rebase: update kubernetes to 1.26.1

update kubernetes and its dependencies
to v1.26.1

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
This commit is contained in:
Madhu Rajanna
2023-02-01 18:06:36 +01:00
committed by mergify[bot]
parent e9e33fb851
commit 9c8de9471e
937 changed files with 75539 additions and 33050 deletions

View File

@ -184,12 +184,15 @@ func (s *SpdyRoundTripper) dialWithHttpProxy(req *http.Request, proxyURL *url.UR
//nolint:staticcheck // SA1019 ignore deprecated httputil.NewProxyClientConn
proxyClientConn := httputil.NewProxyClientConn(proxyDialConn, nil)
_, err = proxyClientConn.Do(&proxyReq)
response, err := proxyClientConn.Do(&proxyReq)
//nolint:staticcheck // SA1019 ignore deprecated httputil.ErrPersistEOF: it might be
// returned from the invocation of proxyClientConn.Do
if err != nil && err != httputil.ErrPersistEOF {
return nil, err
}
if response != nil && response.StatusCode >= 300 || response.StatusCode < 200 {
return nil, fmt.Errorf("CONNECT request to %s returned response: %s", proxyURL.Redacted(), response.Status)
}
rwc, _ := proxyClientConn.Hijack()
@ -294,9 +297,10 @@ func (s *SpdyRoundTripper) proxyAuth(proxyURL *url.URL) string {
if proxyURL == nil || proxyURL.User == nil {
return ""
}
credentials := proxyURL.User.String()
encodedAuth := base64.StdEncoding.EncodeToString([]byte(credentials))
return fmt.Sprintf("Basic %s", encodedAuth)
username := proxyURL.User.Username()
password, _ := proxyURL.User.Password()
auth := username + ":" + password
return "Basic " + base64.StdEncoding.EncodeToString([]byte(auth))
}
// RoundTrip executes the Request and upgrades it. After a successful upgrade,

View File

@ -27,8 +27,8 @@ const (
// The SPDY subprotocol "channel.k8s.io" is used for remote command
// attachment/execution. This represents the initial unversioned subprotocol,
// which has the known bugs http://issues.k8s.io/13394 and
// http://issues.k8s.io/13395.
// which has the known bugs https://issues.k8s.io/13394 and
// https://issues.k8s.io/13395.
StreamProtocolV1Name = "channel.k8s.io"
// The SPDY subprotocol "v2.channel.k8s.io" is used for remote command

View File

@ -1,5 +1,5 @@
/*
Copyright The Kubernetes Authors.
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -14,102 +14,75 @@ See the License for the specific language governing permissions and
limitations under the License.
*/
// Code generated by set-gen. DO NOT EDIT.
package sets
import (
"reflect"
"sort"
)
// sets.Byte is a set of bytes, implemented via map[byte]struct{} for minimal memory consumption.
// Byte is a set of bytes, implemented via map[byte]struct{} for minimal memory consumption.
//
// Deprecated: use generic Set instead.
// new ways:
// s1 := Set[byte]{}
// s2 := New[byte]()
type Byte map[byte]Empty
// NewByte creates a Byte from a list of values.
func NewByte(items ...byte) Byte {
ss := make(Byte, len(items))
ss.Insert(items...)
return ss
return Byte(New[byte](items...))
}
// ByteKeySet creates a Byte from a keys of a map[byte](? extends interface{}).
// If the value passed in is not actually a map, this will panic.
func ByteKeySet(theMap interface{}) Byte {
v := reflect.ValueOf(theMap)
ret := Byte{}
for _, keyValue := range v.MapKeys() {
ret.Insert(keyValue.Interface().(byte))
}
return ret
func ByteKeySet[T any](theMap map[byte]T) Byte {
return Byte(KeySet(theMap))
}
// Insert adds items to the set.
func (s Byte) Insert(items ...byte) Byte {
for _, item := range items {
s[item] = Empty{}
}
return s
return Byte(cast(s).Insert(items...))
}
// Delete removes all items from the set.
func (s Byte) Delete(items ...byte) Byte {
for _, item := range items {
delete(s, item)
}
return s
return Byte(cast(s).Delete(items...))
}
// Has returns true if and only if item is contained in the set.
func (s Byte) Has(item byte) bool {
_, contained := s[item]
return contained
return cast(s).Has(item)
}
// HasAll returns true if and only if all items are contained in the set.
func (s Byte) HasAll(items ...byte) bool {
for _, item := range items {
if !s.Has(item) {
return false
}
}
return true
return cast(s).HasAll(items...)
}
// HasAny returns true if any items are contained in the set.
func (s Byte) HasAny(items ...byte) bool {
for _, item := range items {
if s.Has(item) {
return true
}
}
return false
return cast(s).HasAny(items...)
}
// Clone returns a new set which is a copy of the current set.
func (s Byte) Clone() Byte {
result := make(Byte, len(s))
for key := range s {
result.Insert(key)
}
return result
return Byte(cast(s).Clone())
}
// Difference returns a set of objects that are not in s2
// Difference returns a set of objects that are not in s2.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.Difference(s2) = {a3}
// s2.Difference(s1) = {a4, a5}
func (s Byte) Difference(s2 Byte) Byte {
result := NewByte()
for key := range s {
if !s2.Has(key) {
result.Insert(key)
}
}
return result
func (s1 Byte) Difference(s2 Byte) Byte {
return Byte(cast(s1).Difference(cast(s2)))
}
// SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.SymmetricDifference(s2) = {a3, a4, a5}
// s2.SymmetricDifference(s1) = {a3, a4, a5}
func (s1 Byte) SymmetricDifference(s2 Byte) Byte {
return Byte(cast(s1).SymmetricDifference(cast(s2)))
}
// Union returns a new set which includes items in either s1 or s2.
@ -119,11 +92,7 @@ func (s Byte) Difference(s2 Byte) Byte {
// s1.Union(s2) = {a1, a2, a3, a4}
// s2.Union(s1) = {a1, a2, a3, a4}
func (s1 Byte) Union(s2 Byte) Byte {
result := s1.Clone()
for key := range s2 {
result.Insert(key)
}
return result
return Byte(cast(s1).Union(cast(s2)))
}
// Intersection returns a new set which includes the item in BOTH s1 and s2
@ -132,80 +101,37 @@ func (s1 Byte) Union(s2 Byte) Byte {
// s2 = {a2, a3}
// s1.Intersection(s2) = {a2}
func (s1 Byte) Intersection(s2 Byte) Byte {
var walk, other Byte
result := NewByte()
if s1.Len() < s2.Len() {
walk = s1
other = s2
} else {
walk = s2
other = s1
}
for key := range walk {
if other.Has(key) {
result.Insert(key)
}
}
return result
return Byte(cast(s1).Intersection(cast(s2)))
}
// IsSuperset returns true if and only if s1 is a superset of s2.
func (s1 Byte) IsSuperset(s2 Byte) bool {
for item := range s2 {
if !s1.Has(item) {
return false
}
}
return true
return cast(s1).IsSuperset(cast(s2))
}
// Equal returns true if and only if s1 is equal (as a set) to s2.
// Two sets are equal if their membership is identical.
// (In practice, this means same elements, order doesn't matter)
func (s1 Byte) Equal(s2 Byte) bool {
return len(s1) == len(s2) && s1.IsSuperset(s2)
return cast(s1).Equal(cast(s2))
}
type sortableSliceOfByte []byte
func (s sortableSliceOfByte) Len() int { return len(s) }
func (s sortableSliceOfByte) Less(i, j int) bool { return lessByte(s[i], s[j]) }
func (s sortableSliceOfByte) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// List returns the contents as a sorted byte slice.
func (s Byte) List() []byte {
res := make(sortableSliceOfByte, 0, len(s))
for key := range s {
res = append(res, key)
}
sort.Sort(res)
return []byte(res)
return List(cast(s))
}
// UnsortedList returns the slice with contents in random order.
func (s Byte) UnsortedList() []byte {
res := make([]byte, 0, len(s))
for key := range s {
res = append(res, key)
}
return res
return cast(s).UnsortedList()
}
// Returns a single element from the set.
// PopAny returns a single element from the set.
func (s Byte) PopAny() (byte, bool) {
for key := range s {
s.Delete(key)
return key, true
}
var zeroValue byte
return zeroValue, false
return cast(s).PopAny()
}
// Len returns the size of the set.
func (s Byte) Len() int {
return len(s)
}
func lessByte(lhs, rhs byte) bool {
return lhs < rhs
}

View File

@ -1,5 +1,5 @@
/*
Copyright The Kubernetes Authors.
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -14,7 +14,6 @@ See the License for the specific language governing permissions and
limitations under the License.
*/
// Code generated by set-gen. DO NOT EDIT.
// Package sets has auto-generated set types.
// Package sets has generic set and specified sets. Generic set will
// replace specified ones over time. And specific ones are deprecated.
package sets

View File

@ -1,5 +1,5 @@
/*
Copyright The Kubernetes Authors.
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -14,8 +14,6 @@ See the License for the specific language governing permissions and
limitations under the License.
*/
// Code generated by set-gen. DO NOT EDIT.
package sets
// Empty is public since it is used by some internal API objects for conversions between external

View File

@ -1,5 +1,5 @@
/*
Copyright The Kubernetes Authors.
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -14,102 +14,75 @@ See the License for the specific language governing permissions and
limitations under the License.
*/
// Code generated by set-gen. DO NOT EDIT.
package sets
import (
"reflect"
"sort"
)
// sets.Int is a set of ints, implemented via map[int]struct{} for minimal memory consumption.
// Int is a set of ints, implemented via map[int]struct{} for minimal memory consumption.
//
// Deprecated: use generic Set instead.
// new ways:
// s1 := Set[int]{}
// s2 := New[int]()
type Int map[int]Empty
// NewInt creates a Int from a list of values.
func NewInt(items ...int) Int {
ss := make(Int, len(items))
ss.Insert(items...)
return ss
return Int(New[int](items...))
}
// IntKeySet creates a Int from a keys of a map[int](? extends interface{}).
// If the value passed in is not actually a map, this will panic.
func IntKeySet(theMap interface{}) Int {
v := reflect.ValueOf(theMap)
ret := Int{}
for _, keyValue := range v.MapKeys() {
ret.Insert(keyValue.Interface().(int))
}
return ret
func IntKeySet[T any](theMap map[int]T) Int {
return Int(KeySet(theMap))
}
// Insert adds items to the set.
func (s Int) Insert(items ...int) Int {
for _, item := range items {
s[item] = Empty{}
}
return s
return Int(cast(s).Insert(items...))
}
// Delete removes all items from the set.
func (s Int) Delete(items ...int) Int {
for _, item := range items {
delete(s, item)
}
return s
return Int(cast(s).Delete(items...))
}
// Has returns true if and only if item is contained in the set.
func (s Int) Has(item int) bool {
_, contained := s[item]
return contained
return cast(s).Has(item)
}
// HasAll returns true if and only if all items are contained in the set.
func (s Int) HasAll(items ...int) bool {
for _, item := range items {
if !s.Has(item) {
return false
}
}
return true
return cast(s).HasAll(items...)
}
// HasAny returns true if any items are contained in the set.
func (s Int) HasAny(items ...int) bool {
for _, item := range items {
if s.Has(item) {
return true
}
}
return false
return cast(s).HasAny(items...)
}
// Clone returns a new set which is a copy of the current set.
func (s Int) Clone() Int {
result := make(Int, len(s))
for key := range s {
result.Insert(key)
}
return result
return Int(cast(s).Clone())
}
// Difference returns a set of objects that are not in s2
// Difference returns a set of objects that are not in s2.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.Difference(s2) = {a3}
// s2.Difference(s1) = {a4, a5}
func (s Int) Difference(s2 Int) Int {
result := NewInt()
for key := range s {
if !s2.Has(key) {
result.Insert(key)
}
}
return result
func (s1 Int) Difference(s2 Int) Int {
return Int(cast(s1).Difference(cast(s2)))
}
// SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.SymmetricDifference(s2) = {a3, a4, a5}
// s2.SymmetricDifference(s1) = {a3, a4, a5}
func (s1 Int) SymmetricDifference(s2 Int) Int {
return Int(cast(s1).SymmetricDifference(cast(s2)))
}
// Union returns a new set which includes items in either s1 or s2.
@ -119,11 +92,7 @@ func (s Int) Difference(s2 Int) Int {
// s1.Union(s2) = {a1, a2, a3, a4}
// s2.Union(s1) = {a1, a2, a3, a4}
func (s1 Int) Union(s2 Int) Int {
result := s1.Clone()
for key := range s2 {
result.Insert(key)
}
return result
return Int(cast(s1).Union(cast(s2)))
}
// Intersection returns a new set which includes the item in BOTH s1 and s2
@ -132,80 +101,37 @@ func (s1 Int) Union(s2 Int) Int {
// s2 = {a2, a3}
// s1.Intersection(s2) = {a2}
func (s1 Int) Intersection(s2 Int) Int {
var walk, other Int
result := NewInt()
if s1.Len() < s2.Len() {
walk = s1
other = s2
} else {
walk = s2
other = s1
}
for key := range walk {
if other.Has(key) {
result.Insert(key)
}
}
return result
return Int(cast(s1).Intersection(cast(s2)))
}
// IsSuperset returns true if and only if s1 is a superset of s2.
func (s1 Int) IsSuperset(s2 Int) bool {
for item := range s2 {
if !s1.Has(item) {
return false
}
}
return true
return cast(s1).IsSuperset(cast(s2))
}
// Equal returns true if and only if s1 is equal (as a set) to s2.
// Two sets are equal if their membership is identical.
// (In practice, this means same elements, order doesn't matter)
func (s1 Int) Equal(s2 Int) bool {
return len(s1) == len(s2) && s1.IsSuperset(s2)
return cast(s1).Equal(cast(s2))
}
type sortableSliceOfInt []int
func (s sortableSliceOfInt) Len() int { return len(s) }
func (s sortableSliceOfInt) Less(i, j int) bool { return lessInt(s[i], s[j]) }
func (s sortableSliceOfInt) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// List returns the contents as a sorted int slice.
func (s Int) List() []int {
res := make(sortableSliceOfInt, 0, len(s))
for key := range s {
res = append(res, key)
}
sort.Sort(res)
return []int(res)
return List(cast(s))
}
// UnsortedList returns the slice with contents in random order.
func (s Int) UnsortedList() []int {
res := make([]int, 0, len(s))
for key := range s {
res = append(res, key)
}
return res
return cast(s).UnsortedList()
}
// Returns a single element from the set.
// PopAny returns a single element from the set.
func (s Int) PopAny() (int, bool) {
for key := range s {
s.Delete(key)
return key, true
}
var zeroValue int
return zeroValue, false
return cast(s).PopAny()
}
// Len returns the size of the set.
func (s Int) Len() int {
return len(s)
}
func lessInt(lhs, rhs int) bool {
return lhs < rhs
}

View File

@ -1,5 +1,5 @@
/*
Copyright The Kubernetes Authors.
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -14,102 +14,75 @@ See the License for the specific language governing permissions and
limitations under the License.
*/
// Code generated by set-gen. DO NOT EDIT.
package sets
import (
"reflect"
"sort"
)
// sets.Int32 is a set of int32s, implemented via map[int32]struct{} for minimal memory consumption.
// Int32 is a set of int32s, implemented via map[int32]struct{} for minimal memory consumption.
//
// Deprecated: use generic Set instead.
// new ways:
// s1 := Set[int32]{}
// s2 := New[int32]()
type Int32 map[int32]Empty
// NewInt32 creates a Int32 from a list of values.
func NewInt32(items ...int32) Int32 {
ss := make(Int32, len(items))
ss.Insert(items...)
return ss
return Int32(New[int32](items...))
}
// Int32KeySet creates a Int32 from a keys of a map[int32](? extends interface{}).
// If the value passed in is not actually a map, this will panic.
func Int32KeySet(theMap interface{}) Int32 {
v := reflect.ValueOf(theMap)
ret := Int32{}
for _, keyValue := range v.MapKeys() {
ret.Insert(keyValue.Interface().(int32))
}
return ret
func Int32KeySet[T any](theMap map[int32]T) Int32 {
return Int32(KeySet(theMap))
}
// Insert adds items to the set.
func (s Int32) Insert(items ...int32) Int32 {
for _, item := range items {
s[item] = Empty{}
}
return s
return Int32(cast(s).Insert(items...))
}
// Delete removes all items from the set.
func (s Int32) Delete(items ...int32) Int32 {
for _, item := range items {
delete(s, item)
}
return s
return Int32(cast(s).Delete(items...))
}
// Has returns true if and only if item is contained in the set.
func (s Int32) Has(item int32) bool {
_, contained := s[item]
return contained
return cast(s).Has(item)
}
// HasAll returns true if and only if all items are contained in the set.
func (s Int32) HasAll(items ...int32) bool {
for _, item := range items {
if !s.Has(item) {
return false
}
}
return true
return cast(s).HasAll(items...)
}
// HasAny returns true if any items are contained in the set.
func (s Int32) HasAny(items ...int32) bool {
for _, item := range items {
if s.Has(item) {
return true
}
}
return false
return cast(s).HasAny(items...)
}
// Clone returns a new set which is a copy of the current set.
func (s Int32) Clone() Int32 {
result := make(Int32, len(s))
for key := range s {
result.Insert(key)
}
return result
return Int32(cast(s).Clone())
}
// Difference returns a set of objects that are not in s2
// Difference returns a set of objects that are not in s2.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.Difference(s2) = {a3}
// s2.Difference(s1) = {a4, a5}
func (s Int32) Difference(s2 Int32) Int32 {
result := NewInt32()
for key := range s {
if !s2.Has(key) {
result.Insert(key)
}
}
return result
func (s1 Int32) Difference(s2 Int32) Int32 {
return Int32(cast(s1).Difference(cast(s2)))
}
// SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.SymmetricDifference(s2) = {a3, a4, a5}
// s2.SymmetricDifference(s1) = {a3, a4, a5}
func (s1 Int32) SymmetricDifference(s2 Int32) Int32 {
return Int32(cast(s1).SymmetricDifference(cast(s2)))
}
// Union returns a new set which includes items in either s1 or s2.
@ -119,11 +92,7 @@ func (s Int32) Difference(s2 Int32) Int32 {
// s1.Union(s2) = {a1, a2, a3, a4}
// s2.Union(s1) = {a1, a2, a3, a4}
func (s1 Int32) Union(s2 Int32) Int32 {
result := s1.Clone()
for key := range s2 {
result.Insert(key)
}
return result
return Int32(cast(s1).Union(cast(s2)))
}
// Intersection returns a new set which includes the item in BOTH s1 and s2
@ -132,80 +101,37 @@ func (s1 Int32) Union(s2 Int32) Int32 {
// s2 = {a2, a3}
// s1.Intersection(s2) = {a2}
func (s1 Int32) Intersection(s2 Int32) Int32 {
var walk, other Int32
result := NewInt32()
if s1.Len() < s2.Len() {
walk = s1
other = s2
} else {
walk = s2
other = s1
}
for key := range walk {
if other.Has(key) {
result.Insert(key)
}
}
return result
return Int32(cast(s1).Intersection(cast(s2)))
}
// IsSuperset returns true if and only if s1 is a superset of s2.
func (s1 Int32) IsSuperset(s2 Int32) bool {
for item := range s2 {
if !s1.Has(item) {
return false
}
}
return true
return cast(s1).IsSuperset(cast(s2))
}
// Equal returns true if and only if s1 is equal (as a set) to s2.
// Two sets are equal if their membership is identical.
// (In practice, this means same elements, order doesn't matter)
func (s1 Int32) Equal(s2 Int32) bool {
return len(s1) == len(s2) && s1.IsSuperset(s2)
return cast(s1).Equal(cast(s2))
}
type sortableSliceOfInt32 []int32
func (s sortableSliceOfInt32) Len() int { return len(s) }
func (s sortableSliceOfInt32) Less(i, j int) bool { return lessInt32(s[i], s[j]) }
func (s sortableSliceOfInt32) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// List returns the contents as a sorted int32 slice.
func (s Int32) List() []int32 {
res := make(sortableSliceOfInt32, 0, len(s))
for key := range s {
res = append(res, key)
}
sort.Sort(res)
return []int32(res)
return List(cast(s))
}
// UnsortedList returns the slice with contents in random order.
func (s Int32) UnsortedList() []int32 {
res := make([]int32, 0, len(s))
for key := range s {
res = append(res, key)
}
return res
return cast(s).UnsortedList()
}
// Returns a single element from the set.
// PopAny returns a single element from the set.
func (s Int32) PopAny() (int32, bool) {
for key := range s {
s.Delete(key)
return key, true
}
var zeroValue int32
return zeroValue, false
return cast(s).PopAny()
}
// Len returns the size of the set.
func (s Int32) Len() int {
return len(s)
}
func lessInt32(lhs, rhs int32) bool {
return lhs < rhs
}

View File

@ -1,5 +1,5 @@
/*
Copyright The Kubernetes Authors.
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -14,102 +14,75 @@ See the License for the specific language governing permissions and
limitations under the License.
*/
// Code generated by set-gen. DO NOT EDIT.
package sets
import (
"reflect"
"sort"
)
// sets.Int64 is a set of int64s, implemented via map[int64]struct{} for minimal memory consumption.
// Int64 is a set of int64s, implemented via map[int64]struct{} for minimal memory consumption.
//
// Deprecated: use generic Set instead.
// new ways:
// s1 := Set[int64]{}
// s2 := New[int64]()
type Int64 map[int64]Empty
// NewInt64 creates a Int64 from a list of values.
func NewInt64(items ...int64) Int64 {
ss := make(Int64, len(items))
ss.Insert(items...)
return ss
return Int64(New[int64](items...))
}
// Int64KeySet creates a Int64 from a keys of a map[int64](? extends interface{}).
// If the value passed in is not actually a map, this will panic.
func Int64KeySet(theMap interface{}) Int64 {
v := reflect.ValueOf(theMap)
ret := Int64{}
for _, keyValue := range v.MapKeys() {
ret.Insert(keyValue.Interface().(int64))
}
return ret
func Int64KeySet[T any](theMap map[int64]T) Int64 {
return Int64(KeySet(theMap))
}
// Insert adds items to the set.
func (s Int64) Insert(items ...int64) Int64 {
for _, item := range items {
s[item] = Empty{}
}
return s
return Int64(cast(s).Insert(items...))
}
// Delete removes all items from the set.
func (s Int64) Delete(items ...int64) Int64 {
for _, item := range items {
delete(s, item)
}
return s
return Int64(cast(s).Delete(items...))
}
// Has returns true if and only if item is contained in the set.
func (s Int64) Has(item int64) bool {
_, contained := s[item]
return contained
return cast(s).Has(item)
}
// HasAll returns true if and only if all items are contained in the set.
func (s Int64) HasAll(items ...int64) bool {
for _, item := range items {
if !s.Has(item) {
return false
}
}
return true
return cast(s).HasAll(items...)
}
// HasAny returns true if any items are contained in the set.
func (s Int64) HasAny(items ...int64) bool {
for _, item := range items {
if s.Has(item) {
return true
}
}
return false
return cast(s).HasAny(items...)
}
// Clone returns a new set which is a copy of the current set.
func (s Int64) Clone() Int64 {
result := make(Int64, len(s))
for key := range s {
result.Insert(key)
}
return result
return Int64(cast(s).Clone())
}
// Difference returns a set of objects that are not in s2
// Difference returns a set of objects that are not in s2.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.Difference(s2) = {a3}
// s2.Difference(s1) = {a4, a5}
func (s Int64) Difference(s2 Int64) Int64 {
result := NewInt64()
for key := range s {
if !s2.Has(key) {
result.Insert(key)
}
}
return result
func (s1 Int64) Difference(s2 Int64) Int64 {
return Int64(cast(s1).Difference(cast(s2)))
}
// SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.SymmetricDifference(s2) = {a3, a4, a5}
// s2.SymmetricDifference(s1) = {a3, a4, a5}
func (s1 Int64) SymmetricDifference(s2 Int64) Int64 {
return Int64(cast(s1).SymmetricDifference(cast(s2)))
}
// Union returns a new set which includes items in either s1 or s2.
@ -119,11 +92,7 @@ func (s Int64) Difference(s2 Int64) Int64 {
// s1.Union(s2) = {a1, a2, a3, a4}
// s2.Union(s1) = {a1, a2, a3, a4}
func (s1 Int64) Union(s2 Int64) Int64 {
result := s1.Clone()
for key := range s2 {
result.Insert(key)
}
return result
return Int64(cast(s1).Union(cast(s2)))
}
// Intersection returns a new set which includes the item in BOTH s1 and s2
@ -132,80 +101,37 @@ func (s1 Int64) Union(s2 Int64) Int64 {
// s2 = {a2, a3}
// s1.Intersection(s2) = {a2}
func (s1 Int64) Intersection(s2 Int64) Int64 {
var walk, other Int64
result := NewInt64()
if s1.Len() < s2.Len() {
walk = s1
other = s2
} else {
walk = s2
other = s1
}
for key := range walk {
if other.Has(key) {
result.Insert(key)
}
}
return result
return Int64(cast(s1).Intersection(cast(s2)))
}
// IsSuperset returns true if and only if s1 is a superset of s2.
func (s1 Int64) IsSuperset(s2 Int64) bool {
for item := range s2 {
if !s1.Has(item) {
return false
}
}
return true
return cast(s1).IsSuperset(cast(s2))
}
// Equal returns true if and only if s1 is equal (as a set) to s2.
// Two sets are equal if their membership is identical.
// (In practice, this means same elements, order doesn't matter)
func (s1 Int64) Equal(s2 Int64) bool {
return len(s1) == len(s2) && s1.IsSuperset(s2)
return cast(s1).Equal(cast(s2))
}
type sortableSliceOfInt64 []int64
func (s sortableSliceOfInt64) Len() int { return len(s) }
func (s sortableSliceOfInt64) Less(i, j int) bool { return lessInt64(s[i], s[j]) }
func (s sortableSliceOfInt64) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// List returns the contents as a sorted int64 slice.
func (s Int64) List() []int64 {
res := make(sortableSliceOfInt64, 0, len(s))
for key := range s {
res = append(res, key)
}
sort.Sort(res)
return []int64(res)
return List(cast(s))
}
// UnsortedList returns the slice with contents in random order.
func (s Int64) UnsortedList() []int64 {
res := make([]int64, 0, len(s))
for key := range s {
res = append(res, key)
}
return res
return cast(s).UnsortedList()
}
// Returns a single element from the set.
// PopAny returns a single element from the set.
func (s Int64) PopAny() (int64, bool) {
for key := range s {
s.Delete(key)
return key, true
}
var zeroValue int64
return zeroValue, false
return cast(s).PopAny()
}
// Len returns the size of the set.
func (s Int64) Len() int {
return len(s)
}
func lessInt64(lhs, rhs int64) bool {
return lhs < rhs
}

53
vendor/k8s.io/apimachinery/pkg/util/sets/ordered.go generated vendored Normal file
View File

@ -0,0 +1,53 @@
/*
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package sets
// ordered is a constraint that permits any ordered type: any type
// that supports the operators < <= >= >.
// If future releases of Go add new ordered types,
// this constraint will be modified to include them.
type ordered interface {
integer | float | ~string
}
// integer is a constraint that permits any integer type.
// If future releases of Go add new predeclared integer types,
// this constraint will be modified to include them.
type integer interface {
signed | unsigned
}
// float is a constraint that permits any floating-point type.
// If future releases of Go add new predeclared floating-point types,
// this constraint will be modified to include them.
type float interface {
~float32 | ~float64
}
// signed is a constraint that permits any signed integer type.
// If future releases of Go add new predeclared signed integer types,
// this constraint will be modified to include them.
type signed interface {
~int | ~int8 | ~int16 | ~int32 | ~int64
}
// unsigned is a constraint that permits any unsigned integer type.
// If future releases of Go add new predeclared unsigned integer types,
// this constraint will be modified to include them.
type unsigned interface {
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr
}

227
vendor/k8s.io/apimachinery/pkg/util/sets/set.go generated vendored Normal file
View File

@ -0,0 +1,227 @@
/*
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package sets
import (
"sort"
)
// Set is a set of the same type elements, implemented via map[comparable]struct{} for minimal memory consumption.
type Set[T comparable] map[T]Empty
// cast transforms specified set to generic Set[T].
func cast[T comparable](s map[T]Empty) Set[T] { return s }
// New creates a Set from a list of values.
// NOTE: type param must be explicitly instantiated if given items are empty.
func New[T comparable](items ...T) Set[T] {
ss := make(Set[T], len(items))
ss.Insert(items...)
return ss
}
// KeySet creates a Set from a keys of a map[comparable](? extends interface{}).
// If the value passed in is not actually a map, this will panic.
func KeySet[T comparable, V any](theMap map[T]V) Set[T] {
ret := Set[T]{}
for keyValue := range theMap {
ret.Insert(keyValue)
}
return ret
}
// Insert adds items to the set.
func (s Set[T]) Insert(items ...T) Set[T] {
for _, item := range items {
s[item] = Empty{}
}
return s
}
func Insert[T comparable](set Set[T], items ...T) Set[T] {
return set.Insert(items...)
}
// Delete removes all items from the set.
func (s Set[T]) Delete(items ...T) Set[T] {
for _, item := range items {
delete(s, item)
}
return s
}
// Has returns true if and only if item is contained in the set.
func (s Set[T]) Has(item T) bool {
_, contained := s[item]
return contained
}
// HasAll returns true if and only if all items are contained in the set.
func (s Set[T]) HasAll(items ...T) bool {
for _, item := range items {
if !s.Has(item) {
return false
}
}
return true
}
// HasAny returns true if any items are contained in the set.
func (s Set[T]) HasAny(items ...T) bool {
for _, item := range items {
if s.Has(item) {
return true
}
}
return false
}
// Clone returns a new set which is a copy of the current set.
func (s Set[T]) Clone() Set[T] {
result := make(Set[T], len(s))
for key := range s {
result.Insert(key)
}
return result
}
// Difference returns a set of objects that are not in s2.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.Difference(s2) = {a3}
// s2.Difference(s1) = {a4, a5}
func (s1 Set[T]) Difference(s2 Set[T]) Set[T] {
result := New[T]()
for key := range s1 {
if !s2.Has(key) {
result.Insert(key)
}
}
return result
}
// SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.SymmetricDifference(s2) = {a3, a4, a5}
// s2.SymmetricDifference(s1) = {a3, a4, a5}
func (s1 Set[T]) SymmetricDifference(s2 Set[T]) Set[T] {
return s1.Difference(s2).Union(s2.Difference(s1))
}
// Union returns a new set which includes items in either s1 or s2.
// For example:
// s1 = {a1, a2}
// s2 = {a3, a4}
// s1.Union(s2) = {a1, a2, a3, a4}
// s2.Union(s1) = {a1, a2, a3, a4}
func (s1 Set[T]) Union(s2 Set[T]) Set[T] {
result := s1.Clone()
for key := range s2 {
result.Insert(key)
}
return result
}
// Intersection returns a new set which includes the item in BOTH s1 and s2
// For example:
// s1 = {a1, a2}
// s2 = {a2, a3}
// s1.Intersection(s2) = {a2}
func (s1 Set[T]) Intersection(s2 Set[T]) Set[T] {
var walk, other Set[T]
result := New[T]()
if s1.Len() < s2.Len() {
walk = s1
other = s2
} else {
walk = s2
other = s1
}
for key := range walk {
if other.Has(key) {
result.Insert(key)
}
}
return result
}
// IsSuperset returns true if and only if s1 is a superset of s2.
func (s1 Set[T]) IsSuperset(s2 Set[T]) bool {
for item := range s2 {
if !s1.Has(item) {
return false
}
}
return true
}
// Equal returns true if and only if s1 is equal (as a set) to s2.
// Two sets are equal if their membership is identical.
// (In practice, this means same elements, order doesn't matter)
func (s1 Set[T]) Equal(s2 Set[T]) bool {
return len(s1) == len(s2) && s1.IsSuperset(s2)
}
type sortableSliceOfGeneric[T ordered] []T
func (g sortableSliceOfGeneric[T]) Len() int { return len(g) }
func (g sortableSliceOfGeneric[T]) Less(i, j int) bool { return less[T](g[i], g[j]) }
func (g sortableSliceOfGeneric[T]) Swap(i, j int) { g[i], g[j] = g[j], g[i] }
// List returns the contents as a sorted T slice.
//
// This is a separate function and not a method because not all types supported
// by Generic are ordered and only those can be sorted.
func List[T ordered](s Set[T]) []T {
res := make(sortableSliceOfGeneric[T], 0, len(s))
for key := range s {
res = append(res, key)
}
sort.Sort(res)
return res
}
// UnsortedList returns the slice with contents in random order.
func (s Set[T]) UnsortedList() []T {
res := make([]T, 0, len(s))
for key := range s {
res = append(res, key)
}
return res
}
// PopAny returns a single element from the set.
func (s Set[T]) PopAny() (T, bool) {
for key := range s {
s.Delete(key)
return key, true
}
var zeroValue T
return zeroValue, false
}
// Len returns the size of the set.
func (s Set[T]) Len() int {
return len(s)
}
func less[T ordered](lhs, rhs T) bool {
return lhs < rhs
}

View File

@ -1,5 +1,5 @@
/*
Copyright The Kubernetes Authors.
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -14,102 +14,75 @@ See the License for the specific language governing permissions and
limitations under the License.
*/
// Code generated by set-gen. DO NOT EDIT.
package sets
import (
"reflect"
"sort"
)
// sets.String is a set of strings, implemented via map[string]struct{} for minimal memory consumption.
// String is a set of strings, implemented via map[string]struct{} for minimal memory consumption.
//
// Deprecated: use generic Set instead.
// new ways:
// s1 := Set[string]{}
// s2 := New[string]()
type String map[string]Empty
// NewString creates a String from a list of values.
func NewString(items ...string) String {
ss := make(String, len(items))
ss.Insert(items...)
return ss
return String(New[string](items...))
}
// StringKeySet creates a String from a keys of a map[string](? extends interface{}).
// If the value passed in is not actually a map, this will panic.
func StringKeySet(theMap interface{}) String {
v := reflect.ValueOf(theMap)
ret := String{}
for _, keyValue := range v.MapKeys() {
ret.Insert(keyValue.Interface().(string))
}
return ret
func StringKeySet[T any](theMap map[string]T) String {
return String(KeySet(theMap))
}
// Insert adds items to the set.
func (s String) Insert(items ...string) String {
for _, item := range items {
s[item] = Empty{}
}
return s
return String(cast(s).Insert(items...))
}
// Delete removes all items from the set.
func (s String) Delete(items ...string) String {
for _, item := range items {
delete(s, item)
}
return s
return String(cast(s).Delete(items...))
}
// Has returns true if and only if item is contained in the set.
func (s String) Has(item string) bool {
_, contained := s[item]
return contained
return cast(s).Has(item)
}
// HasAll returns true if and only if all items are contained in the set.
func (s String) HasAll(items ...string) bool {
for _, item := range items {
if !s.Has(item) {
return false
}
}
return true
return cast(s).HasAll(items...)
}
// HasAny returns true if any items are contained in the set.
func (s String) HasAny(items ...string) bool {
for _, item := range items {
if s.Has(item) {
return true
}
}
return false
return cast(s).HasAny(items...)
}
// Clone returns a new set which is a copy of the current set.
func (s String) Clone() String {
result := make(String, len(s))
for key := range s {
result.Insert(key)
}
return result
return String(cast(s).Clone())
}
// Difference returns a set of objects that are not in s2
// Difference returns a set of objects that are not in s2.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.Difference(s2) = {a3}
// s2.Difference(s1) = {a4, a5}
func (s String) Difference(s2 String) String {
result := NewString()
for key := range s {
if !s2.Has(key) {
result.Insert(key)
}
}
return result
func (s1 String) Difference(s2 String) String {
return String(cast(s1).Difference(cast(s2)))
}
// SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.SymmetricDifference(s2) = {a3, a4, a5}
// s2.SymmetricDifference(s1) = {a3, a4, a5}
func (s1 String) SymmetricDifference(s2 String) String {
return String(cast(s1).SymmetricDifference(cast(s2)))
}
// Union returns a new set which includes items in either s1 or s2.
@ -119,11 +92,7 @@ func (s String) Difference(s2 String) String {
// s1.Union(s2) = {a1, a2, a3, a4}
// s2.Union(s1) = {a1, a2, a3, a4}
func (s1 String) Union(s2 String) String {
result := s1.Clone()
for key := range s2 {
result.Insert(key)
}
return result
return String(cast(s1).Union(cast(s2)))
}
// Intersection returns a new set which includes the item in BOTH s1 and s2
@ -132,80 +101,37 @@ func (s1 String) Union(s2 String) String {
// s2 = {a2, a3}
// s1.Intersection(s2) = {a2}
func (s1 String) Intersection(s2 String) String {
var walk, other String
result := NewString()
if s1.Len() < s2.Len() {
walk = s1
other = s2
} else {
walk = s2
other = s1
}
for key := range walk {
if other.Has(key) {
result.Insert(key)
}
}
return result
return String(cast(s1).Intersection(cast(s2)))
}
// IsSuperset returns true if and only if s1 is a superset of s2.
func (s1 String) IsSuperset(s2 String) bool {
for item := range s2 {
if !s1.Has(item) {
return false
}
}
return true
return cast(s1).IsSuperset(cast(s2))
}
// Equal returns true if and only if s1 is equal (as a set) to s2.
// Two sets are equal if their membership is identical.
// (In practice, this means same elements, order doesn't matter)
func (s1 String) Equal(s2 String) bool {
return len(s1) == len(s2) && s1.IsSuperset(s2)
return cast(s1).Equal(cast(s2))
}
type sortableSliceOfString []string
func (s sortableSliceOfString) Len() int { return len(s) }
func (s sortableSliceOfString) Less(i, j int) bool { return lessString(s[i], s[j]) }
func (s sortableSliceOfString) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// List returns the contents as a sorted string slice.
func (s String) List() []string {
res := make(sortableSliceOfString, 0, len(s))
for key := range s {
res = append(res, key)
}
sort.Sort(res)
return []string(res)
return List(cast(s))
}
// UnsortedList returns the slice with contents in random order.
func (s String) UnsortedList() []string {
res := make([]string, 0, len(s))
for key := range s {
res = append(res, key)
}
return res
return cast(s).UnsortedList()
}
// Returns a single element from the set.
// PopAny returns a single element from the set.
func (s String) PopAny() (string, bool) {
for key := range s {
s.Delete(key)
return key, true
}
var zeroValue string
return zeroValue, false
return cast(s).PopAny()
}
// Len returns the size of the set.
func (s String) Len() int {
return len(s)
}
func lessString(lhs, rhs string) bool {
return lhs < rhs
}