.Errorf("failed to read SymmetricKeyEncrypted: %s", err)
return
}
ske, ok := packet.(*SymmetricKeyEncrypted)
if !ok {
t.Error("didn't find SymmetricKeyEncrypted packet")
return
}
key, cipherFunc, err := ske.Decrypt([]byte("password"))
if err != nil {
t.Error(err)
return
}
packet, err = Read(buf)
if err != nil {
t.Errorf("failed to read SymmetricallyEncrypted: %s", err)
return
}
se, ok := packet.(*SymmetricallyEncrypted)
if !ok {
t.Error("didn't find SymmetricallyEncrypted packet")
return
}
r, err := se.Decrypt(cipherFunc, key)
if err != nil {
t.Error(err)
return
}
contents, err := ioutil.ReadAll(r)
if err != nil && err != io.EOF {
t.Error(err)
return
}
expectedContents, _ := hex.DecodeString(symmetricallyEncryptedContentsHex)
if !bytes.Equal(expectedContents, contents) {
t.Errorf("bad contents got:%x want:%x", contents, expectedContents)
}
}
const symmetricallyEncryptedHex = "8c0d04030302371a0b38d884f02060c91cf97c9973b8e58e028e9501708ccfe618fb92afef7fa2d80ddadd93cf"
const symmetricallyEncryptedContentsHex = "cb1062004d14c4df636f6e74656e74732e0a"
func TestSerializeSymmetricKeyEncryptedCiphers(t *testing.T) {
tests := [...]struct {
cipherFunc CipherFunction
name string
}{
{Cipher3DES, "Cipher3DES"},
{CipherCAST5, "CipherCAST5"},
{CipherAES128, "CipherAES128"},
{CipherAES192, "CipherAES192"},
{CipherAES256, "CipherAES256"},
}
for _, test := range tests {
var buf bytes.Buffer
passphrase := []byte("testing")
config := &Config{
DefaultCipher: test.cipherFunc,
}
key, err := SerializeSymmetricKeyEncrypted(&buf, passphrase, config)
if err != nil {
t.Errorf("cipher(%s) failed to serialize: %s", test.name, err)
continue
}
p, err := Read(&buf)
if err != nil {
t.Errorf("cipher(%s) failed to reparse: %s", test.name, err)
continue
}
ske, ok := p.(*SymmetricKeyEncrypted)
if !ok {
t.Errorf("cipher(%s) parsed a different packet type: %#v", test.name, p)
continue
}
if ske.CipherFunc != config.DefaultCipher {
t.Errorf("cipher(%s) SKE cipher function is %d (expected %d)", test.name, ske.CipherFunc, config.DefaultCipher)
}
parsedKey, parsedCipherFunc, err := ske.Decrypt(passphrase)
if err != nil {
t.Errorf("cipher(%s) failed to decrypt reparsed SKE: %s", test.name, err)
continue
}
if !bytes.Equal(key, parsedKey) {
t.Errorf("cipher(%s) keys don't match after Decrypt: %x (original) vs %x (parsed)", test.name, key, parsedKey)
}
if parsedCipherFunc != test.cipherFunc {
t.Errorf("cipher(%s) cipher function doesn't match after Decrypt: %d (original) vs %d (parsed)",
test.name, test.cipherFunc, parsedCipherFunc)
}
}
}

View File

@ -0,0 +1,290 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto/cipher"
"crypto/sha1"
"crypto/subtle"
"golang.org/x/crypto/openpgp/errors"
"hash"
"io"
"strconv"
)
// SymmetricallyEncrypted represents a symmetrically encrypted byte string. The
// encrypted contents will consist of more OpenPGP packets. See RFC 4880,
// sections 5.7 and 5.13.
type SymmetricallyEncrypted struct {
MDC bool // true iff this is a type 18 packet and thus has an embedded MAC.
contents io.Reader
prefix []byte
}
const symmetricallyEncryptedVersion = 1
func (se *SymmetricallyEncrypted) parse(r io.Reader) error {
if se.MDC {
// See RFC 4880, section 5.13.
var buf [1]byte
_, err := readFull(r, buf[:])
if err != nil {
return err
}
if buf[0] != symmetricallyEncryptedVersion {
return errors.UnsupportedError("unknown SymmetricallyEncrypted version")
}
}
se.contents = r
return nil
}
// Decrypt returns a ReadCloser, from which the decrypted contents of the
// packet can be read. An incorrect key can, with high probability, be detected
// immediately and this will result in a KeyIncorrect error being returned.
func (se *SymmetricallyEncrypted) Decrypt(c CipherFunction, key []byte) (io.ReadCloser, error) {
keySize := c.KeySize()
if keySize == 0 {
return nil, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(c)))
}
if len(key) != keySize {
return nil, errors.InvalidArgumentError("SymmetricallyEncrypted: incorrect key length")
}
if se.prefix == nil {
se.prefix = make([]byte, c.blockSize()+2)
_, err := readFull(se.contents, se.prefix)
if err != nil {
return nil, err
}
} else if len(se.prefix) != c.blockSize()+2 {
return nil, errors.InvalidArgumentError("can't try ciphers with different block lengths")
}
ocfbResync := OCFBResync
if se.MDC {
// MDC packets use a different form of OCFB mode.
ocfbResync = OCFBNoResync
}
s := NewOCFBDecrypter(c.new(key), se.prefix, ocfbResync)
if s == nil {
return nil, errors.ErrKeyIncorrect
}
plaintext := cipher.StreamReader{S: s, R: se.contents}
if se.MDC {
// MDC packets have an embedded hash that we need to check.
h := sha1.New()
h.Write(se.prefix)
return &seMDCReader{in: plaintext, h: h}, nil
}
// Otherwise, we just need to wrap plaintext so that it's a valid ReadCloser.
return seReader{plaintext}, nil
}
// seReader wraps an io.Reader with a no-op Close method.
type seReader struct {
in io.Reader
}
func (ser seReader) Read(buf []byte) (int, error) {
return ser.in.Read(buf)
}
func (ser seReader) Close() error {
return nil
}
const mdcTrailerSize = 1 /* tag byte */ + 1 /* length byte */ + sha1.Size
// An seMDCReader wraps an io.Reader, maintains a running hash and keeps hold
// of the most recent 22 bytes (mdcTrailerSize). Upon EOF, those bytes form an
// MDC packet containing a hash of the previous contents which is checked
// against the running hash. See RFC 4880, section 5.13.
type seMDCReader struct {
in io.Reader
h hash.Hash
trailer [mdcTrailerSize]byte
scratch [mdcTrailerSize]byte
trailerUsed int
error bool
eof bool
}
func (ser *seMDCReader) Read(buf []byte) (n int, err error) {
if ser.error {
err = io.ErrUnexpectedEOF
return
}
if ser.eof {
err = io.EOF
return
}
// If we haven't yet filled the trailer buffer then we must do that
// first.
for ser.trailerUsed < mdcTrailerSize {
n, err = ser.in.Read(ser.trailer[ser.trailerUsed:])
ser.trailerUsed += n
if err == io.EOF {
if ser.trailerUsed != mdcTrailerSize {
n = 0
err = io.ErrUnexpectedEOF
ser.error = true
return
}
ser.eof = true
n = 0
return
}
if err != nil {
n = 0
return
}
}
// If it's a short read then we read into a temporary buffer and shift
// the data into the caller's buffer.
if len(buf) <= mdcTrailerSize {
n, err = readFull(ser.in, ser.scratch[:len(buf)])
copy(buf, ser.trailer[:n])
ser.h.Write(buf[:n])
copy(ser.trailer[:], ser.trailer[n:])
copy(ser.trailer[mdcTrailerSize-n:], ser.scratch[:])
if n < len(buf) {
ser.eof = true
err = io.EOF
}
return
}
n, err = ser.in.Read(buf[mdcTrailerSize:])
copy(buf, ser.trailer[:])
ser.h.Write(buf[:n])
copy(ser.trailer[:], buf[n:])
if err == io.EOF {
ser.eof = true
}
return
}
// This is a new-format packet tag byte for a type 19 (MDC) packet.
const mdcPacketTagByte = byte(0x80) | 0x40 | 19
func (ser *seMDCReader) Close() error {
if ser.error {
return errors.SignatureError("error during reading")
}
for !ser.eof {
// We haven't seen EOF so we need to read to the end
var buf [1024]byte
_, err := ser.Read(buf[:])
if err == io.EOF {
break
}
if err != nil {
return errors.SignatureError("error during reading")
}
}
if ser.trailer[0] != mdcPacketTagByte || ser.trailer[1] != sha1.Size {
return errors.SignatureError("MDC packet not found")
}
ser.h.Write(ser.trailer[:2])
final := ser.h.Sum(nil)
if subtle.ConstantTimeCompare(final, ser.trailer[2:]) != 1 {
return errors.SignatureError("hash mismatch")
}
return nil
}
// An seMDCWriter writes through to an io.WriteCloser while maintains a running
// hash of the data written. On close, it emits an MDC packet containing the
// running hash.
type seMDCWriter struct {
w io.WriteCloser
h hash.Hash
}
func (w *seMDCWriter) Write(buf []byte) (n int, err error) {
w.h.Write(buf)
return w.w.Write(buf)
}
func (w *seMDCWriter) Close() (err error) {
var buf [mdcTrailerSize]byte
buf[0] = mdcPacketTagByte
buf[1] = sha1.Size
w.h.Write(buf[:2])
digest := w.h.Sum(nil)
copy(buf[2:], digest)
_, err = w.w.Write(buf[:])
if err != nil {
return
}
return w.w.Close()
}
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer.
type noOpCloser struct {
w io.Writer
}
func (c noOpCloser) Write(data []byte) (n int, err error) {
return c.w.Write(data)
}
func (c noOpCloser) Close() error {
return nil
}
// SerializeSymmetricallyEncrypted serializes a symmetrically encrypted packet
// to w and returns a WriteCloser to which the to-be-encrypted packets can be
// written.
// If config is nil, sensible defaults will be used.
func SerializeSymmetricallyEncrypted(w io.Writer, c CipherFunction, key []byte, config *Config) (contents io.WriteCloser, err error) {
if c.KeySize() != len(key) {
return nil, errors.InvalidArgumentError("SymmetricallyEncrypted.Serialize: bad key length")
}
writeCloser := noOpCloser{w}
ciphertext, err := serializeStreamHeader(writeCloser, packetTypeSymmetricallyEncryptedMDC)
if err != nil {
return
}
_, err = ciphertext.Write([]byte{symmetricallyEncryptedVersion})
if err != nil {
return
}
block := c.new(key)
blockSize := block.BlockSize()
iv := make([]byte, blockSize)
_, err = config.Random().Read(iv)
if err != nil {
return
}
s, prefix := NewOCFBEncrypter(block, iv, OCFBNoResync)
_, err = ciphertext.Write(prefix)
if err != nil {
return
}
plaintext := cipher.StreamWriter{S: s, W: ciphertext}
h := sha1.New()
h.Write(iv)
h.Write(iv[blockSize-2:])
contents = &seMDCWriter{w: plaintext, h: h}
return
}

View File

@ -0,0 +1,123 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto/sha1"
"encoding/hex"
"golang.org/x/crypto/openpgp/errors"
"io"
"io/ioutil"
"testing"
)
// TestReader wraps a []byte and returns reads of a specific length.
type testReader struct {
data []byte
stride int
}
func (t *testReader) Read(buf []byte) (n int, err error) {
n = t.stride
if n > len(t.data) {
n = len(t.data)
}
if n > len(buf) {
n = len(buf)
}
copy(buf, t.data)
t.data = t.data[n:]
if len(t.data) == 0 {
err = io.EOF
}
return
}
func testMDCReader(t *testing.T) {
mdcPlaintext, _ := hex.DecodeString(mdcPlaintextHex)
for stride := 1; stride < len(mdcPlaintext)/2; stride++ {
r := &testReader{data: mdcPlaintext, stride: stride}
mdcReader := &seMDCReader{in: r, h: sha1.New()}
body, err := ioutil.ReadAll(mdcReader)
if err != nil {
t.Errorf("stride: %d, error: %s", stride, err)
continue
}
if !bytes.Equal(body, mdcPlaintext[:len(mdcPlaintext)-22]) {
t.Errorf("stride: %d: bad contents %x", stride, body)
continue
}
err = mdcReader.Close()
if err != nil {
t.Errorf("stride: %d, error on Close: %s", stride, err)
}
}
mdcPlaintext[15] ^= 80
r := &testReader{data: mdcPlaintext, stride: 2}
mdcReader := &seMDCReader{in: r, h: sha1.New()}
_, err := ioutil.ReadAll(mdcReader)
if err != nil {
t.Errorf("corruption test, error: %s", err)
return
}
err = mdcReader.Close()
if err == nil {
t.Error("corruption: no error")
} else if _, ok := err.(*errors.SignatureError); !ok {
t.Errorf("corruption: expected SignatureError, got: %s", err)
}
}
const mdcPlaintextHex = "a302789c3b2d93c4e0eb9aba22283539b3203335af44a134afb800c849cb4c4de10200aff40b45d31432c80cb384299a0655966d6939dfdeed1dddf980"
func TestSerialize(t *testing.T) {
buf := bytes.NewBuffer(nil)
c := CipherAES128
key := make([]byte, c.KeySize())
w, err := SerializeSymmetricallyEncrypted(buf, c, key, nil)
if err != nil {
t.Errorf("error from SerializeSymmetricallyEncrypted: %s", err)
return
}
contents := []byte("hello world\n")
w.Write(contents)
w.Close()
p, err := Read(buf)
if err != nil {
t.Errorf("error from Read: %s", err)
return
}
se, ok := p.(*SymmetricallyEncrypted)
if !ok {
t.Errorf("didn't read a *SymmetricallyEncrypted")
return
}
r, err := se.Decrypt(c, key)
if err != nil {
t.Errorf("error from Decrypt: %s", err)
return
}
contentsCopy := bytes.NewBuffer(nil)
_, err = io.Copy(contentsCopy, r)
if err != nil {
t.Errorf("error from io.Copy: %s", err)
return
}
if !bytes.Equal(contentsCopy.Bytes(), contents) {
t.Errorf("contents not equal got: %x want: %x", contentsCopy.Bytes(), contents)
}
}

View File

@ -0,0 +1,91 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"image"
"image/jpeg"
"io"
"io/ioutil"
)
const UserAttrImageSubpacket = 1
// UserAttribute is capable of storing other types of data about a user
// beyond name, email and a text comment. In practice, user attributes are typically used
// to store a signed thumbnail photo JPEG image of the user.
// See RFC 4880, section 5.12.
type UserAttribute struct {
Contents []*OpaqueSubpacket
}
// NewUserAttributePhoto creates a user attribute packet
// containing the given images.
func NewUserAttributePhoto(photos ...image.Image) (uat *UserAttribute, err error) {
uat = new(UserAttribute)
for _, photo := range photos {
var buf bytes.Buffer
// RFC 4880, Section 5.12.1.
data := []byte{
0x10, 0x00, // Little-endian image header length (16 bytes)
0x01, // Image header version 1
0x01, // JPEG
0, 0, 0, 0, // 12 reserved octets, must be all zero.
0, 0, 0, 0,
0, 0, 0, 0}
if _, err = buf.Write(data); err != nil {
return
}
if err = jpeg.Encode(&buf, photo, nil); err != nil {
return
}
uat.Contents = append(uat.Contents, &OpaqueSubpacket{
SubType: UserAttrImageSubpacket,
Contents: buf.Bytes()})
}
return
}
// NewUserAttribute creates a new user attribute packet containing the given subpackets.
func NewUserAttribute(contents ...*OpaqueSubpacket) *UserAttribute {
return &UserAttribute{Contents: contents}
}
func (uat *UserAttribute) parse(r io.Reader) (err error) {
// RFC 4880, section 5.13
b, err := ioutil.ReadAll(r)
if err != nil {
return
}
uat.Contents, err = OpaqueSubpackets(b)
return
}
// Serialize marshals the user attribute to w in the form of an OpenPGP packet, including
// header.
func (uat *UserAttribute) Serialize(w io.Writer) (err error) {
var buf bytes.Buffer
for _, sp := range uat.Contents {
sp.Serialize(&buf)
}
if err = serializeHeader(w, packetTypeUserAttribute, buf.Len()); err != nil {
return err
}
_, err = w.Write(buf.Bytes())
return
}
// ImageData returns zero or more byte slices, each containing
// JPEG File Interchange Format (JFIF), for each photo in the
// user attribute packet.
func (uat *UserAttribute) ImageData() (imageData [][]byte) {
for _, sp := range uat.Contents {
if sp.SubType == UserAttrImageSubpacket && len(sp.Contents) > 16 {
imageData = append(imageData, sp.Contents[16:])
}
}
return
}

View File

@ -0,0 +1,109 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"encoding/base64"
"image/color"
"image/jpeg"
"testing"
)
func TestParseUserAttribute(t *testing.T) {
r := base64.NewDecoder(base64.StdEncoding, bytes.NewBufferString(userAttributePacket))
for i := 0; i < 2; i++ {
p, err := Read(r)
if err != nil {
t.Fatal(err)
}
uat := p.(*UserAttribute)
imgs := uat.ImageData()
if len(imgs) != 1 {
t.Errorf("Unexpected number of images in user attribute packet: %d", len(imgs))
}
if len(imgs[0]) != 3395 {
t.Errorf("Unexpected JPEG image size: %d", len(imgs[0]))
}
img, err := jpeg.Decode(bytes.NewBuffer(imgs[0]))
if err != nil {
t.Errorf("Error decoding JPEG image: %v", err)
}
// A pixel in my right eye.
pixel := color.NRGBAModel.Convert(img.At(56, 36))
ref := color.NRGBA{R: 157, G: 128, B: 124, A: 255}
if pixel != ref {
t.Errorf("Unexpected pixel color: %v", pixel)
}
w := bytes.NewBuffer(nil)
err = uat.Serialize(w)
if err != nil {
t.Errorf("Error writing user attribute: %v", err)
}
r = bytes.NewBuffer(w.Bytes())
}
}
const userAttributePacket = `
0cyWzJQBEAABAQAAAAAAAAAAAAAAAP/Y/+AAEEpGSUYAAQIAAAEAAQAA/9sAQwAFAwQEBAMFBAQE
BQUFBgcMCAcHBwcPCgsJDBEPEhIRDxEQExYcFxMUGhUQERghGBocHR8fHxMXIiQiHiQcHh8e/9sA
QwEFBQUHBgcOCAgOHhQRFB4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4e
Hh4eHh4eHh4e/8AAEQgAZABkAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYH
CAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHw
JDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6
g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk
5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIB
AgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEX
GBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKT
lJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX2
9/j5+v/aAAwDAQACEQMRAD8A5uGP06VehQ4pIox04q5EnHSvAep+hIIl4zVuMHGPWmRrUWtalaaN
pU2oXsgSGJSxPr6ClvoitErs0Itqjc7BQOpPAFYmrfEnwjojtHNqaXEynBjtx5hH4jj9a8B8d+Od
W8UXZjWR4LJT+7t0Jwfc+prnIdO1CWZEW2mZ3HyDactXXDB3V5s8evm1namj6r0H4weCLtxG+ova
ueP30RA/MV6not1bX0Ed1ZzxzwyDKvGwZSPqK+Ff+ES8R8t/ZV2oHUmM10Hgbxp4m8BatEfNnWBH
/eWshOxx9Kmpg4te49RUM1kn+8Wh9zQ4P1FaMC7l465rjPh14y0fxnoseoaXOpfaPOgJ+eI98j09
67W19M15bi4uzPSqTU480WXkjZkAyAR61DPE6OCSOalWRRgZxjvTb598sfU4FBwx5uY4T4feIm8P
TeJbAgc65NIM+8cX+FFeLfF3Vr3SfiNrMFrMypJMJcDPUqP8KK+kpVFyLU+ar037SXqX4hxVpMY7
1UhPpVlT2rybKx9smWYz3NeH/EDVLzxt40j8O6bITaQybPlbKkjq39K9O8fasdH8IahfKxWQRFIy
Ou9uB/OuE/Z/0y3j1d9TuyoZCMs5xjuea1pLli5nn46q240l13PcfhN8EvDNtpcEl/CklyVBLuMk
mvU/Dfwo0BL/AO13FjEDD/qyV7Vn+CvGPg8zRpJrVm8ikLtEg6+1ew2dxZ3EQaJgysuQPasH7eXW
1zzsbVhT92kk/PsYieEND+zlPs6c/wCyAPyryH4wfCPRtW0u6j+xRLOxLxSoADkDpXY+MPjJ4c0S
9k082d3O8ZKkxw5XI96ytK+IGk+IpFjRpod+Qq3C7QT6A1E6NenaXbqRg6rlLlqS0fRnxjpd1r/w
w8afa7GWRPKbZLGeBKmeVNfZngLxNaeKfDdprVjxHcLlkJ5Vh1H5185/tDad9h8XOsqAw3Cb0cjq
CfX61P8AsveKf7L8T3fhe5nxa3g324YniQdh9R/KuivTdSmp9TXB1/Z1nRlsfU249QBx1pWfcwI7
Cq6u2Ovamb9rYz16V5x7Psz5q/aJhZfibcupIElvE3H+7j+lFbXx9szP45jlUfeso8/99OKK9elL
3EeNVopzZVharCtxVRGGMk02S5JyFOB69zWTieypnL/GksfB+0cr9oQt69awPhPpD69Y3Ky3DWth
CWluGU4LAdq3vibGs/g68BJygVxjrwRW5+ztoRv/AAs8EeCZnO/J/hzz/Kumi4wp3kePjlOdZKPY
ml8Mvo6WM9ppi7J0EkQYMzkb1X0wW+bJHGACa+ivg14huZPCkjXUO6SImIYOQAP6UQ2sGneHmiWF
CYoSAAuM8etXfhBpMr+EZ3SSNRcMx6ZxWdes6ytBGSwkMNFuo7pnP614Ut9Zn1C4uLySKcwObGFA
Qnm4+XcR71h+CfDHiKCQWuv2YWFtw+bBZQD8rcE8n2Ney+GbGGQSM6I7xvtI681rXdp8hKRRp6t3
FYPE1VDlsY1nQjWdl+J8w/tOeDZZ/AMd/EGefTHyxxyYjwfyODXg3waRh8UtEcFh+8Jb8FNfZPxh
Ak8J6nbPIsiyW7LnseK+Ofh99ptPHFnf2lu0y2twGcKuSEPB/Q1WHk50miq1o14TXU+xop+On61H
NMC6Nis1LgsAcUTSt1APFcXJZn0EqmhyvxA037friTYziBV6f7Tf40Vr3k4aXLx5OMZIzRXZB2ik
efJXbPHJJcnaD9aN2R1qoGO8/WkuLlIV+YjdjpXSonQ5lTxfiTwzqCnkeQxx9BWx+zPrQsrBFYja
zEfrXL6lfie3khcjY6lSPUGud+G3iA6FrY0uQ/KJsA9gCa0jSvFpnBi6tpKSPu++nsIfDFxeXciR
qIicscY4rxTwB8RUkn1axsPEf2LTYx85kTGzqCUP8VcJ47+JOs+I0Hhq1njjt/ufIeSvq1VtE+Gs
eoaUbSHUrkHdu3WtuX5Ix81XRh7OL5jirVpV5Whdn0F8C/iX4auVn0i612T7bASoe8wjTAd89K9g
vtSt5NMa4t5lkRhgOh3Dn6V8aaz8KZrIR3OlQ6r56LySmSxxz06Vo/CHx34h0rxBP4XvJ5AjK2RP
nEbAEj6ZxjPrWM6fMmoswqJxqJ1VZnqHxn1NLPwveqWHmNC2BnnNcD8DfDkGi+CH1m+ijN1qMzNA
4GSIiAMf+hVxPxU8Tapc3c0F9MGCn5GU5BX0Pau3+HmrT3XgXSIJCBHDGdgAx1NYSpezha52Yauq
1dya2Wh2onAIwTj1p0lxxWWLkhRyCKWa5O3ORXOos9KVQluZm83j0oqi84JyWH50Vdmc7ep43d3I
t1Z2Iz2FYdxeSTsxyRnvTdVuDNcNluM9KrKcg817NOnZGNbEXdkNckjrXGeIIprPxFFdRHAlIwem
COtdmxrG8Q2cd/ZNExw45RvQ1bVjim+dWNzw7eaTD4mN3dndCQCo6hmI5zXpj/Ea/wBHjkh0kwRW
xXEfl4yTxXzXZalJDL9nuWKMmRnHcV2Hh3WreCyYXW2SWQhd5P3F6n+lS43d2cTm6d7Ox9EWPxH1
ODQxPqWpCaSU/ukUc4z3/WvKW8UhviAdaMewYZG98gj9c1ymoa8LyWOJHwkTDaVPb0qpr+q2m6Nb
cfvNo349az9mou9iZVXNWbub3jm98/Vza2ReV7lsJg/e3dsV654UR9N0K0sZP9ZDGFbHr3rzL4P+
H7rXfEEWr3I3W1qf3IYdW9fwqDxf4k8UeH/G95p08kscHmk25dPlZT0we9YTj7SXKjpw1aNG8mj3
FLv5ccU959ycnmvKPDnxB82YQarGsZPAlTp+IrvIr1ZIgySKwIyCOhFYTpyg9T0qWIhVV4svzPvf
IdhgY4orPachj81FRdmtzxqdiZmJ9aQEgdqZcPtmbJ71DJcAZ5r20kkeXJtsfPIQDwPzrG1a+S3i
LyHAHvmp7y7HOD1rlNdm+1T7Acovf3o+J2RMpezjzMvrob67pX9o2ShZlYgg/wAWKxZLLWLZ/Ke3
mVh14yK9M+BMC3dre2ko3LHKCB7EV7EngeGQJdQ7HyBkMKS0djgq1W3c+XtK03U522RwzsTwNiEk
ntXoHgf4calql9El/G8UZbLfLyfr7V9FeGvh+s+0Lbxxcglu2K1NW1nwN4Gk/wBLuI57tV5jjwzE
/QVNS+0dWYRqNvXRFv4eeCodKsY1ggVIY1G3K4z714h+1Jqul3GpwaXYeXJLbzgyyrg4b+6D+HNb
vjz436zq9m+naHF/ZdkeGfOZXH17V4Vqt2b29K+ZuOc5bnce5zWdPBShL2lTfojSeJhy+zp/NjVz
1Bwa6DSfFGq6fbJFDKrov8DjPFcu97ZxsUe4jVhwVJ5Bpp1mwQiLewJPXacVq6fNpYyjOUXdHoKf
EG8VQHsInbuVcgflRXnt5fIs2FYHgcgUVi8LG+xusdW/mN7U2KgEVkTzPt60UVfQ9eHxGHrV1MGi
iD4V25x1qvdgLAMd6KK0pbHm4x++dp8FtUubLxJ5EIjMc+A4Za+qfD8pe1JZVOBmiinW3RyRPMfi
R8QPE638+k2l6LK0Hylbddhb6nOa80mlkcmWR2kcnlnOSaKK7qCXKcNdu5narcSrAoBxvODWJIga
VckjDdqKKwq/EaQ0gUdbjQ6mr7QGBUcd6tPBC6gtGpOOuKKKie5qn7qIpEXd0HSiiimSf//Z`

160
vendor/golang.org/x/crypto/openpgp/packet/userid.go generated vendored Normal file
View File

@ -0,0 +1,160 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"io"
"io/ioutil"
"strings"
)
// UserId contains text that is intended to represent the name and email
// address of the key holder. See RFC 4880, section 5.11. By convention, this
// takes the form "Full Name (Comment) <email@example.com>"
type UserId struct {
Id string // By convention, this takes the form "Full Name (Comment) <email@example.com>" which is split out in the fields below.
Name, Comment, Email string
}
func hasInvalidCharacters(s string) bool {
for _, c := range s {
switch c {
case '(', ')', '<', '>', 0:
return true
}
}
return false
}
// NewUserId returns a UserId or nil if any of the arguments contain invalid
// characters. The invalid characters are '\x00', '(', ')', '<' and '>'
func NewUserId(name, comment, email string) *UserId {
// RFC 4880 doesn't deal with the structure of userid strings; the
// name, comment and email form is just a convention. However, there's
// no convention about escaping the metacharacters and GPG just refuses
// to create user ids where, say, the name contains a '('. We mirror
// this behaviour.
if hasInvalidCharacters(name) || hasInvalidCharacters(comment) || hasInvalidCharacters(email) {
return nil
}
uid := new(UserId)
uid.Name, uid.Comment, uid.Email = name, comment, email
uid.Id = name
if len(comment) > 0 {
if len(uid.Id) > 0 {
uid.Id += " "
}
uid.Id += "("
uid.Id += comment
uid.Id += ")"
}
if len(email) > 0 {
if len(uid.Id) > 0 {
uid.Id += " "
}
uid.Id += "<"
uid.Id += email
uid.Id += ">"
}
return uid
}
func (uid *UserId) parse(r io.Reader) (err error) {
// RFC 4880, section 5.11
b, err := ioutil.ReadAll(r)
if err != nil {
return
}
uid.Id = string(b)
uid.Name, uid.Comment, uid.Email = parseUserId(uid.Id)
return
}
// Serialize marshals uid to w in the form of an OpenPGP packet, including
// header.
func (uid *UserId) Serialize(w io.Writer) error {
err := serializeHeader(w, packetTypeUserId, len(uid.Id))
if err != nil {
return err
}
_, err = w.Write([]byte(uid.Id))
return err
}
// parseUserId extracts the name, comment and email from a user id string that
// is formatted as "Full Name (Comment) <email@example.com>".
func parseUserId(id string) (name, comment, email string) {
var n, c, e struct {
start, end int
}
var state int
for offset, rune := range id {
switch state {
case 0:
// Entering name
n.start = offset
state = 1
fallthrough
case 1:
// In name
if rune == '(' {
state = 2
n.end = offset
} else if rune == '<' {
state = 5
n.end = offset
}
case 2:
// Entering comment
c.start = offset
state = 3
fallthrough
case 3:
// In comment
if rune == ')' {
state = 4
c.end = offset
}
case 4:
// Between comment and email
if rune == '<' {
state = 5
}
case 5:
// Entering email
e.start = offset
state = 6
fallthrough
case 6:
// In email
if rune == '>' {
state = 7
e.end = offset
}
default:
// After email
}
}
switch state {
case 1:
// ended in the name
n.end = len(id)
case 3:
// ended in comment
c.end = len(id)
case 6:
// ended in email
e.end = len(id)
}
name = strings.TrimSpace(id[n.start:n.end])
comment = strings.TrimSpace(id[c.start:c.end])
email = strings.TrimSpace(id[e.start:e.end])
return
}

View File

@ -0,0 +1,87 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"testing"
)
var userIdTests = []struct {
id string
name, comment, email string
}{
{"", "", "", ""},
{"John Smith", "John Smith", "", ""},
{"John Smith ()", "John Smith", "", ""},
{"John Smith () <>", "John Smith", "", ""},
{"(comment", "", "comment", ""},
{"(comment)", "", "comment", ""},
{"<email", "", "", "email"},
{"<email> sdfk", "", "", "email"},
{" John Smith ( Comment ) asdkflj < email > lksdfj", "John Smith", "Comment", "email"},
{" John Smith < email > lksdfj", "John Smith", "", "email"},
{"(<foo", "", "<foo", ""},
{"René Descartes (العربي)", "René Descartes", "العربي", ""},
}
func TestParseUserId(t *testing.T) {
for i, test := range userIdTests {
name, comment, email := parseUserId(test.id)
if name != test.name {
t.Errorf("%d: name mismatch got:%s want:%s", i, name, test.name)
}
if comment != test.comment {
t.Errorf("%d: comment mismatch got:%s want:%s", i, comment, test.comment)
}
if email != test.email {
t.Errorf("%d: email mismatch got:%s want:%s", i, email, test.email)
}
}
}
var newUserIdTests = []struct {
name, comment, email, id string
}{
{"foo", "", "", "foo"},
{"", "bar", "", "(bar)"},
{"", "", "baz", "<baz>"},
{"foo", "bar", "", "foo (bar)"},
{"foo", "", "baz", "foo <baz>"},
{"", "bar", "baz", "(bar) <baz>"},
{"foo", "bar", "baz", "foo (bar) <baz>"},
}
func TestNewUserId(t *testing.T) {
for i, test := range newUserIdTests {
uid := NewUserId(test.name, test.comment, test.email)
if uid == nil {
t.Errorf("#%d: returned nil", i)
continue
}
if uid.Id != test.id {
t.Errorf("#%d: got '%s', want '%s'", i, uid.Id, test.id)
}
}
}
var invalidNewUserIdTests = []struct {
name, comment, email string
}{
{"foo(", "", ""},
{"foo<", "", ""},
{"", "bar)", ""},
{"", "bar<", ""},
{"", "", "baz>"},
{"", "", "baz)"},
{"", "", "baz\x00"},
}
func TestNewUserIdWithInvalidInput(t *testing.T) {
for i, test := range invalidNewUserIdTests {
if uid := NewUserId(test.name, test.comment, test.email); uid != nil {
t.Errorf("#%d: returned non-nil value: %#v", i, uid)
}
}
}

442
vendor/golang.org/x/crypto/openpgp/read.go generated vendored Normal file
View File

@ -0,0 +1,442 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package openpgp implements high level operations on OpenPGP messages.
package openpgp // import "golang.org/x/crypto/openpgp"
import (
"crypto"
_ "crypto/sha256"
"hash"
"io"
"strconv"
"golang.org/x/crypto/openpgp/armor"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/packet"
)
// SignatureType is the armor type for a PGP signature.
var SignatureType = "PGP SIGNATURE"
// readArmored reads an armored block with the given type.
func readArmored(r io.Reader, expectedType string) (body io.Reader, err error) {
block, err := armor.Decode(r)
if err != nil {
return
}
if block.Type != expectedType {
return nil, errors.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type)
}
return block.Body, nil
}
// MessageDetails contains the result of parsing an OpenPGP encrypted and/or
// signed message.
type MessageDetails struct {
IsEncrypted bool // true if the message was encrypted.
EncryptedToKeyIds []uint64 // the list of recipient key ids.
IsSymmetricallyEncrypted bool // true if a passphrase could have decrypted the message.
DecryptedWith Key // the private key used to decrypt the message, if any.
IsSigned bool // true if the message is signed.
SignedByKeyId uint64 // the key id of the signer, if any.
SignedBy *Key // the key of the signer, if available.
LiteralData *packet.LiteralData // the metadata of the contents
UnverifiedBody io.Reader // the contents of the message.
// If IsSigned is true and SignedBy is non-zero then the signature will
// be verified as UnverifiedBody is read. The signature cannot be
// checked until the whole of UnverifiedBody is read so UnverifiedBody
// must be consumed until EOF before the data can be trusted. Even if a
// message isn't signed (or the signer is unknown) the data may contain
// an authentication code that is only checked once UnverifiedBody has
// been consumed. Once EOF has been seen, the following fields are
// valid. (An authentication code failure is reported as a
// SignatureError error when reading from UnverifiedBody.)
SignatureError error // nil if the signature is good.
Signature *packet.Signature // the signature packet itself, if v4 (default)
SignatureV3 *packet.SignatureV3 // the signature packet if it is a v2 or v3 signature
decrypted io.ReadCloser
}
// A PromptFunction is used as a callback by functions that may need to decrypt
// a private key, or prompt for a passphrase. It is called with a list of
// acceptable, encrypted private keys and a boolean that indicates whether a
// passphrase is usable. It should either decrypt a private key or return a
// passphrase to try. If the decrypted private key or given passphrase isn't
// correct, the function will be called again, forever. Any error returned will
// be passed up.
type PromptFunction func(keys []Key, symmetric bool) ([]byte, error)
// A keyEnvelopePair is used to store a private key with the envelope that
// contains a symmetric key, encrypted with that key.
type keyEnvelopePair struct {
key Key
encryptedKey *packet.EncryptedKey
}
// ReadMessage parses an OpenPGP message that may be signed and/or encrypted.
// The given KeyRing should contain both public keys (for signature
// verification) and, possibly encrypted, private keys for decrypting.
// If config is nil, sensible defaults will be used.
func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction, config *packet.Config) (md *MessageDetails, err error) {
var p packet.Packet
var symKeys []*packet.SymmetricKeyEncrypted
var pubKeys []keyEnvelopePair
var se *packet.SymmetricallyEncrypted
packets := packet.NewReader(r)
md = new(MessageDetails)
md.IsEncrypted = true
// The message, if encrypted, starts with a number of packets
// containing an encrypted decryption key. The decryption key is either
// encrypted to a public key, or with a passphrase. This loop
// collects these packets.
ParsePackets:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.SymmetricKeyEncrypted:
// This packet contains the decryption key encrypted with a passphrase.
md.IsSymmetricallyEncrypted = true
symKeys = append(symKeys, p)
case *packet.EncryptedKey:
// This packet contains the decryption key encrypted to a public key.
md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId)
switch p.Algo {
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal:
break
default:
continue
}
var keys []Key
if p.KeyId == 0 {
keys = keyring.DecryptionKeys()
} else {
keys = keyring.KeysById(p.KeyId)
}
for _, k := range keys {
pubKeys = append(pubKeys, keyEnvelopePair{k, p})
}
case *packet.SymmetricallyEncrypted:
se = p
break ParsePackets
case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature:
// This message isn't encrypted.
if len(symKeys) != 0 || len(pubKeys) != 0 {
return nil, errors.StructuralError("key material not followed by encrypted message")
}
packets.Unread(p)
return readSignedMessage(packets, nil, keyring)
}
}
var candidates []Key
var decrypted io.ReadCloser
// Now that we have the list of encrypted keys we need to decrypt at
// least one of them or, if we cannot, we need to call the prompt
// function so that it can decrypt a key or give us a passphrase.
FindKey:
for {
// See if any of the keys already have a private key available
candidates = candidates[:0]
candidateFingerprints := make(map[string]bool)
for _, pk := range pubKeys {
if pk.key.PrivateKey == nil {
continue
}
if !pk.key.PrivateKey.Encrypted {
if len(pk.encryptedKey.Key) == 0 {
pk.encryptedKey.Decrypt(pk.key.PrivateKey, config)
}
if len(pk.encryptedKey.Key) == 0 {
continue
}
decrypted, err = se.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key)
if err != nil && err != errors.ErrKeyIncorrect {
return nil, err
}
if decrypted != nil {
md.DecryptedWith = pk.key
break FindKey
}
} else {
fpr := string(pk.key.PublicKey.Fingerprint[:])
if v := candidateFingerprints[fpr]; v {
continue
}
candidates = append(candidates, pk.key)
candidateFingerprints[fpr] = true
}
}
if len(candidates) == 0 && len(symKeys) == 0 {
return nil, errors.ErrKeyIncorrect
}
if prompt == nil {
return nil, errors.ErrKeyIncorrect
}
passphrase, err := prompt(candidates, len(symKeys) != 0)
if err != nil {
return nil, err
}
// Try the symmetric passphrase first
if len(symKeys) != 0 && passphrase != nil {
for _, s := range symKeys {
key, cipherFunc, err := s.Decrypt(passphrase)
if err == nil {
decrypted, err = se.Decrypt(cipherFunc, key)
if err != nil && err != errors.ErrKeyIncorrect {
return nil, err
}
if decrypted != nil {
break FindKey
}
}
}
}
}
md.decrypted = decrypted
if err := packets.Push(decrypted); err != nil {
return nil, err
}
return readSignedMessage(packets, md, keyring)
}
// readSignedMessage reads a possibly signed message if mdin is non-zero then
// that structure is updated and returned. Otherwise a fresh MessageDetails is
// used.
func readSignedMessage(packets *packet.Reader, mdin *MessageDetails, keyring KeyRing) (md *MessageDetails, err error) {
if mdin == nil {
mdin = new(MessageDetails)
}
md = mdin
var p packet.Packet
var h hash.Hash
var wrappedHash hash.Hash
FindLiteralData:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.Compressed:
if err := packets.Push(p.Body); err != nil {
return nil, err
}
case *packet.OnePassSignature:
if !p.IsLast {
return nil, errors.UnsupportedError("nested signatures")
}
h, wrappedHash, err = hashForSignature(p.Hash, p.SigType)
if err != nil {
md = nil
return
}
md.IsSigned = true
md.SignedByKeyId = p.KeyId
keys := keyring.KeysByIdUsage(p.KeyId, packet.KeyFlagSign)
if len(keys) > 0 {
md.SignedBy = &keys[0]
}
case *packet.LiteralData:
md.LiteralData = p
break FindLiteralData
}
}
if md.SignedBy != nil {
md.UnverifiedBody = &signatureCheckReader{packets, h, wrappedHash, md}
} else if md.decrypted != nil {
md.UnverifiedBody = checkReader{md}
} else {
md.UnverifiedBody = md.LiteralData.Body
}
return md, nil
}
// hashForSignature returns a pair of hashes that can be used to verify a
// signature. The signature may specify that the contents of the signed message
// should be preprocessed (i.e. to normalize line endings). Thus this function
// returns two hashes. The second should be used to hash the message itself and
// performs any needed preprocessing.
func hashForSignature(hashId crypto.Hash, sigType packet.SignatureType) (hash.Hash, hash.Hash, error) {
if !hashId.Available() {
return nil, nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashId)))
}
h := hashId.New()
switch sigType {
case packet.SigTypeBinary:
return h, h, nil
case packet.SigTypeText:
return h, NewCanonicalTextHash(h), nil
}
return nil, nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
}
// checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF
// it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger
// MDC checks.
type checkReader struct {
md *MessageDetails
}
func (cr checkReader) Read(buf []byte) (n int, err error) {
n, err = cr.md.LiteralData.Body.Read(buf)
if err == io.EOF {
mdcErr := cr.md.decrypted.Close()
if mdcErr != nil {
err = mdcErr
}
}
return
}
// signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes
// the data as it is read. When it sees an EOF from the underlying io.Reader
// it parses and checks a trailing Signature packet and triggers any MDC checks.
type signatureCheckReader struct {
packets *packet.Reader
h, wrappedHash hash.Hash
md *MessageDetails
}
func (scr *signatureCheckReader) Read(buf []byte) (n int, err error) {
n, err = scr.md.LiteralData.Body.Read(buf)
scr.wrappedHash.Write(buf[:n])
if err == io.EOF {
var p packet.Packet
p, scr.md.SignatureError = scr.packets.Next()
if scr.md.SignatureError != nil {
return
}
var ok bool
if scr.md.Signature, ok = p.(*packet.Signature); ok {
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature)
} else if scr.md.SignatureV3, ok = p.(*packet.SignatureV3); ok {
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignatureV3(scr.h, scr.md.SignatureV3)
} else {
scr.md.SignatureError = errors.StructuralError("LiteralData not followed by Signature")
return
}
// The SymmetricallyEncrypted packet, if any, might have an
// unsigned hash of its own. In order to check this we need to
// close that Reader.
if scr.md.decrypted != nil {
mdcErr := scr.md.decrypted.Close()
if mdcErr != nil {
err = mdcErr
}
}
}
return
}
// CheckDetachedSignature takes a signed file and a detached signature and
// returns the signer if the signature is valid. If the signer isn't known,
// ErrUnknownIssuer is returned.
func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) {
var issuerKeyId uint64
var hashFunc crypto.Hash
var sigType packet.SignatureType
var keys []Key
var p packet.Packet
packets := packet.NewReader(signature)
for {
p, err = packets.Next()
if err == io.EOF {
return nil, errors.ErrUnknownIssuer
}
if err != nil {
return nil, err
}
switch sig := p.(type) {
case *packet.Signature:
if sig.IssuerKeyId == nil {
return nil, errors.StructuralError("signature doesn't have an issuer")
}
issuerKeyId = *sig.IssuerKeyId
hashFunc = sig.Hash
sigType = sig.SigType
case *packet.SignatureV3:
issuerKeyId = sig.IssuerKeyId
hashFunc = sig.Hash
sigType = sig.SigType
default:
return nil, errors.StructuralError("non signature packet found")
}
keys = keyring.KeysByIdUsage(issuerKeyId, packet.KeyFlagSign)
if len(keys) > 0 {
break
}
}
if len(keys) == 0 {
panic("unreachable")
}
h, wrappedHash, err := hashForSignature(hashFunc, sigType)
if err != nil {
return nil, err
}
if _, err := io.Copy(wrappedHash, signed); err != nil && err != io.EOF {
return nil, err
}
for _, key := range keys {
switch sig := p.(type) {
case *packet.Signature:
err = key.PublicKey.VerifySignature(h, sig)
case *packet.SignatureV3:
err = key.PublicKey.VerifySignatureV3(h, sig)
default:
panic("unreachable")
}
if err == nil {
return key.Entity, nil
}
}
return nil, err
}
// CheckArmoredDetachedSignature performs the same actions as
// CheckDetachedSignature but expects the signature to be armored.
func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) {
body, err := readArmored(signature, SignatureType)
if err != nil {
return
}
return CheckDetachedSignature(keyring, signed, body)
}

613
vendor/golang.org/x/crypto/openpgp/read_test.go generated vendored Normal file

File diff suppressed because one or more lines are too long

273
vendor/golang.org/x/crypto/openpgp/s2k/s2k.go generated vendored Normal file
View File

@ -0,0 +1,273 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package s2k implements the various OpenPGP string-to-key transforms as
// specified in RFC 4800 section 3.7.1.
package s2k // import "golang.org/x/crypto/openpgp/s2k"
import (
"crypto"
"hash"
"io"
"strconv"
"golang.org/x/crypto/openpgp/errors"
)
// Config collects configuration parameters for s2k key-stretching
// transformatioms. A nil *Config is valid and results in all default
// values. Currently, Config is used only by the Serialize function in
// this package.
type Config struct {
// Hash is the default hash function to be used. If
// nil, SHA1 is used.
Hash crypto.Hash
// S2KCount is only used for symmetric encryption. It
// determines the strength of the passphrase stretching when
// the said passphrase is hashed to produce a key. S2KCount
// should be between 1024 and 65011712, inclusive. If Config
// is nil or S2KCount is 0, the value 65536 used. Not all
// values in the above range can be represented. S2KCount will
// be rounded up to the next representable value if it cannot
// be encoded exactly. When set, it is strongly encrouraged to
// use a value that is at least 65536. See RFC 4880 Section
// 3.7.1.3.
S2KCount int
}
func (c *Config) hash() crypto.Hash {
if c == nil || uint(c.Hash) == 0 {
// SHA1 is the historical default in this package.
return crypto.SHA1
}
return c.Hash
}
func (c *Config) encodedCount() uint8 {
if c == nil || c.S2KCount == 0 {
return 96 // The common case. Correspoding to 65536
}
i := c.S2KCount
switch {
// Behave like GPG. Should we make 65536 the lowest value used?
case i < 1024:
i = 1024
case i > 65011712:
i = 65011712
}
return encodeCount(i)
}
// encodeCount converts an iterative "count" in the range 1024 to
// 65011712, inclusive, to an encoded count. The return value is the
// octet that is actually stored in the GPG file. encodeCount panics
// if i is not in the above range (encodedCount above takes care to
// pass i in the correct range). See RFC 4880 Section 3.7.7.1.
func encodeCount(i int) uint8 {
if i < 1024 || i > 65011712 {
panic("count arg i outside the required range")
}
for encoded := 0; encoded < 256; encoded++ {
count := decodeCount(uint8(encoded))
if count >= i {
return uint8(encoded)
}
}
return 255
}
// decodeCount returns the s2k mode 3 iterative "count" corresponding to
// the encoded octet c.
func decodeCount(c uint8) int {
return (16 + int(c&15)) << (uint32(c>>4) + 6)
}
// Simple writes to out the result of computing the Simple S2K function (RFC
// 4880, section 3.7.1.1) using the given hash and input passphrase.
func Simple(out []byte, h hash.Hash, in []byte) {
Salted(out, h, in, nil)
}
var zero [1]byte
// Salted writes to out the result of computing the Salted S2K function (RFC
// 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
h.Write(salt)
h.Write(in)
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Iterated writes to out the result of computing the Iterated and Salted S2K
// function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
// salt and iteration count.
func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
combined := make([]byte, len(in)+len(salt))
copy(combined, salt)
copy(combined[len(salt):], in)
if count < len(combined) {
count = len(combined)
}
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
written := 0
for written < count {
if written+len(combined) > count {
todo := count - written
h.Write(combined[:todo])
written = count
} else {
h.Write(combined)
written += len(combined)
}
}
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Parse reads a binary specification for a string-to-key transformation from r
// and returns a function which performs that transform.
func Parse(r io.Reader) (f func(out, in []byte), err error) {
var buf [9]byte
_, err = io.ReadFull(r, buf[:2])
if err != nil {
return
}
hash, ok := HashIdToHash(buf[1])
if !ok {
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1])))
}
if !hash.Available() {
return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hash)))
}
h := hash.New()
switch buf[0] {
case 0:
f := func(out, in []byte) {
Simple(out, h, in)
}
return f, nil
case 1:
_, err = io.ReadFull(r, buf[:8])
if err != nil {
return
}
f := func(out, in []byte) {
Salted(out, h, in, buf[:8])
}
return f, nil
case 3:
_, err = io.ReadFull(r, buf[:9])
if err != nil {
return
}
count := decodeCount(buf[8])
f := func(out, in []byte) {
Iterated(out, h, in, buf[:8], count)
}
return f, nil
}
return nil, errors.UnsupportedError("S2K function")
}
// Serialize salts and stretches the given passphrase and writes the
// resulting key into key. It also serializes an S2K descriptor to
// w. The key stretching can be configured with c, which may be
// nil. In that case, sensible defaults will be used.
func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
var buf [11]byte
buf[0] = 3 /* iterated and salted */
buf[1], _ = HashToHashId(c.hash())
salt := buf[2:10]
if _, err := io.ReadFull(rand, salt); err != nil {
return err
}
encodedCount := c.encodedCount()
count := decodeCount(encodedCount)
buf[10] = encodedCount
if _, err := w.Write(buf[:]); err != nil {
return err
}
Iterated(key, c.hash().New(), passphrase, salt, count)
return nil
}
// hashToHashIdMapping contains pairs relating OpenPGP's hash identifier with
// Go's crypto.Hash type. See RFC 4880, section 9.4.
var hashToHashIdMapping = []struct {
id byte
hash crypto.Hash
name string
}{
{1, crypto.MD5, "MD5"},
{2, crypto.SHA1, "SHA1"},
{3, crypto.RIPEMD160, "RIPEMD160"},
{8, crypto.SHA256, "SHA256"},
{9, crypto.SHA384, "SHA384"},
{10, crypto.SHA512, "SHA512"},
{11, crypto.SHA224, "SHA224"},
}
// HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP
// hash id.
func HashIdToHash(id byte) (h crypto.Hash, ok bool) {
for _, m := range hashToHashIdMapping {
if m.id == id {
return m.hash, true
}
}
return 0, false
}
// HashIdToString returns the name of the hash function corresponding to the
// given OpenPGP hash id.
func HashIdToString(id byte) (name string, ok bool) {
for _, m := range hashToHashIdMapping {
if m.id == id {
return m.name, true
}
}
return "", false
}
// HashIdToHash returns an OpenPGP hash id which corresponds the given Hash.
func HashToHashId(h crypto.Hash) (id byte, ok bool) {
for _, m := range hashToHashIdMapping {
if m.hash == h {
return m.id, true
}
}
return 0, false
}

137
vendor/golang.org/x/crypto/openpgp/s2k/s2k_test.go generated vendored Normal file
View File

@ -0,0 +1,137 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package s2k
import (
"bytes"
"crypto"
_ "crypto/md5"
"crypto/rand"
"crypto/sha1"
_ "crypto/sha256"
_ "crypto/sha512"
"encoding/hex"
"testing"
_ "golang.org/x/crypto/ripemd160"
)
var saltedTests = []struct {
in, out string
}{
{"hello", "10295ac1"},
{"world", "ac587a5e"},
{"foo", "4dda8077"},
{"bar", "bd8aac6b9ea9cae04eae6a91c6133b58b5d9a61c14f355516ed9370456"},
{"x", "f1d3f289"},
{"xxxxxxxxxxxxxxxxxxxxxxx", "e00d7b45"},
}
func TestSalted(t *testing.T) {
h := sha1.New()
salt := [4]byte{1, 2, 3, 4}
for i, test := range saltedTests {
expected, _ := hex.DecodeString(test.out)
out := make([]byte, len(expected))
Salted(out, h, []byte(test.in), salt[:])
if !bytes.Equal(expected, out) {
t.Errorf("#%d, got: %x want: %x", i, out, expected)
}
}
}
var iteratedTests = []struct {
in, out string
}{
{"hello", "83126105"},
{"world", "6fa317f9"},
{"foo", "8fbc35b9"},
{"bar", "2af5a99b54f093789fd657f19bd245af7604d0f6ae06f66602a46a08ae"},
{"x", "5a684dfe"},
{"xxxxxxxxxxxxxxxxxxxxxxx", "18955174"},
}
func TestIterated(t *testing.T) {
h := sha1.New()
salt := [4]byte{4, 3, 2, 1}
for i, test := range iteratedTests {
expected, _ := hex.DecodeString(test.out)
out := make([]byte, len(expected))
Iterated(out, h, []byte(test.in), salt[:], 31)
if !bytes.Equal(expected, out) {
t.Errorf("#%d, got: %x want: %x", i, out, expected)
}
}
}
var parseTests = []struct {
spec, in, out string
}{
/* Simple with SHA1 */
{"0002", "hello", "aaf4c61d"},
/* Salted with SHA1 */
{"01020102030405060708", "hello", "f4f7d67e"},
/* Iterated with SHA1 */
{"03020102030405060708f1", "hello", "f2a57b7c"},
}
func TestParse(t *testing.T) {
for i, test := range parseTests {
spec, _ := hex.DecodeString(test.spec)
buf := bytes.NewBuffer(spec)
f, err := Parse(buf)
if err != nil {
t.Errorf("%d: Parse returned error: %s", i, err)
continue
}
expected, _ := hex.DecodeString(test.out)
out := make([]byte, len(expected))
f(out, []byte(test.in))
if !bytes.Equal(out, expected) {
t.Errorf("%d: output got: %x want: %x", i, out, expected)
}
if testing.Short() {
break
}
}
}
func TestSerialize(t *testing.T) {
hashes := []crypto.Hash{crypto.MD5, crypto.SHA1, crypto.RIPEMD160,
crypto.SHA256, crypto.SHA384, crypto.SHA512, crypto.SHA224}
testCounts := []int{-1, 0, 1024, 65536, 4063232, 65011712}
for _, h := range hashes {
for _, c := range testCounts {
testSerializeConfig(t, &Config{Hash: h, S2KCount: c})
}
}
}
func testSerializeConfig(t *testing.T, c *Config) {
t.Logf("Running testSerializeConfig() with config: %+v", c)
buf := bytes.NewBuffer(nil)
key := make([]byte, 16)
passphrase := []byte("testing")
err := Serialize(buf, key, rand.Reader, passphrase, c)
if err != nil {
t.Errorf("failed to serialize: %s", err)
return
}
f, err := Parse(buf)
if err != nil {
t.Errorf("failed to reparse: %s", err)
return
}
key2 := make([]byte, len(key))
f(key2, passphrase)
if !bytes.Equal(key2, key) {
t.Errorf("keys don't match: %x (serialied) vs %x (parsed)", key, key2)
}
}

418
vendor/golang.org/x/crypto/openpgp/write.go generated vendored Normal file
View File

@ -0,0 +1,418 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"crypto"
"hash"
"io"
"strconv"
"time"
"golang.org/x/crypto/openpgp/armor"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/packet"
"golang.org/x/crypto/openpgp/s2k"
)
// DetachSign signs message with the private key from signer (which must
// already have been decrypted) and writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return detachSign(w, signer, message, packet.SigTypeBinary, config)
}
// ArmoredDetachSign signs message with the private key from signer (which
// must already have been decrypted) and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) (err error) {
return armoredDetachSign(w, signer, message, packet.SigTypeBinary, config)
}
// DetachSignText signs message (after canonicalising the line endings) with
// the private key from signer (which must already have been decrypted) and
// writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return detachSign(w, signer, message, packet.SigTypeText, config)
}
// ArmoredDetachSignText signs message (after canonicalising the line endings)
// with the private key from signer (which must already have been decrypted)
// and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return armoredDetachSign(w, signer, message, packet.SigTypeText, config)
}
func armoredDetachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
out, err := armor.Encode(w, SignatureType, nil)
if err != nil {
return
}
err = detachSign(out, signer, message, sigType, config)
if err != nil {
return
}
return out.Close()
}
func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
if signer.PrivateKey == nil {
return errors.InvalidArgumentError("signing key doesn't have a private key")
}
if signer.PrivateKey.Encrypted {
return errors.InvalidArgumentError("signing key is encrypted")
}
sig := new(packet.Signature)
sig.SigType = sigType
sig.PubKeyAlgo = signer.PrivateKey.PubKeyAlgo
sig.Hash = config.Hash()
sig.CreationTime = config.Now()
sig.IssuerKeyId = &signer.PrivateKey.KeyId
h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType)
if err != nil {
return
}
io.Copy(wrappedHash, message)
err = sig.Sign(h, signer.PrivateKey, config)
if err != nil {
return
}
return sig.Serialize(w)
}
// FileHints contains metadata about encrypted files. This metadata is, itself,
// encrypted.
type FileHints struct {
// IsBinary can be set to hint that the contents are binary data.
IsBinary bool
// FileName hints at the name of the file that should be written. It's
// truncated to 255 bytes if longer. It may be empty to suggest that the
// file should not be written to disk. It may be equal to "_CONSOLE" to
// suggest the data should not be written to disk.
FileName string
// ModTime contains the modification time of the file, or the zero time if not applicable.
ModTime time.Time
}
// SymmetricallyEncrypt acts like gpg -c: it encrypts a file with a passphrase.
// The resulting WriteCloser must be closed after the contents of the file have
// been written.
// If config is nil, sensible defaults will be used.
func SymmetricallyEncrypt(ciphertext io.Writer, passphrase []byte, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
if hints == nil {
hints = &FileHints{}
}
key, err := packet.SerializeSymmetricKeyEncrypted(ciphertext, passphrase, config)
if err != nil {
return
}
w, err := packet.SerializeSymmetricallyEncrypted(ciphertext, config.Cipher(), key, config)
if err != nil {
return
}
literaldata := w
if algo := config.Compression(); algo != packet.CompressionNone {
var compConfig *packet.CompressionConfig
if config != nil {
compConfig = config.CompressionConfig
}
literaldata, err = packet.SerializeCompressed(w, algo, compConfig)
if err != nil {
return
}
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
return packet.SerializeLiteral(literaldata, hints.IsBinary, hints.FileName, epochSeconds)
}
// intersectPreferences mutates and returns a prefix of a that contains only
// the values in the intersection of a and b. The order of a is preserved.
func intersectPreferences(a []uint8, b []uint8) (intersection []uint8) {
var j int
for _, v := range a {
for _, v2 := range b {
if v == v2 {
a[j] = v
j++
break
}
}
}
return a[:j]
}
func hashToHashId(h crypto.Hash) uint8 {
v, ok := s2k.HashToHashId(h)
if !ok {
panic("tried to convert unknown hash")
}
return v
}
// writeAndSign writes the data as a payload package and, optionally, signs
// it. hints contains optional information, that is also encrypted,
// that aids the recipients in processing the message. The resulting
// WriteCloser must be closed after the contents of the file have been
// written. If config is nil, sensible defaults will be used.
func writeAndSign(payload io.WriteCloser, candidateHashes []uint8, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
var signer *packet.PrivateKey
if signed != nil {
signKey, ok := signed.signingKey(config.Now())
if !ok {
return nil, errors.InvalidArgumentError("no valid signing keys")
}
signer = signKey.PrivateKey
if signer == nil {
return nil, errors.InvalidArgumentError("no private key in signing key")
}
if signer.Encrypted {
return nil, errors.InvalidArgumentError("signing key must be decrypted")
}
}
var hash crypto.Hash
for _, hashId := range candidateHashes {
if h, ok := s2k.HashIdToHash(hashId); ok && h.Available() {
hash = h
break
}
}
// If the hash specified by config is a candidate, we'll use that.
if configuredHash := config.Hash(); configuredHash.Available() {
for _, hashId := range candidateHashes {
if h, ok := s2k.HashIdToHash(hashId); ok && h == configuredHash {
hash = h
break
}
}
}
if hash == 0 {
hashId := candidateHashes[0]
name, ok := s2k.HashIdToString(hashId)
if !ok {
name = "#" + strconv.Itoa(int(hashId))
}
return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)")
}
if signer != nil {
ops := &packet.OnePassSignature{
SigType: packet.SigTypeBinary,
Hash: hash,
PubKeyAlgo: signer.PubKeyAlgo,
KeyId: signer.KeyId,
IsLast: true,
}
if err := ops.Serialize(payload); err != nil {
return nil, err
}
}
if hints == nil {
hints = &FileHints{}
}
w := payload
if signer != nil {
// If we need to write a signature packet after the literal
// data then we need to stop literalData from closing
// encryptedData.
w = noOpCloser{w}
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds)
if err != nil {
return nil, err
}
if signer != nil {
return signatureWriter{payload, literalData, hash, hash.New(), signer, config}, nil
}
return literalData, nil
}
// Encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
if len(to) == 0 {
return nil, errors.InvalidArgumentError("no encryption recipient provided")
}
// These are the possible ciphers that we'll use for the message.
candidateCiphers := []uint8{
uint8(packet.CipherAES128),
uint8(packet.CipherAES256),
uint8(packet.CipherCAST5),
}
// These are the possible hash functions that we'll use for the signature.
candidateHashes := []uint8{
hashToHashId(crypto.SHA256),
hashToHashId(crypto.SHA384),
hashToHashId(crypto.SHA512),
hashToHashId(crypto.SHA1),
hashToHashId(crypto.RIPEMD160),
}
// In the event that a recipient doesn't specify any supported ciphers
// or hash functions, these are the ones that we assume that every
// implementation supports.
defaultCiphers := candidateCiphers[len(candidateCiphers)-1:]
defaultHashes := candidateHashes[len(candidateHashes)-1:]
encryptKeys := make([]Key, len(to))
for i := range to {
var ok bool
encryptKeys[i], ok = to[i].encryptionKey(config.Now())
if !ok {
return nil, errors.InvalidArgumentError("cannot encrypt a message to key id " + strconv.FormatUint(to[i].PrimaryKey.KeyId, 16) + " because it has no encryption keys")
}
sig := to[i].primaryIdentity().SelfSignature
preferredSymmetric := sig.PreferredSymmetric
if len(preferredSymmetric) == 0 {
preferredSymmetric = defaultCiphers
}
preferredHashes := sig.PreferredHash
if len(preferredHashes) == 0 {
preferredHashes = defaultHashes
}
candidateCiphers = intersectPreferences(candidateCiphers, preferredSymmetric)
candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
}
if len(candidateCiphers) == 0 || len(candidateHashes) == 0 {
return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common algorithms")
}
cipher := packet.CipherFunction(candidateCiphers[0])
// If the cipher specified by config is a candidate, we'll use that.
configuredCipher := config.Cipher()
for _, c := range candidateCiphers {
cipherFunc := packet.CipherFunction(c)
if cipherFunc == configuredCipher {
cipher = cipherFunc
break
}
}
symKey := make([]byte, cipher.KeySize())
if _, err := io.ReadFull(config.Random(), symKey); err != nil {
return nil, err
}
for _, key := range encryptKeys {
if err := packet.SerializeEncryptedKey(ciphertext, key.PublicKey, cipher, symKey, config); err != nil {
return nil, err
}
}
payload, err := packet.SerializeSymmetricallyEncrypted(ciphertext, cipher, symKey, config)
if err != nil {
return
}
return writeAndSign(payload, candidateHashes, signed, hints, config)
}
// Sign signs a message. The resulting WriteCloser must be closed after the
// contents of the file have been written. hints contains optional information
// that aids the recipients in processing the message.
// If config is nil, sensible defaults will be used.
func Sign(output io.Writer, signed *Entity, hints *FileHints, config *packet.Config) (input io.WriteCloser, err error) {
if signed == nil {
return nil, errors.InvalidArgumentError("no signer provided")
}
// These are the possible hash functions that we'll use for the signature.
candidateHashes := []uint8{
hashToHashId(crypto.SHA256),
hashToHashId(crypto.SHA384),
hashToHashId(crypto.SHA512),
hashToHashId(crypto.SHA1),
hashToHashId(crypto.RIPEMD160),
}
defaultHashes := candidateHashes[len(candidateHashes)-1:]
preferredHashes := signed.primaryIdentity().SelfSignature.PreferredHash
if len(preferredHashes) == 0 {
preferredHashes = defaultHashes
}
candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
return writeAndSign(noOpCloser{output}, candidateHashes, signed, hints, config)
}
// signatureWriter hashes the contents of a message while passing it along to
// literalData. When closed, it closes literalData, writes a signature packet
// to encryptedData and then also closes encryptedData.
type signatureWriter struct {
encryptedData io.WriteCloser
literalData io.WriteCloser
hashType crypto.Hash
h hash.Hash
signer *packet.PrivateKey
config *packet.Config
}
func (s signatureWriter) Write(data []byte) (int, error) {
s.h.Write(data)
return s.literalData.Write(data)
}
func (s signatureWriter) Close() error {
sig := &packet.Signature{
SigType: packet.SigTypeBinary,
PubKeyAlgo: s.signer.PubKeyAlgo,
Hash: s.hashType,
CreationTime: s.config.Now(),
IssuerKeyId: &s.signer.KeyId,
}
if err := sig.Sign(s.h, s.signer, s.config); err != nil {
return err
}
if err := s.literalData.Close(); err != nil {
return err
}
if err := sig.Serialize(s.encryptedData); err != nil {
return err
}
return s.encryptedData.Close()
}
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer.
// TODO: we have two of these in OpenPGP packages alone. This probably needs
// to be promoted somewhere more common.
type noOpCloser struct {
w io.Writer
}
func (c noOpCloser) Write(data []byte) (n int, err error) {
return c.w.Write(data)
}
func (c noOpCloser) Close() error {
return nil
}

362
vendor/golang.org/x/crypto/openpgp/write_test.go generated vendored Normal file
View File

@ -0,0 +1,362 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"bytes"
"io"
"io/ioutil"
"testing"
"time"
"golang.org/x/crypto/openpgp/packet"
)
func TestSignDetached(t *testing.T) {
kring, _ := ReadKeyRing(readerFromHex(testKeys1And2PrivateHex))
out := bytes.NewBuffer(nil)
message := bytes.NewBufferString(signedInput)
err := DetachSign(out, kring[0], message, nil)
if err != nil {
t.Error(err)
}
testDetachedSignature(t, kring, out, signedInput, "check", testKey1KeyId)
}
func TestSignTextDetached(t *testing.T) {
kring, _ := ReadKeyRing(readerFromHex(testKeys1And2PrivateHex))
out := bytes.NewBuffer(nil)
message := bytes.NewBufferString(signedInput)
err := DetachSignText(out, kring[0], message, nil)
if err != nil {
t.Error(err)
}
testDetachedSignature(t, kring, out, signedInput, "check", testKey1KeyId)
}
func TestSignDetachedDSA(t *testing.T) {
kring, _ := ReadKeyRing(readerFromHex(dsaTestKeyPrivateHex))
out := bytes.NewBuffer(nil)
message := bytes.NewBufferString(signedInput)
err := DetachSign(out, kring[0], message, nil)
if err != nil {
t.Error(err)
}
testDetachedSignature(t, kring, out, signedInput, "check", testKey3KeyId)
}
func TestSignDetachedP256(t *testing.T) {
kring, _ := ReadKeyRing(readerFromHex(p256TestKeyPrivateHex))
kring[0].PrivateKey.Decrypt([]byte("passphrase"))
out := bytes.NewBuffer(nil)
message := bytes.NewBufferString(signedInput)
err := DetachSign(out, kring[0], message, nil)
if err != nil {
t.Error(err)
}
testDetachedSignature(t, kring, out, signedInput, "check", testKeyP256KeyId)
}
func TestNewEntity(t *testing.T) {
if testing.Short() {
return
}
// Check bit-length with no config.
e, err := NewEntity("Test User", "test", "test@example.com", nil)
if err != nil {
t.Errorf("failed to create entity: %s", err)
return
}
bl, err := e.PrimaryKey.BitLength()
if err != nil {
t.Errorf("failed to find bit length: %s", err)
}
if int(bl) != defaultRSAKeyBits {
t.Errorf("BitLength %v, expected %v", int(bl), defaultRSAKeyBits)
}
// Check bit-length with a config.
cfg := &packet.Config{RSABits: 1024}
e, err = NewEntity("Test User", "test", "test@example.com", cfg)
if err != nil {
t.Errorf("failed to create entity: %s", err)
return
}
bl, err = e.PrimaryKey.BitLength()
if err != nil {
t.Errorf("failed to find bit length: %s", err)
}
if int(bl) != cfg.RSABits {
t.Errorf("BitLength %v, expected %v", bl, cfg.RSABits)
}
w := bytes.NewBuffer(nil)
if err := e.SerializePrivate(w, nil); err != nil {
t.Errorf("failed to serialize entity: %s", err)
return
}
serialized := w.Bytes()
el, err := ReadKeyRing(w)
if err != nil {
t.Errorf("failed to reparse entity: %s", err)
return
}
if len(el) != 1 {
t.Errorf("wrong number of entities found, got %d, want 1", len(el))
}
w = bytes.NewBuffer(nil)
if err := e.SerializePrivate(w, nil); err != nil {
t.Errorf("failed to serialize entity second time: %s", err)
return
}
if !bytes.Equal(w.Bytes(), serialized) {
t.Errorf("results differed")
}
}
func TestSymmetricEncryption(t *testing.T) {
buf := new(bytes.Buffer)
plaintext, err := SymmetricallyEncrypt(buf, []byte("testing"), nil, nil)
if err != nil {
t.Errorf("error writing headers: %s", err)
return
}
message := []byte("hello world\n")
_, err = plaintext.Write(message)
if err != nil {
t.Errorf("error writing to plaintext writer: %s", err)
}
err = plaintext.Close()
if err != nil {
t.Errorf("error closing plaintext writer: %s", err)
}
md, err := ReadMessage(buf, nil, func(keys []Key, symmetric bool) ([]byte, error) {
return []byte("testing"), nil
}, nil)
if err != nil {
t.Errorf("error rereading message: %s", err)
}
messageBuf := bytes.NewBuffer(nil)
_, err = io.Copy(messageBuf, md.UnverifiedBody)
if err != nil {
t.Errorf("error rereading message: %s", err)
}
if !bytes.Equal(message, messageBuf.Bytes()) {
t.Errorf("recovered message incorrect got '%s', want '%s'", messageBuf.Bytes(), message)
}
}
var testEncryptionTests = []struct {
keyRingHex string
isSigned bool
}{
{
testKeys1And2PrivateHex,
false,
},
{
testKeys1And2PrivateHex,
true,
},
{
dsaElGamalTestKeysHex,
false,
},
{
dsaElGamalTestKeysHex,
true,
},
}
func TestEncryption(t *testing.T) {
for i, test := range testEncryptionTests {
kring, _ := ReadKeyRing(readerFromHex(test.keyRingHex))
passphrase := []byte("passphrase")
for _, entity := range kring {
if entity.PrivateKey != nil && entity.PrivateKey.Encrypted {
err := entity.PrivateKey.Decrypt(passphrase)
if err != nil {
t.Errorf("#%d: failed to decrypt key", i)
}
}
for _, subkey := range entity.Subkeys {
if subkey.PrivateKey != nil && subkey.PrivateKey.Encrypted {
err := subkey.PrivateKey.Decrypt(passphrase)
if err != nil {
t.Errorf("#%d: failed to decrypt subkey", i)
}
}
}
}
var signed *Entity
if test.isSigned {
signed = kring[0]
}
buf := new(bytes.Buffer)
w, err := Encrypt(buf, kring[:1], signed, nil /* no hints */, nil)
if err != nil {
t.Errorf("#%d: error in Encrypt: %s", i, err)
continue
}
const message = "testing"
_, err = w.Write([]byte(message))
if err != nil {
t.Errorf("#%d: error writing plaintext: %s", i, err)
continue
}
err = w.Close()
if err != nil {
t.Errorf("#%d: error closing WriteCloser: %s", i, err)
continue
}
md, err := ReadMessage(buf, kring, nil /* no prompt */, nil)
if err != nil {
t.Errorf("#%d: error reading message: %s", i, err)
continue
}
testTime, _ := time.Parse("2006-01-02", "2013-07-01")
if test.isSigned {
signKey, _ := kring[0].signingKey(testTime)
expectedKeyId := signKey.PublicKey.KeyId
if md.SignedByKeyId != expectedKeyId {
t.Errorf("#%d: message signed by wrong key id, got: %v, want: %v", i, *md.SignedBy, expectedKeyId)
}
if md.SignedBy == nil {
t.Errorf("#%d: failed to find the signing Entity", i)
}
}
plaintext, err := ioutil.ReadAll(md.UnverifiedBody)
if err != nil {
t.Errorf("#%d: error reading encrypted contents: %s", i, err)
continue
}
encryptKey, _ := kring[0].encryptionKey(testTime)
expectedKeyId := encryptKey.PublicKey.KeyId
if len(md.EncryptedToKeyIds) != 1 || md.EncryptedToKeyIds[0] != expectedKeyId {
t.Errorf("#%d: expected message to be encrypted to %v, but got %#v", i, expectedKeyId, md.EncryptedToKeyIds)
}
if string(plaintext) != message {
t.Errorf("#%d: got: %s, want: %s", i, string(plaintext), message)
}
if test.isSigned {
if md.SignatureError != nil {
t.Errorf("#%d: signature error: %s", i, md.SignatureError)
}
if md.Signature == nil {
t.Error("signature missing")
}
}
}
}
var testSigningTests = []struct {
keyRingHex string
}{
{
testKeys1And2PrivateHex,
},
{
dsaElGamalTestKeysHex,
},
}
func TestSigning(t *testing.T) {
for i, test := range testSigningTests {
kring, _ := ReadKeyRing(readerFromHex(test.keyRingHex))
passphrase := []byte("passphrase")
for _, entity := range kring {
if entity.PrivateKey != nil && entity.PrivateKey.Encrypted {
err := entity.PrivateKey.Decrypt(passphrase)
if err != nil {
t.Errorf("#%d: failed to decrypt key", i)
}
}
for _, subkey := range entity.Subkeys {
if subkey.PrivateKey != nil && subkey.PrivateKey.Encrypted {
err := subkey.PrivateKey.Decrypt(passphrase)
if err != nil {
t.Errorf("#%d: failed to decrypt subkey", i)
}
}
}
}
signed := kring[0]
buf := new(bytes.Buffer)
w, err := Sign(buf, signed, nil /* no hints */, nil)
if err != nil {
t.Errorf("#%d: error in Sign: %s", i, err)
continue
}
const message = "testing"
_, err = w.Write([]byte(message))
if err != nil {
t.Errorf("#%d: error writing plaintext: %s", i, err)
continue
}
err = w.Close()
if err != nil {
t.Errorf("#%d: error closing WriteCloser: %s", i, err)
continue
}
md, err := ReadMessage(buf, kring, nil /* no prompt */, nil)
if err != nil {
t.Errorf("#%d: error reading message: %s", i, err)
continue
}
testTime, _ := time.Parse("2006-01-02", "2013-07-01")
signKey, _ := kring[0].signingKey(testTime)
expectedKeyId := signKey.PublicKey.KeyId
if md.SignedByKeyId != expectedKeyId {
t.Errorf("#%d: message signed by wrong key id, got: %v, want: %v", i, *md.SignedBy, expectedKeyId)
}
if md.SignedBy == nil {
t.Errorf("#%d: failed to find the signing Entity", i)
}
plaintext, err := ioutil.ReadAll(md.UnverifiedBody)
if err != nil {
t.Errorf("#%d: error reading contents: %v", i, err)
continue
}
if string(plaintext) != message {
t.Errorf("#%d: got: %q, want: %q", i, plaintext, message)
}
if md.SignatureError != nil {
t.Errorf("#%d: signature error: %q", i, md.SignatureError)
}
if md.Signature == nil {
t.Error("signature missing")
}
}
}