rebase: update kubernetes to 1.26.1

update kubernetes and its dependencies
to v1.26.1

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
This commit is contained in:
Madhu Rajanna
2023-02-01 18:06:36 +01:00
committed by mergify[bot]
parent e9e33fb851
commit 9c8de9471e
937 changed files with 75539 additions and 33050 deletions

View File

@ -12,9 +12,5 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// package attribute provides key and value attributes.
//
// This package is currently in a pre-GA phase. Backwards incompatible changes
// may be introduced in subsequent minor version releases as we work to track
// the evolving OpenTelemetry specification and user feedback.
// Package attribute provides key and value attributes.
package attribute // import "go.opentelemetry.io/otel/attribute"

View File

@ -21,19 +21,17 @@ import (
)
type (
// Encoder is a mechanism for serializing a label set into a
// specific string representation that supports caching, to
// avoid repeated serialization. An example could be an
// exporter encoding the label set into a wire representation.
// Encoder is a mechanism for serializing an attribute set into a specific
// string representation that supports caching, to avoid repeated
// serialization. An example could be an exporter encoding the attribute
// set into a wire representation.
Encoder interface {
// Encode returns the serialized encoding of the label
// set using its Iterator. This result may be cached
// by a attribute.Set.
// Encode returns the serialized encoding of the attribute set using
// its Iterator. This result may be cached by a attribute.Set.
Encode(iterator Iterator) string
// ID returns a value that is unique for each class of
// label encoder. Label encoders allocate these using
// `NewEncoderID`.
// ID returns a value that is unique for each class of attribute
// encoder. Attribute encoders allocate these using `NewEncoderID`.
ID() EncoderID
}
@ -43,54 +41,53 @@ type (
value uint64
}
// defaultLabelEncoder uses a sync.Pool of buffers to reduce
// the number of allocations used in encoding labels. This
// implementation encodes a comma-separated list of key=value,
// with '/'-escaping of '=', ',', and '\'.
defaultLabelEncoder struct {
// pool is a pool of labelset builders. The buffers in this
// pool grow to a size that most label encodings will not
// allocate new memory.
// defaultAttrEncoder uses a sync.Pool of buffers to reduce the number of
// allocations used in encoding attributes. This implementation encodes a
// comma-separated list of key=value, with '/'-escaping of '=', ',', and
// '\'.
defaultAttrEncoder struct {
// pool is a pool of attribute set builders. The buffers in this pool
// grow to a size that most attribute encodings will not allocate new
// memory.
pool sync.Pool // *bytes.Buffer
}
)
// escapeChar is used to ensure uniqueness of the label encoding where
// keys or values contain either '=' or ','. Since there is no parser
// needed for this encoding and its only requirement is to be unique,
// this choice is arbitrary. Users will see these in some exporters
// (e.g., stdout), so the backslash ('\') is used as a conventional choice.
// escapeChar is used to ensure uniqueness of the attribute encoding where
// keys or values contain either '=' or ','. Since there is no parser needed
// for this encoding and its only requirement is to be unique, this choice is
// arbitrary. Users will see these in some exporters (e.g., stdout), so the
// backslash ('\') is used as a conventional choice.
const escapeChar = '\\'
var (
_ Encoder = &defaultLabelEncoder{}
_ Encoder = &defaultAttrEncoder{}
// encoderIDCounter is for generating IDs for other label
// encoders.
// encoderIDCounter is for generating IDs for other attribute encoders.
encoderIDCounter uint64
defaultEncoderOnce sync.Once
defaultEncoderID = NewEncoderID()
defaultEncoderInstance *defaultLabelEncoder
defaultEncoderInstance *defaultAttrEncoder
)
// NewEncoderID returns a unique label encoder ID. It should be
// called once per each type of label encoder. Preferably in init() or
// in var definition.
// NewEncoderID returns a unique attribute encoder ID. It should be called
// once per each type of attribute encoder. Preferably in init() or in var
// definition.
func NewEncoderID() EncoderID {
return EncoderID{value: atomic.AddUint64(&encoderIDCounter, 1)}
}
// DefaultEncoder returns a label encoder that encodes labels
// in such a way that each escaped label's key is followed by an equal
// sign and then by an escaped label's value. All key-value pairs are
// separated by a comma.
// DefaultEncoder returns an attribute encoder that encodes attributes in such
// a way that each escaped attribute's key is followed by an equal sign and
// then by an escaped attribute's value. All key-value pairs are separated by
// a comma.
//
// Escaping is done by prepending a backslash before either a
// backslash, equal sign or a comma.
// Escaping is done by prepending a backslash before either a backslash, equal
// sign or a comma.
func DefaultEncoder() Encoder {
defaultEncoderOnce.Do(func() {
defaultEncoderInstance = &defaultLabelEncoder{
defaultEncoderInstance = &defaultAttrEncoder{
pool: sync.Pool{
New: func() interface{} {
return &bytes.Buffer{}
@ -101,15 +98,14 @@ func DefaultEncoder() Encoder {
return defaultEncoderInstance
}
// Encode is a part of an implementation of the LabelEncoder
// interface.
func (d *defaultLabelEncoder) Encode(iter Iterator) string {
// Encode is a part of an implementation of the AttributeEncoder interface.
func (d *defaultAttrEncoder) Encode(iter Iterator) string {
buf := d.pool.Get().(*bytes.Buffer)
defer d.pool.Put(buf)
buf.Reset()
for iter.Next() {
i, keyValue := iter.IndexedLabel()
i, keyValue := iter.IndexedAttribute()
if i > 0 {
_, _ = buf.WriteRune(',')
}
@ -126,8 +122,8 @@ func (d *defaultLabelEncoder) Encode(iter Iterator) string {
return buf.String()
}
// ID is a part of an implementation of the LabelEncoder interface.
func (*defaultLabelEncoder) ID() EncoderID {
// ID is a part of an implementation of the AttributeEncoder interface.
func (*defaultAttrEncoder) ID() EncoderID {
return defaultEncoderID
}
@ -137,9 +133,9 @@ func copyAndEscape(buf *bytes.Buffer, val string) {
for _, ch := range val {
switch ch {
case '=', ',', escapeChar:
buf.WriteRune(escapeChar)
_, _ = buf.WriteRune(escapeChar)
}
buf.WriteRune(ch)
_, _ = buf.WriteRune(ch)
}
}

View File

@ -14,16 +14,16 @@
package attribute // import "go.opentelemetry.io/otel/attribute"
// Iterator allows iterating over the set of labels in order,
// sorted by key.
// Iterator allows iterating over the set of attributes in order, sorted by
// key.
type Iterator struct {
storage *Set
idx int
}
// MergeIterator supports iterating over two sets of labels while
// eliminating duplicate values from the combined set. The first
// iterator value takes precedence.
// MergeIterator supports iterating over two sets of attributes while
// eliminating duplicate values from the combined set. The first iterator
// value takes precedence.
type MergeIterator struct {
one oneIterator
two oneIterator
@ -31,13 +31,13 @@ type MergeIterator struct {
}
type oneIterator struct {
iter Iterator
done bool
label KeyValue
iter Iterator
done bool
attr KeyValue
}
// Next moves the iterator to the next position. Returns false if there
// are no more labels.
// Next moves the iterator to the next position. Returns false if there are no
// more attributes.
func (i *Iterator) Next() bool {
i.idx++
return i.idx < i.Len()
@ -45,30 +45,41 @@ func (i *Iterator) Next() bool {
// Label returns current KeyValue. Must be called only after Next returns
// true.
//
// Deprecated: Use Attribute instead.
func (i *Iterator) Label() KeyValue {
return i.Attribute()
}
// Attribute returns the current KeyValue of the Iterator. It must be called
// only after Next returns true.
func (i *Iterator) Attribute() KeyValue {
kv, _ := i.storage.Get(i.idx)
return kv
}
// Attribute is a synonym for Label().
func (i *Iterator) Attribute() KeyValue {
return i.Label()
}
// IndexedLabel returns current index and attribute. Must be called only
// after Next returns true.
//
// Deprecated: Use IndexedAttribute instead.
func (i *Iterator) IndexedLabel() (int, KeyValue) {
return i.idx, i.Label()
return i.idx, i.Attribute()
}
// Len returns a number of labels in the iterator's `*Set`.
// IndexedAttribute returns current index and attribute. Must be called only
// after Next returns true.
func (i *Iterator) IndexedAttribute() (int, KeyValue) {
return i.idx, i.Attribute()
}
// Len returns a number of attributes in the iterated set.
func (i *Iterator) Len() int {
return i.storage.Len()
}
// ToSlice is a convenience function that creates a slice of labels
// from the passed iterator. The iterator is set up to start from the
// beginning before creating the slice.
// ToSlice is a convenience function that creates a slice of attributes from
// the passed iterator. The iterator is set up to start from the beginning
// before creating the slice.
func (i *Iterator) ToSlice() []KeyValue {
l := i.Len()
if l == 0 {
@ -77,12 +88,12 @@ func (i *Iterator) ToSlice() []KeyValue {
i.idx = -1
slice := make([]KeyValue, 0, l)
for i.Next() {
slice = append(slice, i.Label())
slice = append(slice, i.Attribute())
}
return slice
}
// NewMergeIterator returns a MergeIterator for merging two label sets
// NewMergeIterator returns a MergeIterator for merging two attribute sets.
// Duplicates are resolved by taking the value from the first set.
func NewMergeIterator(s1, s2 *Set) MergeIterator {
mi := MergeIterator{
@ -102,42 +113,49 @@ func makeOne(iter Iterator) oneIterator {
func (oi *oneIterator) advance() {
if oi.done = !oi.iter.Next(); !oi.done {
oi.label = oi.iter.Label()
oi.attr = oi.iter.Attribute()
}
}
// Next returns true if there is another label available.
// Next returns true if there is another attribute available.
func (m *MergeIterator) Next() bool {
if m.one.done && m.two.done {
return false
}
if m.one.done {
m.current = m.two.label
m.current = m.two.attr
m.two.advance()
return true
}
if m.two.done {
m.current = m.one.label
m.current = m.one.attr
m.one.advance()
return true
}
if m.one.label.Key == m.two.label.Key {
m.current = m.one.label // first iterator label value wins
if m.one.attr.Key == m.two.attr.Key {
m.current = m.one.attr // first iterator attribute value wins
m.one.advance()
m.two.advance()
return true
}
if m.one.label.Key < m.two.label.Key {
m.current = m.one.label
if m.one.attr.Key < m.two.attr.Key {
m.current = m.one.attr
m.one.advance()
return true
}
m.current = m.two.label
m.current = m.two.attr
m.two.advance()
return true
}
// Label returns the current value after Next() returns true.
//
// Deprecated: Use Attribute instead.
func (m *MergeIterator) Label() KeyValue {
return m.current
}
// Attribute returns the current value after Next() returns true.
func (m *MergeIterator) Attribute() KeyValue {
return m.current
}

View File

@ -20,10 +20,8 @@ type Key string
// Bool creates a KeyValue instance with a BOOL Value.
//
// If creating both key and a bool value at the same time, then
// instead of calling Key(name).Bool(value) consider using a
// convenience function provided by the api/key package -
// key.Bool(name, value).
// If creating both a key and value at the same time, use the provided
// convenience function instead -- Bool(name, value).
func (k Key) Bool(v bool) KeyValue {
return KeyValue{
Key: k,
@ -31,51 +29,21 @@ func (k Key) Bool(v bool) KeyValue {
}
}
// Int64 creates a KeyValue instance with an INT64 Value.
// BoolSlice creates a KeyValue instance with a BOOLSLICE Value.
//
// If creating both key and an int64 value at the same time, then
// instead of calling Key(name).Int64(value) consider using a
// convenience function provided by the api/key package -
// key.Int64(name, value).
func (k Key) Int64(v int64) KeyValue {
// If creating both a key and value at the same time, use the provided
// convenience function instead -- BoolSlice(name, value).
func (k Key) BoolSlice(v []bool) KeyValue {
return KeyValue{
Key: k,
Value: Int64Value(v),
}
}
// Float64 creates a KeyValue instance with a FLOAT64 Value.
//
// If creating both key and a float64 value at the same time, then
// instead of calling Key(name).Float64(value) consider using a
// convenience function provided by the api/key package -
// key.Float64(name, value).
func (k Key) Float64(v float64) KeyValue {
return KeyValue{
Key: k,
Value: Float64Value(v),
}
}
// String creates a KeyValue instance with a STRING Value.
//
// If creating both key and a string value at the same time, then
// instead of calling Key(name).String(value) consider using a
// convenience function provided by the api/key package -
// key.String(name, value).
func (k Key) String(v string) KeyValue {
return KeyValue{
Key: k,
Value: StringValue(v),
Value: BoolSliceValue(v),
}
}
// Int creates a KeyValue instance with an INT64 Value.
//
// If creating both key and an int value at the same time, then
// instead of calling Key(name).Int(value) consider using a
// convenience function provided by the api/key package -
// key.Int(name, value).
// If creating both a key and value at the same time, use the provided
// convenience function instead -- Int(name, value).
func (k Key) Int(v int) KeyValue {
return KeyValue{
Key: k,
@ -83,20 +51,84 @@ func (k Key) Int(v int) KeyValue {
}
}
// IntSlice creates a KeyValue instance with an INT64SLICE Value.
//
// If creating both a key and value at the same time, use the provided
// convenience function instead -- IntSlice(name, value).
func (k Key) IntSlice(v []int) KeyValue {
return KeyValue{
Key: k,
Value: IntSliceValue(v),
}
}
// Int64 creates a KeyValue instance with an INT64 Value.
//
// If creating both a key and value at the same time, use the provided
// convenience function instead -- Int64(name, value).
func (k Key) Int64(v int64) KeyValue {
return KeyValue{
Key: k,
Value: Int64Value(v),
}
}
// Int64Slice creates a KeyValue instance with an INT64SLICE Value.
//
// If creating both a key and value at the same time, use the provided
// convenience function instead -- Int64Slice(name, value).
func (k Key) Int64Slice(v []int64) KeyValue {
return KeyValue{
Key: k,
Value: Int64SliceValue(v),
}
}
// Float64 creates a KeyValue instance with a FLOAT64 Value.
//
// If creating both a key and value at the same time, use the provided
// convenience function instead -- Float64(name, value).
func (k Key) Float64(v float64) KeyValue {
return KeyValue{
Key: k,
Value: Float64Value(v),
}
}
// Float64Slice creates a KeyValue instance with a FLOAT64SLICE Value.
//
// If creating both a key and value at the same time, use the provided
// convenience function instead -- Float64(name, value).
func (k Key) Float64Slice(v []float64) KeyValue {
return KeyValue{
Key: k,
Value: Float64SliceValue(v),
}
}
// String creates a KeyValue instance with a STRING Value.
//
// If creating both a key and value at the same time, use the provided
// convenience function instead -- String(name, value).
func (k Key) String(v string) KeyValue {
return KeyValue{
Key: k,
Value: StringValue(v),
}
}
// StringSlice creates a KeyValue instance with a STRINGSLICE Value.
//
// If creating both a key and value at the same time, use the provided
// convenience function instead -- StringSlice(name, value).
func (k Key) StringSlice(v []string) KeyValue {
return KeyValue{
Key: k,
Value: StringSliceValue(v),
}
}
// Defined returns true for non-empty keys.
func (k Key) Defined() bool {
return len(k) != 0
}
// Array creates a KeyValue instance with a ARRAY Value.
//
// If creating both key and a array value at the same time, then
// instead of calling Key(name).String(value) consider using a
// convenience function provided by the api/key package -
// key.Array(name, value).
func (k Key) Array(v interface{}) KeyValue {
return KeyValue{
Key: k,
Value: ArrayValue(v),
}
}

View File

@ -15,9 +15,7 @@
package attribute // import "go.opentelemetry.io/otel/attribute"
import (
"encoding/json"
"fmt"
"reflect"
)
// KeyValue holds a key and value pair.
@ -28,81 +26,61 @@ type KeyValue struct {
// Valid returns if kv is a valid OpenTelemetry attribute.
func (kv KeyValue) Valid() bool {
return kv.Key != "" && kv.Value.Type() != INVALID
return kv.Key.Defined() && kv.Value.Type() != INVALID
}
// Bool creates a new key-value pair with a passed name and a bool
// value.
// Bool creates a KeyValue with a BOOL Value type.
func Bool(k string, v bool) KeyValue {
return Key(k).Bool(v)
}
// Int64 creates a new key-value pair with a passed name and an int64
// value.
// BoolSlice creates a KeyValue with a BOOLSLICE Value type.
func BoolSlice(k string, v []bool) KeyValue {
return Key(k).BoolSlice(v)
}
// Int creates a KeyValue with an INT64 Value type.
func Int(k string, v int) KeyValue {
return Key(k).Int(v)
}
// IntSlice creates a KeyValue with an INT64SLICE Value type.
func IntSlice(k string, v []int) KeyValue {
return Key(k).IntSlice(v)
}
// Int64 creates a KeyValue with an INT64 Value type.
func Int64(k string, v int64) KeyValue {
return Key(k).Int64(v)
}
// Float64 creates a new key-value pair with a passed name and a float64
// value.
// Int64Slice creates a KeyValue with an INT64SLICE Value type.
func Int64Slice(k string, v []int64) KeyValue {
return Key(k).Int64Slice(v)
}
// Float64 creates a KeyValue with a FLOAT64 Value type.
func Float64(k string, v float64) KeyValue {
return Key(k).Float64(v)
}
// String creates a new key-value pair with a passed name and a string
// value.
// Float64Slice creates a KeyValue with a FLOAT64SLICE Value type.
func Float64Slice(k string, v []float64) KeyValue {
return Key(k).Float64Slice(v)
}
// String creates a KeyValue with a STRING Value type.
func String(k, v string) KeyValue {
return Key(k).String(v)
}
// StringSlice creates a KeyValue with a STRINGSLICE Value type.
func StringSlice(k string, v []string) KeyValue {
return Key(k).StringSlice(v)
}
// Stringer creates a new key-value pair with a passed name and a string
// value generated by the passed Stringer interface.
func Stringer(k string, v fmt.Stringer) KeyValue {
return Key(k).String(v.String())
}
// Int creates a new key-value pair instance with a passed name and
// either an int32 or an int64 value, depending on whether the int
// type is 32 or 64 bits wide.
func Int(k string, v int) KeyValue {
return Key(k).Int(v)
}
// Array creates a new key-value pair with a passed name and a array.
// Only arrays of primitive type are supported.
func Array(k string, v interface{}) KeyValue {
return Key(k).Array(v)
}
// Any creates a new key-value pair instance with a passed name and
// automatic type inference. This is slower, and not type-safe.
func Any(k string, value interface{}) KeyValue {
if value == nil {
return String(k, "<nil>")
}
if stringer, ok := value.(fmt.Stringer); ok {
return String(k, stringer.String())
}
rv := reflect.ValueOf(value)
switch rv.Kind() {
case reflect.Array, reflect.Slice:
return Array(k, value)
case reflect.Bool:
return Bool(k, rv.Bool())
case reflect.Int, reflect.Int8, reflect.Int16:
return Int(k, int(rv.Int()))
case reflect.Int64:
return Int64(k, rv.Int())
case reflect.Float64:
return Float64(k, rv.Float())
case reflect.String:
return String(k, rv.String())
}
if b, err := json.Marshal(value); b != nil && err == nil {
return String(k, string(b))
}
return String(k, fmt.Sprint(value))
}

View File

@ -18,57 +18,45 @@ import (
"encoding/json"
"reflect"
"sort"
"sync"
)
type (
// Set is the representation for a distinct label set. It
// manages an immutable set of labels, with an internal cache
// for storing label encodings.
// Set is the representation for a distinct attribute set. It manages an
// immutable set of attributes, with an internal cache for storing
// attribute encodings.
//
// This type supports the `Equivalent` method of comparison
// using values of type `Distinct`.
//
// This type is used to implement:
// 1. Metric labels
// 2. Resource sets
// 3. Correlation map (TODO)
// This type supports the Equivalent method of comparison using values of
// type Distinct.
Set struct {
equivalent Distinct
lock sync.Mutex
encoders [maxConcurrentEncoders]EncoderID
encoded [maxConcurrentEncoders]string
}
// Distinct wraps a variable-size array of `KeyValue`,
// constructed with keys in sorted order. This can be used as
// a map key or for equality checking between Sets.
// Distinct wraps a variable-size array of KeyValue, constructed with keys
// in sorted order. This can be used as a map key or for equality checking
// between Sets.
Distinct struct {
iface interface{}
}
// Filter supports removing certain labels from label sets.
// When the filter returns true, the label will be kept in
// the filtered label set. When the filter returns false, the
// label is excluded from the filtered label set, and the
// label instead appears in the `removed` list of excluded labels.
// Filter supports removing certain attributes from attribute sets. When
// the filter returns true, the attribute will be kept in the filtered
// attribute set. When the filter returns false, the attribute is excluded
// from the filtered attribute set, and the attribute instead appears in
// the removed list of excluded attributes.
Filter func(KeyValue) bool
// Sortable implements `sort.Interface`, used for sorting
// `KeyValue`. This is an exported type to support a
// memory optimization. A pointer to one of these is needed
// for the call to `sort.Stable()`, which the caller may
// provide in order to avoid an allocation. See
// `NewSetWithSortable()`.
// Sortable implements sort.Interface, used for sorting KeyValue. This is
// an exported type to support a memory optimization. A pointer to one of
// these is needed for the call to sort.Stable(), which the caller may
// provide in order to avoid an allocation. See NewSetWithSortable().
Sortable []KeyValue
)
var (
// keyValueType is used in `computeDistinctReflect`.
// keyValueType is used in computeDistinctReflect.
keyValueType = reflect.TypeOf(KeyValue{})
// emptySet is returned for empty label sets.
// emptySet is returned for empty attribute sets.
emptySet = &Set{
equivalent: Distinct{
iface: [0]KeyValue{},
@ -76,8 +64,6 @@ var (
}
)
const maxConcurrentEncoders = 3
// EmptySet returns a reference to a Set with no elements.
//
// This is a convenience provided for optimized calling utility.
@ -85,30 +71,30 @@ func EmptySet() *Set {
return emptySet
}
// reflect abbreviates `reflect.ValueOf`.
func (d Distinct) reflect() reflect.Value {
// reflectValue abbreviates reflect.ValueOf(d).
func (d Distinct) reflectValue() reflect.Value {
return reflect.ValueOf(d.iface)
}
// Valid returns true if this value refers to a valid `*Set`.
// Valid returns true if this value refers to a valid Set.
func (d Distinct) Valid() bool {
return d.iface != nil
}
// Len returns the number of labels in this set.
// Len returns the number of attributes in this set.
func (l *Set) Len() int {
if l == nil || !l.equivalent.Valid() {
return 0
}
return l.equivalent.reflect().Len()
return l.equivalent.reflectValue().Len()
}
// Get returns the KeyValue at ordered position `idx` in this set.
// Get returns the KeyValue at ordered position idx in this set.
func (l *Set) Get(idx int) (KeyValue, bool) {
if l == nil {
return KeyValue{}, false
}
value := l.equivalent.reflect()
value := l.equivalent.reflectValue()
if idx >= 0 && idx < value.Len() {
// Note: The Go compiler successfully avoids an allocation for
@ -124,7 +110,7 @@ func (l *Set) Value(k Key) (Value, bool) {
if l == nil {
return Value{}, false
}
rValue := l.equivalent.reflect()
rValue := l.equivalent.reflectValue()
vlen := rValue.Len()
idx := sort.Search(vlen, func(idx int) bool {
@ -149,7 +135,7 @@ func (l *Set) HasValue(k Key) bool {
return ok
}
// Iter returns an iterator for visiting the labels in this set.
// Iter returns an iterator for visiting the attributes in this set.
func (l *Set) Iter() Iterator {
return Iterator{
storage: l,
@ -157,18 +143,17 @@ func (l *Set) Iter() Iterator {
}
}
// ToSlice returns the set of labels belonging to this set, sorted,
// where keys appear no more than once.
// ToSlice returns the set of attributes belonging to this set, sorted, where
// keys appear no more than once.
func (l *Set) ToSlice() []KeyValue {
iter := l.Iter()
return iter.ToSlice()
}
// Equivalent returns a value that may be used as a map key. The
// Distinct type guarantees that the result will equal the equivalent
// Distinct value of any label set with the same elements as this,
// where sets are made unique by choosing the last value in the input
// for any given key.
// Equivalent returns a value that may be used as a map key. The Distinct type
// guarantees that the result will equal the equivalent. Distinct value of any
// attribute set with the same elements as this, where sets are made unique by
// choosing the last value in the input for any given key.
func (l *Set) Equivalent() Distinct {
if l == nil || !l.equivalent.Valid() {
return emptySet.equivalent
@ -181,52 +166,13 @@ func (l *Set) Equals(o *Set) bool {
return l.Equivalent() == o.Equivalent()
}
// Encoded returns the encoded form of this set, according to
// `encoder`. The result will be cached in this `*Set`.
// Encoded returns the encoded form of this set, according to encoder.
func (l *Set) Encoded(encoder Encoder) string {
if l == nil || encoder == nil {
return ""
}
id := encoder.ID()
if !id.Valid() {
// Invalid IDs are not cached.
return encoder.Encode(l.Iter())
}
var lookup *string
l.lock.Lock()
for idx := 0; idx < maxConcurrentEncoders; idx++ {
if l.encoders[idx] == id {
lookup = &l.encoded[idx]
break
}
}
l.lock.Unlock()
if lookup != nil {
return *lookup
}
r := encoder.Encode(l.Iter())
l.lock.Lock()
defer l.lock.Unlock()
for idx := 0; idx < maxConcurrentEncoders; idx++ {
if l.encoders[idx] == id {
return l.encoded[idx]
}
if !l.encoders[idx].Valid() {
l.encoders[idx] = id
l.encoded[idx] = r
return r
}
}
// TODO: This is a performance cliff. Find a way for this to
// generate a warning.
return r
return encoder.Encode(l.Iter())
}
func empty() Set {
@ -235,39 +181,38 @@ func empty() Set {
}
}
// NewSet returns a new `Set`. See the documentation for
// `NewSetWithSortableFiltered` for more details.
// NewSet returns a new Set. See the documentation for
// NewSetWithSortableFiltered for more details.
//
// Except for empty sets, this method adds an additional allocation
// compared with calls that include a `*Sortable`.
// Except for empty sets, this method adds an additional allocation compared
// with calls that include a Sortable.
func NewSet(kvs ...KeyValue) Set {
// Check for empty set.
if len(kvs) == 0 {
return empty()
}
s, _ := NewSetWithSortableFiltered(kvs, new(Sortable), nil)
return s //nolint
return s
}
// NewSetWithSortable returns a new `Set`. See the documentation for
// `NewSetWithSortableFiltered` for more details.
// NewSetWithSortable returns a new Set. See the documentation for
// NewSetWithSortableFiltered for more details.
//
// This call includes a `*Sortable` option as a memory optimization.
// This call includes a Sortable option as a memory optimization.
func NewSetWithSortable(kvs []KeyValue, tmp *Sortable) Set {
// Check for empty set.
if len(kvs) == 0 {
return empty()
}
s, _ := NewSetWithSortableFiltered(kvs, tmp, nil)
return s //nolint
return s
}
// NewSetWithFiltered returns a new `Set`. See the documentation for
// `NewSetWithSortableFiltered` for more details.
// NewSetWithFiltered returns a new Set. See the documentation for
// NewSetWithSortableFiltered for more details.
//
// This call includes a `Filter` to include/exclude label keys from
// the return value. Excluded keys are returned as a slice of label
// values.
// This call includes a Filter to include/exclude attribute keys from the
// return value. Excluded keys are returned as a slice of attribute values.
func NewSetWithFiltered(kvs []KeyValue, filter Filter) (Set, []KeyValue) {
// Check for empty set.
if len(kvs) == 0 {
@ -276,7 +221,7 @@ func NewSetWithFiltered(kvs []KeyValue, filter Filter) (Set, []KeyValue) {
return NewSetWithSortableFiltered(kvs, new(Sortable), filter)
}
// NewSetWithSortableFiltered returns a new `Set`.
// NewSetWithSortableFiltered returns a new Set.
//
// Duplicate keys are eliminated by taking the last value. This
// re-orders the input slice so that unique last-values are contiguous
@ -288,17 +233,16 @@ func NewSetWithFiltered(kvs []KeyValue, filter Filter) (Set, []KeyValue) {
// - Caller sees the reordering, but doesn't lose values
// - Repeated call preserve last-value wins.
//
// Note that methods are defined on `*Set`, although this returns `Set`.
// Callers can avoid memory allocations by:
// Note that methods are defined on Set, although this returns Set. Callers
// can avoid memory allocations by:
//
// - allocating a `Sortable` for use as a temporary in this method
// - allocating a `Set` for storing the return value of this
// constructor.
// - allocating a Sortable for use as a temporary in this method
// - allocating a Set for storing the return value of this constructor.
//
// The result maintains a cache of encoded labels, by attribute.EncoderID.
// The result maintains a cache of encoded attributes, by attribute.EncoderID.
// This value should not be copied after its first use.
//
// The second `[]KeyValue` return value is a list of labels that were
// The second []KeyValue return value is a list of attributes that were
// excluded by the Filter (if non-nil).
func NewSetWithSortableFiltered(kvs []KeyValue, tmp *Sortable, filter Filter) (Set, []KeyValue) {
// Check for empty set.
@ -338,13 +282,13 @@ func NewSetWithSortableFiltered(kvs []KeyValue, tmp *Sortable, filter Filter) (S
}, nil
}
// filterSet reorders `kvs` so that included keys are contiguous at
// the end of the slice, while excluded keys precede the included keys.
// filterSet reorders kvs so that included keys are contiguous at the end of
// the slice, while excluded keys precede the included keys.
func filterSet(kvs []KeyValue, filter Filter) (Set, []KeyValue) {
var excluded []KeyValue
// Move labels that do not match the filter so
// they're adjacent before calling computeDistinct().
// Move attributes that do not match the filter so they're adjacent before
// calling computeDistinct().
distinctPosition := len(kvs)
// Swap indistinct keys forward and distinct keys toward the
@ -364,8 +308,8 @@ func filterSet(kvs []KeyValue, filter Filter) (Set, []KeyValue) {
}, excluded
}
// Filter returns a filtered copy of this `Set`. See the
// documentation for `NewSetWithSortableFiltered` for more details.
// Filter returns a filtered copy of this Set. See the documentation for
// NewSetWithSortableFiltered for more details.
func (l *Set) Filter(re Filter) (Set, []KeyValue) {
if re == nil {
return Set{
@ -378,9 +322,9 @@ func (l *Set) Filter(re Filter) (Set, []KeyValue) {
return filterSet(l.ToSlice(), re)
}
// computeDistinct returns a `Distinct` using either the fixed- or
// reflect-oriented code path, depending on the size of the input.
// The input slice is assumed to already be sorted and de-duplicated.
// computeDistinct returns a Distinct using either the fixed- or
// reflect-oriented code path, depending on the size of the input. The input
// slice is assumed to already be sorted and de-duplicated.
func computeDistinct(kvs []KeyValue) Distinct {
iface := computeDistinctFixed(kvs)
if iface == nil {
@ -391,8 +335,8 @@ func computeDistinct(kvs []KeyValue) Distinct {
}
}
// computeDistinctFixed computes a `Distinct` for small slices. It
// returns nil if the input is too large for this code path.
// computeDistinctFixed computes a Distinct for small slices. It returns nil
// if the input is too large for this code path.
func computeDistinctFixed(kvs []KeyValue) interface{} {
switch len(kvs) {
case 1:
@ -440,8 +384,8 @@ func computeDistinctFixed(kvs []KeyValue) interface{} {
}
}
// computeDistinctReflect computes a `Distinct` using reflection,
// works for any size input.
// computeDistinctReflect computes a Distinct using reflection, works for any
// size input.
func computeDistinctReflect(kvs []KeyValue) interface{} {
at := reflect.New(reflect.ArrayOf(len(kvs), keyValueType)).Elem()
for i, keyValue := range kvs {
@ -450,22 +394,31 @@ func computeDistinctReflect(kvs []KeyValue) interface{} {
return at.Interface()
}
// MarshalJSON returns the JSON encoding of the `*Set`.
// MarshalJSON returns the JSON encoding of the Set.
func (l *Set) MarshalJSON() ([]byte, error) {
return json.Marshal(l.equivalent.iface)
}
// Len implements `sort.Interface`.
// MarshalLog is the marshaling function used by the logging system to represent this exporter.
func (l Set) MarshalLog() interface{} {
kvs := make(map[string]string)
for _, kv := range l.ToSlice() {
kvs[string(kv.Key)] = kv.Value.Emit()
}
return kvs
}
// Len implements sort.Interface.
func (l *Sortable) Len() int {
return len(*l)
}
// Swap implements `sort.Interface`.
// Swap implements sort.Interface.
func (l *Sortable) Swap(i, j int) {
(*l)[i], (*l)[j] = (*l)[j], (*l)[i]
}
// Less implements `sort.Interface`.
// Less implements sort.Interface.
func (l *Sortable) Less(i, j int) bool {
return (*l)[i].Key < (*l)[j].Key
}

View File

@ -13,12 +13,15 @@ func _() {
_ = x[INT64-2]
_ = x[FLOAT64-3]
_ = x[STRING-4]
_ = x[ARRAY-5]
_ = x[BOOLSLICE-5]
_ = x[INT64SLICE-6]
_ = x[FLOAT64SLICE-7]
_ = x[STRINGSLICE-8]
}
const _Type_name = "INVALIDBOOLINT64FLOAT64STRINGARRAY"
const _Type_name = "INVALIDBOOLINT64FLOAT64STRINGBOOLSLICEINT64SLICEFLOAT64SLICESTRINGSLICE"
var _Type_index = [...]uint8{0, 7, 11, 16, 23, 29, 34}
var _Type_index = [...]uint8{0, 7, 11, 16, 23, 29, 38, 48, 60, 71}
func (i Type) String() string {
if i < 0 || i >= Type(len(_Type_index)-1) {

View File

@ -17,7 +17,6 @@ package attribute // import "go.opentelemetry.io/otel/attribute"
import (
"encoding/json"
"fmt"
"reflect"
"strconv"
"go.opentelemetry.io/otel/internal"
@ -26,16 +25,14 @@ import (
//go:generate stringer -type=Type
// Type describes the type of the data Value holds.
type Type int
type Type int // nolint: revive // redefines builtin Type.
// Value represents the value part in key-value pairs.
type Value struct {
vtype Type
numeric uint64
stringly string
// TODO Lazy value type?
array interface{}
slice interface{}
}
const (
@ -49,10 +46,14 @@ const (
FLOAT64
// STRING is a string Type Value.
STRING
// ARRAY is an array Type Value used to store 1-dimensional slices or
// arrays of bool, int, int32, int64, uint, uint32, uint64, float,
// float32, float64, or string types.
ARRAY
// BOOLSLICE is a slice of booleans Type Value.
BOOLSLICE
// INT64SLICE is a slice of 64-bit signed integral numbers Type Value.
INT64SLICE
// FLOAT64SLICE is a slice of 64-bit floating point numbers Type Value.
FLOAT64SLICE
// STRINGSLICE is a slice of strings Type Value.
STRINGSLICE
)
// BoolValue creates a BOOL Value.
@ -63,6 +64,33 @@ func BoolValue(v bool) Value {
}
}
// BoolSliceValue creates a BOOLSLICE Value.
func BoolSliceValue(v []bool) Value {
cp := make([]bool, len(v))
copy(cp, v)
return Value{
vtype: BOOLSLICE,
slice: &cp,
}
}
// IntValue creates an INT64 Value.
func IntValue(v int) Value {
return Int64Value(int64(v))
}
// IntSliceValue creates an INTSLICE Value.
func IntSliceValue(v []int) Value {
cp := make([]int64, 0, len(v))
for _, i := range v {
cp = append(cp, int64(i))
}
return Value{
vtype: INT64SLICE,
slice: &cp,
}
}
// Int64Value creates an INT64 Value.
func Int64Value(v int64) Value {
return Value{
@ -71,6 +99,16 @@ func Int64Value(v int64) Value {
}
}
// Int64SliceValue creates an INT64SLICE Value.
func Int64SliceValue(v []int64) Value {
cp := make([]int64, len(v))
copy(cp, v)
return Value{
vtype: INT64SLICE,
slice: &cp,
}
}
// Float64Value creates a FLOAT64 Value.
func Float64Value(v float64) Value {
return Value{
@ -79,6 +117,16 @@ func Float64Value(v float64) Value {
}
}
// Float64SliceValue creates a FLOAT64SLICE Value.
func Float64SliceValue(v []float64) Value {
cp := make([]float64, len(v))
copy(cp, v)
return Value{
vtype: FLOAT64SLICE,
slice: &cp,
}
}
// StringValue creates a STRING Value.
func StringValue(v string) Value {
return Value{
@ -87,38 +135,14 @@ func StringValue(v string) Value {
}
}
// IntValue creates an INT64 Value.
func IntValue(v int) Value {
return Int64Value(int64(v))
}
// ArrayValue creates an ARRAY value from an array or slice.
// Only arrays or slices of bool, int, int64, float, float64, or string types are allowed.
// Specifically, arrays and slices can not contain other arrays, slices, structs, or non-standard
// types. If the passed value is not an array or slice of these types an
// INVALID value is returned.
func ArrayValue(v interface{}) Value {
switch reflect.TypeOf(v).Kind() {
case reflect.Array, reflect.Slice:
// get array type regardless of dimensions
typ := reflect.TypeOf(v).Elem()
kind := typ.Kind()
switch kind {
case reflect.Bool, reflect.Int, reflect.Int64,
reflect.Float64, reflect.String:
val := reflect.ValueOf(v)
length := val.Len()
frozen := reflect.Indirect(reflect.New(reflect.ArrayOf(length, typ)))
reflect.Copy(frozen, val)
return Value{
vtype: ARRAY,
array: frozen.Interface(),
}
default:
return Value{vtype: INVALID}
}
// StringSliceValue creates a STRINGSLICE Value.
func StringSliceValue(v []string) Value {
cp := make([]string, len(v))
copy(cp, v)
return Value{
vtype: STRINGSLICE,
slice: &cp,
}
return Value{vtype: INVALID}
}
// Type returns a type of the Value.
@ -132,27 +156,58 @@ func (v Value) AsBool() bool {
return internal.RawToBool(v.numeric)
}
// AsBoolSlice returns the []bool value. Make sure that the Value's type is
// BOOLSLICE.
func (v Value) AsBoolSlice() []bool {
if s, ok := v.slice.(*[]bool); ok {
return *s
}
return nil
}
// AsInt64 returns the int64 value. Make sure that the Value's type is
// INT64.
func (v Value) AsInt64() int64 {
return internal.RawToInt64(v.numeric)
}
// AsInt64Slice returns the []int64 value. Make sure that the Value's type is
// INT64SLICE.
func (v Value) AsInt64Slice() []int64 {
if s, ok := v.slice.(*[]int64); ok {
return *s
}
return nil
}
// AsFloat64 returns the float64 value. Make sure that the Value's
// type is FLOAT64.
func (v Value) AsFloat64() float64 {
return internal.RawToFloat64(v.numeric)
}
// AsFloat64Slice returns the []float64 value. Make sure that the Value's type is
// FLOAT64SLICE.
func (v Value) AsFloat64Slice() []float64 {
if s, ok := v.slice.(*[]float64); ok {
return *s
}
return nil
}
// AsString returns the string value. Make sure that the Value's type
// is STRING.
func (v Value) AsString() string {
return v.stringly
}
// AsArray returns the array Value as an interface{}.
func (v Value) AsArray() interface{} {
return v.array
// AsStringSlice returns the []string value. Make sure that the Value's type is
// STRINGSLICE.
func (v Value) AsStringSlice() []string {
if s, ok := v.slice.(*[]string); ok {
return *s
}
return nil
}
type unknownValueType struct{}
@ -160,16 +215,22 @@ type unknownValueType struct{}
// AsInterface returns Value's data as interface{}.
func (v Value) AsInterface() interface{} {
switch v.Type() {
case ARRAY:
return v.AsArray()
case BOOL:
return v.AsBool()
case BOOLSLICE:
return v.AsBoolSlice()
case INT64:
return v.AsInt64()
case INT64SLICE:
return v.AsInt64Slice()
case FLOAT64:
return v.AsFloat64()
case FLOAT64SLICE:
return v.AsFloat64Slice()
case STRING:
return v.stringly
case STRINGSLICE:
return v.AsStringSlice()
}
return unknownValueType{}
}
@ -177,14 +238,20 @@ func (v Value) AsInterface() interface{} {
// Emit returns a string representation of Value's data.
func (v Value) Emit() string {
switch v.Type() {
case ARRAY:
return fmt.Sprint(v.array)
case BOOLSLICE:
return fmt.Sprint(*(v.slice.(*[]bool)))
case BOOL:
return strconv.FormatBool(v.AsBool())
case INT64SLICE:
return fmt.Sprint(*(v.slice.(*[]int64)))
case INT64:
return strconv.FormatInt(v.AsInt64(), 10)
case FLOAT64SLICE:
return fmt.Sprint(*(v.slice.(*[]float64)))
case FLOAT64:
return fmt.Sprint(v.AsFloat64())
case STRINGSLICE:
return fmt.Sprint(*(v.slice.(*[]string)))
case STRING:
return v.stringly
default: