vendor cleanup: remove unused,non-go and test files

This commit is contained in:
Madhu Rajanna
2019-01-16 00:05:52 +05:30
parent 52cf4aa902
commit b10ba188e7
15421 changed files with 17 additions and 4208853 deletions

View File

@ -1,32 +0,0 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"])
filegroup(
name = "package-srcs",
srcs = glob(
["**"],
exclude = [
"etcd*/**",
"etcd*.tar.gz",
],
),
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [
":package-srcs",
"//third_party/forked/etcd221/pkg/fileutil:all-srcs",
"//third_party/forked/etcd221/wal:all-srcs",
"//third_party/forked/etcd237/pkg/fileutil:all-srcs",
"//third_party/forked/etcd237/wal:all-srcs",
"//third_party/forked/golang/expansion:all-srcs",
"//third_party/forked/golang/go/types:all-srcs",
"//third_party/forked/golang/reflect:all-srcs",
"//third_party/forked/golang/template:all-srcs",
"//third_party/forked/gonum/graph:all-srcs",
],
tags = ["automanaged"],
)

View File

@ -1,8 +0,0 @@
reviewers:
- lavalamp
- smarterclayton
- thockin
approvers:
- lavalamp
- smarterclayton
- thockin

View File

@ -1 +0,0 @@
Forked from etcd 2.2 release branch to support migration from 3.0 WAL to 2.2 WAL format

View File

@ -1,91 +0,0 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"])
load(
"@io_bazel_rules_go//go:def.bzl",
"go_library",
"go_test",
)
go_test(
name = "go_default_test",
srcs = [
"fileutil_test.go",
"lock_test.go",
"preallocate_test.go",
"purge_test.go",
],
embed = [":go_default_library"],
)
go_library(
name = "go_default_library",
srcs = [
"fileutil.go",
"purge.go",
] + select({
"@io_bazel_rules_go//go/platform:android": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:darwin": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:dragonfly": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:freebsd": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:linux": [
"lock_unix.go",
"preallocate.go",
],
"@io_bazel_rules_go//go/platform:nacl": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:netbsd": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:openbsd": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:plan9": [
"lock_plan9.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:solaris": [
"lock_solaris.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:windows": [
"lock_windows.go",
"perallocate_unsupported.go",
],
"//conditions:default": [],
}),
importpath = "k8s.io/kubernetes/third_party/forked/etcd221/pkg/fileutil",
deps = [
"//vendor/github.com/coreos/pkg/capnslog:go_default_library",
],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [":package-srcs"],
tags = ["automanaged"],
)

View File

@ -1,57 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"io/ioutil"
"os"
"path"
"sort"
"github.com/coreos/pkg/capnslog"
)
const (
privateFileMode = 0600
)
var (
plog = capnslog.NewPackageLogger("github.com/coreos/etcd/pkg", "fileutil")
)
// IsDirWriteable checks if dir is writable by writing and removing a file
// to dir. It returns nil if dir is writable.
func IsDirWriteable(dir string) error {
f := path.Join(dir, ".touch")
if err := ioutil.WriteFile(f, []byte(""), privateFileMode); err != nil {
return err
}
return os.Remove(f)
}
// ReadDir returns the filenames in the given directory in sorted order.
func ReadDir(dirpath string) ([]string, error) {
dir, err := os.Open(dirpath)
if err != nil {
return nil, err
}
defer dir.Close()
names, err := dir.Readdirnames(-1)
if err != nil {
return nil, err
}
sort.Strings(names)
return names, nil
}

View File

@ -1,67 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"io/ioutil"
"os"
"path/filepath"
"reflect"
"testing"
)
func TestIsDirWriteable(t *testing.T) {
tmpdir, err := ioutil.TempDir("", "")
if err != nil {
t.Fatalf("unexpected ioutil.TempDir error: %v", err)
}
defer os.RemoveAll(tmpdir)
if err := IsDirWriteable(tmpdir); err != nil {
t.Fatalf("unexpected IsDirWriteable error: %v", err)
}
if err := os.Chmod(tmpdir, 0444); err != nil {
t.Fatalf("unexpected os.Chmod error: %v", err)
}
if err := IsDirWriteable(tmpdir); err == nil {
t.Fatalf("expected IsDirWriteable to error")
}
}
func TestReadDir(t *testing.T) {
tmpdir, err := ioutil.TempDir("", "")
defer os.RemoveAll(tmpdir)
if err != nil {
t.Fatalf("unexpected ioutil.TempDir error: %v", err)
}
files := []string{"def", "abc", "xyz", "ghi"}
for _, f := range files {
var fh *os.File
fh, err = os.Create(filepath.Join(tmpdir, f))
if err != nil {
t.Fatalf("error creating file: %v", err)
}
if err := fh.Close(); err != nil {
t.Fatalf("error closing file: %v", err)
}
}
fs, err := ReadDir(tmpdir)
if err != nil {
t.Fatalf("error calling ReadDir: %v", err)
}
wfs := []string{"abc", "def", "ghi", "xyz"}
if !reflect.DeepEqual(fs, wfs) {
t.Fatalf("ReadDir: got %v, want %v", fs, wfs)
}
}

View File

@ -1,90 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"errors"
"os"
"syscall"
"time"
)
var (
ErrLocked = errors.New("file already locked")
)
type Lock interface {
Name() string
TryLock() error
Lock() error
Unlock() error
Destroy() error
}
type lock struct {
fname string
file *os.File
}
func (l *lock) Name() string {
return l.fname
}
// TryLock acquires exclusivity on the lock without blocking
func (l *lock) TryLock() error {
err := os.Chmod(l.fname, syscall.DMEXCL|0600)
if err != nil {
return err
}
f, err := os.Open(l.fname)
if err != nil {
return ErrLocked
}
l.file = f
return nil
}
// Lock acquires exclusivity on the lock with blocking
func (l *lock) Lock() error {
err := os.Chmod(l.fname, syscall.DMEXCL|0600)
if err != nil {
return err
}
for {
f, err := os.Open(l.fname)
if err == nil {
l.file = f
return nil
}
time.Sleep(10 * time.Millisecond)
}
}
// Unlock unlocks the lock
func (l *lock) Unlock() error {
return l.file.Close()
}
func (l *lock) Destroy() error {
return nil
}
func NewLock(file string) (Lock, error) {
l := &lock{fname: file}
return l, nil
}

View File

@ -1,98 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build solaris
package fileutil
import (
"errors"
"os"
"syscall"
)
var (
ErrLocked = errors.New("file already locked")
)
type Lock interface {
Name() string
TryLock() error
Lock() error
Unlock() error
Destroy() error
}
type lock struct {
fd int
file *os.File
}
func (l *lock) Name() string {
return l.file.Name()
}
// TryLock acquires exclusivity on the lock without blocking
func (l *lock) TryLock() error {
var lock syscall.Flock_t
lock.Start = 0
lock.Len = 0
lock.Pid = 0
lock.Type = syscall.F_WRLCK
lock.Whence = 0
lock.Pid = 0
err := syscall.FcntlFlock(uintptr(l.fd), syscall.F_SETLK, &lock)
if err != nil && err == syscall.EAGAIN {
return ErrLocked
}
return err
}
// Lock acquires exclusivity on the lock without blocking
func (l *lock) Lock() error {
var lock syscall.Flock_t
lock.Start = 0
lock.Len = 0
lock.Type = syscall.F_WRLCK
lock.Whence = 0
lock.Pid = 0
return syscall.FcntlFlock(uintptr(l.fd), syscall.F_SETLK, &lock)
}
// Unlock unlocks the lock
func (l *lock) Unlock() error {
var lock syscall.Flock_t
lock.Start = 0
lock.Len = 0
lock.Type = syscall.F_UNLCK
lock.Whence = 0
err := syscall.FcntlFlock(uintptr(l.fd), syscall.F_SETLK, &lock)
if err != nil && err == syscall.EAGAIN {
return ErrLocked
}
return err
}
func (l *lock) Destroy() error {
return l.file.Close()
}
func NewLock(file string) (Lock, error) {
f, err := os.OpenFile(file, os.O_WRONLY, 0600)
if err != nil {
return nil, err
}
l := &lock{int(f.Fd()), f}
return l, nil
}

View File

@ -1,96 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"io/ioutil"
"os"
"testing"
"time"
)
func TestLockAndUnlock(t *testing.T) {
f, err := ioutil.TempFile("", "lock")
if err != nil {
t.Fatal(err)
}
f.Close()
defer func() {
err := os.Remove(f.Name())
if err != nil {
t.Fatal(err)
}
}()
// lock the file
l, err := NewLock(f.Name())
if err != nil {
t.Fatal(err)
}
defer l.Destroy()
err = l.Lock()
if err != nil {
t.Fatal(err)
}
// try lock a locked file
dupl, err := NewLock(f.Name())
if err != nil {
t.Fatal(err)
}
err = dupl.TryLock()
if err != ErrLocked {
t.Errorf("err = %v, want %v", err, ErrLocked)
}
// unlock the file
err = l.Unlock()
if err != nil {
t.Fatal(err)
}
// try lock the unlocked file
err = dupl.TryLock()
if err != nil {
t.Errorf("err = %v, want %v", err, nil)
}
defer dupl.Destroy()
// blocking on locked file
locked := make(chan struct{}, 1)
go func() {
l.Lock()
locked <- struct{}{}
}()
select {
case <-locked:
t.Error("unexpected unblocking")
case <-time.After(10 * time.Millisecond):
}
// unlock
err = dupl.Unlock()
if err != nil {
t.Fatal(err)
}
// the previously blocked routine should be unblocked
select {
case <-locked:
case <-time.After(20 * time.Millisecond):
t.Error("unexpected blocking")
}
}

View File

@ -1,76 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !windows,!plan9,!solaris
package fileutil
import (
"errors"
"os"
"syscall"
)
var (
ErrLocked = errors.New("file already locked")
)
type Lock interface {
Name() string
TryLock() error
Lock() error
Unlock() error
Destroy() error
}
type lock struct {
fd int
file *os.File
}
func (l *lock) Name() string {
return l.file.Name()
}
// TryLock acquires exclusivity on the lock without blocking
func (l *lock) TryLock() error {
err := syscall.Flock(l.fd, syscall.LOCK_EX|syscall.LOCK_NB)
if err != nil && err == syscall.EWOULDBLOCK {
return ErrLocked
}
return err
}
// Lock acquires exclusivity on the lock without blocking
func (l *lock) Lock() error {
return syscall.Flock(l.fd, syscall.LOCK_EX)
}
// Unlock unlocks the lock
func (l *lock) Unlock() error {
return syscall.Flock(l.fd, syscall.LOCK_UN)
}
func (l *lock) Destroy() error {
return l.file.Close()
}
func NewLock(file string) (Lock, error) {
f, err := os.Open(file)
if err != nil {
return nil, err
}
l := &lock{int(f.Fd()), f}
return l, nil
}

View File

@ -1,71 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build windows
package fileutil
import (
"errors"
"os"
)
var (
ErrLocked = errors.New("file already locked")
)
type Lock interface {
Name() string
TryLock() error
Lock() error
Unlock() error
Destroy() error
}
type lock struct {
fd int
file *os.File
}
func (l *lock) Name() string {
return l.file.Name()
}
// TryLock acquires exclusivity on the lock without blocking
func (l *lock) TryLock() error {
return nil
}
// Lock acquires exclusivity on the lock without blocking
func (l *lock) Lock() error {
return nil
}
// Unlock unlocks the lock
func (l *lock) Unlock() error {
return nil
}
func (l *lock) Destroy() error {
return l.file.Close()
}
func NewLock(file string) (Lock, error) {
f, err := os.Open(file)
if err != nil {
return nil, err
}
l := &lock{int(f.Fd()), f}
return l, nil
}

View File

@ -1,28 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !linux
package fileutil
import "os"
// Preallocate tries to allocate the space for given
// file. This operation is only supported on linux by a
// few filesystems (btrfs, ext4, etc.).
// If the operation is unsupported, no error will be returned.
// Otherwise, the error encountered will be returned.
func Preallocate(f *os.File, sizeInBytes int) error {
return nil
}

View File

@ -1,42 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
package fileutil
import (
"os"
"syscall"
)
// Preallocate tries to allocate the space for given
// file. This operation is only supported on linux by a
// few filesystems (btrfs, ext4, etc.).
// If the operation is unsupported, no error will be returned.
// Otherwise, the error encountered will be returned.
func Preallocate(f *os.File, sizeInBytes int) error {
// use mode = 1 to keep size
// see FALLOC_FL_KEEP_SIZE
err := syscall.Fallocate(int(f.Fd()), 1, 0, int64(sizeInBytes))
if err != nil {
errno, ok := err.(syscall.Errno)
// treat not support as nil error
if ok && errno == syscall.ENOTSUP {
return nil
}
return err
}
return nil
}

View File

@ -1,53 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"io/ioutil"
"os"
"runtime"
"testing"
)
func TestPreallocate(t *testing.T) {
if runtime.GOOS != "linux" {
t.Skipf("skip testPreallocate, OS = %s", runtime.GOOS)
}
p, err := ioutil.TempDir(os.TempDir(), "preallocateTest")
if err != nil {
t.Fatal(err)
}
defer os.RemoveAll(p)
f, err := ioutil.TempFile(p, "")
if err != nil {
t.Fatal(err)
}
size := 64 * 1000
err = Preallocate(f, size)
if err != nil {
t.Fatal(err)
}
stat, err := f.Stat()
if err != nil {
t.Fatal(err)
}
if stat.Size() != 0 {
t.Errorf("size = %d, want %d", stat.Size(), 0)
}
}

View File

@ -1,80 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"os"
"path"
"sort"
"strings"
"time"
)
func PurgeFile(dirname string, suffix string, max uint, interval time.Duration, stop <-chan struct{}) <-chan error {
errC := make(chan error, 1)
go func() {
for {
fnames, err := ReadDir(dirname)
if err != nil {
errC <- err
return
}
newfnames := make([]string, 0)
for _, fname := range fnames {
if strings.HasSuffix(fname, suffix) {
newfnames = append(newfnames, fname)
}
}
sort.Strings(newfnames)
for len(newfnames) > int(max) {
f := path.Join(dirname, newfnames[0])
l, err := NewLock(f)
if err != nil {
errC <- err
return
}
err = l.TryLock()
if err != nil {
break
}
err = os.Remove(f)
if err != nil {
errC <- err
return
}
err = l.Unlock()
if err != nil {
plog.Errorf("error unlocking %s when purging file (%v)", l.Name(), err)
errC <- err
return
}
err = l.Destroy()
if err != nil {
plog.Errorf("error destroying lock %s when purging file (%v)", l.Name(), err)
errC <- err
return
}
plog.Infof("purged file %s successfully", f)
newfnames = newfnames[1:]
}
select {
case <-time.After(interval):
case <-stop:
return
}
}
}()
return errC
}

View File

@ -1,132 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"fmt"
"io/ioutil"
"os"
"path"
"reflect"
"testing"
"time"
)
func TestPurgeFile(t *testing.T) {
dir, err := ioutil.TempDir("", "purgefile")
if err != nil {
t.Fatal(err)
}
defer os.RemoveAll(dir)
for i := 0; i < 5; i++ {
_, err = os.Create(path.Join(dir, fmt.Sprintf("%d.test", i)))
if err != nil {
t.Fatal(err)
}
}
stop := make(chan struct{})
errch := PurgeFile(dir, "test", 3, time.Millisecond, stop)
for i := 5; i < 10; i++ {
_, err = os.Create(path.Join(dir, fmt.Sprintf("%d.test", i)))
if err != nil {
t.Fatal(err)
}
time.Sleep(10 * time.Millisecond)
}
fnames, err := ReadDir(dir)
if err != nil {
t.Fatal(err)
}
wnames := []string{"7.test", "8.test", "9.test"}
if !reflect.DeepEqual(fnames, wnames) {
t.Errorf("filenames = %v, want %v", fnames, wnames)
}
select {
case err := <-errch:
t.Errorf("unexpected purge error %v", err)
case <-time.After(time.Millisecond):
}
close(stop)
}
func TestPurgeFileHoldingLock(t *testing.T) {
dir, err := ioutil.TempDir("", "purgefile")
if err != nil {
t.Fatal(err)
}
defer os.RemoveAll(dir)
for i := 0; i < 10; i++ {
_, err = os.Create(path.Join(dir, fmt.Sprintf("%d.test", i)))
if err != nil {
t.Fatal(err)
}
}
// create a purge barrier at 5
l, err := NewLock(path.Join(dir, fmt.Sprintf("%d.test", 5)))
err = l.Lock()
if err != nil {
t.Fatal(err)
}
stop := make(chan struct{})
errch := PurgeFile(dir, "test", 3, time.Millisecond, stop)
time.Sleep(20 * time.Millisecond)
fnames, err := ReadDir(dir)
if err != nil {
t.Fatal(err)
}
wnames := []string{"5.test", "6.test", "7.test", "8.test", "9.test"}
if !reflect.DeepEqual(fnames, wnames) {
t.Errorf("filenames = %v, want %v", fnames, wnames)
}
select {
case err := <-errch:
t.Errorf("unexpected purge error %v", err)
case <-time.After(time.Millisecond):
}
// remove the purge barrier
err = l.Unlock()
if err != nil {
t.Fatal(err)
}
err = l.Destroy()
if err != nil {
t.Fatal(err)
}
time.Sleep(20 * time.Millisecond)
fnames, err = ReadDir(dir)
if err != nil {
t.Fatal(err)
}
wnames = []string{"7.test", "8.test", "9.test"}
if !reflect.DeepEqual(fnames, wnames) {
t.Errorf("filenames = %v, want %v", fnames, wnames)
}
select {
case err := <-errch:
t.Errorf("unexpected purge error %v", err)
case <-time.After(time.Millisecond):
}
close(stop)
}

View File

@ -1,49 +0,0 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"])
load(
"@io_bazel_rules_go//go:def.bzl",
"go_library",
)
go_library(
name = "go_default_library",
srcs = [
"decoder.go",
"doc.go",
"encoder.go",
"metrics.go",
"multi_readcloser.go",
"repair.go",
"util.go",
"wal.go",
],
importpath = "k8s.io/kubernetes/third_party/forked/etcd221/wal",
deps = [
"//third_party/forked/etcd221/pkg/fileutil:go_default_library",
"//vendor/github.com/coreos/etcd/pkg/crc:go_default_library",
"//vendor/github.com/coreos/etcd/pkg/pbutil:go_default_library",
"//vendor/github.com/coreos/etcd/raft:go_default_library",
"//vendor/github.com/coreos/etcd/raft/raftpb:go_default_library",
"//vendor/github.com/coreos/etcd/wal/walpb:go_default_library",
"//vendor/github.com/coreos/pkg/capnslog:go_default_library",
"//vendor/github.com/prometheus/client_golang/prometheus:go_default_library",
],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [
":package-srcs",
"//third_party/forked/etcd221/wal/walpb:all-srcs",
],
tags = ["automanaged"],
)

View File

@ -1,103 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"bufio"
"encoding/binary"
"hash"
"io"
"sync"
"github.com/coreos/etcd/pkg/crc"
"github.com/coreos/etcd/pkg/pbutil"
"github.com/coreos/etcd/raft/raftpb"
"github.com/coreos/etcd/wal/walpb"
)
type decoder struct {
mu sync.Mutex
br *bufio.Reader
c io.Closer
crc hash.Hash32
}
func newDecoder(rc io.ReadCloser) *decoder {
return &decoder{
br: bufio.NewReader(rc),
c: rc,
crc: crc.New(0, crcTable),
}
}
func (d *decoder) decode(rec *walpb.Record) error {
d.mu.Lock()
defer d.mu.Unlock()
rec.Reset()
l, err := readInt64(d.br)
if err != nil {
return err
}
data := make([]byte, l)
if _, err = io.ReadFull(d.br, data); err != nil {
// ReadFull returns io.EOF only if no bytes were read
// the decoder should treat this as an ErrUnexpectedEOF instead.
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return err
}
if err := rec.Unmarshal(data); err != nil {
return err
}
// skip crc checking if the record type is crcType
if rec.Type == crcType {
return nil
}
d.crc.Write(rec.Data)
return rec.Validate(d.crc.Sum32())
}
func (d *decoder) updateCRC(prevCrc uint32) {
d.crc = crc.New(prevCrc, crcTable)
}
func (d *decoder) lastCRC() uint32 {
return d.crc.Sum32()
}
func (d *decoder) close() error {
return d.c.Close()
}
func mustUnmarshalEntry(d []byte) raftpb.Entry {
var e raftpb.Entry
pbutil.MustUnmarshal(&e, d)
return e
}
func mustUnmarshalState(d []byte) raftpb.HardState {
var s raftpb.HardState
pbutil.MustUnmarshal(&s, d)
return s
}
func readInt64(r io.Reader) (int64, error) {
var n int64
err := binary.Read(r, binary.LittleEndian, &n)
return n, err
}

View File

@ -1,68 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Package wal provides an implementation of a write ahead log that is used by
etcd.
A WAL is created at a particular directory and is made up of a number of
segmented WAL files. Inside of each file the raft state and entries are appended
to it with the Save method:
metadata := []byte{}
w, err := wal.Create("/var/lib/etcd", metadata)
...
err := w.Save(s, ents)
After saving an raft snapshot to disk, SaveSnapshot method should be called to
record it. So WAL can match with the saved snapshot when restarting.
err := w.SaveSnapshot(walpb.Snapshot{Index: 10, Term: 2})
When a user has finished using a WAL it must be closed:
w.Close()
WAL files are placed inside of the directory in the following format:
$seq-$index.wal
The first WAL file to be created will be 0000000000000000-0000000000000000.wal
indicating an initial sequence of 0 and an initial raft index of 0. The first
entry written to WAL MUST have raft index 0.
WAL will cuts its current wal files if its size exceeds 8MB. This will increment an internal
sequence number and cause a new file to be created. If the last raft index saved
was 0x20 and this is the first time cut has been called on this WAL then the sequence will
increment from 0x0 to 0x1. The new file will be: 0000000000000001-0000000000000021.wal.
If a second cut issues 0x10 entries with incremental index later then the file will be called:
0000000000000002-0000000000000031.wal.
At a later time a WAL can be opened at a particular snapshot. If there is no
snapshot, an empty snapshot should be passed in.
w, err := wal.Open("/var/lib/etcd", walpb.Snapshot{Index: 10, Term: 2})
...
The snapshot must have been written to the WAL.
Additional items cannot be Saved to this WAL until all of the items from the given
snapshot to the end of the WAL are read first:
metadata, state, ents, err := w.ReadAll()
This will give you the metadata, the last raft.State and the slice of
raft.Entry items in the log.
*/
package wal

View File

@ -1,89 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"bufio"
"encoding/binary"
"hash"
"io"
"sync"
"github.com/coreos/etcd/pkg/crc"
"github.com/coreos/etcd/wal/walpb"
)
type encoder struct {
mu sync.Mutex
bw *bufio.Writer
crc hash.Hash32
buf []byte
uint64buf []byte
}
func newEncoder(w io.Writer, prevCrc uint32) *encoder {
return &encoder{
bw: bufio.NewWriter(w),
crc: crc.New(prevCrc, crcTable),
// 1MB buffer
buf: make([]byte, 1024*1024),
uint64buf: make([]byte, 8),
}
}
func (e *encoder) encode(rec *walpb.Record) error {
e.mu.Lock()
defer e.mu.Unlock()
e.crc.Write(rec.Data)
rec.Crc = e.crc.Sum32()
var (
data []byte
err error
n int
)
if rec.Size() > len(e.buf) {
data, err = rec.Marshal()
if err != nil {
return err
}
} else {
n, err = rec.MarshalTo(e.buf)
if err != nil {
return err
}
data = e.buf[:n]
}
if err := writeInt64(e.bw, int64(len(data)), e.uint64buf); err != nil {
return err
}
_, err = e.bw.Write(data)
return err
}
func (e *encoder) flush() error {
e.mu.Lock()
defer e.mu.Unlock()
return e.bw.Flush()
}
func writeInt64(w io.Writer, n int64, buf []byte) error {
// http://golang.org/src/encoding/binary/binary.go
binary.LittleEndian.PutUint64(buf, uint64(n))
_, err := w.Write(buf)
return err
}

View File

@ -1,37 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import "github.com/prometheus/client_golang/prometheus"
var (
syncDurations = prometheus.NewSummary(prometheus.SummaryOpts{
Namespace: "etcd",
Subsystem: "wal",
Name: "fsync_durations_microseconds",
Help: "The latency distributions of fsync called by wal.",
})
lastIndexSaved = prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: "etcd",
Subsystem: "wal",
Name: "last_index_saved",
Help: "The index of the last entry saved by wal.",
})
)
func init() {
prometheus.MustRegister(syncDurations)
prometheus.MustRegister(lastIndexSaved)
}

View File

@ -1,45 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import "io"
type multiReadCloser struct {
closers []io.Closer
reader io.Reader
}
func (mc *multiReadCloser) Close() error {
var err error
for i := range mc.closers {
err = mc.closers[i].Close()
}
return err
}
func (mc *multiReadCloser) Read(p []byte) (int, error) {
return mc.reader.Read(p)
}
func MultiReadCloser(readClosers ...io.ReadCloser) io.ReadCloser {
cs := make([]io.Closer, len(readClosers))
rs := make([]io.Reader, len(readClosers))
for i := range readClosers {
cs[i] = readClosers[i]
rs[i] = readClosers[i]
}
r := io.MultiReader(rs...)
return &multiReadCloser{cs, r}
}

View File

@ -1,107 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"io"
"os"
"path"
"k8s.io/kubernetes/third_party/forked/etcd221/pkg/fileutil"
"github.com/coreos/etcd/wal/walpb"
)
// Repair tries to repair the unexpectedEOF error in the
// last wal file by truncating.
func Repair(dirpath string) bool {
f, err := openLast(dirpath)
if err != nil {
return false
}
defer f.Close()
n := 0
rec := &walpb.Record{}
decoder := newDecoder(f)
defer decoder.close()
for {
err := decoder.decode(rec)
switch err {
case nil:
n += 8 + rec.Size()
// update crc of the decoder when necessary
switch rec.Type {
case crcType:
crc := decoder.crc.Sum32()
// current crc of decoder must match the crc of the record.
// do no need to match 0 crc, since the decoder is a new one at this case.
if crc != 0 && rec.Validate(crc) != nil {
return false
}
decoder.updateCRC(rec.Crc)
}
continue
case io.EOF:
return true
case io.ErrUnexpectedEOF:
plog.Noticef("repairing %v", f.Name())
bf, bferr := os.Create(f.Name() + ".broken")
if bferr != nil {
plog.Errorf("could not repair %v, failed to create backup file", f.Name())
return false
}
defer bf.Close()
if _, err = f.Seek(0, os.SEEK_SET); err != nil {
plog.Errorf("could not repair %v, failed to read file", f.Name())
return false
}
if _, err = io.Copy(bf, f); err != nil {
plog.Errorf("could not repair %v, failed to copy file", f.Name())
return false
}
if err = f.Truncate(int64(n)); err != nil {
plog.Errorf("could not repair %v, failed to truncate file", f.Name())
return false
}
if err = f.Sync(); err != nil {
plog.Errorf("could not repair %v, failed to sync file", f.Name())
return false
}
return true
default:
plog.Errorf("could not repair error (%v)", err)
return false
}
}
}
// openLast opens the last wal file for read and write.
func openLast(dirpath string) (*os.File, error) {
names, err := fileutil.ReadDir(dirpath)
if err != nil {
return nil, err
}
names = checkWalNames(names)
if len(names) == 0 {
return nil, ErrFileNotFound
}
last := path.Join(dirpath, names[len(names)-1])
return os.OpenFile(last, os.O_RDWR, 0)
}

View File

@ -1,93 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"errors"
"fmt"
"strings"
"k8s.io/kubernetes/third_party/forked/etcd221/pkg/fileutil"
)
var (
badWalName = errors.New("bad wal name")
)
func Exist(dirpath string) bool {
names, err := fileutil.ReadDir(dirpath)
if err != nil {
return false
}
return len(names) != 0
}
// searchIndex returns the last array index of names whose raft index section is
// equal to or smaller than the given index.
// The given names MUST be sorted.
func searchIndex(names []string, index uint64) (int, bool) {
for i := len(names) - 1; i >= 0; i-- {
name := names[i]
_, curIndex, err := parseWalName(name)
if err != nil {
plog.Panicf("parse correct name should never fail: %v", err)
}
if index >= curIndex {
return i, true
}
}
return -1, false
}
// names should have been sorted based on sequence number.
// isValidSeq checks whether seq increases continuously.
func isValidSeq(names []string) bool {
var lastSeq uint64
for _, name := range names {
curSeq, _, err := parseWalName(name)
if err != nil {
plog.Panicf("parse correct name should never fail: %v", err)
}
if lastSeq != 0 && lastSeq != curSeq-1 {
return false
}
lastSeq = curSeq
}
return true
}
func checkWalNames(names []string) []string {
wnames := make([]string, 0)
for _, name := range names {
if _, _, err := parseWalName(name); err != nil {
plog.Warningf("ignored file %v in wal", name)
continue
}
wnames = append(wnames, name)
}
return wnames
}
func parseWalName(str string) (seq, index uint64, err error) {
if !strings.HasSuffix(str, ".wal") {
return 0, 0, badWalName
}
_, err = fmt.Sscanf(str, "%016x-%016x.wal", &seq, &index)
return seq, index, err
}
func walName(seq, index uint64) string {
return fmt.Sprintf("%016x-%016x.wal", seq, index)
}

View File

@ -1,548 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"errors"
"fmt"
"hash/crc32"
"io"
"os"
"path"
"reflect"
"sync"
"time"
"k8s.io/kubernetes/third_party/forked/etcd221/pkg/fileutil"
"github.com/coreos/etcd/pkg/pbutil"
"github.com/coreos/etcd/raft"
"github.com/coreos/etcd/raft/raftpb"
"github.com/coreos/etcd/wal/walpb"
"github.com/coreos/pkg/capnslog"
)
const (
metadataType int64 = iota + 1
entryType
stateType
crcType
snapshotType
// the owner can make/remove files inside the directory
privateDirMode = 0700
// the expected size of each wal segment file.
// the actual size might be bigger than it.
segmentSizeBytes = 64 * 1000 * 1000 // 64MB
)
var (
plog = capnslog.NewPackageLogger("github.com/coreos/etcd", "wal")
ErrMetadataConflict = errors.New("wal: conflicting metadata found")
ErrFileNotFound = errors.New("wal: file not found")
ErrCRCMismatch = errors.New("wal: crc mismatch")
ErrSnapshotMismatch = errors.New("wal: snapshot mismatch")
ErrSnapshotNotFound = errors.New("wal: snapshot not found")
crcTable = crc32.MakeTable(crc32.Castagnoli)
)
// WAL is a logical repersentation of the stable storage.
// WAL is either in read mode or append mode but not both.
// A newly created WAL is in append mode, and ready for appending records.
// A just opened WAL is in read mode, and ready for reading records.
// The WAL will be ready for appending after reading out all the previous records.
type WAL struct {
dir string // the living directory of the underlay files
metadata []byte // metadata recorded at the head of each WAL
state raftpb.HardState // hardstate recorded at the head of WAL
start walpb.Snapshot // snapshot to start reading
decoder *decoder // decoder to decode records
mu sync.Mutex
f *os.File // underlay file opened for appending, sync
seq uint64 // sequence of the wal file currently used for writes
enti uint64 // index of the last entry saved to the wal
encoder *encoder // encoder to encode records
locks []fileutil.Lock // the file locks the WAL is holding (the name is increasing)
}
// Create creates a WAL ready for appending records. The given metadata is
// recorded at the head of each WAL file, and can be retrieved with ReadAll.
func Create(dirpath string, metadata []byte) (*WAL, error) {
if Exist(dirpath) {
return nil, os.ErrExist
}
if err := os.MkdirAll(dirpath, privateDirMode); err != nil {
return nil, err
}
p := path.Join(dirpath, walName(0, 0))
f, err := os.OpenFile(p, os.O_WRONLY|os.O_APPEND|os.O_CREATE, 0600)
if err != nil {
return nil, err
}
l, err := fileutil.NewLock(f.Name())
if err != nil {
return nil, err
}
err = l.Lock()
if err != nil {
return nil, err
}
w := &WAL{
dir: dirpath,
metadata: metadata,
seq: 0,
f: f,
encoder: newEncoder(f, 0),
}
w.locks = append(w.locks, l)
if err := w.saveCrc(0); err != nil {
return nil, err
}
if err := w.encoder.encode(&walpb.Record{Type: metadataType, Data: metadata}); err != nil {
return nil, err
}
if err = w.SaveSnapshot(walpb.Snapshot{}); err != nil {
return nil, err
}
return w, nil
}
// Open opens the WAL at the given snap.
// The snap SHOULD have been previously saved to the WAL, or the following
// ReadAll will fail.
// The returned WAL is ready to read and the first record will be the one after
// the given snap. The WAL cannot be appended to before reading out all of its
// previous records.
func Open(dirpath string, snap walpb.Snapshot) (*WAL, error) {
return openAtIndex(dirpath, snap, true)
}
// OpenForRead only opens the wal files for read.
// Write on a read only wal panics.
func OpenForRead(dirpath string, snap walpb.Snapshot) (*WAL, error) {
return openAtIndex(dirpath, snap, false)
}
func openAtIndex(dirpath string, snap walpb.Snapshot, write bool) (*WAL, error) {
names, err := fileutil.ReadDir(dirpath)
if err != nil {
return nil, err
}
names = checkWalNames(names)
if len(names) == 0 {
return nil, ErrFileNotFound
}
nameIndex, ok := searchIndex(names, snap.Index)
if !ok || !isValidSeq(names[nameIndex:]) {
return nil, ErrFileNotFound
}
// open the wal files for reading
rcs := make([]io.ReadCloser, 0)
ls := make([]fileutil.Lock, 0)
for _, name := range names[nameIndex:] {
f, err := os.Open(path.Join(dirpath, name))
if err != nil {
return nil, err
}
l, err := fileutil.NewLock(f.Name())
if err != nil {
return nil, err
}
err = l.TryLock()
if err != nil {
if write {
return nil, err
}
}
rcs = append(rcs, f)
ls = append(ls, l)
}
rc := MultiReadCloser(rcs...)
// create a WAL ready for reading
w := &WAL{
dir: dirpath,
start: snap,
decoder: newDecoder(rc),
locks: ls,
}
if write {
// open the lastest wal file for appending
seq, _, err := parseWalName(names[len(names)-1])
if err != nil {
rc.Close()
return nil, err
}
last := path.Join(dirpath, names[len(names)-1])
f, err := os.OpenFile(last, os.O_WRONLY|os.O_APPEND, 0)
if err != nil {
rc.Close()
return nil, err
}
err = fileutil.Preallocate(f, segmentSizeBytes)
if err != nil {
rc.Close()
plog.Errorf("failed to allocate space when creating new wal file (%v)", err)
return nil, err
}
w.f = f
w.seq = seq
}
return w, nil
}
// ReadAll reads out records of the current WAL.
// If opened in write mode, it must read out all records until EOF. Or an error
// will be returned.
// If opened in read mode, it will try to read all records if possible.
// If it cannot read out the expected snap, it will return ErrSnapshotNotFound.
// If loaded snap doesn't match with the expected one, it will return
// all the records and error ErrSnapshotMismatch.
// TODO: detect not-last-snap error.
// TODO: maybe loose the checking of match.
// After ReadAll, the WAL will be ready for appending new records.
func (w *WAL) ReadAll() (metadata []byte, state raftpb.HardState, ents []raftpb.Entry, err error) {
w.mu.Lock()
defer w.mu.Unlock()
rec := &walpb.Record{}
decoder := w.decoder
var match bool
for err = decoder.decode(rec); err == nil; err = decoder.decode(rec) {
switch rec.Type {
case entryType:
e := mustUnmarshalEntry(rec.Data)
if e.Index > w.start.Index {
ents = append(ents[:e.Index-w.start.Index-1], e)
}
w.enti = e.Index
case stateType:
state = mustUnmarshalState(rec.Data)
case metadataType:
if metadata != nil && !reflect.DeepEqual(metadata, rec.Data) {
state.Reset()
return nil, state, nil, ErrMetadataConflict
}
metadata = rec.Data
case crcType:
crc := decoder.crc.Sum32()
// current crc of decoder must match the crc of the record.
// do no need to match 0 crc, since the decoder is a new one at this case.
if crc != 0 && rec.Validate(crc) != nil {
state.Reset()
return nil, state, nil, ErrCRCMismatch
}
decoder.updateCRC(rec.Crc)
case snapshotType:
var snap walpb.Snapshot
pbutil.MustUnmarshal(&snap, rec.Data)
if snap.Index == w.start.Index {
if snap.Term != w.start.Term {
state.Reset()
return nil, state, nil, ErrSnapshotMismatch
}
match = true
}
default:
state.Reset()
return nil, state, nil, fmt.Errorf("unexpected block type %d", rec.Type)
}
}
switch w.f {
case nil:
// We do not have to read out all entries in read mode.
// The last record maybe a partial written one, so
// ErrunexpectedEOF might be returned.
if err != io.EOF && err != io.ErrUnexpectedEOF {
state.Reset()
return nil, state, nil, err
}
default:
// We must read all of the entries if WAL is opened in write mode.
if err != io.EOF {
state.Reset()
return nil, state, nil, err
}
}
err = nil
if !match {
err = ErrSnapshotNotFound
}
// close decoder, disable reading
w.decoder.close()
w.start = walpb.Snapshot{}
w.metadata = metadata
if w.f != nil {
// create encoder (chain crc with the decoder), enable appending
w.encoder = newEncoder(w.f, w.decoder.lastCRC())
w.decoder = nil
lastIndexSaved.Set(float64(w.enti))
}
return metadata, state, ents, err
}
// cut closes current file written and creates a new one ready to append.
// cut first creates a temp wal file and writes necessary headers into it.
// Then cut atomtically rename temp wal file to a wal file.
func (w *WAL) cut() error {
// close old wal file
if err := w.sync(); err != nil {
return err
}
if err := w.f.Close(); err != nil {
return err
}
fpath := path.Join(w.dir, walName(w.seq+1, w.enti+1))
ftpath := fpath + ".tmp"
// create a temp wal file with name sequence + 1, or tuncate the existing one
ft, err := os.OpenFile(ftpath, os.O_WRONLY|os.O_APPEND|os.O_CREATE|os.O_TRUNC, 0600)
if err != nil {
return err
}
// update writer and save the previous crc
w.f = ft
prevCrc := w.encoder.crc.Sum32()
w.encoder = newEncoder(w.f, prevCrc)
if err := w.saveCrc(prevCrc); err != nil {
return err
}
if err := w.encoder.encode(&walpb.Record{Type: metadataType, Data: w.metadata}); err != nil {
return err
}
if err := w.saveState(&w.state); err != nil {
return err
}
// close temp wal file
if err := w.sync(); err != nil {
return err
}
if err := w.f.Close(); err != nil {
return err
}
// atomically move temp wal file to wal file
if err := os.Rename(ftpath, fpath); err != nil {
return err
}
// open the wal file and update writer again
f, err := os.OpenFile(fpath, os.O_WRONLY|os.O_APPEND, 0600)
if err != nil {
return err
}
err = fileutil.Preallocate(f, segmentSizeBytes)
if err != nil {
plog.Errorf("failed to allocate space when creating new wal file (%v)", err)
return err
}
w.f = f
prevCrc = w.encoder.crc.Sum32()
w.encoder = newEncoder(w.f, prevCrc)
// lock the new wal file
l, err := fileutil.NewLock(f.Name())
if err != nil {
return err
}
err = l.Lock()
if err != nil {
return err
}
w.locks = append(w.locks, l)
// increase the wal seq
w.seq++
plog.Infof("segmented wal file %v is created", fpath)
return nil
}
func (w *WAL) sync() error {
if w.encoder != nil {
if err := w.encoder.flush(); err != nil {
return err
}
}
start := time.Now()
err := w.f.Sync()
syncDurations.Observe(float64(time.Since(start).Nanoseconds() / int64(time.Microsecond)))
return err
}
// ReleaseLockTo releases the locks, which has smaller index than the given index
// except the largest one among them.
// For example, if WAL is holding lock 1,2,3,4,5,6, ReleaseLockTo(4) will release
// lock 1,2 but keep 3. ReleaseLockTo(5) will release 1,2,3 but keep 4.
func (w *WAL) ReleaseLockTo(index uint64) error {
w.mu.Lock()
defer w.mu.Unlock()
var smaller int
found := false
for i, l := range w.locks {
_, lockIndex, err := parseWalName(path.Base(l.Name()))
if err != nil {
return err
}
if lockIndex >= index {
smaller = i - 1
found = true
break
}
}
// if no lock index is greater than the release index, we can
// release lock upto the last one(excluding).
if !found && len(w.locks) != 0 {
smaller = len(w.locks) - 1
}
if smaller <= 0 {
return nil
}
for i := 0; i < smaller; i++ {
w.locks[i].Unlock()
w.locks[i].Destroy()
}
w.locks = w.locks[smaller:]
return nil
}
func (w *WAL) Close() error {
w.mu.Lock()
defer w.mu.Unlock()
if w.f != nil {
if err := w.sync(); err != nil {
return err
}
if err := w.f.Close(); err != nil {
return err
}
}
for _, l := range w.locks {
err := l.Unlock()
if err != nil {
plog.Errorf("failed to unlock during closing wal: %s", err)
}
err = l.Destroy()
if err != nil {
plog.Errorf("failed to destroy lock during closing wal: %s", err)
}
}
return nil
}
func (w *WAL) saveEntry(e *raftpb.Entry) error {
// TODO: add MustMarshalTo to reduce one allocation.
b := pbutil.MustMarshal(e)
rec := &walpb.Record{Type: entryType, Data: b}
if err := w.encoder.encode(rec); err != nil {
return err
}
w.enti = e.Index
lastIndexSaved.Set(float64(w.enti))
return nil
}
func (w *WAL) saveState(s *raftpb.HardState) error {
if raft.IsEmptyHardState(*s) {
return nil
}
w.state = *s
b := pbutil.MustMarshal(s)
rec := &walpb.Record{Type: stateType, Data: b}
return w.encoder.encode(rec)
}
func (w *WAL) Save(st raftpb.HardState, ents []raftpb.Entry) error {
w.mu.Lock()
defer w.mu.Unlock()
// short cut, do not call sync
if raft.IsEmptyHardState(st) && len(ents) == 0 {
return nil
}
// TODO(xiangli): no more reference operator
for i := range ents {
if err := w.saveEntry(&ents[i]); err != nil {
return err
}
}
if err := w.saveState(&st); err != nil {
return err
}
fstat, err := w.f.Stat()
if err != nil {
return err
}
if fstat.Size() < segmentSizeBytes {
return w.sync()
}
// TODO: add a test for this code path when refactoring the tests
return w.cut()
}
func (w *WAL) SaveSnapshot(e walpb.Snapshot) error {
w.mu.Lock()
defer w.mu.Unlock()
b := pbutil.MustMarshal(&e)
rec := &walpb.Record{Type: snapshotType, Data: b}
if err := w.encoder.encode(rec); err != nil {
return err
}
// update enti only when snapshot is ahead of last index
if w.enti < e.Index {
w.enti = e.Index
}
lastIndexSaved.Set(float64(w.enti))
return w.sync()
}
func (w *WAL) saveCrc(prevCrc uint32) error {
return w.encoder.encode(&walpb.Record{Type: crcType, Crc: prevCrc})
}

View File

@ -1,37 +0,0 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"])
load(
"@io_bazel_rules_go//go:def.bzl",
"go_library",
)
go_library(
name = "go_default_library",
srcs = [
"record.go",
"record.pb.go",
],
importpath = "k8s.io/kubernetes/third_party/forked/etcd221/wal/walpb",
deps = ["//vendor/github.com/gogo/protobuf/proto:go_default_library"],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [":package-srcs"],
tags = ["automanaged"],
)
filegroup(
name = "go_default_library_protos",
srcs = ["record.proto"],
visibility = ["//visibility:public"],
)

View File

@ -1,29 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package walpb
import "errors"
var (
ErrCRCMismatch = errors.New("walpb: crc mismatch")
)
func (rec *Record) Validate(crc uint32) error {
if rec.Crc == crc {
return nil
}
rec.Reset()
return ErrCRCMismatch
}

View File

@ -1,447 +0,0 @@
// Code generated by protoc-gen-gogo.
// source: record.proto
// DO NOT EDIT!
/*
Package walpb is a generated protocol buffer package.
It is generated from these files:
record.proto
It has these top-level messages:
Record
Snapshot
*/
package walpb
import proto "github.com/gogo/protobuf/proto"
import math "math"
// discarding unused import gogoproto "github.com/coreos/etcd/Godeps/_workspace/src/gogoproto"
import io "io"
import fmt "fmt"
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = math.Inf
type Record struct {
Type int64 `protobuf:"varint,1,opt,name=type" json:"type"`
Crc uint32 `protobuf:"varint,2,opt,name=crc" json:"crc"`
Data []byte `protobuf:"bytes,3,opt,name=data" json:"data,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Record) Reset() { *m = Record{} }
func (m *Record) String() string { return proto.CompactTextString(m) }
func (*Record) ProtoMessage() {}
type Snapshot struct {
Index uint64 `protobuf:"varint,1,opt,name=index" json:"index"`
Term uint64 `protobuf:"varint,2,opt,name=term" json:"term"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Snapshot) Reset() { *m = Snapshot{} }
func (m *Snapshot) String() string { return proto.CompactTextString(m) }
func (*Snapshot) ProtoMessage() {}
func (m *Record) Marshal() (data []byte, err error) {
size := m.Size()
data = make([]byte, size)
n, err := m.MarshalTo(data)
if err != nil {
return nil, err
}
return data[:n], nil
}
func (m *Record) MarshalTo(data []byte) (int, error) {
var i int
_ = i
var l int
_ = l
data[i] = 0x8
i++
i = encodeVarintRecord(data, i, uint64(m.Type))
data[i] = 0x10
i++
i = encodeVarintRecord(data, i, uint64(m.Crc))
if m.Data != nil {
data[i] = 0x1a
i++
i = encodeVarintRecord(data, i, uint64(len(m.Data)))
i += copy(data[i:], m.Data)
}
if m.XXX_unrecognized != nil {
i += copy(data[i:], m.XXX_unrecognized)
}
return i, nil
}
func (m *Snapshot) Marshal() (data []byte, err error) {
size := m.Size()
data = make([]byte, size)
n, err := m.MarshalTo(data)
if err != nil {
return nil, err
}
return data[:n], nil
}
func (m *Snapshot) MarshalTo(data []byte) (int, error) {
var i int
_ = i
var l int
_ = l
data[i] = 0x8
i++
i = encodeVarintRecord(data, i, uint64(m.Index))
data[i] = 0x10
i++
i = encodeVarintRecord(data, i, uint64(m.Term))
if m.XXX_unrecognized != nil {
i += copy(data[i:], m.XXX_unrecognized)
}
return i, nil
}
func encodeFixed64Record(data []byte, offset int, v uint64) int {
data[offset] = uint8(v)
data[offset+1] = uint8(v >> 8)
data[offset+2] = uint8(v >> 16)
data[offset+3] = uint8(v >> 24)
data[offset+4] = uint8(v >> 32)
data[offset+5] = uint8(v >> 40)
data[offset+6] = uint8(v >> 48)
data[offset+7] = uint8(v >> 56)
return offset + 8
}
func encodeFixed32Record(data []byte, offset int, v uint32) int {
data[offset] = uint8(v)
data[offset+1] = uint8(v >> 8)
data[offset+2] = uint8(v >> 16)
data[offset+3] = uint8(v >> 24)
return offset + 4
}
func encodeVarintRecord(data []byte, offset int, v uint64) int {
for v >= 1<<7 {
data[offset] = uint8(v&0x7f | 0x80)
v >>= 7
offset++
}
data[offset] = uint8(v)
return offset + 1
}
func (m *Record) Size() (n int) {
var l int
_ = l
n += 1 + sovRecord(uint64(m.Type))
n += 1 + sovRecord(uint64(m.Crc))
if m.Data != nil {
l = len(m.Data)
n += 1 + l + sovRecord(uint64(l))
}
if m.XXX_unrecognized != nil {
n += len(m.XXX_unrecognized)
}
return n
}
func (m *Snapshot) Size() (n int) {
var l int
_ = l
n += 1 + sovRecord(uint64(m.Index))
n += 1 + sovRecord(uint64(m.Term))
if m.XXX_unrecognized != nil {
n += len(m.XXX_unrecognized)
}
return n
}
func sovRecord(x uint64) (n int) {
for {
n++
x >>= 7
if x == 0 {
break
}
}
return n
}
func sozRecord(x uint64) (n int) {
return sovRecord(uint64((x << 1) ^ uint64((int64(x) >> 63))))
}
func (m *Record) Unmarshal(data []byte) error {
l := len(data)
iNdEx := 0
for iNdEx < l {
var wire uint64
for shift := uint(0); ; shift += 7 {
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
switch fieldNum {
case 1:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Type", wireType)
}
m.Type = 0
for shift := uint(0); ; shift += 7 {
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
m.Type |= (int64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
case 2:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Crc", wireType)
}
m.Crc = 0
for shift := uint(0); ; shift += 7 {
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
m.Crc |= (uint32(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
case 3:
if wireType != 2 {
return fmt.Errorf("proto: wrong wireType = %d for field Data", wireType)
}
var byteLen int
for shift := uint(0); ; shift += 7 {
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
byteLen |= (int(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
if byteLen < 0 {
return ErrInvalidLengthRecord
}
postIndex := iNdEx + byteLen
if postIndex > l {
return io.ErrUnexpectedEOF
}
m.Data = append([]byte{}, data[iNdEx:postIndex]...)
iNdEx = postIndex
default:
var sizeOfWire int
for {
sizeOfWire++
wire >>= 7
if wire == 0 {
break
}
}
iNdEx -= sizeOfWire
skippy, err := skipRecord(data[iNdEx:])
if err != nil {
return err
}
if skippy < 0 {
return ErrInvalidLengthRecord
}
if (iNdEx + skippy) > l {
return io.ErrUnexpectedEOF
}
m.XXX_unrecognized = append(m.XXX_unrecognized, data[iNdEx:iNdEx+skippy]...)
iNdEx += skippy
}
}
return nil
}
func (m *Snapshot) Unmarshal(data []byte) error {
l := len(data)
iNdEx := 0
for iNdEx < l {
var wire uint64
for shift := uint(0); ; shift += 7 {
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
switch fieldNum {
case 1:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Index", wireType)
}
m.Index = 0
for shift := uint(0); ; shift += 7 {
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
m.Index |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
case 2:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Term", wireType)
}
m.Term = 0
for shift := uint(0); ; shift += 7 {
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
m.Term |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
default:
var sizeOfWire int
for {
sizeOfWire++
wire >>= 7
if wire == 0 {
break
}
}
iNdEx -= sizeOfWire
skippy, err := skipRecord(data[iNdEx:])
if err != nil {
return err
}
if skippy < 0 {
return ErrInvalidLengthRecord
}
if (iNdEx + skippy) > l {
return io.ErrUnexpectedEOF
}
m.XXX_unrecognized = append(m.XXX_unrecognized, data[iNdEx:iNdEx+skippy]...)
iNdEx += skippy
}
}
return nil
}
func skipRecord(data []byte) (n int, err error) {
l := len(data)
iNdEx := 0
for iNdEx < l {
var wire uint64
for shift := uint(0); ; shift += 7 {
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
wireType := int(wire & 0x7)
switch wireType {
case 0:
for {
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
iNdEx++
if data[iNdEx-1] < 0x80 {
break
}
}
return iNdEx, nil
case 1:
iNdEx += 8
return iNdEx, nil
case 2:
var length int
for shift := uint(0); ; shift += 7 {
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
length |= (int(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
iNdEx += length
if length < 0 {
return 0, ErrInvalidLengthRecord
}
return iNdEx, nil
case 3:
for {
var innerWire uint64
var start int = iNdEx
for shift := uint(0); ; shift += 7 {
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
innerWire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
innerWireType := int(innerWire & 0x7)
if innerWireType == 4 {
break
}
next, err := skipRecord(data[start:])
if err != nil {
return 0, err
}
iNdEx = start + next
}
return iNdEx, nil
case 4:
return iNdEx, nil
case 5:
iNdEx += 4
return iNdEx, nil
default:
return 0, fmt.Errorf("proto: illegal wireType %d", wireType)
}
}
panic("unreachable")
}
var (
ErrInvalidLengthRecord = fmt.Errorf("proto: negative length found during unmarshaling")
)

View File

@ -1,20 +0,0 @@
syntax = "proto2";
package walpb;
import "gogoproto/gogo.proto";
option (gogoproto.marshaler_all) = true;
option (gogoproto.sizer_all) = true;
option (gogoproto.unmarshaler_all) = true;
option (gogoproto.goproto_getters_all) = false;
message Record {
optional int64 type = 1 [(gogoproto.nullable) = false];
optional uint32 crc = 2 [(gogoproto.nullable) = false];
optional bytes data = 3;
}
message Snapshot {
optional uint64 index = 1 [(gogoproto.nullable) = false];
optional uint64 term = 2 [(gogoproto.nullable) = false];
}

View File

@ -1 +0,0 @@
Forked from etcd 2.3 release branch to support migration from 3.0 WAL to 2.3 WAL format

View File

@ -1,103 +0,0 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"])
load(
"@io_bazel_rules_go//go:def.bzl",
"go_library",
"go_test",
)
go_test(
name = "go_default_test",
srcs = [
"fileutil_test.go",
"lock_test.go",
"preallocate_test.go",
"purge_test.go",
],
embed = [":go_default_library"],
)
go_library(
name = "go_default_library",
srcs = [
"fileutil.go",
"lock.go",
"purge.go",
] + select({
"@io_bazel_rules_go//go/platform:android": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:darwin": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:dragonfly": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:freebsd": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:linux": [
"lock_unix.go",
"preallocate.go",
"sync_linux.go",
],
"@io_bazel_rules_go//go/platform:nacl": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:netbsd": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:openbsd": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:plan9": [
"lock_plan9.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:solaris": [
"lock_solaris.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:windows": [
"lock_windows.go",
"perallocate_unsupported.go",
"sync.go",
],
"//conditions:default": [],
}),
importpath = "k8s.io/kubernetes/third_party/forked/etcd237/pkg/fileutil",
deps = [
"//vendor/github.com/coreos/pkg/capnslog:go_default_library",
],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [":package-srcs"],
tags = ["automanaged"],
)

View File

@ -1,75 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package fileutil implements utility functions related to files and paths.
package fileutil
import (
"io/ioutil"
"os"
"path"
"sort"
"github.com/coreos/pkg/capnslog"
)
const (
privateFileMode = 0600
// owner can make/remove files inside the directory
privateDirMode = 0700
)
var (
plog = capnslog.NewPackageLogger("github.com/coreos/etcd/pkg", "fileutil")
)
// IsDirWriteable checks if dir is writable by writing and removing a file
// to dir. It returns nil if dir is writable.
func IsDirWriteable(dir string) error {
f := path.Join(dir, ".touch")
if err := ioutil.WriteFile(f, []byte(""), privateFileMode); err != nil {
return err
}
return os.Remove(f)
}
// ReadDir returns the filenames in the given directory in sorted order.
func ReadDir(dirpath string) ([]string, error) {
dir, err := os.Open(dirpath)
if err != nil {
return nil, err
}
defer dir.Close()
names, err := dir.Readdirnames(-1)
if err != nil {
return nil, err
}
sort.Strings(names)
return names, nil
}
// TouchDirAll is similar to os.MkdirAll. It creates directories with 0700 permission if any directory
// does not exists. TouchDirAll also ensures the given directory is writable.
func TouchDirAll(dir string) error {
err := os.MkdirAll(dir, privateDirMode)
if err != nil && err != os.ErrExist {
return err
}
return IsDirWriteable(dir)
}
func Exist(name string) bool {
_, err := os.Stat(name)
return err == nil
}

View File

@ -1,96 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"io/ioutil"
"os"
"os/user"
"path/filepath"
"reflect"
"testing"
)
func TestIsDirWriteable(t *testing.T) {
tmpdir, err := ioutil.TempDir("", "")
if err != nil {
t.Fatalf("unexpected ioutil.TempDir error: %v", err)
}
defer os.RemoveAll(tmpdir)
if err = IsDirWriteable(tmpdir); err != nil {
t.Fatalf("unexpected IsDirWriteable error: %v", err)
}
if err = os.Chmod(tmpdir, 0444); err != nil {
t.Fatalf("unexpected os.Chmod error: %v", err)
}
me, err := user.Current()
if err != nil {
// err can be non-nil when cross compiled
// http://stackoverflow.com/questions/20609415/cross-compiling-user-current-not-implemented-on-linux-amd64
t.Skipf("failed to get current user: %v", err)
}
if me.Name == "root" || me.Name == "Administrator" {
// ideally we should check CAP_DAC_OVERRIDE.
// but it does not matter for tests.
t.Skipf("running as a superuser")
}
if err := IsDirWriteable(tmpdir); err == nil {
t.Fatalf("expected IsDirWriteable to error")
}
}
func TestReadDir(t *testing.T) {
tmpdir, err := ioutil.TempDir("", "")
defer os.RemoveAll(tmpdir)
if err != nil {
t.Fatalf("unexpected ioutil.TempDir error: %v", err)
}
files := []string{"def", "abc", "xyz", "ghi"}
for _, f := range files {
var fh *os.File
fh, err = os.Create(filepath.Join(tmpdir, f))
if err != nil {
t.Fatalf("error creating file: %v", err)
}
if err = fh.Close(); err != nil {
t.Fatalf("error closing file: %v", err)
}
}
fs, err := ReadDir(tmpdir)
if err != nil {
t.Fatalf("error calling ReadDir: %v", err)
}
wfs := []string{"abc", "def", "ghi", "xyz"}
if !reflect.DeepEqual(fs, wfs) {
t.Fatalf("ReadDir: got %v, want %v", fs, wfs)
}
}
func TestExist(t *testing.T) {
f, err := ioutil.TempFile(os.TempDir(), "fileutil")
if err != nil {
t.Fatal(err)
}
f.Close()
if g := Exist(f.Name()); g != true {
t.Errorf("exist = %v, want true", g)
}
os.Remove(f.Name())
if g := Exist(f.Name()); g != false {
t.Errorf("exist = %v, want false", g)
}
}

View File

@ -1,29 +0,0 @@
// Copyright 2016 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
type Lock interface {
// Name returns the name of the file.
Name() string
// TryLock acquires exclusivity on the lock without blocking.
TryLock() error
// Lock acquires exclusivity on the lock.
Lock() error
// Unlock unlocks the lock.
Unlock() error
// Destroy should be called after Unlock to clean up
// the resources.
Destroy() error
}

View File

@ -1,79 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"errors"
"os"
"syscall"
"time"
)
var (
ErrLocked = errors.New("file already locked")
)
type lock struct {
fname string
file *os.File
}
func (l *lock) Name() string {
return l.fname
}
func (l *lock) TryLock() error {
err := os.Chmod(l.fname, syscall.DMEXCL|0600)
if err != nil {
return err
}
f, err := os.Open(l.fname)
if err != nil {
return ErrLocked
}
l.file = f
return nil
}
func (l *lock) Lock() error {
err := os.Chmod(l.fname, syscall.DMEXCL|0600)
if err != nil {
return err
}
for {
f, err := os.Open(l.fname)
if err == nil {
l.file = f
return nil
}
time.Sleep(10 * time.Millisecond)
}
}
func (l *lock) Unlock() error {
return l.file.Close()
}
func (l *lock) Destroy() error {
return nil
}
func NewLock(file string) (Lock, error) {
l := &lock{fname: file}
return l, nil
}

View File

@ -1,87 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build solaris
package fileutil
import (
"errors"
"os"
"syscall"
)
var (
ErrLocked = errors.New("file already locked")
)
type lock struct {
fd int
file *os.File
}
func (l *lock) Name() string {
return l.file.Name()
}
func (l *lock) TryLock() error {
var lock syscall.Flock_t
lock.Start = 0
lock.Len = 0
lock.Pid = 0
lock.Type = syscall.F_WRLCK
lock.Whence = 0
lock.Pid = 0
err := syscall.FcntlFlock(uintptr(l.fd), syscall.F_SETLK, &lock)
if err != nil && err == syscall.EAGAIN {
return ErrLocked
}
return err
}
func (l *lock) Lock() error {
var lock syscall.Flock_t
lock.Start = 0
lock.Len = 0
lock.Type = syscall.F_WRLCK
lock.Whence = 0
lock.Pid = 0
return syscall.FcntlFlock(uintptr(l.fd), syscall.F_SETLK, &lock)
}
func (l *lock) Unlock() error {
var lock syscall.Flock_t
lock.Start = 0
lock.Len = 0
lock.Type = syscall.F_UNLCK
lock.Whence = 0
err := syscall.FcntlFlock(uintptr(l.fd), syscall.F_SETLK, &lock)
if err != nil && err == syscall.EAGAIN {
return ErrLocked
}
return err
}
func (l *lock) Destroy() error {
return l.file.Close()
}
func NewLock(file string) (Lock, error) {
f, err := os.OpenFile(file, os.O_WRONLY, 0600)
if err != nil {
return nil, err
}
l := &lock{int(f.Fd()), f}
return l, nil
}

View File

@ -1,96 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"io/ioutil"
"os"
"testing"
"time"
)
func TestLockAndUnlock(t *testing.T) {
f, err := ioutil.TempFile("", "lock")
if err != nil {
t.Fatal(err)
}
f.Close()
defer func() {
err = os.Remove(f.Name())
if err != nil {
t.Fatal(err)
}
}()
// lock the file
l, err := NewLock(f.Name())
if err != nil {
t.Fatal(err)
}
defer l.Destroy()
err = l.Lock()
if err != nil {
t.Fatal(err)
}
// try lock a locked file
dupl, err := NewLock(f.Name())
if err != nil {
t.Fatal(err)
}
err = dupl.TryLock()
if err != ErrLocked {
t.Errorf("err = %v, want %v", err, ErrLocked)
}
// unlock the file
err = l.Unlock()
if err != nil {
t.Fatal(err)
}
// try lock the unlocked file
err = dupl.TryLock()
if err != nil {
t.Errorf("err = %v, want %v", err, nil)
}
defer dupl.Destroy()
// blocking on locked file
locked := make(chan struct{}, 1)
go func() {
l.Lock()
locked <- struct{}{}
}()
select {
case <-locked:
t.Error("unexpected unblocking")
case <-time.After(100 * time.Millisecond):
}
// unlock
err = dupl.Unlock()
if err != nil {
t.Fatal(err)
}
// the previously blocked routine should be unblocked
select {
case <-locked:
case <-time.After(1 * time.Second):
t.Error("unexpected blocking")
}
}

View File

@ -1,65 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !windows,!plan9,!solaris
package fileutil
import (
"errors"
"os"
"syscall"
)
var (
ErrLocked = errors.New("file already locked")
)
type lock struct {
fd int
file *os.File
}
func (l *lock) Name() string {
return l.file.Name()
}
func (l *lock) TryLock() error {
err := syscall.Flock(l.fd, syscall.LOCK_EX|syscall.LOCK_NB)
if err != nil && err == syscall.EWOULDBLOCK {
return ErrLocked
}
return err
}
func (l *lock) Lock() error {
return syscall.Flock(l.fd, syscall.LOCK_EX)
}
func (l *lock) Unlock() error {
return syscall.Flock(l.fd, syscall.LOCK_UN)
}
func (l *lock) Destroy() error {
return l.file.Close()
}
func NewLock(file string) (Lock, error) {
f, err := os.Open(file)
if err != nil {
return nil, err
}
l := &lock{int(f.Fd()), f}
return l, nil
}

View File

@ -1,60 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build windows
package fileutil
import (
"errors"
"os"
)
var (
ErrLocked = errors.New("file already locked")
)
type lock struct {
fd int
file *os.File
}
func (l *lock) Name() string {
return l.file.Name()
}
func (l *lock) TryLock() error {
return nil
}
func (l *lock) Lock() error {
return nil
}
func (l *lock) Unlock() error {
return nil
}
func (l *lock) Destroy() error {
return l.file.Close()
}
func NewLock(file string) (Lock, error) {
f, err := os.Open(file)
if err != nil {
return nil, err
}
l := &lock{int(f.Fd()), f}
return l, nil
}

View File

@ -1,28 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !linux
package fileutil
import "os"
// Preallocate tries to allocate the space for given
// file. This operation is only supported on linux by a
// few filesystems (btrfs, ext4, etc.).
// If the operation is unsupported, no error will be returned.
// Otherwise, the error encountered will be returned.
func Preallocate(f *os.File, sizeInBytes int) error {
return nil
}

View File

@ -1,42 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
package fileutil
import (
"os"
"syscall"
)
// Preallocate tries to allocate the space for given
// file. This operation is only supported on linux by a
// few filesystems (btrfs, ext4, etc.).
// If the operation is unsupported, no error will be returned.
// Otherwise, the error encountered will be returned.
func Preallocate(f *os.File, sizeInBytes int) error {
// use mode = 1 to keep size
// see FALLOC_FL_KEEP_SIZE
err := syscall.Fallocate(int(f.Fd()), 1, 0, int64(sizeInBytes))
if err != nil {
errno, ok := err.(syscall.Errno)
// treat not support as nil error
if ok && errno == syscall.ENOTSUP {
return nil
}
return err
}
return nil
}

View File

@ -1,53 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"io/ioutil"
"os"
"runtime"
"testing"
)
func TestPreallocate(t *testing.T) {
if runtime.GOOS != "linux" {
t.Skipf("skip testPreallocate, OS = %s", runtime.GOOS)
}
p, err := ioutil.TempDir(os.TempDir(), "preallocateTest")
if err != nil {
t.Fatal(err)
}
defer os.RemoveAll(p)
f, err := ioutil.TempFile(p, "")
if err != nil {
t.Fatal(err)
}
size := 64 * 1000
err = Preallocate(f, size)
if err != nil {
t.Fatal(err)
}
stat, err := f.Stat()
if err != nil {
t.Fatal(err)
}
if stat.Size() != 0 {
t.Errorf("size = %d, want %d", stat.Size(), 0)
}
}

View File

@ -1,80 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"os"
"path"
"sort"
"strings"
"time"
)
func PurgeFile(dirname string, suffix string, max uint, interval time.Duration, stop <-chan struct{}) <-chan error {
errC := make(chan error, 1)
go func() {
for {
fnames, err := ReadDir(dirname)
if err != nil {
errC <- err
return
}
newfnames := make([]string, 0)
for _, fname := range fnames {
if strings.HasSuffix(fname, suffix) {
newfnames = append(newfnames, fname)
}
}
sort.Strings(newfnames)
for len(newfnames) > int(max) {
f := path.Join(dirname, newfnames[0])
l, err := NewLock(f)
if err != nil {
errC <- err
return
}
err = l.TryLock()
if err != nil {
break
}
err = os.Remove(f)
if err != nil {
errC <- err
return
}
err = l.Unlock()
if err != nil {
plog.Errorf("error unlocking %s when purging file (%v)", l.Name(), err)
errC <- err
return
}
err = l.Destroy()
if err != nil {
plog.Errorf("error destroying lock %s when purging file (%v)", l.Name(), err)
errC <- err
return
}
plog.Infof("purged file %s successfully", f)
newfnames = newfnames[1:]
}
select {
case <-time.After(interval):
case <-stop:
return
}
}
}()
return errC
}

View File

@ -1,161 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fileutil
import (
"fmt"
"io/ioutil"
"os"
"path"
"reflect"
"testing"
"time"
)
func TestPurgeFile(t *testing.T) {
dir, err := ioutil.TempDir("", "purgefile")
if err != nil {
t.Fatal(err)
}
defer os.RemoveAll(dir)
for i := 0; i < 5; i++ {
_, err = os.Create(path.Join(dir, fmt.Sprintf("%d.test", i)))
if err != nil {
t.Fatal(err)
}
}
stop := make(chan struct{})
// keep at most 3 most recent files
errch := PurgeFile(dir, "test", 3, time.Millisecond, stop)
// create 5 more files
for i := 5; i < 10; i++ {
_, err = os.Create(path.Join(dir, fmt.Sprintf("%d.test", i)))
if err != nil {
t.Fatal(err)
}
time.Sleep(10 * time.Millisecond)
}
// purge routine should purge 7 out of 10 files and only keep the
// 3 most recent ones.
// wait for purging for at most 100ms.
var fnames []string
for i := 0; i < 10; i++ {
fnames, err = ReadDir(dir)
if err != nil {
t.Fatal(err)
}
if len(fnames) <= 3 {
break
}
time.Sleep(10 * time.Millisecond)
}
wnames := []string{"7.test", "8.test", "9.test"}
if !reflect.DeepEqual(fnames, wnames) {
t.Errorf("filenames = %v, want %v", fnames, wnames)
}
// no error should be reported from purge routine
select {
case err := <-errch:
t.Errorf("unexpected purge error %v", err)
case <-time.After(time.Millisecond):
}
close(stop)
}
func TestPurgeFileHoldingLock(t *testing.T) {
dir, err := ioutil.TempDir("", "purgefile")
if err != nil {
t.Fatal(err)
}
defer os.RemoveAll(dir)
for i := 0; i < 10; i++ {
_, err = os.Create(path.Join(dir, fmt.Sprintf("%d.test", i)))
if err != nil {
t.Fatal(err)
}
}
// create a purge barrier at 5
l, err := NewLock(path.Join(dir, fmt.Sprintf("%d.test", 5)))
err = l.Lock()
if err != nil {
t.Fatal(err)
}
stop := make(chan struct{})
errch := PurgeFile(dir, "test", 3, time.Millisecond, stop)
var fnames []string
for i := 0; i < 10; i++ {
fnames, err = ReadDir(dir)
if err != nil {
t.Fatal(err)
}
if len(fnames) <= 5 {
break
}
time.Sleep(10 * time.Millisecond)
}
wnames := []string{"5.test", "6.test", "7.test", "8.test", "9.test"}
if !reflect.DeepEqual(fnames, wnames) {
t.Errorf("filenames = %v, want %v", fnames, wnames)
}
select {
case err = <-errch:
t.Errorf("unexpected purge error %v", err)
case <-time.After(time.Millisecond):
}
// remove the purge barrier
err = l.Unlock()
if err != nil {
t.Fatal(err)
}
err = l.Destroy()
if err != nil {
t.Fatal(err)
}
for i := 0; i < 10; i++ {
fnames, err = ReadDir(dir)
if err != nil {
t.Fatal(err)
}
if len(fnames) <= 3 {
break
}
time.Sleep(10 * time.Millisecond)
}
wnames = []string{"7.test", "8.test", "9.test"}
if !reflect.DeepEqual(fnames, wnames) {
t.Errorf("filenames = %v, want %v", fnames, wnames)
}
select {
case err := <-errch:
t.Errorf("unexpected purge error %v", err)
case <-time.After(time.Millisecond):
}
close(stop)
}

View File

@ -1,26 +0,0 @@
// Copyright 2016 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !linux
package fileutil
import "os"
// Fdatasync is similar to fsync(), but does not flush modified metadata
// unless that metadata is needed in order to allow a subsequent data retrieval
// to be correctly handled.
func Fdatasync(f *os.File) error {
return f.Sync()
}

View File

@ -1,29 +0,0 @@
// Copyright 2016 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
package fileutil
import (
"os"
"syscall"
)
// Fdatasync is similar to fsync(), but does not flush modified metadata
// unless that metadata is needed in order to allow a subsequent data retrieval
// to be correctly handled.
func Fdatasync(f *os.File) error {
return syscall.Fdatasync(int(f.Fd()))
}

View File

@ -1,48 +0,0 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"])
load(
"@io_bazel_rules_go//go:def.bzl",
"go_library",
)
go_library(
name = "go_default_library",
srcs = [
"decoder.go",
"doc.go",
"encoder.go",
"metrics.go",
"multi_readcloser.go",
"repair.go",
"util.go",
"wal.go",
],
importpath = "k8s.io/kubernetes/third_party/forked/etcd237/wal",
deps = [
"//third_party/forked/etcd237/pkg/fileutil:go_default_library",
"//vendor/github.com/coreos/etcd/pkg/crc:go_default_library",
"//vendor/github.com/coreos/etcd/pkg/pbutil:go_default_library",
"//vendor/github.com/coreos/etcd/raft/raftpb:go_default_library",
"//vendor/github.com/coreos/etcd/wal/walpb:go_default_library",
"//vendor/github.com/coreos/pkg/capnslog:go_default_library",
"//vendor/github.com/prometheus/client_golang/prometheus:go_default_library",
],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [
":package-srcs",
"//third_party/forked/etcd237/wal/walpb:all-srcs",
],
tags = ["automanaged"],
)

View File

@ -1,103 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"bufio"
"encoding/binary"
"hash"
"io"
"sync"
"github.com/coreos/etcd/pkg/crc"
"github.com/coreos/etcd/pkg/pbutil"
"github.com/coreos/etcd/raft/raftpb"
"github.com/coreos/etcd/wal/walpb"
)
type decoder struct {
mu sync.Mutex
br *bufio.Reader
c io.Closer
crc hash.Hash32
}
func newDecoder(rc io.ReadCloser) *decoder {
return &decoder{
br: bufio.NewReader(rc),
c: rc,
crc: crc.New(0, crcTable),
}
}
func (d *decoder) decode(rec *walpb.Record) error {
d.mu.Lock()
defer d.mu.Unlock()
rec.Reset()
l, err := readInt64(d.br)
if err != nil {
return err
}
data := make([]byte, l)
if _, err = io.ReadFull(d.br, data); err != nil {
// ReadFull returns io.EOF only if no bytes were read
// the decoder should treat this as an ErrUnexpectedEOF instead.
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return err
}
if err := rec.Unmarshal(data); err != nil {
return err
}
// skip crc checking if the record type is crcType
if rec.Type == crcType {
return nil
}
d.crc.Write(rec.Data)
return rec.Validate(d.crc.Sum32())
}
func (d *decoder) updateCRC(prevCrc uint32) {
d.crc = crc.New(prevCrc, crcTable)
}
func (d *decoder) lastCRC() uint32 {
return d.crc.Sum32()
}
func (d *decoder) close() error {
return d.c.Close()
}
func mustUnmarshalEntry(d []byte) raftpb.Entry {
var e raftpb.Entry
pbutil.MustUnmarshal(&e, d)
return e
}
func mustUnmarshalState(d []byte) raftpb.HardState {
var s raftpb.HardState
pbutil.MustUnmarshal(&s, d)
return s
}
func readInt64(r io.Reader) (int64, error) {
var n int64
err := binary.Read(r, binary.LittleEndian, &n)
return n, err
}

View File

@ -1,68 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Package wal provides an implementation of a write ahead log that is used by
etcd.
A WAL is created at a particular directory and is made up of a number of
segmented WAL files. Inside of each file the raft state and entries are appended
to it with the Save method:
metadata := []byte{}
w, err := wal.Create("/var/lib/etcd", metadata)
...
err := w.Save(s, ents)
After saving an raft snapshot to disk, SaveSnapshot method should be called to
record it. So WAL can match with the saved snapshot when restarting.
err := w.SaveSnapshot(walpb.Snapshot{Index: 10, Term: 2})
When a user has finished using a WAL it must be closed:
w.Close()
WAL files are placed inside of the directory in the following format:
$seq-$index.wal
The first WAL file to be created will be 0000000000000000-0000000000000000.wal
indicating an initial sequence of 0 and an initial raft index of 0. The first
entry written to WAL MUST have raft index 0.
WAL will cuts its current wal files if its size exceeds 8MB. This will increment an internal
sequence number and cause a new file to be created. If the last raft index saved
was 0x20 and this is the first time cut has been called on this WAL then the sequence will
increment from 0x0 to 0x1. The new file will be: 0000000000000001-0000000000000021.wal.
If a second cut issues 0x10 entries with incremental index later then the file will be called:
0000000000000002-0000000000000031.wal.
At a later time a WAL can be opened at a particular snapshot. If there is no
snapshot, an empty snapshot should be passed in.
w, err := wal.Open("/var/lib/etcd", walpb.Snapshot{Index: 10, Term: 2})
...
The snapshot must have been written to the WAL.
Additional items cannot be Saved to this WAL until all of the items from the given
snapshot to the end of the WAL are read first:
metadata, state, ents, err := w.ReadAll()
This will give you the metadata, the last raft.State and the slice of
raft.Entry items in the log.
*/
package wal

View File

@ -1,89 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"bufio"
"encoding/binary"
"hash"
"io"
"sync"
"github.com/coreos/etcd/pkg/crc"
"github.com/coreos/etcd/wal/walpb"
)
type encoder struct {
mu sync.Mutex
bw *bufio.Writer
crc hash.Hash32
buf []byte
uint64buf []byte
}
func newEncoder(w io.Writer, prevCrc uint32) *encoder {
return &encoder{
bw: bufio.NewWriter(w),
crc: crc.New(prevCrc, crcTable),
// 1MB buffer
buf: make([]byte, 1024*1024),
uint64buf: make([]byte, 8),
}
}
func (e *encoder) encode(rec *walpb.Record) error {
e.mu.Lock()
defer e.mu.Unlock()
e.crc.Write(rec.Data)
rec.Crc = e.crc.Sum32()
var (
data []byte
err error
n int
)
if rec.Size() > len(e.buf) {
data, err = rec.Marshal()
if err != nil {
return err
}
} else {
n, err = rec.MarshalTo(e.buf)
if err != nil {
return err
}
data = e.buf[:n]
}
if err = writeInt64(e.bw, int64(len(data)), e.uint64buf); err != nil {
return err
}
_, err = e.bw.Write(data)
return err
}
func (e *encoder) flush() error {
e.mu.Lock()
defer e.mu.Unlock()
return e.bw.Flush()
}
func writeInt64(w io.Writer, n int64, buf []byte) error {
// http://golang.org/src/encoding/binary/binary.go
binary.LittleEndian.PutUint64(buf, uint64(n))
_, err := w.Write(buf)
return err
}

View File

@ -1,38 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import "github.com/prometheus/client_golang/prometheus"
var (
syncDurations = prometheus.NewHistogram(prometheus.HistogramOpts{
Namespace: "etcd",
Subsystem: "wal",
Name: "fsync_durations_seconds",
Help: "The latency distributions of fsync called by wal.",
Buckets: prometheus.ExponentialBuckets(0.001, 2, 14),
})
lastIndexSaved = prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: "etcd",
Subsystem: "wal",
Name: "last_index_saved",
Help: "The index of the last entry saved by wal.",
})
)
func init() {
prometheus.MustRegister(syncDurations)
prometheus.MustRegister(lastIndexSaved)
}

View File

@ -1,45 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import "io"
type multiReadCloser struct {
closers []io.Closer
reader io.Reader
}
func (mc *multiReadCloser) Close() error {
var err error
for i := range mc.closers {
err = mc.closers[i].Close()
}
return err
}
func (mc *multiReadCloser) Read(p []byte) (int, error) {
return mc.reader.Read(p)
}
func MultiReadCloser(readClosers ...io.ReadCloser) io.ReadCloser {
cs := make([]io.Closer, len(readClosers))
rs := make([]io.Reader, len(readClosers))
for i := range readClosers {
cs[i] = readClosers[i]
rs[i] = readClosers[i]
}
r := io.MultiReader(rs...)
return &multiReadCloser{cs, r}
}

View File

@ -1,107 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"io"
"os"
"path"
"k8s.io/kubernetes/third_party/forked/etcd237/pkg/fileutil"
"github.com/coreos/etcd/wal/walpb"
)
// Repair tries to repair ErrUnexpectedEOF in the
// last wal file by truncating.
func Repair(dirpath string) bool {
f, err := openLast(dirpath)
if err != nil {
return false
}
defer f.Close()
n := 0
rec := &walpb.Record{}
decoder := newDecoder(f)
defer decoder.close()
for {
err := decoder.decode(rec)
switch err {
case nil:
n += 8 + rec.Size()
// update crc of the decoder when necessary
switch rec.Type {
case crcType:
crc := decoder.crc.Sum32()
// current crc of decoder must match the crc of the record.
// do no need to match 0 crc, since the decoder is a new one at this case.
if crc != 0 && rec.Validate(crc) != nil {
return false
}
decoder.updateCRC(rec.Crc)
}
continue
case io.EOF:
return true
case io.ErrUnexpectedEOF:
plog.Noticef("repairing %v", f.Name())
bf, bferr := os.Create(f.Name() + ".broken")
if bferr != nil {
plog.Errorf("could not repair %v, failed to create backup file", f.Name())
return false
}
defer bf.Close()
if _, err = f.Seek(0, os.SEEK_SET); err != nil {
plog.Errorf("could not repair %v, failed to read file", f.Name())
return false
}
if _, err = io.Copy(bf, f); err != nil {
plog.Errorf("could not repair %v, failed to copy file", f.Name())
return false
}
if err = f.Truncate(int64(n)); err != nil {
plog.Errorf("could not repair %v, failed to truncate file", f.Name())
return false
}
if err = f.Sync(); err != nil {
plog.Errorf("could not repair %v, failed to sync file", f.Name())
return false
}
return true
default:
plog.Errorf("could not repair error (%v)", err)
return false
}
}
}
// openLast opens the last wal file for read and write.
func openLast(dirpath string) (*os.File, error) {
names, err := fileutil.ReadDir(dirpath)
if err != nil {
return nil, err
}
names = checkWalNames(names)
if len(names) == 0 {
return nil, ErrFileNotFound
}
last := path.Join(dirpath, names[len(names)-1])
return os.OpenFile(last, os.O_RDWR, 0)
}

View File

@ -1,93 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"errors"
"fmt"
"strings"
"k8s.io/kubernetes/third_party/forked/etcd237/pkg/fileutil"
)
var (
badWalName = errors.New("bad wal name")
)
func Exist(dirpath string) bool {
names, err := fileutil.ReadDir(dirpath)
if err != nil {
return false
}
return len(names) != 0
}
// searchIndex returns the last array index of names whose raft index section is
// equal to or smaller than the given index.
// The given names MUST be sorted.
func searchIndex(names []string, index uint64) (int, bool) {
for i := len(names) - 1; i >= 0; i-- {
name := names[i]
_, curIndex, err := parseWalName(name)
if err != nil {
plog.Panicf("parse correct name should never fail: %v", err)
}
if index >= curIndex {
return i, true
}
}
return -1, false
}
// names should have been sorted based on sequence number.
// isValidSeq checks whether seq increases continuously.
func isValidSeq(names []string) bool {
var lastSeq uint64
for _, name := range names {
curSeq, _, err := parseWalName(name)
if err != nil {
plog.Panicf("parse correct name should never fail: %v", err)
}
if lastSeq != 0 && lastSeq != curSeq-1 {
return false
}
lastSeq = curSeq
}
return true
}
func checkWalNames(names []string) []string {
wnames := make([]string, 0)
for _, name := range names {
if _, _, err := parseWalName(name); err != nil {
plog.Warningf("ignored file %v in wal", name)
continue
}
wnames = append(wnames, name)
}
return wnames
}
func parseWalName(str string) (seq, index uint64, err error) {
if !strings.HasSuffix(str, ".wal") {
return 0, 0, badWalName
}
_, err = fmt.Sscanf(str, "%016x-%016x.wal", &seq, &index)
return seq, index, err
}
func walName(seq, index uint64) string {
return fmt.Sprintf("%016x-%016x.wal", seq, index)
}

View File

@ -1,571 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"errors"
"fmt"
"hash/crc32"
"io"
"os"
"path"
"reflect"
"sync"
"time"
"k8s.io/kubernetes/third_party/forked/etcd237/pkg/fileutil"
"github.com/coreos/etcd/pkg/pbutil"
"github.com/coreos/etcd/raft/raftpb"
"github.com/coreos/etcd/wal/walpb"
"github.com/coreos/pkg/capnslog"
)
const (
metadataType int64 = iota + 1
entryType
stateType
crcType
snapshotType
// the owner can make/remove files inside the directory
privateDirMode = 0700
// the expected size of each wal segment file.
// the actual size might be bigger than it.
segmentSizeBytes = 64 * 1000 * 1000 // 64MB
)
var (
plog = capnslog.NewPackageLogger("github.com/coreos/etcd", "wal")
ErrMetadataConflict = errors.New("wal: conflicting metadata found")
ErrFileNotFound = errors.New("wal: file not found")
ErrCRCMismatch = errors.New("wal: crc mismatch")
ErrSnapshotMismatch = errors.New("wal: snapshot mismatch")
ErrSnapshotNotFound = errors.New("wal: snapshot not found")
crcTable = crc32.MakeTable(crc32.Castagnoli)
)
// WAL is a logical representation of the stable storage.
// WAL is either in read mode or append mode but not both.
// A newly created WAL is in append mode, and ready for appending records.
// A just opened WAL is in read mode, and ready for reading records.
// The WAL will be ready for appending after reading out all the previous records.
type WAL struct {
dir string // the living directory of the underlay files
metadata []byte // metadata recorded at the head of each WAL
state raftpb.HardState // hardstate recorded at the head of WAL
start walpb.Snapshot // snapshot to start reading
decoder *decoder // decoder to decode records
mu sync.Mutex
f *os.File // underlay file opened for appending, sync
seq uint64 // sequence of the wal file currently used for writes
enti uint64 // index of the last entry saved to the wal
encoder *encoder // encoder to encode records
locks []fileutil.Lock // the file locks the WAL is holding (the name is increasing)
}
// Create creates a WAL ready for appending records. The given metadata is
// recorded at the head of each WAL file, and can be retrieved with ReadAll.
func Create(dirpath string, metadata []byte) (*WAL, error) {
if Exist(dirpath) {
return nil, os.ErrExist
}
if err := os.MkdirAll(dirpath, privateDirMode); err != nil {
return nil, err
}
p := path.Join(dirpath, walName(0, 0))
f, err := os.OpenFile(p, os.O_WRONLY|os.O_APPEND|os.O_CREATE, 0600)
if err != nil {
return nil, err
}
l, err := fileutil.NewLock(f.Name())
if err != nil {
return nil, err
}
if err = l.Lock(); err != nil {
return nil, err
}
w := &WAL{
dir: dirpath,
metadata: metadata,
seq: 0,
f: f,
encoder: newEncoder(f, 0),
}
w.locks = append(w.locks, l)
if err := w.saveCrc(0); err != nil {
return nil, err
}
if err := w.encoder.encode(&walpb.Record{Type: metadataType, Data: metadata}); err != nil {
return nil, err
}
if err := w.SaveSnapshot(walpb.Snapshot{}); err != nil {
return nil, err
}
return w, nil
}
// Open opens the WAL at the given snap.
// The snap SHOULD have been previously saved to the WAL, or the following
// ReadAll will fail.
// The returned WAL is ready to read and the first record will be the one after
// the given snap. The WAL cannot be appended to before reading out all of its
// previous records.
func Open(dirpath string, snap walpb.Snapshot) (*WAL, error) {
return openAtIndex(dirpath, snap, true)
}
// OpenForRead only opens the wal files for read.
// Write on a read only wal panics.
func OpenForRead(dirpath string, snap walpb.Snapshot) (*WAL, error) {
return openAtIndex(dirpath, snap, false)
}
func openAtIndex(dirpath string, snap walpb.Snapshot, write bool) (*WAL, error) {
names, err := fileutil.ReadDir(dirpath)
if err != nil {
return nil, err
}
names = checkWalNames(names)
if len(names) == 0 {
return nil, ErrFileNotFound
}
nameIndex, ok := searchIndex(names, snap.Index)
if !ok || !isValidSeq(names[nameIndex:]) {
return nil, ErrFileNotFound
}
// open the wal files for reading
rcs := make([]io.ReadCloser, 0)
ls := make([]fileutil.Lock, 0)
for _, name := range names[nameIndex:] {
f, err := os.Open(path.Join(dirpath, name))
if err != nil {
return nil, err
}
l, err := fileutil.NewLock(f.Name())
if err != nil {
return nil, err
}
err = l.TryLock()
if err != nil {
if write {
return nil, err
}
}
rcs = append(rcs, f)
ls = append(ls, l)
}
rc := MultiReadCloser(rcs...)
// create a WAL ready for reading
w := &WAL{
dir: dirpath,
start: snap,
decoder: newDecoder(rc),
locks: ls,
}
if write {
// open the last wal file for appending
seq, _, err := parseWalName(names[len(names)-1])
if err != nil {
rc.Close()
return nil, err
}
last := path.Join(dirpath, names[len(names)-1])
f, err := os.OpenFile(last, os.O_WRONLY|os.O_APPEND, 0)
if err != nil {
rc.Close()
return nil, err
}
err = fileutil.Preallocate(f, segmentSizeBytes)
if err != nil {
rc.Close()
plog.Errorf("failed to allocate space when creating new wal file (%v)", err)
return nil, err
}
w.f = f
w.seq = seq
}
return w, nil
}
// ReadAll reads out records of the current WAL.
// If opened in write mode, it must read out all records until EOF. Or an error
// will be returned.
// If opened in read mode, it will try to read all records if possible.
// If it cannot read out the expected snap, it will return ErrSnapshotNotFound.
// If loaded snap doesn't match with the expected one, it will return
// all the records and error ErrSnapshotMismatch.
// TODO: detect not-last-snap error.
// TODO: maybe loose the checking of match.
// After ReadAll, the WAL will be ready for appending new records.
func (w *WAL) ReadAll() (metadata []byte, state raftpb.HardState, ents []raftpb.Entry, err error) {
w.mu.Lock()
defer w.mu.Unlock()
rec := &walpb.Record{}
decoder := w.decoder
var match bool
for err = decoder.decode(rec); err == nil; err = decoder.decode(rec) {
switch rec.Type {
case entryType:
e := mustUnmarshalEntry(rec.Data)
if e.Index > w.start.Index {
ents = append(ents[:e.Index-w.start.Index-1], e)
}
w.enti = e.Index
case stateType:
state = mustUnmarshalState(rec.Data)
case metadataType:
if metadata != nil && !reflect.DeepEqual(metadata, rec.Data) {
state.Reset()
return nil, state, nil, ErrMetadataConflict
}
metadata = rec.Data
case crcType:
crc := decoder.crc.Sum32()
// current crc of decoder must match the crc of the record.
// do no need to match 0 crc, since the decoder is a new one at this case.
if crc != 0 && rec.Validate(crc) != nil {
state.Reset()
return nil, state, nil, ErrCRCMismatch
}
decoder.updateCRC(rec.Crc)
case snapshotType:
var snap walpb.Snapshot
pbutil.MustUnmarshal(&snap, rec.Data)
if snap.Index == w.start.Index {
if snap.Term != w.start.Term {
state.Reset()
return nil, state, nil, ErrSnapshotMismatch
}
match = true
}
default:
state.Reset()
return nil, state, nil, fmt.Errorf("unexpected block type %d", rec.Type)
}
}
switch w.f {
case nil:
// We do not have to read out all entries in read mode.
// The last record maybe a partial written one, so
// ErrunexpectedEOF might be returned.
if err != io.EOF && err != io.ErrUnexpectedEOF {
state.Reset()
return nil, state, nil, err
}
default:
// We must read all of the entries if WAL is opened in write mode.
if err != io.EOF {
state.Reset()
return nil, state, nil, err
}
}
err = nil
if !match {
err = ErrSnapshotNotFound
}
// close decoder, disable reading
w.decoder.close()
w.start = walpb.Snapshot{}
w.metadata = metadata
if w.f != nil {
// create encoder (chain crc with the decoder), enable appending
w.encoder = newEncoder(w.f, w.decoder.lastCRC())
w.decoder = nil
lastIndexSaved.Set(float64(w.enti))
}
return metadata, state, ents, err
}
// cut closes current file written and creates a new one ready to append.
// cut first creates a temp wal file and writes necessary headers into it.
// Then cut atomically rename temp wal file to a wal file.
func (w *WAL) cut() error {
// close old wal file
if err := w.sync(); err != nil {
return err
}
if err := w.f.Close(); err != nil {
return err
}
fpath := path.Join(w.dir, walName(w.seq+1, w.enti+1))
ftpath := fpath + ".tmp"
// create a temp wal file with name sequence + 1, or truncate the existing one
ft, err := os.OpenFile(ftpath, os.O_WRONLY|os.O_APPEND|os.O_CREATE|os.O_TRUNC, 0600)
if err != nil {
return err
}
// update writer and save the previous crc
w.f = ft
prevCrc := w.encoder.crc.Sum32()
w.encoder = newEncoder(w.f, prevCrc)
if err = w.saveCrc(prevCrc); err != nil {
return err
}
if err = w.encoder.encode(&walpb.Record{Type: metadataType, Data: w.metadata}); err != nil {
return err
}
if err = w.saveState(&w.state); err != nil {
return err
}
// close temp wal file
if err = w.sync(); err != nil {
return err
}
if err = w.f.Close(); err != nil {
return err
}
// atomically move temp wal file to wal file
if err = os.Rename(ftpath, fpath); err != nil {
return err
}
// open the wal file and update writer again
f, err := os.OpenFile(fpath, os.O_WRONLY|os.O_APPEND, 0600)
if err != nil {
return err
}
if err = fileutil.Preallocate(f, segmentSizeBytes); err != nil {
plog.Errorf("failed to allocate space when creating new wal file (%v)", err)
return err
}
w.f = f
prevCrc = w.encoder.crc.Sum32()
w.encoder = newEncoder(w.f, prevCrc)
// lock the new wal file
l, err := fileutil.NewLock(f.Name())
if err != nil {
return err
}
if err := l.Lock(); err != nil {
return err
}
w.locks = append(w.locks, l)
// increase the wal seq
w.seq++
plog.Infof("segmented wal file %v is created", fpath)
return nil
}
func (w *WAL) sync() error {
if w.encoder != nil {
if err := w.encoder.flush(); err != nil {
return err
}
}
start := time.Now()
err := fileutil.Fdatasync(w.f)
syncDurations.Observe(float64(time.Since(start)) / float64(time.Second))
return err
}
// ReleaseLockTo releases the locks, which has smaller index than the given index
// except the largest one among them.
// For example, if WAL is holding lock 1,2,3,4,5,6, ReleaseLockTo(4) will release
// lock 1,2 but keep 3. ReleaseLockTo(5) will release 1,2,3 but keep 4.
func (w *WAL) ReleaseLockTo(index uint64) error {
w.mu.Lock()
defer w.mu.Unlock()
var smaller int
found := false
for i, l := range w.locks {
_, lockIndex, err := parseWalName(path.Base(l.Name()))
if err != nil {
return err
}
if lockIndex >= index {
smaller = i - 1
found = true
break
}
}
// if no lock index is greater than the release index, we can
// release lock up to the last one(excluding).
if !found && len(w.locks) != 0 {
smaller = len(w.locks) - 1
}
if smaller <= 0 {
return nil
}
for i := 0; i < smaller; i++ {
w.locks[i].Unlock()
w.locks[i].Destroy()
}
w.locks = w.locks[smaller:]
return nil
}
func (w *WAL) Close() error {
w.mu.Lock()
defer w.mu.Unlock()
if w.f != nil {
if err := w.sync(); err != nil {
return err
}
if err := w.f.Close(); err != nil {
return err
}
}
for _, l := range w.locks {
err := l.Unlock()
if err != nil {
plog.Errorf("failed to unlock during closing wal: %s", err)
}
err = l.Destroy()
if err != nil {
plog.Errorf("failed to destroy lock during closing wal: %s", err)
}
}
return nil
}
func (w *WAL) saveEntry(e *raftpb.Entry) error {
// TODO: add MustMarshalTo to reduce one allocation.
b := pbutil.MustMarshal(e)
rec := &walpb.Record{Type: entryType, Data: b}
if err := w.encoder.encode(rec); err != nil {
return err
}
w.enti = e.Index
lastIndexSaved.Set(float64(w.enti))
return nil
}
func (w *WAL) saveState(s *raftpb.HardState) error {
if isEmptyHardState(*s) {
return nil
}
w.state = *s
b := pbutil.MustMarshal(s)
rec := &walpb.Record{Type: stateType, Data: b}
return w.encoder.encode(rec)
}
func (w *WAL) Save(st raftpb.HardState, ents []raftpb.Entry) error {
w.mu.Lock()
defer w.mu.Unlock()
// short cut, do not call sync
if isEmptyHardState(st) && len(ents) == 0 {
return nil
}
mustSync := mustSync(st, w.state, len(ents))
// TODO(xiangli): no more reference operator
for i := range ents {
if err := w.saveEntry(&ents[i]); err != nil {
return err
}
}
if err := w.saveState(&st); err != nil {
return err
}
fstat, err := w.f.Stat()
if err != nil {
return err
}
if fstat.Size() < segmentSizeBytes {
if mustSync {
return w.sync()
}
return nil
}
// TODO: add a test for this code path when refactoring the tests
return w.cut()
}
func (w *WAL) SaveSnapshot(e walpb.Snapshot) error {
w.mu.Lock()
defer w.mu.Unlock()
b := pbutil.MustMarshal(&e)
rec := &walpb.Record{Type: snapshotType, Data: b}
if err := w.encoder.encode(rec); err != nil {
return err
}
// update enti only when snapshot is ahead of last index
if w.enti < e.Index {
w.enti = e.Index
}
lastIndexSaved.Set(float64(w.enti))
return w.sync()
}
func (w *WAL) saveCrc(prevCrc uint32) error {
return w.encoder.encode(&walpb.Record{Type: crcType, Crc: prevCrc})
}
func mustSync(st, prevst raftpb.HardState, entsnum int) bool {
// Persistent state on all servers:
// (Updated on stable storage before responding to RPCs)
// currentTerm
// votedFor
// log entries[]
if entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term {
return true
}
return false
}
func isHardStateEqual(a, b raftpb.HardState) bool {
return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit
}
var emptyState = raftpb.HardState{}
func isEmptyHardState(st raftpb.HardState) bool {
return isHardStateEqual(st, emptyState)
}

View File

@ -1,37 +0,0 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"])
load(
"@io_bazel_rules_go//go:def.bzl",
"go_library",
)
go_library(
name = "go_default_library",
srcs = [
"record.go",
"record.pb.go",
],
importpath = "k8s.io/kubernetes/third_party/forked/etcd237/wal/walpb",
deps = ["//vendor/github.com/golang/protobuf/proto:go_default_library"],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [":package-srcs"],
tags = ["automanaged"],
)
filegroup(
name = "go_default_library_protos",
srcs = ["record.proto"],
visibility = ["//visibility:public"],
)

View File

@ -1,29 +0,0 @@
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package walpb
import "errors"
var (
ErrCRCMismatch = errors.New("walpb: crc mismatch")
)
func (rec *Record) Validate(crc uint32) error {
if rec.Crc == crc {
return nil
}
rec.Reset()
return ErrCRCMismatch
}

View File

@ -1,495 +0,0 @@
// Code generated by protoc-gen-gogo.
// source: record.proto
// DO NOT EDIT!
/*
Package walpb is a generated protocol buffer package.
It is generated from these files:
record.proto
It has these top-level messages:
Record
Snapshot
*/
package walpb
import (
"fmt"
proto "github.com/golang/protobuf/proto"
)
import math "math"
import io "io"
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
type Record struct {
Type int64 `protobuf:"varint,1,opt,name=type" json:"type"`
Crc uint32 `protobuf:"varint,2,opt,name=crc" json:"crc"`
Data []byte `protobuf:"bytes,3,opt,name=data" json:"data,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Record) Reset() { *m = Record{} }
func (m *Record) String() string { return proto.CompactTextString(m) }
func (*Record) ProtoMessage() {}
type Snapshot struct {
Index uint64 `protobuf:"varint,1,opt,name=index" json:"index"`
Term uint64 `protobuf:"varint,2,opt,name=term" json:"term"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Snapshot) Reset() { *m = Snapshot{} }
func (m *Snapshot) String() string { return proto.CompactTextString(m) }
func (*Snapshot) ProtoMessage() {}
func init() {
proto.RegisterType((*Record)(nil), "walpb.Record")
proto.RegisterType((*Snapshot)(nil), "walpb.Snapshot")
}
func (m *Record) Marshal() (data []byte, err error) {
size := m.Size()
data = make([]byte, size)
n, err := m.MarshalTo(data)
if err != nil {
return nil, err
}
return data[:n], nil
}
func (m *Record) MarshalTo(data []byte) (int, error) {
var i int
_ = i
var l int
_ = l
data[i] = 0x8
i++
i = encodeVarintRecord(data, i, uint64(m.Type))
data[i] = 0x10
i++
i = encodeVarintRecord(data, i, uint64(m.Crc))
if m.Data != nil {
data[i] = 0x1a
i++
i = encodeVarintRecord(data, i, uint64(len(m.Data)))
i += copy(data[i:], m.Data)
}
if m.XXX_unrecognized != nil {
i += copy(data[i:], m.XXX_unrecognized)
}
return i, nil
}
func (m *Snapshot) Marshal() (data []byte, err error) {
size := m.Size()
data = make([]byte, size)
n, err := m.MarshalTo(data)
if err != nil {
return nil, err
}
return data[:n], nil
}
func (m *Snapshot) MarshalTo(data []byte) (int, error) {
var i int
_ = i
var l int
_ = l
data[i] = 0x8
i++
i = encodeVarintRecord(data, i, uint64(m.Index))
data[i] = 0x10
i++
i = encodeVarintRecord(data, i, uint64(m.Term))
if m.XXX_unrecognized != nil {
i += copy(data[i:], m.XXX_unrecognized)
}
return i, nil
}
func encodeFixed64Record(data []byte, offset int, v uint64) int {
data[offset] = uint8(v)
data[offset+1] = uint8(v >> 8)
data[offset+2] = uint8(v >> 16)
data[offset+3] = uint8(v >> 24)
data[offset+4] = uint8(v >> 32)
data[offset+5] = uint8(v >> 40)
data[offset+6] = uint8(v >> 48)
data[offset+7] = uint8(v >> 56)
return offset + 8
}
func encodeFixed32Record(data []byte, offset int, v uint32) int {
data[offset] = uint8(v)
data[offset+1] = uint8(v >> 8)
data[offset+2] = uint8(v >> 16)
data[offset+3] = uint8(v >> 24)
return offset + 4
}
func encodeVarintRecord(data []byte, offset int, v uint64) int {
for v >= 1<<7 {
data[offset] = uint8(v&0x7f | 0x80)
v >>= 7
offset++
}
data[offset] = uint8(v)
return offset + 1
}
func (m *Record) Size() (n int) {
var l int
_ = l
n += 1 + sovRecord(uint64(m.Type))
n += 1 + sovRecord(uint64(m.Crc))
if m.Data != nil {
l = len(m.Data)
n += 1 + l + sovRecord(uint64(l))
}
if m.XXX_unrecognized != nil {
n += len(m.XXX_unrecognized)
}
return n
}
func (m *Snapshot) Size() (n int) {
var l int
_ = l
n += 1 + sovRecord(uint64(m.Index))
n += 1 + sovRecord(uint64(m.Term))
if m.XXX_unrecognized != nil {
n += len(m.XXX_unrecognized)
}
return n
}
func sovRecord(x uint64) (n int) {
for {
n++
x >>= 7
if x == 0 {
break
}
}
return n
}
func sozRecord(x uint64) (n int) {
return sovRecord(uint64((x << 1) ^ uint64((int64(x) >> 63))))
}
func (m *Record) Unmarshal(data []byte) error {
l := len(data)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowRecord
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return fmt.Errorf("proto: Record: wiretype end group for non-group")
}
if fieldNum <= 0 {
return fmt.Errorf("proto: Record: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Type", wireType)
}
m.Type = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowRecord
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
m.Type |= (int64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
case 2:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Crc", wireType)
}
m.Crc = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowRecord
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
m.Crc |= (uint32(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
case 3:
if wireType != 2 {
return fmt.Errorf("proto: wrong wireType = %d for field Data", wireType)
}
var byteLen int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowRecord
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
byteLen |= (int(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
if byteLen < 0 {
return ErrInvalidLengthRecord
}
postIndex := iNdEx + byteLen
if postIndex > l {
return io.ErrUnexpectedEOF
}
m.Data = append(m.Data[:0], data[iNdEx:postIndex]...)
if m.Data == nil {
m.Data = []byte{}
}
iNdEx = postIndex
default:
iNdEx = preIndex
skippy, err := skipRecord(data[iNdEx:])
if err != nil {
return err
}
if skippy < 0 {
return ErrInvalidLengthRecord
}
if (iNdEx + skippy) > l {
return io.ErrUnexpectedEOF
}
m.XXX_unrecognized = append(m.XXX_unrecognized, data[iNdEx:iNdEx+skippy]...)
iNdEx += skippy
}
}
if iNdEx > l {
return io.ErrUnexpectedEOF
}
return nil
}
func (m *Snapshot) Unmarshal(data []byte) error {
l := len(data)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowRecord
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return fmt.Errorf("proto: Snapshot: wiretype end group for non-group")
}
if fieldNum <= 0 {
return fmt.Errorf("proto: Snapshot: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Index", wireType)
}
m.Index = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowRecord
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
m.Index |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
case 2:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Term", wireType)
}
m.Term = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowRecord
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
m.Term |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
default:
iNdEx = preIndex
skippy, err := skipRecord(data[iNdEx:])
if err != nil {
return err
}
if skippy < 0 {
return ErrInvalidLengthRecord
}
if (iNdEx + skippy) > l {
return io.ErrUnexpectedEOF
}
m.XXX_unrecognized = append(m.XXX_unrecognized, data[iNdEx:iNdEx+skippy]...)
iNdEx += skippy
}
}
if iNdEx > l {
return io.ErrUnexpectedEOF
}
return nil
}
func skipRecord(data []byte) (n int, err error) {
l := len(data)
iNdEx := 0
for iNdEx < l {
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowRecord
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
wireType := int(wire & 0x7)
switch wireType {
case 0:
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowRecord
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
iNdEx++
if data[iNdEx-1] < 0x80 {
break
}
}
return iNdEx, nil
case 1:
iNdEx += 8
return iNdEx, nil
case 2:
var length int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowRecord
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
length |= (int(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
iNdEx += length
if length < 0 {
return 0, ErrInvalidLengthRecord
}
return iNdEx, nil
case 3:
for {
var innerWire uint64
var start int = iNdEx
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowRecord
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
innerWire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
innerWireType := int(innerWire & 0x7)
if innerWireType == 4 {
break
}
next, err := skipRecord(data[start:])
if err != nil {
return 0, err
}
iNdEx = start + next
}
return iNdEx, nil
case 4:
return iNdEx, nil
case 5:
iNdEx += 4
return iNdEx, nil
default:
return 0, fmt.Errorf("proto: illegal wireType %d", wireType)
}
}
panic("unreachable")
}
var (
ErrInvalidLengthRecord = fmt.Errorf("proto: negative length found during unmarshaling")
ErrIntOverflowRecord = fmt.Errorf("proto: integer overflow")
)

View File

@ -1,20 +0,0 @@
syntax = "proto2";
package walpb;
import "gogoproto/gogo.proto";
option (gogoproto.marshaler_all) = true;
option (gogoproto.sizer_all) = true;
option (gogoproto.unmarshaler_all) = true;
option (gogoproto.goproto_getters_all) = false;
message Record {
optional int64 type = 1 [(gogoproto.nullable) = false];
optional uint32 crc = 2 [(gogoproto.nullable) = false];
optional bytes data = 3;
}
message Snapshot {
optional uint64 index = 1 [(gogoproto.nullable) = false];
optional uint64 term = 2 [(gogoproto.nullable) = false];
}

View File

@ -1,35 +0,0 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"])
load(
"@io_bazel_rules_go//go:def.bzl",
"go_library",
"go_test",
)
go_library(
name = "go_default_library",
srcs = ["expand.go"],
importpath = "k8s.io/kubernetes/third_party/forked/golang/expansion",
)
go_test(
name = "go_default_test",
srcs = ["expand_test.go"],
embed = [":go_default_library"],
deps = ["//pkg/apis/core:go_default_library"],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [":package-srcs"],
tags = ["automanaged"],
)

View File

@ -1,102 +0,0 @@
package expansion
import (
"bytes"
)
const (
operator = '$'
referenceOpener = '('
referenceCloser = ')'
)
// syntaxWrap returns the input string wrapped by the expansion syntax.
func syntaxWrap(input string) string {
return string(operator) + string(referenceOpener) + input + string(referenceCloser)
}
// MappingFuncFor returns a mapping function for use with Expand that
// implements the expansion semantics defined in the expansion spec; it
// returns the input string wrapped in the expansion syntax if no mapping
// for the input is found.
func MappingFuncFor(context ...map[string]string) func(string) string {
return func(input string) string {
for _, vars := range context {
val, ok := vars[input]
if ok {
return val
}
}
return syntaxWrap(input)
}
}
// Expand replaces variable references in the input string according to
// the expansion spec using the given mapping function to resolve the
// values of variables.
func Expand(input string, mapping func(string) string) string {
var buf bytes.Buffer
checkpoint := 0
for cursor := 0; cursor < len(input); cursor++ {
if input[cursor] == operator && cursor+1 < len(input) {
// Copy the portion of the input string since the last
// checkpoint into the buffer
buf.WriteString(input[checkpoint:cursor])
// Attempt to read the variable name as defined by the
// syntax from the input string
read, isVar, advance := tryReadVariableName(input[cursor+1:])
if isVar {
// We were able to read a variable name correctly;
// apply the mapping to the variable name and copy the
// bytes into the buffer
buf.WriteString(mapping(read))
} else {
// Not a variable name; copy the read bytes into the buffer
buf.WriteString(read)
}
// Advance the cursor in the input string to account for
// bytes consumed to read the variable name expression
cursor += advance
// Advance the checkpoint in the input string
checkpoint = cursor + 1
}
}
// Return the buffer and any remaining unwritten bytes in the
// input string.
return buf.String() + input[checkpoint:]
}
// tryReadVariableName attempts to read a variable name from the input
// string and returns the content read from the input, whether that content
// represents a variable name to perform mapping on, and the number of bytes
// consumed in the input string.
//
// The input string is assumed not to contain the initial operator.
func tryReadVariableName(input string) (string, bool, int) {
switch input[0] {
case operator:
// Escaped operator; return it.
return input[0:1], false, 1
case referenceOpener:
// Scan to expression closer
for i := 1; i < len(input); i++ {
if input[i] == referenceCloser {
return input[1:i], true, i + 1
}
}
// Incomplete reference; return it.
return string(operator) + string(referenceOpener), false, 1
default:
// Not the beginning of an expression, ie, an operator
// that doesn't begin an expression. Return the operator
// and the first rune in the string.
return (string(operator) + string(input[0])), false, 1
}
}

View File

@ -1,284 +0,0 @@
package expansion
import (
"testing"
api "k8s.io/kubernetes/pkg/apis/core"
)
func TestMapReference(t *testing.T) {
envs := []api.EnvVar{
{
Name: "FOO",
Value: "bar",
},
{
Name: "ZOO",
Value: "$(FOO)-1",
},
{
Name: "BLU",
Value: "$(ZOO)-2",
},
}
declaredEnv := map[string]string{
"FOO": "bar",
"ZOO": "$(FOO)-1",
"BLU": "$(ZOO)-2",
}
serviceEnv := map[string]string{}
mapping := MappingFuncFor(declaredEnv, serviceEnv)
for _, env := range envs {
declaredEnv[env.Name] = Expand(env.Value, mapping)
}
expectedEnv := map[string]string{
"FOO": "bar",
"ZOO": "bar-1",
"BLU": "bar-1-2",
}
for k, v := range expectedEnv {
if e, a := v, declaredEnv[k]; e != a {
t.Errorf("Expected %v, got %v", e, a)
} else {
delete(declaredEnv, k)
}
}
if len(declaredEnv) != 0 {
t.Errorf("Unexpected keys in declared env: %v", declaredEnv)
}
}
func TestMapping(t *testing.T) {
context := map[string]string{
"VAR_A": "A",
"VAR_B": "B",
"VAR_C": "C",
"VAR_REF": "$(VAR_A)",
"VAR_EMPTY": "",
}
mapping := MappingFuncFor(context)
doExpansionTest(t, mapping)
}
func TestMappingDual(t *testing.T) {
context := map[string]string{
"VAR_A": "A",
"VAR_EMPTY": "",
}
context2 := map[string]string{
"VAR_B": "B",
"VAR_C": "C",
"VAR_REF": "$(VAR_A)",
}
mapping := MappingFuncFor(context, context2)
doExpansionTest(t, mapping)
}
func doExpansionTest(t *testing.T, mapping func(string) string) {
cases := []struct {
name string
input string
expected string
}{
{
name: "whole string",
input: "$(VAR_A)",
expected: "A",
},
{
name: "repeat",
input: "$(VAR_A)-$(VAR_A)",
expected: "A-A",
},
{
name: "beginning",
input: "$(VAR_A)-1",
expected: "A-1",
},
{
name: "middle",
input: "___$(VAR_B)___",
expected: "___B___",
},
{
name: "end",
input: "___$(VAR_C)",
expected: "___C",
},
{
name: "compound",
input: "$(VAR_A)_$(VAR_B)_$(VAR_C)",
expected: "A_B_C",
},
{
name: "escape & expand",
input: "$$(VAR_B)_$(VAR_A)",
expected: "$(VAR_B)_A",
},
{
name: "compound escape",
input: "$$(VAR_A)_$$(VAR_B)",
expected: "$(VAR_A)_$(VAR_B)",
},
{
name: "mixed in escapes",
input: "f000-$$VAR_A",
expected: "f000-$VAR_A",
},
{
name: "backslash escape ignored",
input: "foo\\$(VAR_C)bar",
expected: "foo\\Cbar",
},
{
name: "backslash escape ignored",
input: "foo\\\\$(VAR_C)bar",
expected: "foo\\\\Cbar",
},
{
name: "lots of backslashes",
input: "foo\\\\\\\\$(VAR_A)bar",
expected: "foo\\\\\\\\Abar",
},
{
name: "nested var references",
input: "$(VAR_A$(VAR_B))",
expected: "$(VAR_A$(VAR_B))",
},
{
name: "nested var references second type",
input: "$(VAR_A$(VAR_B)",
expected: "$(VAR_A$(VAR_B)",
},
{
name: "value is a reference",
input: "$(VAR_REF)",
expected: "$(VAR_A)",
},
{
name: "value is a reference x 2",
input: "%%$(VAR_REF)--$(VAR_REF)%%",
expected: "%%$(VAR_A)--$(VAR_A)%%",
},
{
name: "empty var",
input: "foo$(VAR_EMPTY)bar",
expected: "foobar",
},
{
name: "unterminated expression",
input: "foo$(VAR_Awhoops!",
expected: "foo$(VAR_Awhoops!",
},
{
name: "expression without operator",
input: "f00__(VAR_A)__",
expected: "f00__(VAR_A)__",
},
{
name: "shell special vars pass through",
input: "$?_boo_$!",
expected: "$?_boo_$!",
},
{
name: "bare operators are ignored",
input: "$VAR_A",
expected: "$VAR_A",
},
{
name: "undefined vars are passed through",
input: "$(VAR_DNE)",
expected: "$(VAR_DNE)",
},
{
name: "multiple (even) operators, var undefined",
input: "$$$$$$(BIG_MONEY)",
expected: "$$$(BIG_MONEY)",
},
{
name: "multiple (even) operators, var defined",
input: "$$$$$$(VAR_A)",
expected: "$$$(VAR_A)",
},
{
name: "multiple (odd) operators, var undefined",
input: "$$$$$$$(GOOD_ODDS)",
expected: "$$$$(GOOD_ODDS)",
},
{
name: "multiple (odd) operators, var defined",
input: "$$$$$$$(VAR_A)",
expected: "$$$A",
},
{
name: "missing open expression",
input: "$VAR_A)",
expected: "$VAR_A)",
},
{
name: "shell syntax ignored",
input: "${VAR_A}",
expected: "${VAR_A}",
},
{
name: "trailing incomplete expression not consumed",
input: "$(VAR_B)_______$(A",
expected: "B_______$(A",
},
{
name: "trailing incomplete expression, no content, is not consumed",
input: "$(VAR_C)_______$(",
expected: "C_______$(",
},
{
name: "operator at end of input string is preserved",
input: "$(VAR_A)foobarzab$",
expected: "Afoobarzab$",
},
{
name: "shell escaped incomplete expr",
input: "foo-\\$(VAR_A",
expected: "foo-\\$(VAR_A",
},
{
name: "lots of $( in middle",
input: "--$($($($($--",
expected: "--$($($($($--",
},
{
name: "lots of $( in beginning",
input: "$($($($($--foo$(",
expected: "$($($($($--foo$(",
},
{
name: "lots of $( at end",
input: "foo0--$($($($(",
expected: "foo0--$($($($(",
},
{
name: "escaped operators in variable names are not escaped",
input: "$(foo$$var)",
expected: "$(foo$$var)",
},
{
name: "newline not expanded",
input: "\n",
expected: "\n",
},
}
for _, tc := range cases {
expanded := Expand(tc.input, mapping)
if e, a := tc.expected, expanded; e != a {
t.Errorf("%v: expected %q, got %q", tc.name, e, a)
}
}
}

View File

@ -1,56 +0,0 @@
licenses(["notice"])
load("@io_bazel_rules_go//go:def.bzl", "go_library")
go_library(
name = "go_default_library",
srcs = [
"api.go",
"assignments.go",
"builtins.go",
"call.go",
"check.go",
"conversions.go",
"decl.go",
"errors.go",
"eval.go",
"expr.go",
"exprstring.go",
"initorder.go",
"labels.go",
"lookup.go",
"methodset.go",
"object.go",
"objset.go",
"operand.go",
"ordering.go",
"package.go",
"predicates.go",
"resolver.go",
"return.go",
"scope.go",
"selection.go",
"sizes.go",
"stmt.go",
"type.go",
"typestring.go",
"typexpr.go",
"universe.go",
],
importpath = "k8s.io/kubernetes/third_party/forked/golang/go/types",
visibility = ["//visibility:public"],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [":package-srcs"],
tags = ["automanaged"],
visibility = ["//visibility:public"],
)

View File

@ -1,7 +0,0 @@
This is go/types forked from go@236abdb46b (just after 1.10) and cherry-picked
1006f703ffc, which fixes https://github.com/golang/go/issues/23712.
It can be removed when all builders are >= go1.11.
Do *not* update this to newer code if https://github.com/golang/go/issues/23914
has not been fixed!

View File

@ -1,376 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package types declares the data types and implements
// the algorithms for type-checking of Go packages. Use
// Config.Check to invoke the type checker for a package.
// Alternatively, create a new type checker with NewChecker
// and invoke it incrementally by calling Checker.Files.
//
// Type-checking consists of several interdependent phases:
//
// Name resolution maps each identifier (ast.Ident) in the program to the
// language object (Object) it denotes.
// Use Info.{Defs,Uses,Implicits} for the results of name resolution.
//
// Constant folding computes the exact constant value (constant.Value)
// for every expression (ast.Expr) that is a compile-time constant.
// Use Info.Types[expr].Value for the results of constant folding.
//
// Type inference computes the type (Type) of every expression (ast.Expr)
// and checks for compliance with the language specification.
// Use Info.Types[expr].Type for the results of type inference.
//
// For a tutorial, see https://golang.org/s/types-tutorial.
//
package types
import (
"bytes"
"fmt"
"go/ast"
"go/constant"
"go/token"
)
// An Error describes a type-checking error; it implements the error interface.
// A "soft" error is an error that still permits a valid interpretation of a
// package (such as "unused variable"); "hard" errors may lead to unpredictable
// behavior if ignored.
type Error struct {
Fset *token.FileSet // file set for interpretation of Pos
Pos token.Pos // error position
Msg string // error message
Soft bool // if set, error is "soft"
}
// Error returns an error string formatted as follows:
// filename:line:column: message
func (err Error) Error() string {
return fmt.Sprintf("%s: %s", err.Fset.Position(err.Pos), err.Msg)
}
// An Importer resolves import paths to Packages.
//
// CAUTION: This interface does not support the import of locally
// vendored packages. See https://golang.org/s/go15vendor.
// If possible, external implementations should implement ImporterFrom.
type Importer interface {
// Import returns the imported package for the given import path.
// The semantics is like for ImporterFrom.ImportFrom except that
// dir and mode are ignored (since they are not present).
Import(path string) (*Package, error)
}
// ImportMode is reserved for future use.
type ImportMode int
// An ImporterFrom resolves import paths to packages; it
// supports vendoring per https://golang.org/s/go15vendor.
// Use go/importer to obtain an ImporterFrom implementation.
type ImporterFrom interface {
// Importer is present for backward-compatibility. Calling
// Import(path) is the same as calling ImportFrom(path, "", 0);
// i.e., locally vendored packages may not be found.
// The types package does not call Import if an ImporterFrom
// is present.
Importer
// ImportFrom returns the imported package for the given import
// path when imported by a package file located in dir.
// If the import failed, besides returning an error, ImportFrom
// is encouraged to cache and return a package anyway, if one
// was created. This will reduce package inconsistencies and
// follow-on type checker errors due to the missing package.
// The mode value must be 0; it is reserved for future use.
// Two calls to ImportFrom with the same path and dir must
// return the same package.
ImportFrom(path, dir string, mode ImportMode) (*Package, error)
}
// A Config specifies the configuration for type checking.
// The zero value for Config is a ready-to-use default configuration.
type Config struct {
// If IgnoreFuncBodies is set, function bodies are not
// type-checked.
IgnoreFuncBodies bool
// If FakeImportC is set, `import "C"` (for packages requiring Cgo)
// declares an empty "C" package and errors are omitted for qualified
// identifiers referring to package C (which won't find an object).
// This feature is intended for the standard library cmd/api tool.
//
// Caution: Effects may be unpredictable due to follow-on errors.
// Do not use casually!
FakeImportC bool
// If Error != nil, it is called with each error found
// during type checking; err has dynamic type Error.
// Secondary errors (for instance, to enumerate all types
// involved in an invalid recursive type declaration) have
// error strings that start with a '\t' character.
// If Error == nil, type-checking stops with the first
// error found.
Error func(err error)
// An importer is used to import packages referred to from
// import declarations.
// If the installed importer implements ImporterFrom, the type
// checker calls ImportFrom instead of Import.
// The type checker reports an error if an importer is needed
// but none was installed.
Importer Importer
// If Sizes != nil, it provides the sizing functions for package unsafe.
// Otherwise SizesFor("gc", "amd64") is used instead.
Sizes Sizes
// If DisableUnusedImportCheck is set, packages are not checked
// for unused imports.
DisableUnusedImportCheck bool
}
// Info holds result type information for a type-checked package.
// Only the information for which a map is provided is collected.
// If the package has type errors, the collected information may
// be incomplete.
type Info struct {
// Types maps expressions to their types, and for constant
// expressions, also their values. Invalid expressions are
// omitted.
//
// For (possibly parenthesized) identifiers denoting built-in
// functions, the recorded signatures are call-site specific:
// if the call result is not a constant, the recorded type is
// an argument-specific signature. Otherwise, the recorded type
// is invalid.
//
// The Types map does not record the type of every identifier,
// only those that appear where an arbitrary expression is
// permitted. For instance, the identifier f in a selector
// expression x.f is found only in the Selections map, the
// identifier z in a variable declaration 'var z int' is found
// only in the Defs map, and identifiers denoting packages in
// qualified identifiers are collected in the Uses map.
Types map[ast.Expr]TypeAndValue
// Defs maps identifiers to the objects they define (including
// package names, dots "." of dot-imports, and blank "_" identifiers).
// For identifiers that do not denote objects (e.g., the package name
// in package clauses, or symbolic variables t in t := x.(type) of
// type switch headers), the corresponding objects are nil.
//
// For an anonymous field, Defs returns the field *Var it defines.
//
// Invariant: Defs[id] == nil || Defs[id].Pos() == id.Pos()
Defs map[*ast.Ident]Object
// Uses maps identifiers to the objects they denote.
//
// For an anonymous field, Uses returns the *TypeName it denotes.
//
// Invariant: Uses[id].Pos() != id.Pos()
Uses map[*ast.Ident]Object
// Implicits maps nodes to their implicitly declared objects, if any.
// The following node and object types may appear:
//
// node declared object
//
// *ast.ImportSpec *PkgName for imports without renames
// *ast.CaseClause type-specific *Var for each type switch case clause (incl. default)
// *ast.Field anonymous parameter *Var
//
Implicits map[ast.Node]Object
// Selections maps selector expressions (excluding qualified identifiers)
// to their corresponding selections.
Selections map[*ast.SelectorExpr]*Selection
// Scopes maps ast.Nodes to the scopes they define. Package scopes are not
// associated with a specific node but with all files belonging to a package.
// Thus, the package scope can be found in the type-checked Package object.
// Scopes nest, with the Universe scope being the outermost scope, enclosing
// the package scope, which contains (one or more) files scopes, which enclose
// function scopes which in turn enclose statement and function literal scopes.
// Note that even though package-level functions are declared in the package
// scope, the function scopes are embedded in the file scope of the file
// containing the function declaration.
//
// The following node types may appear in Scopes:
//
// *ast.File
// *ast.FuncType
// *ast.BlockStmt
// *ast.IfStmt
// *ast.SwitchStmt
// *ast.TypeSwitchStmt
// *ast.CaseClause
// *ast.CommClause
// *ast.ForStmt
// *ast.RangeStmt
//
Scopes map[ast.Node]*Scope
// InitOrder is the list of package-level initializers in the order in which
// they must be executed. Initializers referring to variables related by an
// initialization dependency appear in topological order, the others appear
// in source order. Variables without an initialization expression do not
// appear in this list.
InitOrder []*Initializer
}
// TypeOf returns the type of expression e, or nil if not found.
// Precondition: the Types, Uses and Defs maps are populated.
//
func (info *Info) TypeOf(e ast.Expr) Type {
if t, ok := info.Types[e]; ok {
return t.Type
}
if id, _ := e.(*ast.Ident); id != nil {
if obj := info.ObjectOf(id); obj != nil {
return obj.Type()
}
}
return nil
}
// ObjectOf returns the object denoted by the specified id,
// or nil if not found.
//
// If id is an anonymous struct field, ObjectOf returns the field (*Var)
// it uses, not the type (*TypeName) it defines.
//
// Precondition: the Uses and Defs maps are populated.
//
func (info *Info) ObjectOf(id *ast.Ident) Object {
if obj := info.Defs[id]; obj != nil {
return obj
}
return info.Uses[id]
}
// TypeAndValue reports the type and value (for constants)
// of the corresponding expression.
type TypeAndValue struct {
mode operandMode
Type Type
Value constant.Value
}
// TODO(gri) Consider eliminating the IsVoid predicate. Instead, report
// "void" values as regular values but with the empty tuple type.
// IsVoid reports whether the corresponding expression
// is a function call without results.
func (tv TypeAndValue) IsVoid() bool {
return tv.mode == novalue
}
// IsType reports whether the corresponding expression specifies a type.
func (tv TypeAndValue) IsType() bool {
return tv.mode == typexpr
}
// IsBuiltin reports whether the corresponding expression denotes
// a (possibly parenthesized) built-in function.
func (tv TypeAndValue) IsBuiltin() bool {
return tv.mode == builtin
}
// IsValue reports whether the corresponding expression is a value.
// Builtins are not considered values. Constant values have a non-
// nil Value.
func (tv TypeAndValue) IsValue() bool {
switch tv.mode {
case constant_, variable, mapindex, value, commaok:
return true
}
return false
}
// IsNil reports whether the corresponding expression denotes the
// predeclared value nil.
func (tv TypeAndValue) IsNil() bool {
return tv.mode == value && tv.Type == Typ[UntypedNil]
}
// Addressable reports whether the corresponding expression
// is addressable (https://golang.org/ref/spec#Address_operators).
func (tv TypeAndValue) Addressable() bool {
return tv.mode == variable
}
// Assignable reports whether the corresponding expression
// is assignable to (provided a value of the right type).
func (tv TypeAndValue) Assignable() bool {
return tv.mode == variable || tv.mode == mapindex
}
// HasOk reports whether the corresponding expression may be
// used on the lhs of a comma-ok assignment.
func (tv TypeAndValue) HasOk() bool {
return tv.mode == commaok || tv.mode == mapindex
}
// An Initializer describes a package-level variable, or a list of variables in case
// of a multi-valued initialization expression, and the corresponding initialization
// expression.
type Initializer struct {
Lhs []*Var // var Lhs = Rhs
Rhs ast.Expr
}
func (init *Initializer) String() string {
var buf bytes.Buffer
for i, lhs := range init.Lhs {
if i > 0 {
buf.WriteString(", ")
}
buf.WriteString(lhs.Name())
}
buf.WriteString(" = ")
WriteExpr(&buf, init.Rhs)
return buf.String()
}
// Check type-checks a package and returns the resulting package object and
// the first error if any. Additionally, if info != nil, Check populates each
// of the non-nil maps in the Info struct.
//
// The package is marked as complete if no errors occurred, otherwise it is
// incomplete. See Config.Error for controlling behavior in the presence of
// errors.
//
// The package is specified by a list of *ast.Files and corresponding
// file set, and the package path the package is identified with.
// The clean path must not be empty or dot (".").
func (conf *Config) Check(path string, fset *token.FileSet, files []*ast.File, info *Info) (*Package, error) {
pkg := NewPackage(path, "")
return pkg, NewChecker(conf, fset, pkg, info).Files(files)
}
// AssertableTo reports whether a value of type V can be asserted to have type T.
func AssertableTo(V *Interface, T Type) bool {
m, _ := assertableTo(V, T)
return m == nil
}
// AssignableTo reports whether a value of type V is assignable to a variable of type T.
func AssignableTo(V, T Type) bool {
x := operand{mode: value, typ: V}
return x.assignableTo(nil, T, nil) // config not needed for non-constant x
}
// ConvertibleTo reports whether a value of type V is convertible to a value of type T.
func ConvertibleTo(V, T Type) bool {
x := operand{mode: value, typ: V}
return x.convertibleTo(nil, T) // config not needed for non-constant x
}
// Implements reports whether type V implements interface T.
func Implements(V Type, T *Interface) bool {
f, _ := MissingMethod(V, T, true)
return f == nil
}

View File

@ -1,335 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements initialization and assignment checks.
package types
import (
"go/ast"
"go/token"
)
// assignment reports whether x can be assigned to a variable of type T,
// if necessary by attempting to convert untyped values to the appropriate
// type. context describes the context in which the assignment takes place.
// Use T == nil to indicate assignment to an untyped blank identifier.
// x.mode is set to invalid if the assignment failed.
func (check *Checker) assignment(x *operand, T Type, context string) {
check.singleValue(x)
switch x.mode {
case invalid:
return // error reported before
case constant_, variable, mapindex, value, commaok:
// ok
default:
unreachable()
}
if isUntyped(x.typ) {
target := T
// spec: "If an untyped constant is assigned to a variable of interface
// type or the blank identifier, the constant is first converted to type
// bool, rune, int, float64, complex128 or string respectively, depending
// on whether the value is a boolean, rune, integer, floating-point, complex,
// or string constant."
if T == nil || IsInterface(T) {
if T == nil && x.typ == Typ[UntypedNil] {
check.errorf(x.pos(), "use of untyped nil in %s", context)
x.mode = invalid
return
}
target = Default(x.typ)
}
check.convertUntyped(x, target)
if x.mode == invalid {
return
}
}
// x.typ is typed
// spec: "If a left-hand side is the blank identifier, any typed or
// non-constant value except for the predeclared identifier nil may
// be assigned to it."
if T == nil {
return
}
if reason := ""; !x.assignableTo(check.conf, T, &reason) {
if reason != "" {
check.errorf(x.pos(), "cannot use %s as %s value in %s: %s", x, T, context, reason)
} else {
check.errorf(x.pos(), "cannot use %s as %s value in %s", x, T, context)
}
x.mode = invalid
}
}
func (check *Checker) initConst(lhs *Const, x *operand) {
if x.mode == invalid || x.typ == Typ[Invalid] || lhs.typ == Typ[Invalid] {
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return
}
// rhs must be a constant
if x.mode != constant_ {
check.errorf(x.pos(), "%s is not constant", x)
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return
}
assert(isConstType(x.typ))
// If the lhs doesn't have a type yet, use the type of x.
if lhs.typ == nil {
lhs.typ = x.typ
}
check.assignment(x, lhs.typ, "constant declaration")
if x.mode == invalid {
return
}
lhs.val = x.val
}
func (check *Checker) initVar(lhs *Var, x *operand, context string) Type {
if x.mode == invalid || x.typ == Typ[Invalid] || lhs.typ == Typ[Invalid] {
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return nil
}
// If the lhs doesn't have a type yet, use the type of x.
if lhs.typ == nil {
typ := x.typ
if isUntyped(typ) {
// convert untyped types to default types
if typ == Typ[UntypedNil] {
check.errorf(x.pos(), "use of untyped nil in %s", context)
lhs.typ = Typ[Invalid]
return nil
}
typ = Default(typ)
}
lhs.typ = typ
}
check.assignment(x, lhs.typ, context)
if x.mode == invalid {
return nil
}
return x.typ
}
func (check *Checker) assignVar(lhs ast.Expr, x *operand) Type {
if x.mode == invalid || x.typ == Typ[Invalid] {
return nil
}
// Determine if the lhs is a (possibly parenthesized) identifier.
ident, _ := unparen(lhs).(*ast.Ident)
// Don't evaluate lhs if it is the blank identifier.
if ident != nil && ident.Name == "_" {
check.recordDef(ident, nil)
check.assignment(x, nil, "assignment to _ identifier")
if x.mode == invalid {
return nil
}
return x.typ
}
// If the lhs is an identifier denoting a variable v, this assignment
// is not a 'use' of v. Remember current value of v.used and restore
// after evaluating the lhs via check.expr.
var v *Var
var v_used bool
if ident != nil {
if _, obj := check.scope.LookupParent(ident.Name, token.NoPos); obj != nil {
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg {
v = w
v_used = v.used
}
}
}
var z operand
check.expr(&z, lhs)
if v != nil {
v.used = v_used // restore v.used
}
if z.mode == invalid || z.typ == Typ[Invalid] {
return nil
}
// spec: "Each left-hand side operand must be addressable, a map index
// expression, or the blank identifier. Operands may be parenthesized."
switch z.mode {
case invalid:
return nil
case variable, mapindex:
// ok
default:
if sel, ok := z.expr.(*ast.SelectorExpr); ok {
var op operand
check.expr(&op, sel.X)
if op.mode == mapindex {
check.errorf(z.pos(), "cannot assign to struct field %s in map", ExprString(z.expr))
return nil
}
}
check.errorf(z.pos(), "cannot assign to %s", &z)
return nil
}
check.assignment(x, z.typ, "assignment")
if x.mode == invalid {
return nil
}
return x.typ
}
// If returnPos is valid, initVars is called to type-check the assignment of
// return expressions, and returnPos is the position of the return statement.
func (check *Checker) initVars(lhs []*Var, rhs []ast.Expr, returnPos token.Pos) {
l := len(lhs)
get, r, commaOk := unpack(func(x *operand, i int) { check.multiExpr(x, rhs[i]) }, len(rhs), l == 2 && !returnPos.IsValid())
if get == nil || l != r {
// invalidate lhs and use rhs
for _, obj := range lhs {
if obj.typ == nil {
obj.typ = Typ[Invalid]
}
}
if get == nil {
return // error reported by unpack
}
check.useGetter(get, r)
if returnPos.IsValid() {
check.errorf(returnPos, "wrong number of return values (want %d, got %d)", l, r)
return
}
check.errorf(rhs[0].Pos(), "cannot initialize %d variables with %d values", l, r)
return
}
context := "assignment"
if returnPos.IsValid() {
context = "return statement"
}
var x operand
if commaOk {
var a [2]Type
for i := range a {
get(&x, i)
a[i] = check.initVar(lhs[i], &x, context)
}
check.recordCommaOkTypes(rhs[0], a)
return
}
for i, lhs := range lhs {
get(&x, i)
check.initVar(lhs, &x, context)
}
}
func (check *Checker) assignVars(lhs, rhs []ast.Expr) {
l := len(lhs)
get, r, commaOk := unpack(func(x *operand, i int) { check.multiExpr(x, rhs[i]) }, len(rhs), l == 2)
if get == nil {
check.useLHS(lhs...)
return // error reported by unpack
}
if l != r {
check.useGetter(get, r)
check.errorf(rhs[0].Pos(), "cannot assign %d values to %d variables", r, l)
return
}
var x operand
if commaOk {
var a [2]Type
for i := range a {
get(&x, i)
a[i] = check.assignVar(lhs[i], &x)
}
check.recordCommaOkTypes(rhs[0], a)
return
}
for i, lhs := range lhs {
get(&x, i)
check.assignVar(lhs, &x)
}
}
func (check *Checker) shortVarDecl(pos token.Pos, lhs, rhs []ast.Expr) {
scope := check.scope
// collect lhs variables
var newVars []*Var
var lhsVars = make([]*Var, len(lhs))
for i, lhs := range lhs {
var obj *Var
if ident, _ := lhs.(*ast.Ident); ident != nil {
// Use the correct obj if the ident is redeclared. The
// variable's scope starts after the declaration; so we
// must use Scope.Lookup here and call Scope.Insert
// (via check.declare) later.
name := ident.Name
if alt := scope.Lookup(name); alt != nil {
// redeclared object must be a variable
if alt, _ := alt.(*Var); alt != nil {
obj = alt
} else {
check.errorf(lhs.Pos(), "cannot assign to %s", lhs)
}
check.recordUse(ident, alt)
} else {
// declare new variable, possibly a blank (_) variable
obj = NewVar(ident.Pos(), check.pkg, name, nil)
if name != "_" {
newVars = append(newVars, obj)
}
check.recordDef(ident, obj)
}
} else {
check.errorf(lhs.Pos(), "cannot declare %s", lhs)
}
if obj == nil {
obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
}
lhsVars[i] = obj
}
check.initVars(lhsVars, rhs, token.NoPos)
// declare new variables
if len(newVars) > 0 {
// spec: "The scope of a constant or variable identifier declared inside
// a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl
// for short variable declarations) and ends at the end of the innermost
// containing block."
scopePos := rhs[len(rhs)-1].End()
for _, obj := range newVars {
check.declare(scope, nil, obj, scopePos) // recordObject already called
}
} else {
check.softErrorf(pos, "no new variables on left side of :=")
}
}

View File

@ -1,670 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of builtin function calls.
package types
import (
"go/ast"
"go/constant"
"go/token"
)
// builtin type-checks a call to the built-in specified by id and
// returns true if the call is valid, with *x holding the result;
// but x.expr is not set. If the call is invalid, the result is
// false, and *x is undefined.
//
func (check *Checker) builtin(x *operand, call *ast.CallExpr, id builtinId) (_ bool) {
// append is the only built-in that permits the use of ... for the last argument
bin := predeclaredFuncs[id]
if call.Ellipsis.IsValid() && id != _Append {
check.invalidOp(call.Ellipsis, "invalid use of ... with built-in %s", bin.name)
check.use(call.Args...)
return
}
// For len(x) and cap(x) we need to know if x contains any function calls or
// receive operations. Save/restore current setting and set hasCallOrRecv to
// false for the evaluation of x so that we can check it afterwards.
// Note: We must do this _before_ calling unpack because unpack evaluates the
// first argument before we even call arg(x, 0)!
if id == _Len || id == _Cap {
defer func(b bool) {
check.hasCallOrRecv = b
}(check.hasCallOrRecv)
check.hasCallOrRecv = false
}
// determine actual arguments
var arg getter
nargs := len(call.Args)
switch id {
default:
// make argument getter
arg, nargs, _ = unpack(func(x *operand, i int) { check.multiExpr(x, call.Args[i]) }, nargs, false)
if arg == nil {
return
}
// evaluate first argument, if present
if nargs > 0 {
arg(x, 0)
if x.mode == invalid {
return
}
}
case _Make, _New, _Offsetof, _Trace:
// arguments require special handling
}
// check argument count
{
msg := ""
if nargs < bin.nargs {
msg = "not enough"
} else if !bin.variadic && nargs > bin.nargs {
msg = "too many"
}
if msg != "" {
check.invalidOp(call.Rparen, "%s arguments for %s (expected %d, found %d)", msg, call, bin.nargs, nargs)
return
}
}
switch id {
case _Append:
// append(s S, x ...T) S, where T is the element type of S
// spec: "The variadic function append appends zero or more values x to s of type
// S, which must be a slice type, and returns the resulting slice, also of type S.
// The values x are passed to a parameter of type ...T where T is the element type
// of S and the respective parameter passing rules apply."
S := x.typ
var T Type
if s, _ := S.Underlying().(*Slice); s != nil {
T = s.elem
} else {
check.invalidArg(x.pos(), "%s is not a slice", x)
return
}
// remember arguments that have been evaluated already
alist := []operand{*x}
// spec: "As a special case, append also accepts a first argument assignable
// to type []byte with a second argument of string type followed by ... .
// This form appends the bytes of the string.
if nargs == 2 && call.Ellipsis.IsValid() && x.assignableTo(check.conf, NewSlice(universeByte), nil) {
arg(x, 1)
if x.mode == invalid {
return
}
if isString(x.typ) {
if check.Types != nil {
sig := makeSig(S, S, x.typ)
sig.variadic = true
check.recordBuiltinType(call.Fun, sig)
}
x.mode = value
x.typ = S
break
}
alist = append(alist, *x)
// fallthrough
}
// check general case by creating custom signature
sig := makeSig(S, S, NewSlice(T)) // []T required for variadic signature
sig.variadic = true
check.arguments(x, call, sig, func(x *operand, i int) {
// only evaluate arguments that have not been evaluated before
if i < len(alist) {
*x = alist[i]
return
}
arg(x, i)
}, nargs)
// ok to continue even if check.arguments reported errors
x.mode = value
x.typ = S
if check.Types != nil {
check.recordBuiltinType(call.Fun, sig)
}
case _Cap, _Len:
// cap(x)
// len(x)
mode := invalid
var typ Type
var val constant.Value
switch typ = implicitArrayDeref(x.typ.Underlying()); t := typ.(type) {
case *Basic:
if isString(t) && id == _Len {
if x.mode == constant_ {
mode = constant_
val = constant.MakeInt64(int64(len(constant.StringVal(x.val))))
} else {
mode = value
}
}
case *Array:
mode = value
// spec: "The expressions len(s) and cap(s) are constants
// if the type of s is an array or pointer to an array and
// the expression s does not contain channel receives or
// function calls; in this case s is not evaluated."
if !check.hasCallOrRecv {
mode = constant_
if t.len >= 0 {
val = constant.MakeInt64(t.len)
} else {
val = constant.MakeUnknown()
}
}
case *Slice, *Chan:
mode = value
case *Map:
if id == _Len {
mode = value
}
}
if mode == invalid {
check.invalidArg(x.pos(), "%s for %s", x, bin.name)
return
}
x.mode = mode
x.typ = Typ[Int]
x.val = val
if check.Types != nil && mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(x.typ, typ))
}
case _Close:
// close(c)
c, _ := x.typ.Underlying().(*Chan)
if c == nil {
check.invalidArg(x.pos(), "%s is not a channel", x)
return
}
if c.dir == RecvOnly {
check.invalidArg(x.pos(), "%s must not be a receive-only channel", x)
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, c))
}
case _Complex:
// complex(x, y floatT) complexT
var y operand
arg(&y, 1)
if y.mode == invalid {
return
}
// convert or check untyped arguments
d := 0
if isUntyped(x.typ) {
d |= 1
}
if isUntyped(y.typ) {
d |= 2
}
switch d {
case 0:
// x and y are typed => nothing to do
case 1:
// only x is untyped => convert to type of y
check.convertUntyped(x, y.typ)
case 2:
// only y is untyped => convert to type of x
check.convertUntyped(&y, x.typ)
case 3:
// x and y are untyped =>
// 1) if both are constants, convert them to untyped
// floating-point numbers if possible,
// 2) if one of them is not constant (possible because
// it contains a shift that is yet untyped), convert
// both of them to float64 since they must have the
// same type to succeed (this will result in an error
// because shifts of floats are not permitted)
if x.mode == constant_ && y.mode == constant_ {
toFloat := func(x *operand) {
if isNumeric(x.typ) && constant.Sign(constant.Imag(x.val)) == 0 {
x.typ = Typ[UntypedFloat]
}
}
toFloat(x)
toFloat(&y)
} else {
check.convertUntyped(x, Typ[Float64])
check.convertUntyped(&y, Typ[Float64])
// x and y should be invalid now, but be conservative
// and check below
}
}
if x.mode == invalid || y.mode == invalid {
return
}
// both argument types must be identical
if !Identical(x.typ, y.typ) {
check.invalidArg(x.pos(), "mismatched types %s and %s", x.typ, y.typ)
return
}
// the argument types must be of floating-point type
if !isFloat(x.typ) {
check.invalidArg(x.pos(), "arguments have type %s, expected floating-point", x.typ)
return
}
// if both arguments are constants, the result is a constant
if x.mode == constant_ && y.mode == constant_ {
x.val = constant.BinaryOp(constant.ToFloat(x.val), token.ADD, constant.MakeImag(constant.ToFloat(y.val)))
} else {
x.mode = value
}
// determine result type
var res BasicKind
switch x.typ.Underlying().(*Basic).kind {
case Float32:
res = Complex64
case Float64:
res = Complex128
case UntypedFloat:
res = UntypedComplex
default:
unreachable()
}
resTyp := Typ[res]
if check.Types != nil && x.mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ, x.typ))
}
x.typ = resTyp
case _Copy:
// copy(x, y []T) int
var dst Type
if t, _ := x.typ.Underlying().(*Slice); t != nil {
dst = t.elem
}
var y operand
arg(&y, 1)
if y.mode == invalid {
return
}
var src Type
switch t := y.typ.Underlying().(type) {
case *Basic:
if isString(y.typ) {
src = universeByte
}
case *Slice:
src = t.elem
}
if dst == nil || src == nil {
check.invalidArg(x.pos(), "copy expects slice arguments; found %s and %s", x, &y)
return
}
if !Identical(dst, src) {
check.invalidArg(x.pos(), "arguments to copy %s and %s have different element types %s and %s", x, &y, dst, src)
return
}
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(Typ[Int], x.typ, y.typ))
}
x.mode = value
x.typ = Typ[Int]
case _Delete:
// delete(m, k)
m, _ := x.typ.Underlying().(*Map)
if m == nil {
check.invalidArg(x.pos(), "%s is not a map", x)
return
}
arg(x, 1) // k
if x.mode == invalid {
return
}
if !x.assignableTo(check.conf, m.key, nil) {
check.invalidArg(x.pos(), "%s is not assignable to %s", x, m.key)
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, m, m.key))
}
case _Imag, _Real:
// imag(complexT) floatT
// real(complexT) floatT
// convert or check untyped argument
if isUntyped(x.typ) {
if x.mode == constant_ {
// an untyped constant number can alway be considered
// as a complex constant
if isNumeric(x.typ) {
x.typ = Typ[UntypedComplex]
}
} else {
// an untyped non-constant argument may appear if
// it contains a (yet untyped non-constant) shift
// expression: convert it to complex128 which will
// result in an error (shift of complex value)
check.convertUntyped(x, Typ[Complex128])
// x should be invalid now, but be conservative and check
if x.mode == invalid {
return
}
}
}
// the argument must be of complex type
if !isComplex(x.typ) {
check.invalidArg(x.pos(), "argument has type %s, expected complex type", x.typ)
return
}
// if the argument is a constant, the result is a constant
if x.mode == constant_ {
if id == _Real {
x.val = constant.Real(x.val)
} else {
x.val = constant.Imag(x.val)
}
} else {
x.mode = value
}
// determine result type
var res BasicKind
switch x.typ.Underlying().(*Basic).kind {
case Complex64:
res = Float32
case Complex128:
res = Float64
case UntypedComplex:
res = UntypedFloat
default:
unreachable()
}
resTyp := Typ[res]
if check.Types != nil && x.mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ))
}
x.typ = resTyp
case _Make:
// make(T, n)
// make(T, n, m)
// (no argument evaluated yet)
arg0 := call.Args[0]
T := check.typ(arg0)
if T == Typ[Invalid] {
return
}
var min int // minimum number of arguments
switch T.Underlying().(type) {
case *Slice:
min = 2
case *Map, *Chan:
min = 1
default:
check.invalidArg(arg0.Pos(), "cannot make %s; type must be slice, map, or channel", arg0)
return
}
if nargs < min || min+1 < nargs {
check.errorf(call.Pos(), "%v expects %d or %d arguments; found %d", call, min, min+1, nargs)
return
}
var sizes []int64 // constant integer arguments, if any
for _, arg := range call.Args[1:] {
if s, ok := check.index(arg, -1); ok && s >= 0 {
sizes = append(sizes, s)
}
}
if len(sizes) == 2 && sizes[0] > sizes[1] {
check.invalidArg(call.Args[1].Pos(), "length and capacity swapped")
// safe to continue
}
x.mode = value
x.typ = T
if check.Types != nil {
params := [...]Type{T, Typ[Int], Typ[Int]}
check.recordBuiltinType(call.Fun, makeSig(x.typ, params[:1+len(sizes)]...))
}
case _New:
// new(T)
// (no argument evaluated yet)
T := check.typ(call.Args[0])
if T == Typ[Invalid] {
return
}
x.mode = value
x.typ = &Pointer{base: T}
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(x.typ, T))
}
case _Panic:
// panic(x)
check.assignment(x, &emptyInterface, "argument to panic")
if x.mode == invalid {
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, &emptyInterface))
}
case _Print, _Println:
// print(x, y, ...)
// println(x, y, ...)
var params []Type
if nargs > 0 {
params = make([]Type, nargs)
for i := 0; i < nargs; i++ {
if i > 0 {
arg(x, i) // first argument already evaluated
}
check.assignment(x, nil, "argument to "+predeclaredFuncs[id].name)
if x.mode == invalid {
// TODO(gri) "use" all arguments?
return
}
params[i] = x.typ
}
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, params...))
}
case _Recover:
// recover() interface{}
x.mode = value
x.typ = &emptyInterface
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(x.typ))
}
case _Alignof:
// unsafe.Alignof(x T) uintptr
check.assignment(x, nil, "argument to unsafe.Alignof")
if x.mode == invalid {
return
}
x.mode = constant_
x.val = constant.MakeInt64(check.conf.alignof(x.typ))
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Offsetof:
// unsafe.Offsetof(x T) uintptr, where x must be a selector
// (no argument evaluated yet)
arg0 := call.Args[0]
selx, _ := unparen(arg0).(*ast.SelectorExpr)
if selx == nil {
check.invalidArg(arg0.Pos(), "%s is not a selector expression", arg0)
check.use(arg0)
return
}
check.expr(x, selx.X)
if x.mode == invalid {
return
}
base := derefStructPtr(x.typ)
sel := selx.Sel.Name
obj, index, indirect := LookupFieldOrMethod(base, false, check.pkg, sel)
switch obj.(type) {
case nil:
check.invalidArg(x.pos(), "%s has no single field %s", base, sel)
return
case *Func:
// TODO(gri) Using derefStructPtr may result in methods being found
// that don't actually exist. An error either way, but the error
// message is confusing. See: https://play.golang.org/p/al75v23kUy ,
// but go/types reports: "invalid argument: x.m is a method value".
check.invalidArg(arg0.Pos(), "%s is a method value", arg0)
return
}
if indirect {
check.invalidArg(x.pos(), "field %s is embedded via a pointer in %s", sel, base)
return
}
// TODO(gri) Should we pass x.typ instead of base (and indirect report if derefStructPtr indirected)?
check.recordSelection(selx, FieldVal, base, obj, index, false)
offs := check.conf.offsetof(base, index)
x.mode = constant_
x.val = constant.MakeInt64(offs)
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Sizeof:
// unsafe.Sizeof(x T) uintptr
check.assignment(x, nil, "argument to unsafe.Sizeof")
if x.mode == invalid {
return
}
x.mode = constant_
x.val = constant.MakeInt64(check.conf.sizeof(x.typ))
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Assert:
// assert(pred) causes a typechecker error if pred is false.
// The result of assert is the value of pred if there is no error.
// Note: assert is only available in self-test mode.
if x.mode != constant_ || !isBoolean(x.typ) {
check.invalidArg(x.pos(), "%s is not a boolean constant", x)
return
}
if x.val.Kind() != constant.Bool {
check.errorf(x.pos(), "internal error: value of %s should be a boolean constant", x)
return
}
if !constant.BoolVal(x.val) {
check.errorf(call.Pos(), "%v failed", call)
// compile-time assertion failure - safe to continue
}
// result is constant - no need to record signature
case _Trace:
// trace(x, y, z, ...) dumps the positions, expressions, and
// values of its arguments. The result of trace is the value
// of the first argument.
// Note: trace is only available in self-test mode.
// (no argument evaluated yet)
if nargs == 0 {
check.dump("%s: trace() without arguments", call.Pos())
x.mode = novalue
break
}
var t operand
x1 := x
for _, arg := range call.Args {
check.rawExpr(x1, arg, nil) // permit trace for types, e.g.: new(trace(T))
check.dump("%s: %s", x1.pos(), x1)
x1 = &t // use incoming x only for first argument
}
// trace is only available in test mode - no need to record signature
default:
unreachable()
}
return true
}
// makeSig makes a signature for the given argument and result types.
// Default types are used for untyped arguments, and res may be nil.
func makeSig(res Type, args ...Type) *Signature {
list := make([]*Var, len(args))
for i, param := range args {
list[i] = NewVar(token.NoPos, nil, "", Default(param))
}
params := NewTuple(list...)
var result *Tuple
if res != nil {
assert(!isUntyped(res))
result = NewTuple(NewVar(token.NoPos, nil, "", res))
}
return &Signature{params: params, results: result}
}
// implicitArrayDeref returns A if typ is of the form *A and A is an array;
// otherwise it returns typ.
//
func implicitArrayDeref(typ Type) Type {
if p, ok := typ.(*Pointer); ok {
if a, ok := p.base.Underlying().(*Array); ok {
return a
}
}
return typ
}
// unparen returns e with any enclosing parentheses stripped.
func unparen(e ast.Expr) ast.Expr {
for {
p, ok := e.(*ast.ParenExpr)
if !ok {
return e
}
e = p.X
}
}

View File

@ -1,478 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of call and selector expressions.
package types
import (
"go/ast"
"go/token"
)
func (check *Checker) call(x *operand, e *ast.CallExpr) exprKind {
check.exprOrType(x, e.Fun)
switch x.mode {
case invalid:
check.use(e.Args...)
x.mode = invalid
x.expr = e
return statement
case typexpr:
// conversion
T := x.typ
x.mode = invalid
switch n := len(e.Args); n {
case 0:
check.errorf(e.Rparen, "missing argument in conversion to %s", T)
case 1:
check.expr(x, e.Args[0])
if x.mode != invalid {
check.conversion(x, T)
}
default:
check.errorf(e.Args[n-1].Pos(), "too many arguments in conversion to %s", T)
}
x.expr = e
return conversion
case builtin:
id := x.id
if !check.builtin(x, e, id) {
x.mode = invalid
}
x.expr = e
// a non-constant result implies a function call
if x.mode != invalid && x.mode != constant_ {
check.hasCallOrRecv = true
}
return predeclaredFuncs[id].kind
default:
// function/method call
sig, _ := x.typ.Underlying().(*Signature)
if sig == nil {
check.invalidOp(x.pos(), "cannot call non-function %s", x)
x.mode = invalid
x.expr = e
return statement
}
arg, n, _ := unpack(func(x *operand, i int) { check.multiExpr(x, e.Args[i]) }, len(e.Args), false)
if arg != nil {
check.arguments(x, e, sig, arg, n)
} else {
x.mode = invalid
}
// determine result
switch sig.results.Len() {
case 0:
x.mode = novalue
case 1:
x.mode = value
x.typ = sig.results.vars[0].typ // unpack tuple
default:
x.mode = value
x.typ = sig.results
}
x.expr = e
check.hasCallOrRecv = true
return statement
}
}
// use type-checks each argument.
// Useful to make sure expressions are evaluated
// (and variables are "used") in the presence of other errors.
// The arguments may be nil.
func (check *Checker) use(arg ...ast.Expr) {
var x operand
for _, e := range arg {
// The nil check below is necessary since certain AST fields
// may legally be nil (e.g., the ast.SliceExpr.High field).
if e != nil {
check.rawExpr(&x, e, nil)
}
}
}
// useLHS is like use, but doesn't "use" top-level identifiers.
// It should be called instead of use if the arguments are
// expressions on the lhs of an assignment.
// The arguments must not be nil.
func (check *Checker) useLHS(arg ...ast.Expr) {
var x operand
for _, e := range arg {
// If the lhs is an identifier denoting a variable v, this assignment
// is not a 'use' of v. Remember current value of v.used and restore
// after evaluating the lhs via check.rawExpr.
var v *Var
var v_used bool
if ident, _ := unparen(e).(*ast.Ident); ident != nil {
// never type-check the blank name on the lhs
if ident.Name == "_" {
continue
}
if _, obj := check.scope.LookupParent(ident.Name, token.NoPos); obj != nil {
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg {
v = w
v_used = v.used
}
}
}
check.rawExpr(&x, e, nil)
if v != nil {
v.used = v_used // restore v.used
}
}
}
// useGetter is like use, but takes a getter instead of a list of expressions.
// It should be called instead of use if a getter is present to avoid repeated
// evaluation of the first argument (since the getter was likely obtained via
// unpack, which may have evaluated the first argument already).
func (check *Checker) useGetter(get getter, n int) {
var x operand
for i := 0; i < n; i++ {
get(&x, i)
}
}
// A getter sets x as the i'th operand, where 0 <= i < n and n is the total
// number of operands (context-specific, and maintained elsewhere). A getter
// type-checks the i'th operand; the details of the actual check are getter-
// specific.
type getter func(x *operand, i int)
// unpack takes a getter get and a number of operands n. If n == 1, unpack
// calls the incoming getter for the first operand. If that operand is
// invalid, unpack returns (nil, 0, false). Otherwise, if that operand is a
// function call, or a comma-ok expression and allowCommaOk is set, the result
// is a new getter and operand count providing access to the function results,
// or comma-ok values, respectively. The third result value reports if it
// is indeed the comma-ok case. In all other cases, the incoming getter and
// operand count are returned unchanged, and the third result value is false.
//
// In other words, if there's exactly one operand that - after type-checking
// by calling get - stands for multiple operands, the resulting getter provides
// access to those operands instead.
//
// If the returned getter is called at most once for a given operand index i
// (including i == 0), that operand is guaranteed to cause only one call of
// the incoming getter with that i.
//
func unpack(get getter, n int, allowCommaOk bool) (getter, int, bool) {
if n != 1 {
// zero or multiple values
return get, n, false
}
// possibly result of an n-valued function call or comma,ok value
var x0 operand
get(&x0, 0)
if x0.mode == invalid {
return nil, 0, false
}
if t, ok := x0.typ.(*Tuple); ok {
// result of an n-valued function call
return func(x *operand, i int) {
x.mode = value
x.expr = x0.expr
x.typ = t.At(i).typ
}, t.Len(), false
}
if x0.mode == mapindex || x0.mode == commaok {
// comma-ok value
if allowCommaOk {
a := [2]Type{x0.typ, Typ[UntypedBool]}
return func(x *operand, i int) {
x.mode = value
x.expr = x0.expr
x.typ = a[i]
}, 2, true
}
x0.mode = value
}
// single value
return func(x *operand, i int) {
if i != 0 {
unreachable()
}
*x = x0
}, 1, false
}
// arguments checks argument passing for the call with the given signature.
// The arg function provides the operand for the i'th argument.
func (check *Checker) arguments(x *operand, call *ast.CallExpr, sig *Signature, arg getter, n int) {
if call.Ellipsis.IsValid() {
// last argument is of the form x...
if !sig.variadic {
check.errorf(call.Ellipsis, "cannot use ... in call to non-variadic %s", call.Fun)
check.useGetter(arg, n)
return
}
if len(call.Args) == 1 && n > 1 {
// f()... is not permitted if f() is multi-valued
check.errorf(call.Ellipsis, "cannot use ... with %d-valued %s", n, call.Args[0])
check.useGetter(arg, n)
return
}
}
// evaluate arguments
for i := 0; i < n; i++ {
arg(x, i)
if x.mode != invalid {
var ellipsis token.Pos
if i == n-1 && call.Ellipsis.IsValid() {
ellipsis = call.Ellipsis
}
check.argument(call.Fun, sig, i, x, ellipsis)
}
}
// check argument count
if sig.variadic {
// a variadic function accepts an "empty"
// last argument: count one extra
n++
}
if n < sig.params.Len() {
check.errorf(call.Rparen, "too few arguments in call to %s", call.Fun)
// ok to continue
}
}
// argument checks passing of argument x to the i'th parameter of the given signature.
// If ellipsis is valid, the argument is followed by ... at that position in the call.
func (check *Checker) argument(fun ast.Expr, sig *Signature, i int, x *operand, ellipsis token.Pos) {
check.singleValue(x)
if x.mode == invalid {
return
}
n := sig.params.Len()
// determine parameter type
var typ Type
switch {
case i < n:
typ = sig.params.vars[i].typ
case sig.variadic:
typ = sig.params.vars[n-1].typ
if debug {
if _, ok := typ.(*Slice); !ok {
check.dump("%s: expected unnamed slice type, got %s", sig.params.vars[n-1].Pos(), typ)
}
}
default:
check.errorf(x.pos(), "too many arguments")
return
}
if ellipsis.IsValid() {
// argument is of the form x... and x is single-valued
if i != n-1 {
check.errorf(ellipsis, "can only use ... with matching parameter")
return
}
if _, ok := x.typ.Underlying().(*Slice); !ok && x.typ != Typ[UntypedNil] { // see issue #18268
check.errorf(x.pos(), "cannot use %s as parameter of type %s", x, typ)
return
}
} else if sig.variadic && i >= n-1 {
// use the variadic parameter slice's element type
typ = typ.(*Slice).elem
}
check.assignment(x, typ, check.sprintf("argument to %s", fun))
}
func (check *Checker) selector(x *operand, e *ast.SelectorExpr) {
// these must be declared before the "goto Error" statements
var (
obj Object
index []int
indirect bool
)
sel := e.Sel.Name
// If the identifier refers to a package, handle everything here
// so we don't need a "package" mode for operands: package names
// can only appear in qualified identifiers which are mapped to
// selector expressions.
if ident, ok := e.X.(*ast.Ident); ok {
_, obj := check.scope.LookupParent(ident.Name, check.pos)
if pname, _ := obj.(*PkgName); pname != nil {
assert(pname.pkg == check.pkg)
check.recordUse(ident, pname)
pname.used = true
pkg := pname.imported
exp := pkg.scope.Lookup(sel)
if exp == nil {
if !pkg.fake {
check.errorf(e.Pos(), "%s not declared by package %s", sel, pkg.name)
}
goto Error
}
if !exp.Exported() {
check.errorf(e.Pos(), "%s not exported by package %s", sel, pkg.name)
// ok to continue
}
check.recordUse(e.Sel, exp)
// Simplified version of the code for *ast.Idents:
// - imported objects are always fully initialized
switch exp := exp.(type) {
case *Const:
assert(exp.Val() != nil)
x.mode = constant_
x.typ = exp.typ
x.val = exp.val
case *TypeName:
x.mode = typexpr
x.typ = exp.typ
case *Var:
x.mode = variable
x.typ = exp.typ
case *Func:
x.mode = value
x.typ = exp.typ
case *Builtin:
x.mode = builtin
x.typ = exp.typ
x.id = exp.id
default:
check.dump("unexpected object %v", exp)
unreachable()
}
x.expr = e
return
}
}
check.exprOrType(x, e.X)
if x.mode == invalid {
goto Error
}
obj, index, indirect = LookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, sel)
if obj == nil {
switch {
case index != nil:
// TODO(gri) should provide actual type where the conflict happens
check.invalidOp(e.Pos(), "ambiguous selector %s", sel)
case indirect:
check.invalidOp(e.Pos(), "%s is not in method set of %s", sel, x.typ)
default:
check.invalidOp(e.Pos(), "%s has no field or method %s", x, sel)
}
goto Error
}
if x.mode == typexpr {
// method expression
m, _ := obj.(*Func)
if m == nil {
check.invalidOp(e.Pos(), "%s has no method %s", x, sel)
goto Error
}
check.recordSelection(e, MethodExpr, x.typ, m, index, indirect)
// the receiver type becomes the type of the first function
// argument of the method expression's function type
var params []*Var
sig := m.typ.(*Signature)
if sig.params != nil {
params = sig.params.vars
}
x.mode = value
x.typ = &Signature{
params: NewTuple(append([]*Var{NewVar(token.NoPos, check.pkg, "", x.typ)}, params...)...),
results: sig.results,
variadic: sig.variadic,
}
check.addDeclDep(m)
} else {
// regular selector
switch obj := obj.(type) {
case *Var:
check.recordSelection(e, FieldVal, x.typ, obj, index, indirect)
if x.mode == variable || indirect {
x.mode = variable
} else {
x.mode = value
}
x.typ = obj.typ
case *Func:
// TODO(gri) If we needed to take into account the receiver's
// addressability, should we report the type &(x.typ) instead?
check.recordSelection(e, MethodVal, x.typ, obj, index, indirect)
if debug {
// Verify that LookupFieldOrMethod and MethodSet.Lookup agree.
typ := x.typ
if x.mode == variable {
// If typ is not an (unnamed) pointer or an interface,
// use *typ instead, because the method set of *typ
// includes the methods of typ.
// Variables are addressable, so we can always take their
// address.
if _, ok := typ.(*Pointer); !ok && !IsInterface(typ) {
typ = &Pointer{base: typ}
}
}
// If we created a synthetic pointer type above, we will throw
// away the method set computed here after use.
// TODO(gri) Method set computation should probably always compute
// both, the value and the pointer receiver method set and represent
// them in a single structure.
// TODO(gri) Consider also using a method set cache for the lifetime
// of checker once we rely on MethodSet lookup instead of individual
// lookup.
mset := NewMethodSet(typ)
if m := mset.Lookup(check.pkg, sel); m == nil || m.obj != obj {
check.dump("%s: (%s).%v -> %s", e.Pos(), typ, obj.name, m)
check.dump("%s\n", mset)
panic("method sets and lookup don't agree")
}
}
x.mode = value
// remove receiver
sig := *obj.typ.(*Signature)
sig.recv = nil
x.typ = &sig
check.addDeclDep(obj)
default:
unreachable()
}
}
// everything went well
x.expr = e
return
Error:
x.mode = invalid
x.expr = e
}

View File

@ -1,371 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements the Check function, which drives type-checking.
package types
import (
"go/ast"
"go/constant"
"go/token"
)
// debugging/development support
const (
debug = false // leave on during development
trace = false // turn on for detailed type resolution traces
)
// If Strict is set, the type-checker enforces additional
// rules not specified by the Go 1 spec, but which will
// catch guaranteed run-time errors if the respective
// code is executed. In other words, programs passing in
// Strict mode are Go 1 compliant, but not all Go 1 programs
// will pass in Strict mode. The additional rules are:
//
// - A type assertion x.(T) where T is an interface type
// is invalid if any (statically known) method that exists
// for both x and T have different signatures.
//
const strict = false
// exprInfo stores information about an untyped expression.
type exprInfo struct {
isLhs bool // expression is lhs operand of a shift with delayed type-check
mode operandMode
typ *Basic
val constant.Value // constant value; or nil (if not a constant)
}
// funcInfo stores the information required for type-checking a function.
type funcInfo struct {
name string // for debugging/tracing only
decl *declInfo // for cycle detection
sig *Signature
body *ast.BlockStmt
}
// A context represents the context within which an object is type-checked.
type context struct {
decl *declInfo // package-level declaration whose init expression/function body is checked
scope *Scope // top-most scope for lookups
iota constant.Value // value of iota in a constant declaration; nil otherwise
sig *Signature // function signature if inside a function; nil otherwise
hasLabel bool // set if a function makes use of labels (only ~1% of functions); unused outside functions
hasCallOrRecv bool // set if an expression contains a function call or channel receive operation
}
// An importKey identifies an imported package by import path and source directory
// (directory containing the file containing the import). In practice, the directory
// may always be the same, or may not matter. Given an (import path, directory), an
// importer must always return the same package (but given two different import paths,
// an importer may still return the same package by mapping them to the same package
// paths).
type importKey struct {
path, dir string
}
// A Checker maintains the state of the type checker.
// It must be created with NewChecker.
type Checker struct {
// package information
// (initialized by NewChecker, valid for the life-time of checker)
conf *Config
fset *token.FileSet
pkg *Package
*Info
objMap map[Object]*declInfo // maps package-level object to declaration info
impMap map[importKey]*Package // maps (import path, source directory) to (complete or fake) package
// information collected during type-checking of a set of package files
// (initialized by Files, valid only for the duration of check.Files;
// maps and lists are allocated on demand)
files []*ast.File // package files
unusedDotImports map[*Scope]map[*Package]token.Pos // positions of unused dot-imported packages for each file scope
firstErr error // first error encountered
methods map[string][]*Func // maps type names to associated methods
untyped map[ast.Expr]exprInfo // map of expressions without final type
funcs []funcInfo // list of functions to type-check
delayed []func() // delayed checks requiring fully setup types
// context within which the current object is type-checked
// (valid only for the duration of type-checking a specific object)
context
pos token.Pos // if valid, identifiers are looked up as if at position pos (used by Eval)
// debugging
indent int // indentation for tracing
}
// addUnusedImport adds the position of a dot-imported package
// pkg to the map of dot imports for the given file scope.
func (check *Checker) addUnusedDotImport(scope *Scope, pkg *Package, pos token.Pos) {
mm := check.unusedDotImports
if mm == nil {
mm = make(map[*Scope]map[*Package]token.Pos)
check.unusedDotImports = mm
}
m := mm[scope]
if m == nil {
m = make(map[*Package]token.Pos)
mm[scope] = m
}
m[pkg] = pos
}
// addDeclDep adds the dependency edge (check.decl -> to) if check.decl exists
func (check *Checker) addDeclDep(to Object) {
from := check.decl
if from == nil {
return // not in a package-level init expression
}
if _, found := check.objMap[to]; !found {
return // to is not a package-level object
}
from.addDep(to)
}
func (check *Checker) assocMethod(tname string, meth *Func) {
m := check.methods
if m == nil {
m = make(map[string][]*Func)
check.methods = m
}
m[tname] = append(m[tname], meth)
}
func (check *Checker) rememberUntyped(e ast.Expr, lhs bool, mode operandMode, typ *Basic, val constant.Value) {
m := check.untyped
if m == nil {
m = make(map[ast.Expr]exprInfo)
check.untyped = m
}
m[e] = exprInfo{lhs, mode, typ, val}
}
func (check *Checker) later(name string, decl *declInfo, sig *Signature, body *ast.BlockStmt) {
check.funcs = append(check.funcs, funcInfo{name, decl, sig, body})
}
func (check *Checker) delay(f func()) {
check.delayed = append(check.delayed, f)
}
// NewChecker returns a new Checker instance for a given package.
// Package files may be added incrementally via checker.Files.
func NewChecker(conf *Config, fset *token.FileSet, pkg *Package, info *Info) *Checker {
// make sure we have a configuration
if conf == nil {
conf = new(Config)
}
// make sure we have an info struct
if info == nil {
info = new(Info)
}
return &Checker{
conf: conf,
fset: fset,
pkg: pkg,
Info: info,
objMap: make(map[Object]*declInfo),
impMap: make(map[importKey]*Package),
}
}
// initFiles initializes the files-specific portion of checker.
// The provided files must all belong to the same package.
func (check *Checker) initFiles(files []*ast.File) {
// start with a clean slate (check.Files may be called multiple times)
check.files = nil
check.unusedDotImports = nil
check.firstErr = nil
check.methods = nil
check.untyped = nil
check.funcs = nil
check.delayed = nil
// determine package name and collect valid files
pkg := check.pkg
for _, file := range files {
switch name := file.Name.Name; pkg.name {
case "":
if name != "_" {
pkg.name = name
} else {
check.errorf(file.Name.Pos(), "invalid package name _")
}
fallthrough
case name:
check.files = append(check.files, file)
default:
check.errorf(file.Package, "package %s; expected %s", name, pkg.name)
// ignore this file
}
}
}
// A bailout panic is used for early termination.
type bailout struct{}
func (check *Checker) handleBailout(err *error) {
switch p := recover().(type) {
case nil, bailout:
// normal return or early exit
*err = check.firstErr
default:
// re-panic
panic(p)
}
}
// Files checks the provided files as part of the checker's package.
func (check *Checker) Files(files []*ast.File) error { return check.checkFiles(files) }
func (check *Checker) checkFiles(files []*ast.File) (err error) {
defer check.handleBailout(&err)
check.initFiles(files)
check.collectObjects()
check.packageObjects(check.resolveOrder())
check.functionBodies()
check.initOrder()
if !check.conf.DisableUnusedImportCheck {
check.unusedImports()
}
// perform delayed checks
for _, f := range check.delayed {
f()
}
check.recordUntyped()
check.pkg.complete = true
return
}
func (check *Checker) recordUntyped() {
if !debug && check.Types == nil {
return // nothing to do
}
for x, info := range check.untyped {
if debug && isTyped(info.typ) {
check.dump("%s: %s (type %s) is typed", x.Pos(), x, info.typ)
unreachable()
}
check.recordTypeAndValue(x, info.mode, info.typ, info.val)
}
}
func (check *Checker) recordTypeAndValue(x ast.Expr, mode operandMode, typ Type, val constant.Value) {
assert(x != nil)
assert(typ != nil)
if mode == invalid {
return // omit
}
assert(typ != nil)
if mode == constant_ {
assert(val != nil)
assert(typ == Typ[Invalid] || isConstType(typ))
}
if m := check.Types; m != nil {
m[x] = TypeAndValue{mode, typ, val}
}
}
func (check *Checker) recordBuiltinType(f ast.Expr, sig *Signature) {
// f must be a (possibly parenthesized) identifier denoting a built-in
// (built-ins in package unsafe always produce a constant result and
// we don't record their signatures, so we don't see qualified idents
// here): record the signature for f and possible children.
for {
check.recordTypeAndValue(f, builtin, sig, nil)
switch p := f.(type) {
case *ast.Ident:
return // we're done
case *ast.ParenExpr:
f = p.X
default:
unreachable()
}
}
}
func (check *Checker) recordCommaOkTypes(x ast.Expr, a [2]Type) {
assert(x != nil)
if a[0] == nil || a[1] == nil {
return
}
assert(isTyped(a[0]) && isTyped(a[1]) && isBoolean(a[1]))
if m := check.Types; m != nil {
for {
tv := m[x]
assert(tv.Type != nil) // should have been recorded already
pos := x.Pos()
tv.Type = NewTuple(
NewVar(pos, check.pkg, "", a[0]),
NewVar(pos, check.pkg, "", a[1]),
)
m[x] = tv
// if x is a parenthesized expression (p.X), update p.X
p, _ := x.(*ast.ParenExpr)
if p == nil {
break
}
x = p.X
}
}
}
func (check *Checker) recordDef(id *ast.Ident, obj Object) {
assert(id != nil)
if m := check.Defs; m != nil {
m[id] = obj
}
}
func (check *Checker) recordUse(id *ast.Ident, obj Object) {
assert(id != nil)
assert(obj != nil)
if m := check.Uses; m != nil {
m[id] = obj
}
}
func (check *Checker) recordImplicit(node ast.Node, obj Object) {
assert(node != nil)
assert(obj != nil)
if m := check.Implicits; m != nil {
m[node] = obj
}
}
func (check *Checker) recordSelection(x *ast.SelectorExpr, kind SelectionKind, recv Type, obj Object, index []int, indirect bool) {
assert(obj != nil && (recv == nil || len(index) > 0))
check.recordUse(x.Sel, obj)
if m := check.Selections; m != nil {
m[x] = &Selection{kind, recv, obj, index, indirect}
}
}
func (check *Checker) recordScope(node ast.Node, scope *Scope) {
assert(node != nil)
assert(scope != nil)
if m := check.Scopes; m != nil {
m[node] = scope
}
}

View File

@ -1,160 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of conversions.
package types
import "go/constant"
// Conversion type-checks the conversion T(x).
// The result is in x.
func (check *Checker) conversion(x *operand, T Type) {
constArg := x.mode == constant_
var ok bool
switch {
case constArg && isConstType(T):
// constant conversion
switch t := T.Underlying().(*Basic); {
case representableConst(x.val, check.conf, t, &x.val):
ok = true
case isInteger(x.typ) && isString(t):
codepoint := int64(-1)
if i, ok := constant.Int64Val(x.val); ok {
codepoint = i
}
// If codepoint < 0 the absolute value is too large (or unknown) for
// conversion. This is the same as converting any other out-of-range
// value - let string(codepoint) do the work.
x.val = constant.MakeString(string(codepoint))
ok = true
}
case x.convertibleTo(check.conf, T):
// non-constant conversion
x.mode = value
ok = true
}
if !ok {
check.errorf(x.pos(), "cannot convert %s to %s", x, T)
x.mode = invalid
return
}
// The conversion argument types are final. For untyped values the
// conversion provides the type, per the spec: "A constant may be
// given a type explicitly by a constant declaration or conversion,...".
if isUntyped(x.typ) {
final := T
// - For conversions to interfaces, use the argument's default type.
// - For conversions of untyped constants to non-constant types, also
// use the default type (e.g., []byte("foo") should report string
// not []byte as type for the constant "foo").
// - Keep untyped nil for untyped nil arguments.
// - For integer to string conversions, keep the argument type.
// (See also the TODO below.)
if IsInterface(T) || constArg && !isConstType(T) {
final = Default(x.typ)
} else if isInteger(x.typ) && isString(T) {
final = x.typ
}
check.updateExprType(x.expr, final, true)
}
x.typ = T
}
// TODO(gri) convertibleTo checks if T(x) is valid. It assumes that the type
// of x is fully known, but that's not the case for say string(1<<s + 1.0):
// Here, the type of 1<<s + 1.0 will be UntypedFloat which will lead to the
// (correct!) refusal of the conversion. But the reported error is essentially
// "cannot convert untyped float value to string", yet the correct error (per
// the spec) is that we cannot shift a floating-point value: 1 in 1<<s should
// be converted to UntypedFloat because of the addition of 1.0. Fixing this
// is tricky because we'd have to run updateExprType on the argument first.
// (Issue #21982.)
func (x *operand) convertibleTo(conf *Config, T Type) bool {
// "x is assignable to T"
if x.assignableTo(conf, T, nil) {
return true
}
// "x's type and T have identical underlying types if tags are ignored"
V := x.typ
Vu := V.Underlying()
Tu := T.Underlying()
if IdenticalIgnoreTags(Vu, Tu) {
return true
}
// "x's type and T are unnamed pointer types and their pointer base types
// have identical underlying types if tags are ignored"
if V, ok := V.(*Pointer); ok {
if T, ok := T.(*Pointer); ok {
if IdenticalIgnoreTags(V.base.Underlying(), T.base.Underlying()) {
return true
}
}
}
// "x's type and T are both integer or floating point types"
if (isInteger(V) || isFloat(V)) && (isInteger(T) || isFloat(T)) {
return true
}
// "x's type and T are both complex types"
if isComplex(V) && isComplex(T) {
return true
}
// "x is an integer or a slice of bytes or runes and T is a string type"
if (isInteger(V) || isBytesOrRunes(Vu)) && isString(T) {
return true
}
// "x is a string and T is a slice of bytes or runes"
if isString(V) && isBytesOrRunes(Tu) {
return true
}
// package unsafe:
// "any pointer or value of underlying type uintptr can be converted into a unsafe.Pointer"
if (isPointer(Vu) || isUintptr(Vu)) && isUnsafePointer(T) {
return true
}
// "and vice versa"
if isUnsafePointer(V) && (isPointer(Tu) || isUintptr(Tu)) {
return true
}
return false
}
func isUintptr(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.kind == Uintptr
}
func isUnsafePointer(typ Type) bool {
// TODO(gri): Is this (typ.Underlying() instead of just typ) correct?
// The spec does not say so, but gc claims it is. See also
// issue 6326.
t, ok := typ.Underlying().(*Basic)
return ok && t.kind == UnsafePointer
}
func isPointer(typ Type) bool {
_, ok := typ.Underlying().(*Pointer)
return ok
}
func isBytesOrRunes(typ Type) bool {
if s, ok := typ.(*Slice); ok {
t, ok := s.elem.Underlying().(*Basic)
return ok && (t.kind == Byte || t.kind == Rune)
}
return false
}

View File

@ -1,467 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"go/ast"
"go/constant"
"go/token"
)
func (check *Checker) reportAltDecl(obj Object) {
if pos := obj.Pos(); pos.IsValid() {
// We use "other" rather than "previous" here because
// the first declaration seen may not be textually
// earlier in the source.
check.errorf(pos, "\tother declaration of %s", obj.Name()) // secondary error, \t indented
}
}
func (check *Checker) declare(scope *Scope, id *ast.Ident, obj Object, pos token.Pos) {
// spec: "The blank identifier, represented by the underscore
// character _, may be used in a declaration like any other
// identifier but the declaration does not introduce a new
// binding."
if obj.Name() != "_" {
if alt := scope.Insert(obj); alt != nil {
check.errorf(obj.Pos(), "%s redeclared in this block", obj.Name())
check.reportAltDecl(alt)
return
}
obj.setScopePos(pos)
}
if id != nil {
check.recordDef(id, obj)
}
}
// objDecl type-checks the declaration of obj in its respective (file) context.
// See check.typ for the details on def and path.
func (check *Checker) objDecl(obj Object, def *Named, path []*TypeName) {
if obj.Type() != nil {
return // already checked - nothing to do
}
if trace {
check.trace(obj.Pos(), "-- declaring %s", obj.Name())
check.indent++
defer func() {
check.indent--
check.trace(obj.Pos(), "=> %s", obj)
}()
}
d := check.objMap[obj]
if d == nil {
check.dump("%s: %s should have been declared", obj.Pos(), obj.Name())
unreachable()
}
// save/restore current context and setup object context
defer func(ctxt context) {
check.context = ctxt
}(check.context)
check.context = context{
scope: d.file,
}
// Const and var declarations must not have initialization
// cycles. We track them by remembering the current declaration
// in check.decl. Initialization expressions depending on other
// consts, vars, or functions, add dependencies to the current
// check.decl.
switch obj := obj.(type) {
case *Const:
check.decl = d // new package-level const decl
check.constDecl(obj, d.typ, d.init)
case *Var:
check.decl = d // new package-level var decl
check.varDecl(obj, d.lhs, d.typ, d.init)
case *TypeName:
// invalid recursive types are detected via path
check.typeDecl(obj, d.typ, def, path, d.alias)
case *Func:
// functions may be recursive - no need to track dependencies
check.funcDecl(obj, d)
default:
unreachable()
}
}
func (check *Checker) constDecl(obj *Const, typ, init ast.Expr) {
assert(obj.typ == nil)
if obj.visited {
obj.typ = Typ[Invalid]
return
}
obj.visited = true
// use the correct value of iota
assert(check.iota == nil)
check.iota = obj.val
defer func() { check.iota = nil }()
// provide valid constant value under all circumstances
obj.val = constant.MakeUnknown()
// determine type, if any
if typ != nil {
t := check.typ(typ)
if !isConstType(t) {
// don't report an error if the type is an invalid C (defined) type
// (issue #22090)
if t.Underlying() != Typ[Invalid] {
check.errorf(typ.Pos(), "invalid constant type %s", t)
}
obj.typ = Typ[Invalid]
return
}
obj.typ = t
}
// check initialization
var x operand
if init != nil {
check.expr(&x, init)
}
check.initConst(obj, &x)
}
func (check *Checker) varDecl(obj *Var, lhs []*Var, typ, init ast.Expr) {
assert(obj.typ == nil)
if obj.visited {
obj.typ = Typ[Invalid]
return
}
obj.visited = true
// var declarations cannot use iota
assert(check.iota == nil)
// determine type, if any
if typ != nil {
obj.typ = check.typ(typ)
// We cannot spread the type to all lhs variables if there
// are more than one since that would mark them as checked
// (see Checker.objDecl) and the assignment of init exprs,
// if any, would not be checked.
//
// TODO(gri) If we have no init expr, we should distribute
// a given type otherwise we need to re-evalate the type
// expr for each lhs variable, leading to duplicate work.
}
// check initialization
if init == nil {
if typ == nil {
// error reported before by arityMatch
obj.typ = Typ[Invalid]
}
return
}
if lhs == nil || len(lhs) == 1 {
assert(lhs == nil || lhs[0] == obj)
var x operand
check.expr(&x, init)
check.initVar(obj, &x, "variable declaration")
return
}
if debug {
// obj must be one of lhs
found := false
for _, lhs := range lhs {
if obj == lhs {
found = true
break
}
}
if !found {
panic("inconsistent lhs")
}
}
// We have multiple variables on the lhs and one init expr.
// Make sure all variables have been given the same type if
// one was specified, otherwise they assume the type of the
// init expression values (was issue #15755).
if typ != nil {
for _, lhs := range lhs {
lhs.typ = obj.typ
}
}
check.initVars(lhs, []ast.Expr{init}, token.NoPos)
}
// underlying returns the underlying type of typ; possibly by following
// forward chains of named types. Such chains only exist while named types
// are incomplete.
func underlying(typ Type) Type {
for {
n, _ := typ.(*Named)
if n == nil {
break
}
typ = n.underlying
}
return typ
}
func (n *Named) setUnderlying(typ Type) {
if n != nil {
n.underlying = typ
}
}
func (check *Checker) typeDecl(obj *TypeName, typ ast.Expr, def *Named, path []*TypeName, alias bool) {
assert(obj.typ == nil)
// type declarations cannot use iota
assert(check.iota == nil)
if alias {
obj.typ = Typ[Invalid]
obj.typ = check.typExpr(typ, nil, append(path, obj))
} else {
named := &Named{obj: obj}
def.setUnderlying(named)
obj.typ = named // make sure recursive type declarations terminate
// determine underlying type of named
check.typExpr(typ, named, append(path, obj))
// The underlying type of named may be itself a named type that is
// incomplete:
//
// type (
// A B
// B *C
// C A
// )
//
// The type of C is the (named) type of A which is incomplete,
// and which has as its underlying type the named type B.
// Determine the (final, unnamed) underlying type by resolving
// any forward chain (they always end in an unnamed type).
named.underlying = underlying(named.underlying)
}
// check and add associated methods
// TODO(gri) It's easy to create pathological cases where the
// current approach is incorrect: In general we need to know
// and add all methods _before_ type-checking the type.
// See https://play.golang.org/p/WMpE0q2wK8
check.addMethodDecls(obj)
}
func (check *Checker) addMethodDecls(obj *TypeName) {
// get associated methods
methods := check.methods[obj.name]
if len(methods) == 0 {
return // no methods
}
delete(check.methods, obj.name)
// use an objset to check for name conflicts
var mset objset
// spec: "If the base type is a struct type, the non-blank method
// and field names must be distinct."
base, _ := obj.typ.(*Named) // nil if receiver base type is type alias
if base != nil {
if t, _ := base.underlying.(*Struct); t != nil {
for _, fld := range t.fields {
if fld.name != "_" {
assert(mset.insert(fld) == nil)
}
}
}
// Checker.Files may be called multiple times; additional package files
// may add methods to already type-checked types. Add pre-existing methods
// so that we can detect redeclarations.
for _, m := range base.methods {
assert(m.name != "_")
assert(mset.insert(m) == nil)
}
}
// type-check methods
for _, m := range methods {
// spec: "For a base type, the non-blank names of methods bound
// to it must be unique."
if m.name != "_" {
if alt := mset.insert(m); alt != nil {
switch alt.(type) {
case *Var:
check.errorf(m.pos, "field and method with the same name %s", m.name)
case *Func:
check.errorf(m.pos, "method %s already declared for %s", m.name, obj)
default:
unreachable()
}
check.reportAltDecl(alt)
continue
}
}
// type-check
check.objDecl(m, nil, nil)
// methods with blank _ names cannot be found - don't keep them
if base != nil && m.name != "_" {
base.methods = append(base.methods, m)
}
}
}
func (check *Checker) funcDecl(obj *Func, decl *declInfo) {
assert(obj.typ == nil)
// func declarations cannot use iota
assert(check.iota == nil)
sig := new(Signature)
obj.typ = sig // guard against cycles
fdecl := decl.fdecl
check.funcType(sig, fdecl.Recv, fdecl.Type)
if sig.recv == nil && obj.name == "init" && (sig.params.Len() > 0 || sig.results.Len() > 0) {
check.errorf(fdecl.Pos(), "func init must have no arguments and no return values")
// ok to continue
}
// function body must be type-checked after global declarations
// (functions implemented elsewhere have no body)
if !check.conf.IgnoreFuncBodies && fdecl.Body != nil {
check.later(obj.name, decl, sig, fdecl.Body)
}
}
func (check *Checker) declStmt(decl ast.Decl) {
pkg := check.pkg
switch d := decl.(type) {
case *ast.BadDecl:
// ignore
case *ast.GenDecl:
var last *ast.ValueSpec // last ValueSpec with type or init exprs seen
for iota, spec := range d.Specs {
switch s := spec.(type) {
case *ast.ValueSpec:
switch d.Tok {
case token.CONST:
// determine which init exprs to use
switch {
case s.Type != nil || len(s.Values) > 0:
last = s
case last == nil:
last = new(ast.ValueSpec) // make sure last exists
}
// declare all constants
lhs := make([]*Const, len(s.Names))
for i, name := range s.Names {
obj := NewConst(name.Pos(), pkg, name.Name, nil, constant.MakeInt64(int64(iota)))
lhs[i] = obj
var init ast.Expr
if i < len(last.Values) {
init = last.Values[i]
}
check.constDecl(obj, last.Type, init)
}
check.arityMatch(s, last)
// spec: "The scope of a constant or variable identifier declared
// inside a function begins at the end of the ConstSpec or VarSpec
// (ShortVarDecl for short variable declarations) and ends at the
// end of the innermost containing block."
scopePos := s.End()
for i, name := range s.Names {
check.declare(check.scope, name, lhs[i], scopePos)
}
case token.VAR:
lhs0 := make([]*Var, len(s.Names))
for i, name := range s.Names {
lhs0[i] = NewVar(name.Pos(), pkg, name.Name, nil)
}
// initialize all variables
for i, obj := range lhs0 {
var lhs []*Var
var init ast.Expr
switch len(s.Values) {
case len(s.Names):
// lhs and rhs match
init = s.Values[i]
case 1:
// rhs is expected to be a multi-valued expression
lhs = lhs0
init = s.Values[0]
default:
if i < len(s.Values) {
init = s.Values[i]
}
}
check.varDecl(obj, lhs, s.Type, init)
if len(s.Values) == 1 {
// If we have a single lhs variable we are done either way.
// If we have a single rhs expression, it must be a multi-
// valued expression, in which case handling the first lhs
// variable will cause all lhs variables to have a type
// assigned, and we are done as well.
if debug {
for _, obj := range lhs0 {
assert(obj.typ != nil)
}
}
break
}
}
check.arityMatch(s, nil)
// declare all variables
// (only at this point are the variable scopes (parents) set)
scopePos := s.End() // see constant declarations
for i, name := range s.Names {
// see constant declarations
check.declare(check.scope, name, lhs0[i], scopePos)
}
default:
check.invalidAST(s.Pos(), "invalid token %s", d.Tok)
}
case *ast.TypeSpec:
obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Name, nil)
// spec: "The scope of a type identifier declared inside a function
// begins at the identifier in the TypeSpec and ends at the end of
// the innermost containing block."
scopePos := s.Name.Pos()
check.declare(check.scope, s.Name, obj, scopePos)
check.typeDecl(obj, s.Type, nil, nil, s.Assign.IsValid())
default:
check.invalidAST(s.Pos(), "const, type, or var declaration expected")
}
}
default:
check.invalidAST(d.Pos(), "unknown ast.Decl node %T", d)
}
}

View File

@ -1,103 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements various error reporters.
package types
import (
"fmt"
"go/ast"
"go/token"
"strings"
)
func assert(p bool) {
if !p {
panic("assertion failed")
}
}
func unreachable() {
panic("unreachable")
}
func (check *Checker) qualifier(pkg *Package) string {
if pkg != check.pkg {
return pkg.path
}
return ""
}
func (check *Checker) sprintf(format string, args ...interface{}) string {
for i, arg := range args {
switch a := arg.(type) {
case nil:
arg = "<nil>"
case operand:
panic("internal error: should always pass *operand")
case *operand:
arg = operandString(a, check.qualifier)
case token.Pos:
arg = check.fset.Position(a).String()
case ast.Expr:
arg = ExprString(a)
case Object:
arg = ObjectString(a, check.qualifier)
case Type:
arg = TypeString(a, check.qualifier)
}
args[i] = arg
}
return fmt.Sprintf(format, args...)
}
func (check *Checker) trace(pos token.Pos, format string, args ...interface{}) {
fmt.Printf("%s:\t%s%s\n",
check.fset.Position(pos),
strings.Repeat(". ", check.indent),
check.sprintf(format, args...),
)
}
// dump is only needed for debugging
func (check *Checker) dump(format string, args ...interface{}) {
fmt.Println(check.sprintf(format, args...))
}
func (check *Checker) err(pos token.Pos, msg string, soft bool) {
err := Error{check.fset, pos, msg, soft}
if check.firstErr == nil {
check.firstErr = err
}
f := check.conf.Error
if f == nil {
panic(bailout{}) // report only first error
}
f(err)
}
func (check *Checker) error(pos token.Pos, msg string) {
check.err(pos, msg, false)
}
func (check *Checker) errorf(pos token.Pos, format string, args ...interface{}) {
check.err(pos, check.sprintf(format, args...), false)
}
func (check *Checker) softErrorf(pos token.Pos, format string, args ...interface{}) {
check.err(pos, check.sprintf(format, args...), true)
}
func (check *Checker) invalidAST(pos token.Pos, format string, args ...interface{}) {
check.errorf(pos, "invalid AST: "+format, args...)
}
func (check *Checker) invalidArg(pos token.Pos, format string, args ...interface{}) {
check.errorf(pos, "invalid argument: "+format, args...)
}
func (check *Checker) invalidOp(pos token.Pos, format string, args ...interface{}) {
check.errorf(pos, "invalid operation: "+format, args...)
}

View File

@ -1,83 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"fmt"
"go/parser"
"go/token"
)
// Eval returns the type and, if constant, the value for the
// expression expr, evaluated at position pos of package pkg,
// which must have been derived from type-checking an AST with
// complete position information relative to the provided file
// set.
//
// If the expression contains function literals, their bodies
// are ignored (i.e., the bodies are not type-checked).
//
// If pkg == nil, the Universe scope is used and the provided
// position pos is ignored. If pkg != nil, and pos is invalid,
// the package scope is used. Otherwise, pos must belong to the
// package.
//
// An error is returned if pos is not within the package or
// if the node cannot be evaluated.
//
// Note: Eval should not be used instead of running Check to compute
// types and values, but in addition to Check. Eval will re-evaluate
// its argument each time, and it also does not know about the context
// in which an expression is used (e.g., an assignment). Thus, top-
// level untyped constants will return an untyped type rather then the
// respective context-specific type.
//
func Eval(fset *token.FileSet, pkg *Package, pos token.Pos, expr string) (TypeAndValue, error) {
// determine scope
var scope *Scope
if pkg == nil {
scope = Universe
pos = token.NoPos
} else if !pos.IsValid() {
scope = pkg.scope
} else {
// The package scope extent (position information) may be
// incorrect (files spread across a wide range of fset
// positions) - ignore it and just consider its children
// (file scopes).
for _, fscope := range pkg.scope.children {
if scope = fscope.Innermost(pos); scope != nil {
break
}
}
if scope == nil || debug {
s := scope
for s != nil && s != pkg.scope {
s = s.parent
}
// s == nil || s == pkg.scope
if s == nil {
return TypeAndValue{}, fmt.Errorf("no position %s found in package %s", fset.Position(pos), pkg.name)
}
}
}
// parse expressions
node, err := parser.ParseExprFrom(fset, "eval", expr, 0)
if err != nil {
return TypeAndValue{}, err
}
// initialize checker
check := NewChecker(nil, fset, pkg, nil)
check.scope = scope
check.pos = pos
defer check.handleBailout(&err)
// evaluate node
var x operand
check.rawExpr(&x, node, nil)
return TypeAndValue{x.mode, x.typ, x.val}, err
}

File diff suppressed because it is too large Load Diff

View File

@ -1,224 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements printing of expressions.
package types
import (
"bytes"
"go/ast"
)
// ExprString returns the (possibly shortened) string representation for x.
// Shortened representations are suitable for user interfaces but may not
// necessarily follow Go syntax.
func ExprString(x ast.Expr) string {
var buf bytes.Buffer
WriteExpr(&buf, x)
return buf.String()
}
// WriteExpr writes the (possibly shortened) string representation for x to buf.
// Shortened representations are suitable for user interfaces but may not
// necessarily follow Go syntax.
func WriteExpr(buf *bytes.Buffer, x ast.Expr) {
// The AST preserves source-level parentheses so there is
// no need to introduce them here to correct for different
// operator precedences. (This assumes that the AST was
// generated by a Go parser.)
switch x := x.(type) {
default:
buf.WriteString("(bad expr)") // nil, ast.BadExpr, ast.KeyValueExpr
case *ast.Ident:
buf.WriteString(x.Name)
case *ast.Ellipsis:
buf.WriteString("...")
if x.Elt != nil {
WriteExpr(buf, x.Elt)
}
case *ast.BasicLit:
buf.WriteString(x.Value)
case *ast.FuncLit:
buf.WriteByte('(')
WriteExpr(buf, x.Type)
buf.WriteString(" literal)") // shortened
case *ast.CompositeLit:
buf.WriteByte('(')
WriteExpr(buf, x.Type)
buf.WriteString(" literal)") // shortened
case *ast.ParenExpr:
buf.WriteByte('(')
WriteExpr(buf, x.X)
buf.WriteByte(')')
case *ast.SelectorExpr:
WriteExpr(buf, x.X)
buf.WriteByte('.')
buf.WriteString(x.Sel.Name)
case *ast.IndexExpr:
WriteExpr(buf, x.X)
buf.WriteByte('[')
WriteExpr(buf, x.Index)
buf.WriteByte(']')
case *ast.SliceExpr:
WriteExpr(buf, x.X)
buf.WriteByte('[')
if x.Low != nil {
WriteExpr(buf, x.Low)
}
buf.WriteByte(':')
if x.High != nil {
WriteExpr(buf, x.High)
}
if x.Slice3 {
buf.WriteByte(':')
if x.Max != nil {
WriteExpr(buf, x.Max)
}
}
buf.WriteByte(']')
case *ast.TypeAssertExpr:
WriteExpr(buf, x.X)
buf.WriteString(".(")
WriteExpr(buf, x.Type)
buf.WriteByte(')')
case *ast.CallExpr:
WriteExpr(buf, x.Fun)
buf.WriteByte('(')
for i, arg := range x.Args {
if i > 0 {
buf.WriteString(", ")
}
WriteExpr(buf, arg)
}
if x.Ellipsis.IsValid() {
buf.WriteString("...")
}
buf.WriteByte(')')
case *ast.StarExpr:
buf.WriteByte('*')
WriteExpr(buf, x.X)
case *ast.UnaryExpr:
buf.WriteString(x.Op.String())
WriteExpr(buf, x.X)
case *ast.BinaryExpr:
WriteExpr(buf, x.X)
buf.WriteByte(' ')
buf.WriteString(x.Op.String())
buf.WriteByte(' ')
WriteExpr(buf, x.Y)
case *ast.ArrayType:
buf.WriteByte('[')
if x.Len != nil {
WriteExpr(buf, x.Len)
}
buf.WriteByte(']')
WriteExpr(buf, x.Elt)
case *ast.StructType:
buf.WriteString("struct{")
writeFieldList(buf, x.Fields, "; ", false)
buf.WriteByte('}')
case *ast.FuncType:
buf.WriteString("func")
writeSigExpr(buf, x)
case *ast.InterfaceType:
buf.WriteString("interface{")
writeFieldList(buf, x.Methods, "; ", true)
buf.WriteByte('}')
case *ast.MapType:
buf.WriteString("map[")
WriteExpr(buf, x.Key)
buf.WriteByte(']')
WriteExpr(buf, x.Value)
case *ast.ChanType:
var s string
switch x.Dir {
case ast.SEND:
s = "chan<- "
case ast.RECV:
s = "<-chan "
default:
s = "chan "
}
buf.WriteString(s)
WriteExpr(buf, x.Value)
}
}
func writeSigExpr(buf *bytes.Buffer, sig *ast.FuncType) {
buf.WriteByte('(')
writeFieldList(buf, sig.Params, ", ", false)
buf.WriteByte(')')
res := sig.Results
n := res.NumFields()
if n == 0 {
// no result
return
}
buf.WriteByte(' ')
if n == 1 && len(res.List[0].Names) == 0 {
// single unnamed result
WriteExpr(buf, res.List[0].Type)
return
}
// multiple or named result(s)
buf.WriteByte('(')
writeFieldList(buf, res, ", ", false)
buf.WriteByte(')')
}
func writeFieldList(buf *bytes.Buffer, fields *ast.FieldList, sep string, iface bool) {
for i, f := range fields.List {
if i > 0 {
buf.WriteString(sep)
}
// field list names
for i, name := range f.Names {
if i > 0 {
buf.WriteString(", ")
}
buf.WriteString(name.Name)
}
// types of interface methods consist of signatures only
if sig, _ := f.Type.(*ast.FuncType); sig != nil && iface {
writeSigExpr(buf, sig)
continue
}
// named fields are separated with a blank from the field type
if len(f.Names) > 0 {
buf.WriteByte(' ')
}
WriteExpr(buf, f.Type)
// ignore tag
}
}

View File

@ -1,332 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// Build this command explicitly: go build gotype.go
/*
The gotype command, like the front-end of a Go compiler, parses and
type-checks a single Go package. Errors are reported if the analysis
fails; otherwise gotype is quiet (unless -v is set).
Without a list of paths, gotype reads from standard input, which
must provide a single Go source file defining a complete package.
With a single directory argument, gotype checks the Go files in
that directory, comprising a single package. Use -t to include the
(in-package) _test.go files. Use -x to type check only external
test files.
Otherwise, each path must be the filename of a Go file belonging
to the same package.
Imports are processed by importing directly from the source of
imported packages (default), or by importing from compiled and
installed packages (by setting -c to the respective compiler).
The -c flag must be set to a compiler ("gc", "gccgo") when type-
checking packages containing imports with relative import paths
(import "./mypkg") because the source importer cannot know which
files to include for such packages.
Usage:
gotype [flags] [path...]
The flags are:
-t
include local test files in a directory (ignored if -x is provided)
-x
consider only external test files in a directory
-e
report all errors (not just the first 10)
-v
verbose mode
-c
compiler used for installed packages (gc, gccgo, or source); default: source
Flags controlling additional output:
-ast
print AST (forces -seq)
-trace
print parse trace (forces -seq)
-comments
parse comments (ignored unless -ast or -trace is provided)
Examples:
To check the files a.go, b.go, and c.go:
gotype a.go b.go c.go
To check an entire package including (in-package) tests in the directory dir and print the processed files:
gotype -t -v dir
To check the external test package (if any) in the current directory, based on installed packages compiled with
cmd/compile:
gotype -c=gc -x .
To verify the output of a pipe:
echo "package foo" | gotype
*/
package main
import (
"flag"
"fmt"
"go/ast"
"go/build"
"go/importer"
"go/parser"
"go/scanner"
"go/token"
"go/types"
"io/ioutil"
"os"
"path/filepath"
"sync"
"time"
)
var (
// main operation modes
testFiles = flag.Bool("t", false, "include in-package test files in a directory")
xtestFiles = flag.Bool("x", false, "consider only external test files in a directory")
allErrors = flag.Bool("e", false, "report all errors, not just the first 10")
verbose = flag.Bool("v", false, "verbose mode")
compiler = flag.String("c", "source", "compiler used for installed packages (gc, gccgo, or source)")
// additional output control
printAST = flag.Bool("ast", false, "print AST (forces -seq)")
printTrace = flag.Bool("trace", false, "print parse trace (forces -seq)")
parseComments = flag.Bool("comments", false, "parse comments (ignored unless -ast or -trace is provided)")
)
var (
fset = token.NewFileSet()
errorCount = 0
sequential = false
parserMode parser.Mode
)
func initParserMode() {
if *allErrors {
parserMode |= parser.AllErrors
}
if *printAST {
sequential = true
}
if *printTrace {
parserMode |= parser.Trace
sequential = true
}
if *parseComments && (*printAST || *printTrace) {
parserMode |= parser.ParseComments
}
}
const usageString = `usage: gotype [flags] [path ...]
The gotype command, like the front-end of a Go compiler, parses and
type-checks a single Go package. Errors are reported if the analysis
fails; otherwise gotype is quiet (unless -v is set).
Without a list of paths, gotype reads from standard input, which
must provide a single Go source file defining a complete package.
With a single directory argument, gotype checks the Go files in
that directory, comprising a single package. Use -t to include the
(in-package) _test.go files. Use -x to type check only external
test files.
Otherwise, each path must be the filename of a Go file belonging
to the same package.
Imports are processed by importing directly from the source of
imported packages (default), or by importing from compiled and
installed packages (by setting -c to the respective compiler).
The -c flag must be set to a compiler ("gc", "gccgo") when type-
checking packages containing imports with relative import paths
(import "./mypkg") because the source importer cannot know which
files to include for such packages.
`
func usage() {
fmt.Fprintln(os.Stderr, usageString)
flag.PrintDefaults()
os.Exit(2)
}
func report(err error) {
scanner.PrintError(os.Stderr, err)
if list, ok := err.(scanner.ErrorList); ok {
errorCount += len(list)
return
}
errorCount++
}
// parse may be called concurrently
func parse(filename string, src interface{}) (*ast.File, error) {
if *verbose {
fmt.Println(filename)
}
file, err := parser.ParseFile(fset, filename, src, parserMode) // ok to access fset concurrently
if *printAST {
ast.Print(fset, file)
}
return file, err
}
func parseStdin() (*ast.File, error) {
src, err := ioutil.ReadAll(os.Stdin)
if err != nil {
return nil, err
}
return parse("<standard input>", src)
}
func parseFiles(dir string, filenames []string) ([]*ast.File, error) {
files := make([]*ast.File, len(filenames))
errors := make([]error, len(filenames))
var wg sync.WaitGroup
for i, filename := range filenames {
wg.Add(1)
go func(i int, filepath string) {
defer wg.Done()
files[i], errors[i] = parse(filepath, nil)
}(i, filepath.Join(dir, filename))
if sequential {
wg.Wait()
}
}
wg.Wait()
// if there are errors, return the first one for deterministic results
for _, err := range errors {
if err != nil {
return nil, err
}
}
return files, nil
}
func parseDir(dir string) ([]*ast.File, error) {
ctxt := build.Default
pkginfo, err := ctxt.ImportDir(dir, 0)
if _, nogo := err.(*build.NoGoError); err != nil && !nogo {
return nil, err
}
if *xtestFiles {
return parseFiles(dir, pkginfo.XTestGoFiles)
}
filenames := append(pkginfo.GoFiles, pkginfo.CgoFiles...)
if *testFiles {
filenames = append(filenames, pkginfo.TestGoFiles...)
}
return parseFiles(dir, filenames)
}
func getPkgFiles(args []string) ([]*ast.File, error) {
if len(args) == 0 {
// stdin
file, err := parseStdin()
if err != nil {
return nil, err
}
return []*ast.File{file}, nil
}
if len(args) == 1 {
// possibly a directory
path := args[0]
info, err := os.Stat(path)
if err != nil {
return nil, err
}
if info.IsDir() {
return parseDir(path)
}
}
// list of files
return parseFiles("", args)
}
func checkPkgFiles(files []*ast.File) {
type bailout struct{}
// if checkPkgFiles is called multiple times, set up conf only once
conf := types.Config{
FakeImportC: true,
Error: func(err error) {
if !*allErrors && errorCount >= 10 {
panic(bailout{})
}
report(err)
},
Importer: importer.For(*compiler, nil),
Sizes: types.SizesFor(build.Default.Compiler, build.Default.GOARCH),
}
defer func() {
switch p := recover().(type) {
case nil, bailout:
// normal return or early exit
default:
// re-panic
panic(p)
}
}()
const path = "pkg" // any non-empty string will do for now
conf.Check(path, fset, files, nil)
}
func printStats(d time.Duration) {
fileCount := 0
lineCount := 0
fset.Iterate(func(f *token.File) bool {
fileCount++
lineCount += f.LineCount()
return true
})
fmt.Printf(
"%s (%d files, %d lines, %d lines/s)\n",
d, fileCount, lineCount, int64(float64(lineCount)/d.Seconds()),
)
}
func main() {
flag.Usage = usage
flag.Parse()
initParserMode()
start := time.Now()
files, err := getPkgFiles(flag.Args())
if err != nil {
report(err)
os.Exit(2)
}
checkPkgFiles(files)
if errorCount > 0 {
os.Exit(2)
}
if *verbose {
printStats(time.Since(start))
}
}

View File

@ -1,297 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"container/heap"
"fmt"
)
// initOrder computes the Info.InitOrder for package variables.
func (check *Checker) initOrder() {
// An InitOrder may already have been computed if a package is
// built from several calls to (*Checker).Files. Clear it.
check.Info.InitOrder = check.Info.InitOrder[:0]
// Compute the object dependency graph and initialize
// a priority queue with the list of graph nodes.
pq := nodeQueue(dependencyGraph(check.objMap))
heap.Init(&pq)
const debug = false
if debug {
fmt.Printf("Computing initialization order for %s\n\n", check.pkg)
fmt.Println("Object dependency graph:")
for obj, d := range check.objMap {
// only print objects that may appear in the dependency graph
if obj, _ := obj.(dependency); obj != nil {
if len(d.deps) > 0 {
fmt.Printf("\t%s depends on\n", obj.Name())
for dep := range d.deps {
fmt.Printf("\t\t%s\n", dep.Name())
}
} else {
fmt.Printf("\t%s has no dependencies\n", obj.Name())
}
}
}
fmt.Println()
fmt.Println("Transposed object dependency graph (functions eliminated):")
for _, n := range pq {
fmt.Printf("\t%s depends on %d nodes\n", n.obj.Name(), n.ndeps)
for p := range n.pred {
fmt.Printf("\t\t%s is dependent\n", p.obj.Name())
}
}
fmt.Println()
fmt.Println("Processing nodes:")
}
// Determine initialization order by removing the highest priority node
// (the one with the fewest dependencies) and its edges from the graph,
// repeatedly, until there are no nodes left.
// In a valid Go program, those nodes always have zero dependencies (after
// removing all incoming dependencies), otherwise there are initialization
// cycles.
emitted := make(map[*declInfo]bool)
for len(pq) > 0 {
// get the next node
n := heap.Pop(&pq).(*graphNode)
if debug {
fmt.Printf("\t%s (src pos %d) depends on %d nodes now\n",
n.obj.Name(), n.obj.order(), n.ndeps)
}
// if n still depends on other nodes, we have a cycle
if n.ndeps > 0 {
cycle := findPath(check.objMap, n.obj, n.obj, make(objSet))
// If n.obj is not part of the cycle (e.g., n.obj->b->c->d->c),
// cycle will be nil. Don't report anything in that case since
// the cycle is reported when the algorithm gets to an object
// in the cycle.
// Furthermore, once an object in the cycle is encountered,
// the cycle will be broken (dependency count will be reduced
// below), and so the remaining nodes in the cycle don't trigger
// another error (unless they are part of multiple cycles).
if cycle != nil {
check.reportCycle(cycle)
}
// Ok to continue, but the variable initialization order
// will be incorrect at this point since it assumes no
// cycle errors.
}
// reduce dependency count of all dependent nodes
// and update priority queue
for p := range n.pred {
p.ndeps--
heap.Fix(&pq, p.index)
}
// record the init order for variables with initializers only
v, _ := n.obj.(*Var)
info := check.objMap[v]
if v == nil || !info.hasInitializer() {
continue
}
// n:1 variable declarations such as: a, b = f()
// introduce a node for each lhs variable (here: a, b);
// but they all have the same initializer - emit only
// one, for the first variable seen
if emitted[info] {
continue // initializer already emitted, if any
}
emitted[info] = true
infoLhs := info.lhs // possibly nil (see declInfo.lhs field comment)
if infoLhs == nil {
infoLhs = []*Var{v}
}
init := &Initializer{infoLhs, info.init}
check.Info.InitOrder = append(check.Info.InitOrder, init)
}
if debug {
fmt.Println()
fmt.Println("Initialization order:")
for _, init := range check.Info.InitOrder {
fmt.Printf("\t%s\n", init)
}
fmt.Println()
}
}
// findPath returns the (reversed) list of objects []Object{to, ... from}
// such that there is a path of object dependencies from 'from' to 'to'.
// If there is no such path, the result is nil.
func findPath(objMap map[Object]*declInfo, from, to Object, visited objSet) []Object {
if visited[from] {
return nil // node already seen
}
visited[from] = true
for d := range objMap[from].deps {
if d == to {
return []Object{d}
}
if P := findPath(objMap, d, to, visited); P != nil {
return append(P, d)
}
}
return nil
}
// reportCycle reports an error for the given cycle.
func (check *Checker) reportCycle(cycle []Object) {
obj := cycle[0]
check.errorf(obj.Pos(), "initialization cycle for %s", obj.Name())
// subtle loop: print cycle[i] for i = 0, n-1, n-2, ... 1 for len(cycle) = n
for i := len(cycle) - 1; i >= 0; i-- {
check.errorf(obj.Pos(), "\t%s refers to", obj.Name()) // secondary error, \t indented
obj = cycle[i]
}
// print cycle[0] again to close the cycle
check.errorf(obj.Pos(), "\t%s", obj.Name())
}
// ----------------------------------------------------------------------------
// Object dependency graph
// A dependency is an object that may be a dependency in an initialization
// expression. Only constants, variables, and functions can be dependencies.
// Constants are here because constant expression cycles are reported during
// initialization order computation.
type dependency interface {
Object
isDependency()
}
// A graphNode represents a node in the object dependency graph.
// Each node p in n.pred represents an edge p->n, and each node
// s in n.succ represents an edge n->s; with a->b indicating that
// a depends on b.
type graphNode struct {
obj dependency // object represented by this node
pred, succ nodeSet // consumers and dependencies of this node (lazily initialized)
index int // node index in graph slice/priority queue
ndeps int // number of outstanding dependencies before this object can be initialized
}
type nodeSet map[*graphNode]bool
func (s *nodeSet) add(p *graphNode) {
if *s == nil {
*s = make(nodeSet)
}
(*s)[p] = true
}
// dependencyGraph computes the object dependency graph from the given objMap,
// with any function nodes removed. The resulting graph contains only constants
// and variables.
func dependencyGraph(objMap map[Object]*declInfo) []*graphNode {
// M is the dependency (Object) -> graphNode mapping
M := make(map[dependency]*graphNode)
for obj := range objMap {
// only consider nodes that may be an initialization dependency
if obj, _ := obj.(dependency); obj != nil {
M[obj] = &graphNode{obj: obj}
}
}
// compute edges for graph M
// (We need to include all nodes, even isolated ones, because they still need
// to be scheduled for initialization in correct order relative to other nodes.)
for obj, n := range M {
// for each dependency obj -> d (= deps[i]), create graph edges n->s and s->n
for d := range objMap[obj].deps {
// only consider nodes that may be an initialization dependency
if d, _ := d.(dependency); d != nil {
d := M[d]
n.succ.add(d)
d.pred.add(n)
}
}
}
// remove function nodes and collect remaining graph nodes in G
// (Mutually recursive functions may introduce cycles among themselves
// which are permitted. Yet such cycles may incorrectly inflate the dependency
// count for variables which in turn may not get scheduled for initialization
// in correct order.)
var G []*graphNode
for obj, n := range M {
if _, ok := obj.(*Func); ok {
// connect each predecessor p of n with each successor s
// and drop the function node (don't collect it in G)
for p := range n.pred {
// ignore self-cycles
if p != n {
// Each successor s of n becomes a successor of p, and
// each predecessor p of n becomes a predecessor of s.
for s := range n.succ {
// ignore self-cycles
if s != n {
p.succ.add(s)
s.pred.add(p)
delete(s.pred, n) // remove edge to n
}
}
delete(p.succ, n) // remove edge to n
}
}
} else {
// collect non-function nodes
G = append(G, n)
}
}
// fill in index and ndeps fields
for i, n := range G {
n.index = i
n.ndeps = len(n.succ)
}
return G
}
// ----------------------------------------------------------------------------
// Priority queue
// nodeQueue implements the container/heap interface;
// a nodeQueue may be used as a priority queue.
type nodeQueue []*graphNode
func (a nodeQueue) Len() int { return len(a) }
func (a nodeQueue) Swap(i, j int) {
x, y := a[i], a[j]
a[i], a[j] = y, x
x.index, y.index = j, i
}
func (a nodeQueue) Less(i, j int) bool {
x, y := a[i], a[j]
// nodes are prioritized by number of incoming dependencies (1st key)
// and source order (2nd key)
return x.ndeps < y.ndeps || x.ndeps == y.ndeps && x.obj.order() < y.obj.order()
}
func (a *nodeQueue) Push(x interface{}) {
panic("unreachable")
}
func (a *nodeQueue) Pop() interface{} {
n := len(*a)
x := (*a)[n-1]
x.index = -1 // for safety
*a = (*a)[:n-1]
return x
}

View File

@ -1,268 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"go/ast"
"go/token"
)
// labels checks correct label use in body.
func (check *Checker) labels(body *ast.BlockStmt) {
// set of all labels in this body
all := NewScope(nil, body.Pos(), body.End(), "label")
fwdJumps := check.blockBranches(all, nil, nil, body.List)
// If there are any forward jumps left, no label was found for
// the corresponding goto statements. Either those labels were
// never defined, or they are inside blocks and not reachable
// for the respective gotos.
for _, jmp := range fwdJumps {
var msg string
name := jmp.Label.Name
if alt := all.Lookup(name); alt != nil {
msg = "goto %s jumps into block"
alt.(*Label).used = true // avoid another error
} else {
msg = "label %s not declared"
}
check.errorf(jmp.Label.Pos(), msg, name)
}
// spec: "It is illegal to define a label that is never used."
for _, obj := range all.elems {
if lbl := obj.(*Label); !lbl.used {
check.softErrorf(lbl.pos, "label %s declared but not used", lbl.name)
}
}
}
// A block tracks label declarations in a block and its enclosing blocks.
type block struct {
parent *block // enclosing block
lstmt *ast.LabeledStmt // labeled statement to which this block belongs, or nil
labels map[string]*ast.LabeledStmt // allocated lazily
}
// insert records a new label declaration for the current block.
// The label must not have been declared before in any block.
func (b *block) insert(s *ast.LabeledStmt) {
name := s.Label.Name
if debug {
assert(b.gotoTarget(name) == nil)
}
labels := b.labels
if labels == nil {
labels = make(map[string]*ast.LabeledStmt)
b.labels = labels
}
labels[name] = s
}
// gotoTarget returns the labeled statement in the current
// or an enclosing block with the given label name, or nil.
func (b *block) gotoTarget(name string) *ast.LabeledStmt {
for s := b; s != nil; s = s.parent {
if t := s.labels[name]; t != nil {
return t
}
}
return nil
}
// enclosingTarget returns the innermost enclosing labeled
// statement with the given label name, or nil.
func (b *block) enclosingTarget(name string) *ast.LabeledStmt {
for s := b; s != nil; s = s.parent {
if t := s.lstmt; t != nil && t.Label.Name == name {
return t
}
}
return nil
}
// blockBranches processes a block's statement list and returns the set of outgoing forward jumps.
// all is the scope of all declared labels, parent the set of labels declared in the immediately
// enclosing block, and lstmt is the labeled statement this block is associated with (or nil).
func (check *Checker) blockBranches(all *Scope, parent *block, lstmt *ast.LabeledStmt, list []ast.Stmt) []*ast.BranchStmt {
b := &block{parent: parent, lstmt: lstmt}
var (
varDeclPos token.Pos
fwdJumps, badJumps []*ast.BranchStmt
)
// All forward jumps jumping over a variable declaration are possibly
// invalid (they may still jump out of the block and be ok).
// recordVarDecl records them for the given position.
recordVarDecl := func(pos token.Pos) {
varDeclPos = pos
badJumps = append(badJumps[:0], fwdJumps...) // copy fwdJumps to badJumps
}
jumpsOverVarDecl := func(jmp *ast.BranchStmt) bool {
if varDeclPos.IsValid() {
for _, bad := range badJumps {
if jmp == bad {
return true
}
}
}
return false
}
blockBranches := func(lstmt *ast.LabeledStmt, list []ast.Stmt) {
// Unresolved forward jumps inside the nested block
// become forward jumps in the current block.
fwdJumps = append(fwdJumps, check.blockBranches(all, b, lstmt, list)...)
}
var stmtBranches func(ast.Stmt)
stmtBranches = func(s ast.Stmt) {
switch s := s.(type) {
case *ast.DeclStmt:
if d, _ := s.Decl.(*ast.GenDecl); d != nil && d.Tok == token.VAR {
recordVarDecl(d.Pos())
}
case *ast.LabeledStmt:
// declare non-blank label
if name := s.Label.Name; name != "_" {
lbl := NewLabel(s.Label.Pos(), check.pkg, name)
if alt := all.Insert(lbl); alt != nil {
check.softErrorf(lbl.pos, "label %s already declared", name)
check.reportAltDecl(alt)
// ok to continue
} else {
b.insert(s)
check.recordDef(s.Label, lbl)
}
// resolve matching forward jumps and remove them from fwdJumps
i := 0
for _, jmp := range fwdJumps {
if jmp.Label.Name == name {
// match
lbl.used = true
check.recordUse(jmp.Label, lbl)
if jumpsOverVarDecl(jmp) {
check.softErrorf(
jmp.Label.Pos(),
"goto %s jumps over variable declaration at line %d",
name,
check.fset.Position(varDeclPos).Line,
)
// ok to continue
}
} else {
// no match - record new forward jump
fwdJumps[i] = jmp
i++
}
}
fwdJumps = fwdJumps[:i]
lstmt = s
}
stmtBranches(s.Stmt)
case *ast.BranchStmt:
if s.Label == nil {
return // checked in 1st pass (check.stmt)
}
// determine and validate target
name := s.Label.Name
switch s.Tok {
case token.BREAK:
// spec: "If there is a label, it must be that of an enclosing
// "for", "switch", or "select" statement, and that is the one
// whose execution terminates."
valid := false
if t := b.enclosingTarget(name); t != nil {
switch t.Stmt.(type) {
case *ast.SwitchStmt, *ast.TypeSwitchStmt, *ast.SelectStmt, *ast.ForStmt, *ast.RangeStmt:
valid = true
}
}
if !valid {
check.errorf(s.Label.Pos(), "invalid break label %s", name)
return
}
case token.CONTINUE:
// spec: "If there is a label, it must be that of an enclosing
// "for" statement, and that is the one whose execution advances."
valid := false
if t := b.enclosingTarget(name); t != nil {
switch t.Stmt.(type) {
case *ast.ForStmt, *ast.RangeStmt:
valid = true
}
}
if !valid {
check.errorf(s.Label.Pos(), "invalid continue label %s", name)
return
}
case token.GOTO:
if b.gotoTarget(name) == nil {
// label may be declared later - add branch to forward jumps
fwdJumps = append(fwdJumps, s)
return
}
default:
check.invalidAST(s.Pos(), "branch statement: %s %s", s.Tok, name)
return
}
// record label use
obj := all.Lookup(name)
obj.(*Label).used = true
check.recordUse(s.Label, obj)
case *ast.AssignStmt:
if s.Tok == token.DEFINE {
recordVarDecl(s.Pos())
}
case *ast.BlockStmt:
blockBranches(lstmt, s.List)
case *ast.IfStmt:
stmtBranches(s.Body)
if s.Else != nil {
stmtBranches(s.Else)
}
case *ast.CaseClause:
blockBranches(nil, s.Body)
case *ast.SwitchStmt:
stmtBranches(s.Body)
case *ast.TypeSwitchStmt:
stmtBranches(s.Body)
case *ast.CommClause:
blockBranches(nil, s.Body)
case *ast.SelectStmt:
stmtBranches(s.Body)
case *ast.ForStmt:
stmtBranches(s.Body)
case *ast.RangeStmt:
stmtBranches(s.Body)
}
}
for _, s := range list {
stmtBranches(s)
}
return fwdJumps
}

View File

@ -1,354 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements various field and method lookup functions.
package types
// LookupFieldOrMethod looks up a field or method with given package and name
// in T and returns the corresponding *Var or *Func, an index sequence, and a
// bool indicating if there were any pointer indirections on the path to the
// field or method. If addressable is set, T is the type of an addressable
// variable (only matters for method lookups).
//
// The last index entry is the field or method index in the (possibly embedded)
// type where the entry was found, either:
//
// 1) the list of declared methods of a named type; or
// 2) the list of all methods (method set) of an interface type; or
// 3) the list of fields of a struct type.
//
// The earlier index entries are the indices of the anonymous struct fields
// traversed to get to the found entry, starting at depth 0.
//
// If no entry is found, a nil object is returned. In this case, the returned
// index and indirect values have the following meaning:
//
// - If index != nil, the index sequence points to an ambiguous entry
// (the same name appeared more than once at the same embedding level).
//
// - If indirect is set, a method with a pointer receiver type was found
// but there was no pointer on the path from the actual receiver type to
// the method's formal receiver base type, nor was the receiver addressable.
//
func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
// Methods cannot be associated to a named pointer type
// (spec: "The type denoted by T is called the receiver base type;
// it must not be a pointer or interface type and it must be declared
// in the same package as the method.").
// Thus, if we have a named pointer type, proceed with the underlying
// pointer type but discard the result if it is a method since we would
// not have found it for T (see also issue 8590).
if t, _ := T.(*Named); t != nil {
if p, _ := t.underlying.(*Pointer); p != nil {
obj, index, indirect = lookupFieldOrMethod(p, false, pkg, name)
if _, ok := obj.(*Func); ok {
return nil, nil, false
}
return
}
}
return lookupFieldOrMethod(T, addressable, pkg, name)
}
// TODO(gri) The named type consolidation and seen maps below must be
// indexed by unique keys for a given type. Verify that named
// types always have only one representation (even when imported
// indirectly via different packages.)
func lookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
// WARNING: The code in this function is extremely subtle - do not modify casually!
// This function and NewMethodSet should be kept in sync.
if name == "_" {
return // blank fields/methods are never found
}
typ, isPtr := deref(T)
// *typ where typ is an interface has no methods.
if isPtr && IsInterface(typ) {
return
}
// Start with typ as single entry at shallowest depth.
current := []embeddedType{{typ, nil, isPtr, false}}
// Named types that we have seen already, allocated lazily.
// Used to avoid endless searches in case of recursive types.
// Since only Named types can be used for recursive types, we
// only need to track those.
// (If we ever allow type aliases to construct recursive types,
// we must use type identity rather than pointer equality for
// the map key comparison, as we do in consolidateMultiples.)
var seen map[*Named]bool
// search current depth
for len(current) > 0 {
var next []embeddedType // embedded types found at current depth
// look for (pkg, name) in all types at current depth
for _, e := range current {
typ := e.typ
// If we have a named type, we may have associated methods.
// Look for those first.
if named, _ := typ.(*Named); named != nil {
if seen[named] {
// We have seen this type before, at a more shallow depth
// (note that multiples of this type at the current depth
// were consolidated before). The type at that depth shadows
// this same type at the current depth, so we can ignore
// this one.
continue
}
if seen == nil {
seen = make(map[*Named]bool)
}
seen[named] = true
// look for a matching attached method
if i, m := lookupMethod(named.methods, pkg, name); m != nil {
// potential match
assert(m.typ != nil)
index = concat(e.index, i)
if obj != nil || e.multiples {
return nil, index, false // collision
}
obj = m
indirect = e.indirect
continue // we can't have a matching field or interface method
}
// continue with underlying type
typ = named.underlying
}
switch t := typ.(type) {
case *Struct:
// look for a matching field and collect embedded types
for i, f := range t.fields {
if f.sameId(pkg, name) {
assert(f.typ != nil)
index = concat(e.index, i)
if obj != nil || e.multiples {
return nil, index, false // collision
}
obj = f
indirect = e.indirect
continue // we can't have a matching interface method
}
// Collect embedded struct fields for searching the next
// lower depth, but only if we have not seen a match yet
// (if we have a match it is either the desired field or
// we have a name collision on the same depth; in either
// case we don't need to look further).
// Embedded fields are always of the form T or *T where
// T is a type name. If e.typ appeared multiple times at
// this depth, f.typ appears multiple times at the next
// depth.
if obj == nil && f.anonymous {
typ, isPtr := deref(f.typ)
// TODO(gri) optimization: ignore types that can't
// have fields or methods (only Named, Struct, and
// Interface types need to be considered).
next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
}
}
case *Interface:
// look for a matching method
// TODO(gri) t.allMethods is sorted - use binary search
if i, m := lookupMethod(t.allMethods, pkg, name); m != nil {
assert(m.typ != nil)
index = concat(e.index, i)
if obj != nil || e.multiples {
return nil, index, false // collision
}
obj = m
indirect = e.indirect
}
}
}
if obj != nil {
// found a potential match
// spec: "A method call x.m() is valid if the method set of (the type of) x
// contains m and the argument list can be assigned to the parameter
// list of m. If x is addressable and &x's method set contains m, x.m()
// is shorthand for (&x).m()".
if f, _ := obj.(*Func); f != nil && ptrRecv(f) && !indirect && !addressable {
return nil, nil, true // pointer/addressable receiver required
}
return
}
current = consolidateMultiples(next)
}
return nil, nil, false // not found
}
// embeddedType represents an embedded type
type embeddedType struct {
typ Type
index []int // embedded field indices, starting with index at depth 0
indirect bool // if set, there was a pointer indirection on the path to this field
multiples bool // if set, typ appears multiple times at this depth
}
// consolidateMultiples collects multiple list entries with the same type
// into a single entry marked as containing multiples. The result is the
// consolidated list.
func consolidateMultiples(list []embeddedType) []embeddedType {
if len(list) <= 1 {
return list // at most one entry - nothing to do
}
n := 0 // number of entries w/ unique type
prev := make(map[Type]int) // index at which type was previously seen
for _, e := range list {
if i, found := lookupType(prev, e.typ); found {
list[i].multiples = true
// ignore this entry
} else {
prev[e.typ] = n
list[n] = e
n++
}
}
return list[:n]
}
func lookupType(m map[Type]int, typ Type) (int, bool) {
// fast path: maybe the types are equal
if i, found := m[typ]; found {
return i, true
}
for t, i := range m {
if Identical(t, typ) {
return i, true
}
}
return 0, false
}
// MissingMethod returns (nil, false) if V implements T, otherwise it
// returns a missing method required by T and whether it is missing or
// just has the wrong type.
//
// For non-interface types V, or if static is set, V implements T if all
// methods of T are present in V. Otherwise (V is an interface and static
// is not set), MissingMethod only checks that methods of T which are also
// present in V have matching types (e.g., for a type assertion x.(T) where
// x is of interface type V).
//
func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) {
// fast path for common case
if T.Empty() {
return
}
// TODO(gri) Consider using method sets here. Might be more efficient.
if ityp, _ := V.Underlying().(*Interface); ityp != nil {
// TODO(gri) allMethods is sorted - can do this more efficiently
for _, m := range T.allMethods {
_, obj := lookupMethod(ityp.allMethods, m.pkg, m.name)
switch {
case obj == nil:
if static {
return m, false
}
case !Identical(obj.Type(), m.typ):
return m, true
}
}
return
}
// A concrete type implements T if it implements all methods of T.
for _, m := range T.allMethods {
obj, _, _ := lookupFieldOrMethod(V, false, m.pkg, m.name)
f, _ := obj.(*Func)
if f == nil {
return m, false
}
if !Identical(f.typ, m.typ) {
return m, true
}
}
return
}
// assertableTo reports whether a value of type V can be asserted to have type T.
// It returns (nil, false) as affirmative answer. Otherwise it returns a missing
// method required by V and whether it is missing or just has the wrong type.
func assertableTo(V *Interface, T Type) (method *Func, wrongType bool) {
// no static check is required if T is an interface
// spec: "If T is an interface type, x.(T) asserts that the
// dynamic type of x implements the interface T."
if _, ok := T.Underlying().(*Interface); ok && !strict {
return
}
return MissingMethod(T, V, false)
}
// deref dereferences typ if it is a *Pointer and returns its base and true.
// Otherwise it returns (typ, false).
func deref(typ Type) (Type, bool) {
if p, _ := typ.(*Pointer); p != nil {
return p.base, true
}
return typ, false
}
// derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
// (named or unnamed) struct and returns its base. Otherwise it returns typ.
func derefStructPtr(typ Type) Type {
if p, _ := typ.Underlying().(*Pointer); p != nil {
if _, ok := p.base.Underlying().(*Struct); ok {
return p.base
}
}
return typ
}
// concat returns the result of concatenating list and i.
// The result does not share its underlying array with list.
func concat(list []int, i int) []int {
var t []int
t = append(t, list...)
return append(t, i)
}
// fieldIndex returns the index for the field with matching package and name, or a value < 0.
func fieldIndex(fields []*Var, pkg *Package, name string) int {
if name != "_" {
for i, f := range fields {
if f.sameId(pkg, name) {
return i
}
}
}
return -1
}
// lookupMethod returns the index of and method with matching package and name, or (-1, nil).
func lookupMethod(methods []*Func, pkg *Package, name string) (int, *Func) {
if name != "_" {
for i, m := range methods {
if m.sameId(pkg, name) {
return i, m
}
}
}
return -1, nil
}

View File

@ -1,262 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements method sets.
package types
import (
"bytes"
"fmt"
"sort"
)
// A MethodSet is an ordered set of concrete or abstract (interface) methods;
// a method is a MethodVal selection, and they are ordered by ascending m.Obj().Id().
// The zero value for a MethodSet is a ready-to-use empty method set.
type MethodSet struct {
list []*Selection
}
func (s *MethodSet) String() string {
if s.Len() == 0 {
return "MethodSet {}"
}
var buf bytes.Buffer
fmt.Fprintln(&buf, "MethodSet {")
for _, f := range s.list {
fmt.Fprintf(&buf, "\t%s\n", f)
}
fmt.Fprintln(&buf, "}")
return buf.String()
}
// Len returns the number of methods in s.
func (s *MethodSet) Len() int { return len(s.list) }
// At returns the i'th method in s for 0 <= i < s.Len().
func (s *MethodSet) At(i int) *Selection { return s.list[i] }
// Lookup returns the method with matching package and name, or nil if not found.
func (s *MethodSet) Lookup(pkg *Package, name string) *Selection {
if s.Len() == 0 {
return nil
}
key := Id(pkg, name)
i := sort.Search(len(s.list), func(i int) bool {
m := s.list[i]
return m.obj.Id() >= key
})
if i < len(s.list) {
m := s.list[i]
if m.obj.Id() == key {
return m
}
}
return nil
}
// Shared empty method set.
var emptyMethodSet MethodSet
// NewMethodSet returns the method set for the given type T.
// It always returns a non-nil method set, even if it is empty.
func NewMethodSet(T Type) *MethodSet {
// WARNING: The code in this function is extremely subtle - do not modify casually!
// This function and lookupFieldOrMethod should be kept in sync.
// method set up to the current depth, allocated lazily
var base methodSet
typ, isPtr := deref(T)
// *typ where typ is an interface has no methods.
if isPtr && IsInterface(typ) {
return &emptyMethodSet
}
// Start with typ as single entry at shallowest depth.
current := []embeddedType{{typ, nil, isPtr, false}}
// Named types that we have seen already, allocated lazily.
// Used to avoid endless searches in case of recursive types.
// Since only Named types can be used for recursive types, we
// only need to track those.
// (If we ever allow type aliases to construct recursive types,
// we must use type identity rather than pointer equality for
// the map key comparison, as we do in consolidateMultiples.)
var seen map[*Named]bool
// collect methods at current depth
for len(current) > 0 {
var next []embeddedType // embedded types found at current depth
// field and method sets at current depth, allocated lazily
var fset fieldSet
var mset methodSet
for _, e := range current {
typ := e.typ
// If we have a named type, we may have associated methods.
// Look for those first.
if named, _ := typ.(*Named); named != nil {
if seen[named] {
// We have seen this type before, at a more shallow depth
// (note that multiples of this type at the current depth
// were consolidated before). The type at that depth shadows
// this same type at the current depth, so we can ignore
// this one.
continue
}
if seen == nil {
seen = make(map[*Named]bool)
}
seen[named] = true
mset = mset.add(named.methods, e.index, e.indirect, e.multiples)
// continue with underlying type
typ = named.underlying
}
switch t := typ.(type) {
case *Struct:
for i, f := range t.fields {
fset = fset.add(f, e.multiples)
// Embedded fields are always of the form T or *T where
// T is a type name. If typ appeared multiple times at
// this depth, f.Type appears multiple times at the next
// depth.
if f.anonymous {
typ, isPtr := deref(f.typ)
// TODO(gri) optimization: ignore types that can't
// have fields or methods (only Named, Struct, and
// Interface types need to be considered).
next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
}
}
case *Interface:
mset = mset.add(t.allMethods, e.index, true, e.multiples)
}
}
// Add methods and collisions at this depth to base if no entries with matching
// names exist already.
for k, m := range mset {
if _, found := base[k]; !found {
// Fields collide with methods of the same name at this depth.
if _, found := fset[k]; found {
m = nil // collision
}
if base == nil {
base = make(methodSet)
}
base[k] = m
}
}
// Multiple fields with matching names collide at this depth and shadow all
// entries further down; add them as collisions to base if no entries with
// matching names exist already.
for k, f := range fset {
if f == nil {
if _, found := base[k]; !found {
if base == nil {
base = make(methodSet)
}
base[k] = nil // collision
}
}
}
current = consolidateMultiples(next)
}
if len(base) == 0 {
return &emptyMethodSet
}
// collect methods
var list []*Selection
for _, m := range base {
if m != nil {
m.recv = T
list = append(list, m)
}
}
// sort by unique name
sort.Slice(list, func(i, j int) bool {
return list[i].obj.Id() < list[j].obj.Id()
})
return &MethodSet{list}
}
// A fieldSet is a set of fields and name collisions.
// A collision indicates that multiple fields with the
// same unique id appeared.
type fieldSet map[string]*Var // a nil entry indicates a name collision
// Add adds field f to the field set s.
// If multiples is set, f appears multiple times
// and is treated as a collision.
func (s fieldSet) add(f *Var, multiples bool) fieldSet {
if s == nil {
s = make(fieldSet)
}
key := f.Id()
// if f is not in the set, add it
if !multiples {
if _, found := s[key]; !found {
s[key] = f
return s
}
}
s[key] = nil // collision
return s
}
// A methodSet is a set of methods and name collisions.
// A collision indicates that multiple methods with the
// same unique id appeared.
type methodSet map[string]*Selection // a nil entry indicates a name collision
// Add adds all functions in list to the method set s.
// If multiples is set, every function in list appears multiple times
// and is treated as a collision.
func (s methodSet) add(list []*Func, index []int, indirect bool, multiples bool) methodSet {
if len(list) == 0 {
return s
}
if s == nil {
s = make(methodSet)
}
for i, f := range list {
key := f.Id()
// if f is not in the set, add it
if !multiples {
// TODO(gri) A found method may not be added because it's not in the method set
// (!indirect && ptrRecv(f)). A 2nd method on the same level may be in the method
// set and may not collide with the first one, thus leading to a false positive.
// Is that possible? Investigate.
if _, found := s[key]; !found && (indirect || !ptrRecv(f)) {
s[key] = &Selection{MethodVal, nil, f, concat(index, i), indirect}
continue
}
}
s[key] = nil // collision
}
return s
}
// ptrRecv reports whether the receiver is of the form *T.
// The receiver must exist.
func ptrRecv(f *Func) bool {
_, isPtr := deref(f.typ.(*Signature).recv.typ)
return isPtr
}

View File

@ -1,424 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"bytes"
"fmt"
"go/ast"
"go/constant"
"go/token"
)
// An Object describes a named language entity such as a package,
// constant, type, variable, function (incl. methods), or label.
// All objects implement the Object interface.
//
type Object interface {
Parent() *Scope // scope in which this object is declared; nil for methods and struct fields
Pos() token.Pos // position of object identifier in declaration
Pkg() *Package // package to which this object belongs; nil for labels and objects in the Universe scope
Name() string // package local object name
Type() Type // object type
Exported() bool // reports whether the name starts with a capital letter
Id() string // object name if exported, qualified name if not exported (see func Id)
// String returns a human-readable string of the object.
String() string
// order reflects a package-level object's source order: if object
// a is before object b in the source, then a.order() < b.order().
// order returns a value > 0 for package-level objects; it returns
// 0 for all other objects (including objects in file scopes).
order() uint32
// setOrder sets the order number of the object. It must be > 0.
setOrder(uint32)
// setParent sets the parent scope of the object.
setParent(*Scope)
// sameId reports whether obj.Id() and Id(pkg, name) are the same.
sameId(pkg *Package, name string) bool
// scopePos returns the start position of the scope of this Object
scopePos() token.Pos
// setScopePos sets the start position of the scope for this Object.
setScopePos(pos token.Pos)
}
// Id returns name if it is exported, otherwise it
// returns the name qualified with the package path.
func Id(pkg *Package, name string) string {
if ast.IsExported(name) {
return name
}
// unexported names need the package path for differentiation
// (if there's no package, make sure we don't start with '.'
// as that may change the order of methods between a setup
// inside a package and outside a package - which breaks some
// tests)
path := "_"
// pkg is nil for objects in Universe scope and possibly types
// introduced via Eval (see also comment in object.sameId)
if pkg != nil && pkg.path != "" {
path = pkg.path
}
return path + "." + name
}
// An object implements the common parts of an Object.
type object struct {
parent *Scope
pos token.Pos
pkg *Package
name string
typ Type
order_ uint32
scopePos_ token.Pos
}
func (obj *object) Parent() *Scope { return obj.parent }
func (obj *object) Pos() token.Pos { return obj.pos }
func (obj *object) Pkg() *Package { return obj.pkg }
func (obj *object) Name() string { return obj.name }
func (obj *object) Type() Type { return obj.typ }
func (obj *object) Exported() bool { return ast.IsExported(obj.name) }
func (obj *object) Id() string { return Id(obj.pkg, obj.name) }
func (obj *object) String() string { panic("abstract") }
func (obj *object) order() uint32 { return obj.order_ }
func (obj *object) scopePos() token.Pos { return obj.scopePos_ }
func (obj *object) setParent(parent *Scope) { obj.parent = parent }
func (obj *object) setOrder(order uint32) { assert(order > 0); obj.order_ = order }
func (obj *object) setScopePos(pos token.Pos) { obj.scopePos_ = pos }
func (obj *object) sameId(pkg *Package, name string) bool {
// spec:
// "Two identifiers are different if they are spelled differently,
// or if they appear in different packages and are not exported.
// Otherwise, they are the same."
if name != obj.name {
return false
}
// obj.Name == name
if obj.Exported() {
return true
}
// not exported, so packages must be the same (pkg == nil for
// fields in Universe scope; this can only happen for types
// introduced via Eval)
if pkg == nil || obj.pkg == nil {
return pkg == obj.pkg
}
// pkg != nil && obj.pkg != nil
return pkg.path == obj.pkg.path
}
// A PkgName represents an imported Go package.
// PkgNames don't have a type.
type PkgName struct {
object
imported *Package
used bool // set if the package was used
}
// NewPkgName returns a new PkgName object representing an imported package.
// The remaining arguments set the attributes found with all Objects.
func NewPkgName(pos token.Pos, pkg *Package, name string, imported *Package) *PkgName {
return &PkgName{object{nil, pos, pkg, name, Typ[Invalid], 0, token.NoPos}, imported, false}
}
// Imported returns the package that was imported.
// It is distinct from Pkg(), which is the package containing the import statement.
func (obj *PkgName) Imported() *Package { return obj.imported }
// A Const represents a declared constant.
type Const struct {
object
val constant.Value
visited bool // for initialization cycle detection
}
// NewConst returns a new constant with value val.
// The remaining arguments set the attributes found with all Objects.
func NewConst(pos token.Pos, pkg *Package, name string, typ Type, val constant.Value) *Const {
return &Const{object{nil, pos, pkg, name, typ, 0, token.NoPos}, val, false}
}
func (obj *Const) Val() constant.Value { return obj.val }
func (*Const) isDependency() {} // a constant may be a dependency of an initialization expression
// A TypeName represents a name for a (named or alias) type.
type TypeName struct {
object
}
// NewTypeName returns a new type name denoting the given typ.
// The remaining arguments set the attributes found with all Objects.
//
// The typ argument may be a defined (Named) type or an alias type.
// It may also be nil such that the returned TypeName can be used as
// argument for NewNamed, which will set the TypeName's type as a side-
// effect.
func NewTypeName(pos token.Pos, pkg *Package, name string, typ Type) *TypeName {
return &TypeName{object{nil, pos, pkg, name, typ, 0, token.NoPos}}
}
// IsAlias reports whether obj is an alias name for a type.
func (obj *TypeName) IsAlias() bool {
switch t := obj.typ.(type) {
case nil:
return false
case *Basic:
// unsafe.Pointer is not an alias.
if obj.pkg == Unsafe {
return false
}
// Any user-defined type name for a basic type is an alias for a
// basic type (because basic types are pre-declared in the Universe
// scope, outside any package scope), and so is any type name with
// a different name than the name of the basic type it refers to.
// Additionally, we need to look for "byte" and "rune" because they
// are aliases but have the same names (for better error messages).
return obj.pkg != nil || t.name != obj.name || t == universeByte || t == universeRune
case *Named:
return obj != t.obj
default:
return true
}
}
// A Variable represents a declared variable (including function parameters and results, and struct fields).
type Var struct {
object
anonymous bool // if set, the variable is an anonymous struct field, and name is the type name
visited bool // for initialization cycle detection
isField bool // var is struct field
used bool // set if the variable was used
}
// NewVar returns a new variable.
// The arguments set the attributes found with all Objects.
func NewVar(pos token.Pos, pkg *Package, name string, typ Type) *Var {
return &Var{object: object{nil, pos, pkg, name, typ, 0, token.NoPos}}
}
// NewParam returns a new variable representing a function parameter.
func NewParam(pos token.Pos, pkg *Package, name string, typ Type) *Var {
return &Var{object: object{nil, pos, pkg, name, typ, 0, token.NoPos}, used: true} // parameters are always 'used'
}
// NewField returns a new variable representing a struct field.
// For anonymous (embedded) fields, the name is the unqualified
// type name under which the field is accessible.
func NewField(pos token.Pos, pkg *Package, name string, typ Type, anonymous bool) *Var {
return &Var{object: object{nil, pos, pkg, name, typ, 0, token.NoPos}, anonymous: anonymous, isField: true}
}
// Anonymous reports whether the variable is an anonymous field.
func (obj *Var) Anonymous() bool { return obj.anonymous }
// IsField reports whether the variable is a struct field.
func (obj *Var) IsField() bool { return obj.isField }
func (*Var) isDependency() {} // a variable may be a dependency of an initialization expression
// A Func represents a declared function, concrete method, or abstract
// (interface) method. Its Type() is always a *Signature.
// An abstract method may belong to many interfaces due to embedding.
type Func struct {
object
}
// NewFunc returns a new function with the given signature, representing
// the function's type.
func NewFunc(pos token.Pos, pkg *Package, name string, sig *Signature) *Func {
// don't store a nil signature
var typ Type
if sig != nil {
typ = sig
}
return &Func{object{nil, pos, pkg, name, typ, 0, token.NoPos}}
}
// FullName returns the package- or receiver-type-qualified name of
// function or method obj.
func (obj *Func) FullName() string {
var buf bytes.Buffer
writeFuncName(&buf, obj, nil)
return buf.String()
}
// Scope returns the scope of the function's body block.
func (obj *Func) Scope() *Scope { return obj.typ.(*Signature).scope }
func (*Func) isDependency() {} // a function may be a dependency of an initialization expression
// A Label represents a declared label.
// Labels don't have a type.
type Label struct {
object
used bool // set if the label was used
}
// NewLabel returns a new label.
func NewLabel(pos token.Pos, pkg *Package, name string) *Label {
return &Label{object{pos: pos, pkg: pkg, name: name, typ: Typ[Invalid]}, false}
}
// A Builtin represents a built-in function.
// Builtins don't have a valid type.
type Builtin struct {
object
id builtinId
}
func newBuiltin(id builtinId) *Builtin {
return &Builtin{object{name: predeclaredFuncs[id].name, typ: Typ[Invalid]}, id}
}
// Nil represents the predeclared value nil.
type Nil struct {
object
}
func writeObject(buf *bytes.Buffer, obj Object, qf Qualifier) {
var tname *TypeName
typ := obj.Type()
switch obj := obj.(type) {
case *PkgName:
fmt.Fprintf(buf, "package %s", obj.Name())
if path := obj.imported.path; path != "" && path != obj.name {
fmt.Fprintf(buf, " (%q)", path)
}
return
case *Const:
buf.WriteString("const")
case *TypeName:
tname = obj
buf.WriteString("type")
case *Var:
if obj.isField {
buf.WriteString("field")
} else {
buf.WriteString("var")
}
case *Func:
buf.WriteString("func ")
writeFuncName(buf, obj, qf)
if typ != nil {
WriteSignature(buf, typ.(*Signature), qf)
}
return
case *Label:
buf.WriteString("label")
typ = nil
case *Builtin:
buf.WriteString("builtin")
typ = nil
case *Nil:
buf.WriteString("nil")
return
default:
panic(fmt.Sprintf("writeObject(%T)", obj))
}
buf.WriteByte(' ')
// For package-level objects, qualify the name.
if obj.Pkg() != nil && obj.Pkg().scope.Lookup(obj.Name()) == obj {
writePackage(buf, obj.Pkg(), qf)
}
buf.WriteString(obj.Name())
if typ == nil {
return
}
if tname != nil {
// We have a type object: Don't print anything more for
// basic types since there's no more information (names
// are the same; see also comment in TypeName.IsAlias).
if _, ok := typ.(*Basic); ok {
return
}
if tname.IsAlias() {
buf.WriteString(" =")
} else {
typ = typ.Underlying()
}
}
buf.WriteByte(' ')
WriteType(buf, typ, qf)
}
func writePackage(buf *bytes.Buffer, pkg *Package, qf Qualifier) {
if pkg == nil {
return
}
var s string
if qf != nil {
s = qf(pkg)
} else {
s = pkg.Path()
}
if s != "" {
buf.WriteString(s)
buf.WriteByte('.')
}
}
// ObjectString returns the string form of obj.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func ObjectString(obj Object, qf Qualifier) string {
var buf bytes.Buffer
writeObject(&buf, obj, qf)
return buf.String()
}
func (obj *PkgName) String() string { return ObjectString(obj, nil) }
func (obj *Const) String() string { return ObjectString(obj, nil) }
func (obj *TypeName) String() string { return ObjectString(obj, nil) }
func (obj *Var) String() string { return ObjectString(obj, nil) }
func (obj *Func) String() string { return ObjectString(obj, nil) }
func (obj *Label) String() string { return ObjectString(obj, nil) }
func (obj *Builtin) String() string { return ObjectString(obj, nil) }
func (obj *Nil) String() string { return ObjectString(obj, nil) }
func writeFuncName(buf *bytes.Buffer, f *Func, qf Qualifier) {
if f.typ != nil {
sig := f.typ.(*Signature)
if recv := sig.Recv(); recv != nil {
buf.WriteByte('(')
if _, ok := recv.Type().(*Interface); ok {
// gcimporter creates abstract methods of
// named interfaces using the interface type
// (not the named type) as the receiver.
// Don't print it in full.
buf.WriteString("interface")
} else {
WriteType(buf, recv.Type(), qf)
}
buf.WriteByte(')')
buf.WriteByte('.')
} else if f.pkg != nil {
writePackage(buf, f.pkg, qf)
}
}
buf.WriteString(f.name)
}

View File

@ -1,31 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements objsets.
//
// An objset is similar to a Scope but objset elements
// are identified by their unique id, instead of their
// object name.
package types
// An objset is a set of objects identified by their unique id.
// The zero value for objset is a ready-to-use empty objset.
type objset map[string]Object // initialized lazily
// insert attempts to insert an object obj into objset s.
// If s already contains an alternative object alt with
// the same name, insert leaves s unchanged and returns alt.
// Otherwise it inserts obj and returns nil.
func (s *objset) insert(obj Object) Object {
id := obj.Id()
if alt := (*s)[id]; alt != nil {
return alt
}
if *s == nil {
*s = make(map[string]Object)
}
(*s)[id] = obj
return nil
}

View File

@ -1,275 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file defines operands and associated operations.
package types
import (
"bytes"
"go/ast"
"go/constant"
"go/token"
)
// An operandMode specifies the (addressing) mode of an operand.
type operandMode byte
const (
invalid operandMode = iota // operand is invalid
novalue // operand represents no value (result of a function call w/o result)
builtin // operand is a built-in function
typexpr // operand is a type
constant_ // operand is a constant; the operand's typ is a Basic type
variable // operand is an addressable variable
mapindex // operand is a map index expression (acts like a variable on lhs, commaok on rhs of an assignment)
value // operand is a computed value
commaok // like value, but operand may be used in a comma,ok expression
)
var operandModeString = [...]string{
invalid: "invalid operand",
novalue: "no value",
builtin: "built-in",
typexpr: "type",
constant_: "constant",
variable: "variable",
mapindex: "map index expression",
value: "value",
commaok: "comma, ok expression",
}
// An operand represents an intermediate value during type checking.
// Operands have an (addressing) mode, the expression evaluating to
// the operand, the operand's type, a value for constants, and an id
// for built-in functions.
// The zero value of operand is a ready to use invalid operand.
//
type operand struct {
mode operandMode
expr ast.Expr
typ Type
val constant.Value
id builtinId
}
// pos returns the position of the expression corresponding to x.
// If x is invalid the position is token.NoPos.
//
func (x *operand) pos() token.Pos {
// x.expr may not be set if x is invalid
if x.expr == nil {
return token.NoPos
}
return x.expr.Pos()
}
// Operand string formats
// (not all "untyped" cases can appear due to the type system,
// but they fall out naturally here)
//
// mode format
//
// invalid <expr> ( <mode> )
// novalue <expr> ( <mode> )
// builtin <expr> ( <mode> )
// typexpr <expr> ( <mode> )
//
// constant <expr> (<untyped kind> <mode> )
// constant <expr> ( <mode> of type <typ>)
// constant <expr> (<untyped kind> <mode> <val> )
// constant <expr> ( <mode> <val> of type <typ>)
//
// variable <expr> (<untyped kind> <mode> )
// variable <expr> ( <mode> of type <typ>)
//
// mapindex <expr> (<untyped kind> <mode> )
// mapindex <expr> ( <mode> of type <typ>)
//
// value <expr> (<untyped kind> <mode> )
// value <expr> ( <mode> of type <typ>)
//
// commaok <expr> (<untyped kind> <mode> )
// commaok <expr> ( <mode> of type <typ>)
//
func operandString(x *operand, qf Qualifier) string {
var buf bytes.Buffer
var expr string
if x.expr != nil {
expr = ExprString(x.expr)
} else {
switch x.mode {
case builtin:
expr = predeclaredFuncs[x.id].name
case typexpr:
expr = TypeString(x.typ, qf)
case constant_:
expr = x.val.String()
}
}
// <expr> (
if expr != "" {
buf.WriteString(expr)
buf.WriteString(" (")
}
// <untyped kind>
hasType := false
switch x.mode {
case invalid, novalue, builtin, typexpr:
// no type
default:
// should have a type, but be cautious (don't crash during printing)
if x.typ != nil {
if isUntyped(x.typ) {
buf.WriteString(x.typ.(*Basic).name)
buf.WriteByte(' ')
break
}
hasType = true
}
}
// <mode>
buf.WriteString(operandModeString[x.mode])
// <val>
if x.mode == constant_ {
if s := x.val.String(); s != expr {
buf.WriteByte(' ')
buf.WriteString(s)
}
}
// <typ>
if hasType {
if x.typ != Typ[Invalid] {
buf.WriteString(" of type ")
WriteType(&buf, x.typ, qf)
} else {
buf.WriteString(" with invalid type")
}
}
// )
if expr != "" {
buf.WriteByte(')')
}
return buf.String()
}
func (x *operand) String() string {
return operandString(x, nil)
}
// setConst sets x to the untyped constant for literal lit.
func (x *operand) setConst(tok token.Token, lit string) {
var kind BasicKind
switch tok {
case token.INT:
kind = UntypedInt
case token.FLOAT:
kind = UntypedFloat
case token.IMAG:
kind = UntypedComplex
case token.CHAR:
kind = UntypedRune
case token.STRING:
kind = UntypedString
default:
unreachable()
}
x.mode = constant_
x.typ = Typ[kind]
x.val = constant.MakeFromLiteral(lit, tok, 0)
}
// isNil reports whether x is the nil value.
func (x *operand) isNil() bool {
return x.mode == value && x.typ == Typ[UntypedNil]
}
// TODO(gri) The functions operand.assignableTo, checker.convertUntyped,
// checker.representable, and checker.assignment are
// overlapping in functionality. Need to simplify and clean up.
// assignableTo reports whether x is assignable to a variable of type T.
// If the result is false and a non-nil reason is provided, it may be set
// to a more detailed explanation of the failure (result != "").
func (x *operand) assignableTo(conf *Config, T Type, reason *string) bool {
if x.mode == invalid || T == Typ[Invalid] {
return true // avoid spurious errors
}
V := x.typ
// x's type is identical to T
if Identical(V, T) {
return true
}
Vu := V.Underlying()
Tu := T.Underlying()
// x is an untyped value representable by a value of type T
// TODO(gri) This is borrowing from checker.convertUntyped and
// checker.representable. Need to clean up.
if isUntyped(Vu) {
switch t := Tu.(type) {
case *Basic:
if x.isNil() && t.kind == UnsafePointer {
return true
}
if x.mode == constant_ {
return representableConst(x.val, conf, t, nil)
}
// The result of a comparison is an untyped boolean,
// but may not be a constant.
if Vb, _ := Vu.(*Basic); Vb != nil {
return Vb.kind == UntypedBool && isBoolean(Tu)
}
case *Interface:
return x.isNil() || t.Empty()
case *Pointer, *Signature, *Slice, *Map, *Chan:
return x.isNil()
}
}
// Vu is typed
// x's type V and T have identical underlying types
// and at least one of V or T is not a named type
if Identical(Vu, Tu) && (!isNamed(V) || !isNamed(T)) {
return true
}
// T is an interface type and x implements T
if Ti, ok := Tu.(*Interface); ok {
if m, wrongType := MissingMethod(x.typ, Ti, true); m != nil /* Implements(x.typ, Ti) */ {
if reason != nil {
if wrongType {
*reason = "wrong type for method " + m.Name()
} else {
*reason = "missing method " + m.Name()
}
}
return false
}
return true
}
// x is a bidirectional channel value, T is a channel
// type, x's type V and T have identical element types,
// and at least one of V or T is not a named type
if Vc, ok := Vu.(*Chan); ok && Vc.dir == SendRecv {
if Tc, ok := Tu.(*Chan); ok && Identical(Vc.elem, Tc.elem) {
return !isNamed(V) || !isNamed(T)
}
}
return false
}

View File

@ -1,123 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements resolveOrder.
package types
import (
"go/ast"
"sort"
)
// resolveOrder computes the order in which package-level objects
// must be type-checked.
//
// Interface types appear first in the list, sorted topologically
// by dependencies on embedded interfaces that are also declared
// in this package, followed by all other objects sorted in source
// order.
//
// TODO(gri) Consider sorting all types by dependencies here, and
// in the process check _and_ report type cycles. This may simplify
// the full type-checking phase.
//
func (check *Checker) resolveOrder() []Object {
var ifaces, others []Object
// collect interface types with their dependencies, and all other objects
for obj := range check.objMap {
if ityp := check.interfaceFor(obj); ityp != nil {
ifaces = append(ifaces, obj)
// determine dependencies on embedded interfaces
for _, f := range ityp.Methods.List {
if len(f.Names) == 0 {
// Embedded interface: The type must be a (possibly
// qualified) identifier denoting another interface.
// Imported interfaces are already fully resolved,
// so we can ignore qualified identifiers.
if ident, _ := f.Type.(*ast.Ident); ident != nil {
embedded := check.pkg.scope.Lookup(ident.Name)
if check.interfaceFor(embedded) != nil {
check.objMap[obj].addDep(embedded)
}
}
}
}
} else {
others = append(others, obj)
}
}
// final object order
var order []Object
// sort interface types topologically by dependencies,
// and in source order if there are no dependencies
sort.Sort(inSourceOrder(ifaces))
visited := make(objSet)
for _, obj := range ifaces {
check.appendInPostOrder(&order, obj, visited)
}
// sort everything else in source order
sort.Sort(inSourceOrder(others))
return append(order, others...)
}
// interfaceFor returns the AST interface denoted by obj, or nil.
func (check *Checker) interfaceFor(obj Object) *ast.InterfaceType {
tname, _ := obj.(*TypeName)
if tname == nil {
return nil // not a type
}
d := check.objMap[obj]
if d == nil {
check.dump("%s: %s should have been declared", obj.Pos(), obj.Name())
unreachable()
}
if d.typ == nil {
return nil // invalid AST - ignore (will be handled later)
}
ityp, _ := d.typ.(*ast.InterfaceType)
return ityp
}
func (check *Checker) appendInPostOrder(order *[]Object, obj Object, visited objSet) {
if visited[obj] {
// We've already seen this object; either because it's
// already added to order, or because we have a cycle.
// In both cases we stop. Cycle errors are reported
// when type-checking types.
return
}
visited[obj] = true
d := check.objMap[obj]
for _, obj := range orderedSetObjects(d.deps) {
check.appendInPostOrder(order, obj, visited)
}
*order = append(*order, obj)
}
func orderedSetObjects(set objSet) []Object {
list := make([]Object, len(set))
i := 0
for obj := range set {
// we don't care about the map element value
list[i] = obj
i++
}
sort.Sort(inSourceOrder(list))
return list
}
// inSourceOrder implements the sort.Sort interface.
type inSourceOrder []Object
func (a inSourceOrder) Len() int { return len(a) }
func (a inSourceOrder) Less(i, j int) bool { return a[i].order() < a[j].order() }
func (a inSourceOrder) Swap(i, j int) { a[i], a[j] = a[j], a[i] }

View File

@ -1,64 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"fmt"
"go/token"
)
// A Package describes a Go package.
type Package struct {
path string
name string
scope *Scope
complete bool
imports []*Package
fake bool // scope lookup errors are silently dropped if package is fake (internal use only)
}
// NewPackage returns a new Package for the given package path and name.
// The package is not complete and contains no explicit imports.
func NewPackage(path, name string) *Package {
scope := NewScope(Universe, token.NoPos, token.NoPos, fmt.Sprintf("package %q", path))
return &Package{path: path, name: name, scope: scope}
}
// Path returns the package path.
func (pkg *Package) Path() string { return pkg.path }
// Name returns the package name.
func (pkg *Package) Name() string { return pkg.name }
// SetName sets the package name.
func (pkg *Package) SetName(name string) { pkg.name = name }
// Scope returns the (complete or incomplete) package scope
// holding the objects declared at package level (TypeNames,
// Consts, Vars, and Funcs).
func (pkg *Package) Scope() *Scope { return pkg.scope }
// A package is complete if its scope contains (at least) all
// exported objects; otherwise it is incomplete.
func (pkg *Package) Complete() bool { return pkg.complete }
// MarkComplete marks a package as complete.
func (pkg *Package) MarkComplete() { pkg.complete = true }
// Imports returns the list of packages directly imported by
// pkg; the list is in source order.
//
// If pkg was loaded from export data, Imports includes packages that
// provide package-level objects referenced by pkg. This may be more or
// less than the set of packages directly imported by pkg's source code.
func (pkg *Package) Imports() []*Package { return pkg.imports }
// SetImports sets the list of explicitly imported packages to list.
// It is the caller's responsibility to make sure list elements are unique.
func (pkg *Package) SetImports(list []*Package) { pkg.imports = list }
func (pkg *Package) String() string {
return fmt.Sprintf("package %s (%q)", pkg.name, pkg.path)
}

View File

@ -1,320 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements commonly used type predicates.
package types
import "sort"
func isNamed(typ Type) bool {
if _, ok := typ.(*Basic); ok {
return ok
}
_, ok := typ.(*Named)
return ok
}
func isBoolean(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsBoolean != 0
}
func isInteger(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsInteger != 0
}
func isUnsigned(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsUnsigned != 0
}
func isFloat(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsFloat != 0
}
func isComplex(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsComplex != 0
}
func isNumeric(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsNumeric != 0
}
func isString(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsString != 0
}
func isTyped(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return !ok || t.info&IsUntyped == 0
}
func isUntyped(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsUntyped != 0
}
func isOrdered(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsOrdered != 0
}
func isConstType(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsConstType != 0
}
// IsInterface reports whether typ is an interface type.
func IsInterface(typ Type) bool {
_, ok := typ.Underlying().(*Interface)
return ok
}
// Comparable reports whether values of type T are comparable.
func Comparable(T Type) bool {
switch t := T.Underlying().(type) {
case *Basic:
// assume invalid types to be comparable
// to avoid follow-up errors
return t.kind != UntypedNil
case *Pointer, *Interface, *Chan:
return true
case *Struct:
for _, f := range t.fields {
if !Comparable(f.typ) {
return false
}
}
return true
case *Array:
return Comparable(t.elem)
}
return false
}
// hasNil reports whether a type includes the nil value.
func hasNil(typ Type) bool {
switch t := typ.Underlying().(type) {
case *Basic:
return t.kind == UnsafePointer
case *Slice, *Pointer, *Signature, *Interface, *Map, *Chan:
return true
}
return false
}
// Identical reports whether x and y are identical types.
// Receivers of Signature types are ignored.
func Identical(x, y Type) bool {
return identical(x, y, true, nil)
}
// IdenticalIgnoreTags reports whether x and y are identical types if tags are ignored.
// Receivers of Signature types are ignored.
func IdenticalIgnoreTags(x, y Type) bool {
return identical(x, y, false, nil)
}
// An ifacePair is a node in a stack of interface type pairs compared for identity.
type ifacePair struct {
x, y *Interface
prev *ifacePair
}
func (p *ifacePair) identical(q *ifacePair) bool {
return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x
}
func identical(x, y Type, cmpTags bool, p *ifacePair) bool {
if x == y {
return true
}
switch x := x.(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above. See also comment in TypeName.IsAlias.
if y, ok := y.(*Basic); ok {
return x.kind == y.kind
}
case *Array:
// Two array types are identical if they have identical element types
// and the same array length.
if y, ok := y.(*Array); ok {
// If one or both array lengths are unknown (< 0) due to some error,
// assume they are the same to avoid spurious follow-on errors.
return (x.len < 0 || y.len < 0 || x.len == y.len) && identical(x.elem, y.elem, cmpTags, p)
}
case *Slice:
// Two slice types are identical if they have identical element types.
if y, ok := y.(*Slice); ok {
return identical(x.elem, y.elem, cmpTags, p)
}
case *Struct:
// Two struct types are identical if they have the same sequence of fields,
// and if corresponding fields have the same names, and identical types,
// and identical tags. Two anonymous fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*Struct); ok {
if x.NumFields() == y.NumFields() {
for i, f := range x.fields {
g := y.fields[i]
if f.anonymous != g.anonymous ||
cmpTags && x.Tag(i) != y.Tag(i) ||
!f.sameId(g.pkg, g.name) ||
!identical(f.typ, g.typ, cmpTags, p) {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types are identical if they have identical base types.
if y, ok := y.(*Pointer); ok {
return identical(x.base, y.base, cmpTags, p)
}
case *Tuple:
// Two tuples types are identical if they have the same number of elements
// and corresponding elements have identical types.
if y, ok := y.(*Tuple); ok {
if x.Len() == y.Len() {
if x != nil {
for i, v := range x.vars {
w := y.vars[i]
if !identical(v.typ, w.typ, cmpTags, p) {
return false
}
}
}
return true
}
}
case *Signature:
// Two function types are identical if they have the same number of parameters
// and result values, corresponding parameter and result types are identical,
// and either both functions are variadic or neither is. Parameter and result
// names are not required to match.
if y, ok := y.(*Signature); ok {
return x.variadic == y.variadic &&
identical(x.params, y.params, cmpTags, p) &&
identical(x.results, y.results, cmpTags, p)
}
case *Interface:
// Two interface types are identical if they have the same set of methods with
// the same names and identical function types. Lower-case method names from
// different packages are always different. The order of the methods is irrelevant.
if y, ok := y.(*Interface); ok {
a := x.allMethods
b := y.allMethods
if len(a) == len(b) {
// Interface types are the only types where cycles can occur
// that are not "terminated" via named types; and such cycles
// can only be created via method parameter types that are
// anonymous interfaces (directly or indirectly) embedding
// the current interface. Example:
//
// type T interface {
// m() interface{T}
// }
//
// If two such (differently named) interfaces are compared,
// endless recursion occurs if the cycle is not detected.
//
// If x and y were compared before, they must be equal
// (if they were not, the recursion would have stopped);
// search the ifacePair stack for the same pair.
//
// This is a quadratic algorithm, but in practice these stacks
// are extremely short (bounded by the nesting depth of interface
// type declarations that recur via parameter types, an extremely
// rare occurrence). An alternative implementation might use a
// "visited" map, but that is probably less efficient overall.
q := &ifacePair{x, y, p}
for p != nil {
if p.identical(q) {
return true // same pair was compared before
}
p = p.prev
}
if debug {
assert(sort.IsSorted(byUniqueMethodName(a)))
assert(sort.IsSorted(byUniqueMethodName(b)))
}
for i, f := range a {
g := b[i]
if f.Id() != g.Id() || !identical(f.typ, g.typ, cmpTags, q) {
return false
}
}
return true
}
}
case *Map:
// Two map types are identical if they have identical key and value types.
if y, ok := y.(*Map); ok {
return identical(x.key, y.key, cmpTags, p) && identical(x.elem, y.elem, cmpTags, p)
}
case *Chan:
// Two channel types are identical if they have identical value types
// and the same direction.
if y, ok := y.(*Chan); ok {
return x.dir == y.dir && identical(x.elem, y.elem, cmpTags, p)
}
case *Named:
// Two named types are identical if their type names originate
// in the same type declaration.
if y, ok := y.(*Named); ok {
return x.obj == y.obj
}
case nil:
default:
unreachable()
}
return false
}
// Default returns the default "typed" type for an "untyped" type;
// it returns the incoming type for all other types. The default type
// for untyped nil is untyped nil.
//
func Default(typ Type) Type {
if t, ok := typ.(*Basic); ok {
switch t.kind {
case UntypedBool:
return Typ[Bool]
case UntypedInt:
return Typ[Int]
case UntypedRune:
return universeRune // use 'rune' name
case UntypedFloat:
return Typ[Float64]
case UntypedComplex:
return Typ[Complex128]
case UntypedString:
return Typ[String]
}
}
return typ
}

View File

@ -1,542 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"strconv"
"strings"
"unicode"
)
// A declInfo describes a package-level const, type, var, or func declaration.
type declInfo struct {
file *Scope // scope of file containing this declaration
lhs []*Var // lhs of n:1 variable declarations, or nil
typ ast.Expr // type, or nil
init ast.Expr // init/orig expression, or nil
fdecl *ast.FuncDecl // func declaration, or nil
alias bool // type alias declaration
// The deps field tracks initialization expression dependencies.
// As a special (overloaded) case, it also tracks dependencies of
// interface types on embedded interfaces (see ordering.go).
deps objSet // lazily initialized
}
// An objSet is simply a set of objects.
type objSet map[Object]bool
// hasInitializer reports whether the declared object has an initialization
// expression or function body.
func (d *declInfo) hasInitializer() bool {
return d.init != nil || d.fdecl != nil && d.fdecl.Body != nil
}
// addDep adds obj to the set of objects d's init expression depends on.
func (d *declInfo) addDep(obj Object) {
m := d.deps
if m == nil {
m = make(objSet)
d.deps = m
}
m[obj] = true
}
// arityMatch checks that the lhs and rhs of a const or var decl
// have the appropriate number of names and init exprs. For const
// decls, init is the value spec providing the init exprs; for
// var decls, init is nil (the init exprs are in s in this case).
func (check *Checker) arityMatch(s, init *ast.ValueSpec) {
l := len(s.Names)
r := len(s.Values)
if init != nil {
r = len(init.Values)
}
switch {
case init == nil && r == 0:
// var decl w/o init expr
if s.Type == nil {
check.errorf(s.Pos(), "missing type or init expr")
}
case l < r:
if l < len(s.Values) {
// init exprs from s
n := s.Values[l]
check.errorf(n.Pos(), "extra init expr %s", n)
// TODO(gri) avoid declared but not used error here
} else {
// init exprs "inherited"
check.errorf(s.Pos(), "extra init expr at %s", check.fset.Position(init.Pos()))
// TODO(gri) avoid declared but not used error here
}
case l > r && (init != nil || r != 1):
n := s.Names[r]
check.errorf(n.Pos(), "missing init expr for %s", n)
}
}
func validatedImportPath(path string) (string, error) {
s, err := strconv.Unquote(path)
if err != nil {
return "", err
}
if s == "" {
return "", fmt.Errorf("empty string")
}
const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD"
for _, r := range s {
if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) {
return s, fmt.Errorf("invalid character %#U", r)
}
}
return s, nil
}
// declarePkgObj declares obj in the package scope, records its ident -> obj mapping,
// and updates check.objMap. The object must not be a function or method.
func (check *Checker) declarePkgObj(ident *ast.Ident, obj Object, d *declInfo) {
assert(ident.Name == obj.Name())
// spec: "A package-scope or file-scope identifier with name init
// may only be declared to be a function with this (func()) signature."
if ident.Name == "init" {
check.errorf(ident.Pos(), "cannot declare init - must be func")
return
}
// spec: "The main package must have package name main and declare
// a function main that takes no arguments and returns no value."
if ident.Name == "main" && check.pkg.name == "main" {
check.errorf(ident.Pos(), "cannot declare main - must be func")
return
}
check.declare(check.pkg.scope, ident, obj, token.NoPos)
check.objMap[obj] = d
obj.setOrder(uint32(len(check.objMap)))
}
// filename returns a filename suitable for debugging output.
func (check *Checker) filename(fileNo int) string {
file := check.files[fileNo]
if pos := file.Pos(); pos.IsValid() {
return check.fset.File(pos).Name()
}
return fmt.Sprintf("file[%d]", fileNo)
}
func (check *Checker) importPackage(pos token.Pos, path, dir string) *Package {
// If we already have a package for the given (path, dir)
// pair, use it instead of doing a full import.
// Checker.impMap only caches packages that are marked Complete
// or fake (dummy packages for failed imports). Incomplete but
// non-fake packages do require an import to complete them.
key := importKey{path, dir}
imp := check.impMap[key]
if imp != nil {
return imp
}
// no package yet => import it
if path == "C" && check.conf.FakeImportC {
imp = NewPackage("C", "C")
imp.fake = true
} else {
// ordinary import
var err error
if importer := check.conf.Importer; importer == nil {
err = fmt.Errorf("Config.Importer not installed")
} else if importerFrom, ok := importer.(ImporterFrom); ok {
imp, err = importerFrom.ImportFrom(path, dir, 0)
if imp == nil && err == nil {
err = fmt.Errorf("Config.Importer.ImportFrom(%s, %s, 0) returned nil but no error", path, dir)
}
} else {
imp, err = importer.Import(path)
if imp == nil && err == nil {
err = fmt.Errorf("Config.Importer.Import(%s) returned nil but no error", path)
}
}
// make sure we have a valid package name
// (errors here can only happen through manipulation of packages after creation)
if err == nil && imp != nil && (imp.name == "_" || imp.name == "") {
err = fmt.Errorf("invalid package name: %q", imp.name)
imp = nil // create fake package below
}
if err != nil {
check.errorf(pos, "could not import %s (%s)", path, err)
if imp == nil {
// create a new fake package
// come up with a sensible package name (heuristic)
name := path
if i := len(name); i > 0 && name[i-1] == '/' {
name = name[:i-1]
}
if i := strings.LastIndex(name, "/"); i >= 0 {
name = name[i+1:]
}
imp = NewPackage(path, name)
}
// continue to use the package as best as we can
imp.fake = true // avoid follow-up lookup failures
}
}
// package should be complete or marked fake, but be cautious
if imp.complete || imp.fake {
check.impMap[key] = imp
return imp
}
// something went wrong (importer may have returned incomplete package without error)
return nil
}
// collectObjects collects all file and package objects and inserts them
// into their respective scopes. It also performs imports and associates
// methods with receiver base type names.
func (check *Checker) collectObjects() {
pkg := check.pkg
// pkgImports is the set of packages already imported by any package file seen
// so far. Used to avoid duplicate entries in pkg.imports. Allocate and populate
// it (pkg.imports may not be empty if we are checking test files incrementally).
// Note that pkgImports is keyed by package (and thus package path), not by an
// importKey value. Two different importKey values may map to the same package
// which is why we cannot use the check.impMap here.
var pkgImports = make(map[*Package]bool)
for _, imp := range pkg.imports {
pkgImports[imp] = true
}
for fileNo, file := range check.files {
// The package identifier denotes the current package,
// but there is no corresponding package object.
check.recordDef(file.Name, nil)
// Use the actual source file extent rather than *ast.File extent since the
// latter doesn't include comments which appear at the start or end of the file.
// Be conservative and use the *ast.File extent if we don't have a *token.File.
pos, end := file.Pos(), file.End()
if f := check.fset.File(file.Pos()); f != nil {
pos, end = token.Pos(f.Base()), token.Pos(f.Base()+f.Size())
}
fileScope := NewScope(check.pkg.scope, pos, end, check.filename(fileNo))
check.recordScope(file, fileScope)
// determine file directory, necessary to resolve imports
// FileName may be "" (typically for tests) in which case
// we get "." as the directory which is what we would want.
fileDir := dir(check.fset.Position(file.Name.Pos()).Filename)
for _, decl := range file.Decls {
switch d := decl.(type) {
case *ast.BadDecl:
// ignore
case *ast.GenDecl:
var last *ast.ValueSpec // last ValueSpec with type or init exprs seen
for iota, spec := range d.Specs {
switch s := spec.(type) {
case *ast.ImportSpec:
// import package
path, err := validatedImportPath(s.Path.Value)
if err != nil {
check.errorf(s.Path.Pos(), "invalid import path (%s)", err)
continue
}
imp := check.importPackage(s.Path.Pos(), path, fileDir)
if imp == nil {
continue
}
// add package to list of explicit imports
// (this functionality is provided as a convenience
// for clients; it is not needed for type-checking)
if !pkgImports[imp] {
pkgImports[imp] = true
pkg.imports = append(pkg.imports, imp)
}
// local name overrides imported package name
name := imp.name
if s.Name != nil {
name = s.Name.Name
if path == "C" {
// match cmd/compile (not prescribed by spec)
check.errorf(s.Name.Pos(), `cannot rename import "C"`)
continue
}
if name == "init" {
check.errorf(s.Name.Pos(), "cannot declare init - must be func")
continue
}
}
obj := NewPkgName(s.Pos(), pkg, name, imp)
if s.Name != nil {
// in a dot-import, the dot represents the package
check.recordDef(s.Name, obj)
} else {
check.recordImplicit(s, obj)
}
if path == "C" {
// match cmd/compile (not prescribed by spec)
obj.used = true
}
// add import to file scope
if name == "." {
// merge imported scope with file scope
for _, obj := range imp.scope.elems {
// A package scope may contain non-exported objects,
// do not import them!
if obj.Exported() {
// TODO(gri) When we import a package, we create
// a new local package object. We should do the
// same for each dot-imported object. That way
// they can have correct position information.
// (We must not modify their existing position
// information because the same package - found
// via Config.Packages - may be dot-imported in
// another package!)
check.declare(fileScope, nil, obj, token.NoPos)
}
}
// add position to set of dot-import positions for this file
// (this is only needed for "imported but not used" errors)
check.addUnusedDotImport(fileScope, imp, s.Pos())
} else {
// declare imported package object in file scope
check.declare(fileScope, nil, obj, token.NoPos)
}
case *ast.ValueSpec:
switch d.Tok {
case token.CONST:
// determine which initialization expressions to use
switch {
case s.Type != nil || len(s.Values) > 0:
last = s
case last == nil:
last = new(ast.ValueSpec) // make sure last exists
}
// declare all constants
for i, name := range s.Names {
obj := NewConst(name.Pos(), pkg, name.Name, nil, constant.MakeInt64(int64(iota)))
var init ast.Expr
if i < len(last.Values) {
init = last.Values[i]
}
d := &declInfo{file: fileScope, typ: last.Type, init: init}
check.declarePkgObj(name, obj, d)
}
check.arityMatch(s, last)
case token.VAR:
lhs := make([]*Var, len(s.Names))
// If there's exactly one rhs initializer, use
// the same declInfo d1 for all lhs variables
// so that each lhs variable depends on the same
// rhs initializer (n:1 var declaration).
var d1 *declInfo
if len(s.Values) == 1 {
// The lhs elements are only set up after the for loop below,
// but that's ok because declareVar only collects the declInfo
// for a later phase.
d1 = &declInfo{file: fileScope, lhs: lhs, typ: s.Type, init: s.Values[0]}
}
// declare all variables
for i, name := range s.Names {
obj := NewVar(name.Pos(), pkg, name.Name, nil)
lhs[i] = obj
d := d1
if d == nil {
// individual assignments
var init ast.Expr
if i < len(s.Values) {
init = s.Values[i]
}
d = &declInfo{file: fileScope, typ: s.Type, init: init}
}
check.declarePkgObj(name, obj, d)
}
check.arityMatch(s, nil)
default:
check.invalidAST(s.Pos(), "invalid token %s", d.Tok)
}
case *ast.TypeSpec:
obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Name, nil)
check.declarePkgObj(s.Name, obj, &declInfo{file: fileScope, typ: s.Type, alias: s.Assign.IsValid()})
default:
check.invalidAST(s.Pos(), "unknown ast.Spec node %T", s)
}
}
case *ast.FuncDecl:
name := d.Name.Name
obj := NewFunc(d.Name.Pos(), pkg, name, nil)
if d.Recv == nil {
// regular function
if name == "init" {
// don't declare init functions in the package scope - they are invisible
obj.parent = pkg.scope
check.recordDef(d.Name, obj)
// init functions must have a body
if d.Body == nil {
check.softErrorf(obj.pos, "missing function body")
}
} else {
check.declare(pkg.scope, d.Name, obj, token.NoPos)
}
} else {
// method
check.recordDef(d.Name, obj)
// Associate method with receiver base type name, if possible.
// Ignore methods that have an invalid receiver, or a blank _
// receiver name. They will be type-checked later, with regular
// functions.
if list := d.Recv.List; len(list) > 0 {
typ := unparen(list[0].Type)
if ptr, _ := typ.(*ast.StarExpr); ptr != nil {
typ = unparen(ptr.X)
}
if base, _ := typ.(*ast.Ident); base != nil && base.Name != "_" {
check.assocMethod(base.Name, obj)
}
}
}
info := &declInfo{file: fileScope, fdecl: d}
check.objMap[obj] = info
obj.setOrder(uint32(len(check.objMap)))
default:
check.invalidAST(d.Pos(), "unknown ast.Decl node %T", d)
}
}
}
// verify that objects in package and file scopes have different names
for _, scope := range check.pkg.scope.children /* file scopes */ {
for _, obj := range scope.elems {
if alt := pkg.scope.Lookup(obj.Name()); alt != nil {
if pkg, ok := obj.(*PkgName); ok {
check.errorf(alt.Pos(), "%s already declared through import of %s", alt.Name(), pkg.Imported())
check.reportAltDecl(pkg)
} else {
check.errorf(alt.Pos(), "%s already declared through dot-import of %s", alt.Name(), obj.Pkg())
// TODO(gri) dot-imported objects don't have a position; reportAltDecl won't print anything
check.reportAltDecl(obj)
}
}
}
}
}
// packageObjects typechecks all package objects in objList, but not function bodies.
func (check *Checker) packageObjects(objList []Object) {
// add new methods to already type-checked types (from a prior Checker.Files call)
for _, obj := range objList {
if obj, _ := obj.(*TypeName); obj != nil && obj.typ != nil {
check.addMethodDecls(obj)
}
}
// pre-allocate space for type declaration paths so that the underlying array is reused
typePath := make([]*TypeName, 0, 8)
for _, obj := range objList {
check.objDecl(obj, nil, typePath)
}
// At this point we may have a non-empty check.methods map; this means that not all
// entries were deleted at the end of typeDecl because the respective receiver base
// types were not found. In that case, an error was reported when declaring those
// methods. We can now safely discard this map.
check.methods = nil
}
// functionBodies typechecks all function bodies.
func (check *Checker) functionBodies() {
for _, f := range check.funcs {
check.funcBody(f.decl, f.name, f.sig, f.body)
}
}
// unusedImports checks for unused imports.
func (check *Checker) unusedImports() {
// if function bodies are not checked, packages' uses are likely missing - don't check
if check.conf.IgnoreFuncBodies {
return
}
// spec: "It is illegal (...) to directly import a package without referring to
// any of its exported identifiers. To import a package solely for its side-effects
// (initialization), use the blank identifier as explicit package name."
// check use of regular imported packages
for _, scope := range check.pkg.scope.children /* file scopes */ {
for _, obj := range scope.elems {
if obj, ok := obj.(*PkgName); ok {
// Unused "blank imports" are automatically ignored
// since _ identifiers are not entered into scopes.
if !obj.used {
path := obj.imported.path
base := pkgName(path)
if obj.name == base {
check.softErrorf(obj.pos, "%q imported but not used", path)
} else {
check.softErrorf(obj.pos, "%q imported but not used as %s", path, obj.name)
}
}
}
}
}
// check use of dot-imported packages
for _, unusedDotImports := range check.unusedDotImports {
for pkg, pos := range unusedDotImports {
check.softErrorf(pos, "%q imported but not used", pkg.path)
}
}
}
// pkgName returns the package name (last element) of an import path.
func pkgName(path string) string {
if i := strings.LastIndex(path, "/"); i >= 0 {
path = path[i+1:]
}
return path
}
// dir makes a good-faith attempt to return the directory
// portion of path. If path is empty, the result is ".".
// (Per the go/build package dependency tests, we cannot import
// path/filepath and simply use filepath.Dir.)
func dir(path string) string {
if i := strings.LastIndexAny(path, `/\`); i > 0 {
return path[:i]
}
// i <= 0
return "."
}

View File

@ -1,190 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements isTerminating.
package types
import (
"go/ast"
"go/token"
)
// isTerminating reports if s is a terminating statement.
// If s is labeled, label is the label name; otherwise s
// is "".
func (check *Checker) isTerminating(s ast.Stmt, label string) bool {
switch s := s.(type) {
default:
unreachable()
case *ast.BadStmt, *ast.DeclStmt, *ast.EmptyStmt, *ast.SendStmt,
*ast.IncDecStmt, *ast.AssignStmt, *ast.GoStmt, *ast.DeferStmt,
*ast.RangeStmt:
// no chance
case *ast.LabeledStmt:
return check.isTerminating(s.Stmt, s.Label.Name)
case *ast.ExprStmt:
// the predeclared (possibly parenthesized) panic() function is terminating
if call, _ := unparen(s.X).(*ast.CallExpr); call != nil {
if id, _ := call.Fun.(*ast.Ident); id != nil {
if _, obj := check.scope.LookupParent(id.Name, token.NoPos); obj != nil {
if b, _ := obj.(*Builtin); b != nil && b.id == _Panic {
return true
}
}
}
}
case *ast.ReturnStmt:
return true
case *ast.BranchStmt:
if s.Tok == token.GOTO || s.Tok == token.FALLTHROUGH {
return true
}
case *ast.BlockStmt:
return check.isTerminatingList(s.List, "")
case *ast.IfStmt:
if s.Else != nil &&
check.isTerminating(s.Body, "") &&
check.isTerminating(s.Else, "") {
return true
}
case *ast.SwitchStmt:
return check.isTerminatingSwitch(s.Body, label)
case *ast.TypeSwitchStmt:
return check.isTerminatingSwitch(s.Body, label)
case *ast.SelectStmt:
for _, s := range s.Body.List {
cc := s.(*ast.CommClause)
if !check.isTerminatingList(cc.Body, "") || hasBreakList(cc.Body, label, true) {
return false
}
}
return true
case *ast.ForStmt:
if s.Cond == nil && !hasBreak(s.Body, label, true) {
return true
}
}
return false
}
func (check *Checker) isTerminatingList(list []ast.Stmt, label string) bool {
// trailing empty statements are permitted - skip them
for i := len(list) - 1; i >= 0; i-- {
if _, ok := list[i].(*ast.EmptyStmt); !ok {
return check.isTerminating(list[i], label)
}
}
return false // all statements are empty
}
func (check *Checker) isTerminatingSwitch(body *ast.BlockStmt, label string) bool {
hasDefault := false
for _, s := range body.List {
cc := s.(*ast.CaseClause)
if cc.List == nil {
hasDefault = true
}
if !check.isTerminatingList(cc.Body, "") || hasBreakList(cc.Body, label, true) {
return false
}
}
return hasDefault
}
// TODO(gri) For nested breakable statements, the current implementation of hasBreak
// will traverse the same subtree repeatedly, once for each label. Replace
// with a single-pass label/break matching phase.
// hasBreak reports if s is or contains a break statement
// referring to the label-ed statement or implicit-ly the
// closest outer breakable statement.
func hasBreak(s ast.Stmt, label string, implicit bool) bool {
switch s := s.(type) {
default:
unreachable()
case *ast.BadStmt, *ast.DeclStmt, *ast.EmptyStmt, *ast.ExprStmt,
*ast.SendStmt, *ast.IncDecStmt, *ast.AssignStmt, *ast.GoStmt,
*ast.DeferStmt, *ast.ReturnStmt:
// no chance
case *ast.LabeledStmt:
return hasBreak(s.Stmt, label, implicit)
case *ast.BranchStmt:
if s.Tok == token.BREAK {
if s.Label == nil {
return implicit
}
if s.Label.Name == label {
return true
}
}
case *ast.BlockStmt:
return hasBreakList(s.List, label, implicit)
case *ast.IfStmt:
if hasBreak(s.Body, label, implicit) ||
s.Else != nil && hasBreak(s.Else, label, implicit) {
return true
}
case *ast.CaseClause:
return hasBreakList(s.Body, label, implicit)
case *ast.SwitchStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
case *ast.TypeSwitchStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
case *ast.CommClause:
return hasBreakList(s.Body, label, implicit)
case *ast.SelectStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
case *ast.ForStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
case *ast.RangeStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
}
return false
}
func hasBreakList(list []ast.Stmt, label string, implicit bool) bool {
for _, s := range list {
if hasBreak(s, label, implicit) {
return true
}
}
return false
}

View File

@ -1,191 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements Scopes.
package types
import (
"bytes"
"fmt"
"go/token"
"io"
"sort"
"strings"
)
// TODO(gri) Provide scopes with a name or other mechanism so that
// objects can use that information for better printing.
// A Scope maintains a set of objects and links to its containing
// (parent) and contained (children) scopes. Objects may be inserted
// and looked up by name. The zero value for Scope is a ready-to-use
// empty scope.
type Scope struct {
parent *Scope
children []*Scope
elems map[string]Object // lazily allocated
pos, end token.Pos // scope extent; may be invalid
comment string // for debugging only
isFunc bool // set if this is a function scope (internal use only)
}
// NewScope returns a new, empty scope contained in the given parent
// scope, if any. The comment is for debugging only.
func NewScope(parent *Scope, pos, end token.Pos, comment string) *Scope {
s := &Scope{parent, nil, nil, pos, end, comment, false}
// don't add children to Universe scope!
if parent != nil && parent != Universe {
parent.children = append(parent.children, s)
}
return s
}
// Parent returns the scope's containing (parent) scope.
func (s *Scope) Parent() *Scope { return s.parent }
// Len() returns the number of scope elements.
func (s *Scope) Len() int { return len(s.elems) }
// Names returns the scope's element names in sorted order.
func (s *Scope) Names() []string {
names := make([]string, len(s.elems))
i := 0
for name := range s.elems {
names[i] = name
i++
}
sort.Strings(names)
return names
}
// NumChildren() returns the number of scopes nested in s.
func (s *Scope) NumChildren() int { return len(s.children) }
// Child returns the i'th child scope for 0 <= i < NumChildren().
func (s *Scope) Child(i int) *Scope { return s.children[i] }
// Lookup returns the object in scope s with the given name if such an
// object exists; otherwise the result is nil.
func (s *Scope) Lookup(name string) Object {
return s.elems[name]
}
// LookupParent follows the parent chain of scopes starting with s until
// it finds a scope where Lookup(name) returns a non-nil object, and then
// returns that scope and object. If a valid position pos is provided,
// only objects that were declared at or before pos are considered.
// If no such scope and object exists, the result is (nil, nil).
//
// Note that obj.Parent() may be different from the returned scope if the
// object was inserted into the scope and already had a parent at that
// time (see Insert, below). This can only happen for dot-imported objects
// whose scope is the scope of the package that exported them.
func (s *Scope) LookupParent(name string, pos token.Pos) (*Scope, Object) {
for ; s != nil; s = s.parent {
if obj := s.elems[name]; obj != nil && (!pos.IsValid() || obj.scopePos() <= pos) {
return s, obj
}
}
return nil, nil
}
// Insert attempts to insert an object obj into scope s.
// If s already contains an alternative object alt with
// the same name, Insert leaves s unchanged and returns alt.
// Otherwise it inserts obj, sets the object's parent scope
// if not already set, and returns nil.
func (s *Scope) Insert(obj Object) Object {
name := obj.Name()
if alt := s.elems[name]; alt != nil {
return alt
}
if s.elems == nil {
s.elems = make(map[string]Object)
}
s.elems[name] = obj
if obj.Parent() == nil {
obj.setParent(s)
}
return nil
}
// Pos and End describe the scope's source code extent [pos, end).
// The results are guaranteed to be valid only if the type-checked
// AST has complete position information. The extent is undefined
// for Universe and package scopes.
func (s *Scope) Pos() token.Pos { return s.pos }
func (s *Scope) End() token.Pos { return s.end }
// Contains returns true if pos is within the scope's extent.
// The result is guaranteed to be valid only if the type-checked
// AST has complete position information.
func (s *Scope) Contains(pos token.Pos) bool {
return s.pos <= pos && pos < s.end
}
// Innermost returns the innermost (child) scope containing
// pos. If pos is not within any scope, the result is nil.
// The result is also nil for the Universe scope.
// The result is guaranteed to be valid only if the type-checked
// AST has complete position information.
func (s *Scope) Innermost(pos token.Pos) *Scope {
// Package scopes do not have extents since they may be
// discontiguous, so iterate over the package's files.
if s.parent == Universe {
for _, s := range s.children {
if inner := s.Innermost(pos); inner != nil {
return inner
}
}
}
if s.Contains(pos) {
for _, s := range s.children {
if s.Contains(pos) {
return s.Innermost(pos)
}
}
return s
}
return nil
}
// WriteTo writes a string representation of the scope to w,
// with the scope elements sorted by name.
// The level of indentation is controlled by n >= 0, with
// n == 0 for no indentation.
// If recurse is set, it also writes nested (children) scopes.
func (s *Scope) WriteTo(w io.Writer, n int, recurse bool) {
const ind = ". "
indn := strings.Repeat(ind, n)
fmt.Fprintf(w, "%s%s scope %p {", indn, s.comment, s)
if len(s.elems) == 0 {
fmt.Fprintf(w, "}\n")
return
}
fmt.Fprintln(w)
indn1 := indn + ind
for _, name := range s.Names() {
fmt.Fprintf(w, "%s%s\n", indn1, s.elems[name])
}
if recurse {
for _, s := range s.children {
fmt.Fprintln(w)
s.WriteTo(w, n+1, recurse)
}
}
fmt.Fprintf(w, "%s}", indn)
}
// String returns a string representation of the scope, for debugging.
func (s *Scope) String() string {
var buf bytes.Buffer
s.WriteTo(&buf, 0, false)
return buf.String()
}

View File

@ -1,143 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements Selections.
package types
import (
"bytes"
"fmt"
)
// SelectionKind describes the kind of a selector expression x.f
// (excluding qualified identifiers).
type SelectionKind int
const (
FieldVal SelectionKind = iota // x.f is a struct field selector
MethodVal // x.f is a method selector
MethodExpr // x.f is a method expression
)
// A Selection describes a selector expression x.f.
// For the declarations:
//
// type T struct{ x int; E }
// type E struct{}
// func (e E) m() {}
// var p *T
//
// the following relations exist:
//
// Selector Kind Recv Obj Type Index Indirect
//
// p.x FieldVal T x int {0} true
// p.m MethodVal *T m func (e *T) m() {1, 0} true
// T.m MethodExpr T m func m(_ T) {1, 0} false
//
type Selection struct {
kind SelectionKind
recv Type // type of x
obj Object // object denoted by x.f
index []int // path from x to x.f
indirect bool // set if there was any pointer indirection on the path
}
// Kind returns the selection kind.
func (s *Selection) Kind() SelectionKind { return s.kind }
// Recv returns the type of x in x.f.
func (s *Selection) Recv() Type { return s.recv }
// Obj returns the object denoted by x.f; a *Var for
// a field selection, and a *Func in all other cases.
func (s *Selection) Obj() Object { return s.obj }
// Type returns the type of x.f, which may be different from the type of f.
// See Selection for more information.
func (s *Selection) Type() Type {
switch s.kind {
case MethodVal:
// The type of x.f is a method with its receiver type set
// to the type of x.
sig := *s.obj.(*Func).typ.(*Signature)
recv := *sig.recv
recv.typ = s.recv
sig.recv = &recv
return &sig
case MethodExpr:
// The type of x.f is a function (without receiver)
// and an additional first argument with the same type as x.
// TODO(gri) Similar code is already in call.go - factor!
// TODO(gri) Compute this eagerly to avoid allocations.
sig := *s.obj.(*Func).typ.(*Signature)
arg0 := *sig.recv
sig.recv = nil
arg0.typ = s.recv
var params []*Var
if sig.params != nil {
params = sig.params.vars
}
sig.params = NewTuple(append([]*Var{&arg0}, params...)...)
return &sig
}
// In all other cases, the type of x.f is the type of x.
return s.obj.Type()
}
// Index describes the path from x to f in x.f.
// The last index entry is the field or method index of the type declaring f;
// either:
//
// 1) the list of declared methods of a named type; or
// 2) the list of methods of an interface type; or
// 3) the list of fields of a struct type.
//
// The earlier index entries are the indices of the embedded fields implicitly
// traversed to get from (the type of) x to f, starting at embedding depth 0.
func (s *Selection) Index() []int { return s.index }
// Indirect reports whether any pointer indirection was required to get from
// x to f in x.f.
func (s *Selection) Indirect() bool { return s.indirect }
func (s *Selection) String() string { return SelectionString(s, nil) }
// SelectionString returns the string form of s.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
//
// Examples:
// "field (T) f int"
// "method (T) f(X) Y"
// "method expr (T) f(X) Y"
//
func SelectionString(s *Selection, qf Qualifier) string {
var k string
switch s.kind {
case FieldVal:
k = "field "
case MethodVal:
k = "method "
case MethodExpr:
k = "method expr "
default:
unreachable()
}
var buf bytes.Buffer
buf.WriteString(k)
buf.WriteByte('(')
WriteType(&buf, s.Recv(), qf)
fmt.Fprintf(&buf, ") %s", s.obj.Name())
if T := s.Type(); s.kind == FieldVal {
buf.WriteByte(' ')
WriteType(&buf, T, qf)
} else {
WriteSignature(&buf, T.(*Signature), qf)
}
return buf.String()
}

View File

@ -1,254 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements Sizes.
package types
// Sizes defines the sizing functions for package unsafe.
type Sizes interface {
// Alignof returns the alignment of a variable of type T.
// Alignof must implement the alignment guarantees required by the spec.
Alignof(T Type) int64
// Offsetsof returns the offsets of the given struct fields, in bytes.
// Offsetsof must implement the offset guarantees required by the spec.
Offsetsof(fields []*Var) []int64
// Sizeof returns the size of a variable of type T.
// Sizeof must implement the size guarantees required by the spec.
Sizeof(T Type) int64
}
// StdSizes is a convenience type for creating commonly used Sizes.
// It makes the following simplifying assumptions:
//
// - The size of explicitly sized basic types (int16, etc.) is the
// specified size.
// - The size of strings and interfaces is 2*WordSize.
// - The size of slices is 3*WordSize.
// - The size of an array of n elements corresponds to the size of
// a struct of n consecutive fields of the array's element type.
// - The size of a struct is the offset of the last field plus that
// field's size. As with all element types, if the struct is used
// in an array its size must first be aligned to a multiple of the
// struct's alignment.
// - All other types have size WordSize.
// - Arrays and structs are aligned per spec definition; all other
// types are naturally aligned with a maximum alignment MaxAlign.
//
// *StdSizes implements Sizes.
//
type StdSizes struct {
WordSize int64 // word size in bytes - must be >= 4 (32bits)
MaxAlign int64 // maximum alignment in bytes - must be >= 1
}
func (s *StdSizes) Alignof(T Type) int64 {
// For arrays and structs, alignment is defined in terms
// of alignment of the elements and fields, respectively.
switch t := T.Underlying().(type) {
case *Array:
// spec: "For a variable x of array type: unsafe.Alignof(x)
// is the same as unsafe.Alignof(x[0]), but at least 1."
return s.Alignof(t.elem)
case *Struct:
// spec: "For a variable x of struct type: unsafe.Alignof(x)
// is the largest of the values unsafe.Alignof(x.f) for each
// field f of x, but at least 1."
max := int64(1)
for _, f := range t.fields {
if a := s.Alignof(f.typ); a > max {
max = a
}
}
return max
case *Slice, *Interface:
// Multiword data structures are effectively structs
// in which each element has size WordSize.
return s.WordSize
case *Basic:
// Strings are like slices and interfaces.
if t.Info()&IsString != 0 {
return s.WordSize
}
}
a := s.Sizeof(T) // may be 0
// spec: "For a variable x of any type: unsafe.Alignof(x) is at least 1."
if a < 1 {
return 1
}
// complex{64,128} are aligned like [2]float{32,64}.
if isComplex(T) {
a /= 2
}
if a > s.MaxAlign {
return s.MaxAlign
}
return a
}
func (s *StdSizes) Offsetsof(fields []*Var) []int64 {
offsets := make([]int64, len(fields))
var o int64
for i, f := range fields {
a := s.Alignof(f.typ)
o = align(o, a)
offsets[i] = o
o += s.Sizeof(f.typ)
}
return offsets
}
var basicSizes = [...]byte{
Bool: 1,
Int8: 1,
Int16: 2,
Int32: 4,
Int64: 8,
Uint8: 1,
Uint16: 2,
Uint32: 4,
Uint64: 8,
Float32: 4,
Float64: 8,
Complex64: 8,
Complex128: 16,
}
func (s *StdSizes) Sizeof(T Type) int64 {
switch t := T.Underlying().(type) {
case *Basic:
assert(isTyped(T))
k := t.kind
if int(k) < len(basicSizes) {
if s := basicSizes[k]; s > 0 {
return int64(s)
}
}
if k == String {
return s.WordSize * 2
}
case *Array:
n := t.len
if n <= 0 {
return 0
}
// n > 0
a := s.Alignof(t.elem)
z := s.Sizeof(t.elem)
return align(z, a)*(n-1) + z
case *Slice:
return s.WordSize * 3
case *Struct:
n := t.NumFields()
if n == 0 {
return 0
}
offsets := s.Offsetsof(t.fields)
return offsets[n-1] + s.Sizeof(t.fields[n-1].typ)
case *Interface:
return s.WordSize * 2
}
return s.WordSize // catch-all
}
// common architecture word sizes and alignments
var gcArchSizes = map[string]*StdSizes{
"386": {4, 4},
"arm": {4, 4},
"arm64": {8, 8},
"amd64": {8, 8},
"amd64p32": {4, 8},
"mips": {4, 4},
"mipsle": {4, 4},
"mips64": {8, 8},
"mips64le": {8, 8},
"ppc64": {8, 8},
"ppc64le": {8, 8},
"s390x": {8, 8},
// When adding more architectures here,
// update the doc string of SizesFor below.
}
// SizesFor returns the Sizes used by a compiler for an architecture.
// The result is nil if a compiler/architecture pair is not known.
//
// Supported architectures for compiler "gc":
// "386", "arm", "arm64", "amd64", "amd64p32", "mips", "mipsle",
// "mips64", "mips64le", "ppc64", "ppc64le", "s390x".
func SizesFor(compiler, arch string) Sizes {
if compiler != "gc" {
return nil
}
s, ok := gcArchSizes[arch]
if !ok {
return nil
}
return s
}
// stdSizes is used if Config.Sizes == nil.
var stdSizes = SizesFor("gc", "amd64")
func (conf *Config) alignof(T Type) int64 {
if s := conf.Sizes; s != nil {
if a := s.Alignof(T); a >= 1 {
return a
}
panic("Config.Sizes.Alignof returned an alignment < 1")
}
return stdSizes.Alignof(T)
}
func (conf *Config) offsetsof(T *Struct) []int64 {
var offsets []int64
if T.NumFields() > 0 {
// compute offsets on demand
if s := conf.Sizes; s != nil {
offsets = s.Offsetsof(T.fields)
// sanity checks
if len(offsets) != T.NumFields() {
panic("Config.Sizes.Offsetsof returned the wrong number of offsets")
}
for _, o := range offsets {
if o < 0 {
panic("Config.Sizes.Offsetsof returned an offset < 0")
}
}
} else {
offsets = stdSizes.Offsetsof(T.fields)
}
}
return offsets
}
// offsetof returns the offset of the field specified via
// the index sequence relative to typ. All embedded fields
// must be structs (rather than pointer to structs).
func (conf *Config) offsetof(typ Type, index []int) int64 {
var o int64
for _, i := range index {
s := typ.Underlying().(*Struct)
o += conf.offsetsof(s)[i]
typ = s.fields[i].typ
}
return o
}
func (conf *Config) sizeof(T Type) int64 {
if s := conf.Sizes; s != nil {
if z := s.Sizeof(T); z >= 0 {
return z
}
panic("Config.Sizes.Sizeof returned a size < 0")
}
return stdSizes.Sizeof(T)
}
// align returns the smallest y >= x such that y % a == 0.
func align(x, a int64) int64 {
y := x + a - 1
return y - y%a
}

View File

@ -1,870 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of statements.
package types
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"sort"
)
func (check *Checker) funcBody(decl *declInfo, name string, sig *Signature, body *ast.BlockStmt) {
if trace {
if name == "" {
name = "<function literal>"
}
fmt.Printf("--- %s: %s {\n", name, sig)
defer fmt.Println("--- <end>")
}
// set function scope extent
sig.scope.pos = body.Pos()
sig.scope.end = body.End()
// save/restore current context and setup function context
// (and use 0 indentation at function start)
defer func(ctxt context, indent int) {
check.context = ctxt
check.indent = indent
}(check.context, check.indent)
check.context = context{
decl: decl,
scope: sig.scope,
sig: sig,
}
check.indent = 0
check.stmtList(0, body.List)
if check.hasLabel {
check.labels(body)
}
if sig.results.Len() > 0 && !check.isTerminating(body, "") {
check.error(body.Rbrace, "missing return")
}
// spec: "Implementation restriction: A compiler may make it illegal to
// declare a variable inside a function body if the variable is never used."
// (One could check each scope after use, but that distributes this check
// over several places because CloseScope is not always called explicitly.)
check.usage(sig.scope)
}
func (check *Checker) usage(scope *Scope) {
var unused []*Var
for _, elem := range scope.elems {
if v, _ := elem.(*Var); v != nil && !v.used {
unused = append(unused, v)
}
}
sort.Slice(unused, func(i, j int) bool {
return unused[i].pos < unused[j].pos
})
for _, v := range unused {
check.softErrorf(v.pos, "%s declared but not used", v.name)
}
for _, scope := range scope.children {
// Don't go inside closure scopes a second time;
// they are handled explicitly by funcBody.
if !scope.isFunc {
check.usage(scope)
}
}
}
// stmtContext is a bitset describing which
// control-flow statements are permissible,
// and provides additional context information
// for better error messages.
type stmtContext uint
const (
// permissible control-flow statements
breakOk stmtContext = 1 << iota
continueOk
fallthroughOk
// additional context information
finalSwitchCase
)
func (check *Checker) simpleStmt(s ast.Stmt) {
if s != nil {
check.stmt(0, s)
}
}
func trimTrailingEmptyStmts(list []ast.Stmt) []ast.Stmt {
for i := len(list); i > 0; i-- {
if _, ok := list[i-1].(*ast.EmptyStmt); !ok {
return list[:i]
}
}
return nil
}
func (check *Checker) stmtList(ctxt stmtContext, list []ast.Stmt) {
ok := ctxt&fallthroughOk != 0
inner := ctxt &^ fallthroughOk
list = trimTrailingEmptyStmts(list) // trailing empty statements are "invisible" to fallthrough analysis
for i, s := range list {
inner := inner
if ok && i+1 == len(list) {
inner |= fallthroughOk
}
check.stmt(inner, s)
}
}
func (check *Checker) multipleDefaults(list []ast.Stmt) {
var first ast.Stmt
for _, s := range list {
var d ast.Stmt
switch c := s.(type) {
case *ast.CaseClause:
if len(c.List) == 0 {
d = s
}
case *ast.CommClause:
if c.Comm == nil {
d = s
}
default:
check.invalidAST(s.Pos(), "case/communication clause expected")
}
if d != nil {
if first != nil {
check.errorf(d.Pos(), "multiple defaults (first at %s)", check.fset.Position(first.Pos()))
} else {
first = d
}
}
}
}
func (check *Checker) openScope(s ast.Stmt, comment string) {
scope := NewScope(check.scope, s.Pos(), s.End(), comment)
check.recordScope(s, scope)
check.scope = scope
}
func (check *Checker) closeScope() {
check.scope = check.scope.Parent()
}
func assignOp(op token.Token) token.Token {
// token_test.go verifies the token ordering this function relies on
if token.ADD_ASSIGN <= op && op <= token.AND_NOT_ASSIGN {
return op + (token.ADD - token.ADD_ASSIGN)
}
return token.ILLEGAL
}
func (check *Checker) suspendedCall(keyword string, call *ast.CallExpr) {
var x operand
var msg string
switch check.rawExpr(&x, call, nil) {
case conversion:
msg = "requires function call, not conversion"
case expression:
msg = "discards result of"
case statement:
return
default:
unreachable()
}
check.errorf(x.pos(), "%s %s %s", keyword, msg, &x)
}
// goVal returns the Go value for val, or nil.
func goVal(val constant.Value) interface{} {
// val should exist, but be conservative and check
if val == nil {
return nil
}
// Match implementation restriction of other compilers.
// gc only checks duplicates for integer, floating-point
// and string values, so only create Go values for these
// types.
switch val.Kind() {
case constant.Int:
if x, ok := constant.Int64Val(val); ok {
return x
}
if x, ok := constant.Uint64Val(val); ok {
return x
}
case constant.Float:
if x, ok := constant.Float64Val(val); ok {
return x
}
case constant.String:
return constant.StringVal(val)
}
return nil
}
// A valueMap maps a case value (of a basic Go type) to a list of positions
// where the same case value appeared, together with the corresponding case
// types.
// Since two case values may have the same "underlying" value but different
// types we need to also check the value's types (e.g., byte(1) vs myByte(1))
// when the switch expression is of interface type.
type (
valueMap map[interface{}][]valueType // underlying Go value -> valueType
valueType struct {
pos token.Pos
typ Type
}
)
func (check *Checker) caseValues(x *operand, values []ast.Expr, seen valueMap) {
L:
for _, e := range values {
var v operand
check.expr(&v, e)
if x.mode == invalid || v.mode == invalid {
continue L
}
check.convertUntyped(&v, x.typ)
if v.mode == invalid {
continue L
}
// Order matters: By comparing v against x, error positions are at the case values.
res := v // keep original v unchanged
check.comparison(&res, x, token.EQL)
if res.mode == invalid {
continue L
}
if v.mode != constant_ {
continue L // we're done
}
// look for duplicate values
if val := goVal(v.val); val != nil {
// look for duplicate types for a given value
// (quadratic algorithm, but these lists tend to be very short)
for _, vt := range seen[val] {
if Identical(v.typ, vt.typ) {
check.errorf(v.pos(), "duplicate case %s in expression switch", &v)
check.error(vt.pos, "\tprevious case") // secondary error, \t indented
continue L
}
}
seen[val] = append(seen[val], valueType{v.pos(), v.typ})
}
}
}
func (check *Checker) caseTypes(x *operand, xtyp *Interface, types []ast.Expr, seen map[Type]token.Pos) (T Type) {
L:
for _, e := range types {
T = check.typOrNil(e)
if T == Typ[Invalid] {
continue L
}
// look for duplicate types
// (quadratic algorithm, but type switches tend to be reasonably small)
for t, pos := range seen {
if T == nil && t == nil || T != nil && t != nil && Identical(T, t) {
// talk about "case" rather than "type" because of nil case
Ts := "nil"
if T != nil {
Ts = T.String()
}
check.errorf(e.Pos(), "duplicate case %s in type switch", Ts)
check.error(pos, "\tprevious case") // secondary error, \t indented
continue L
}
}
seen[T] = e.Pos()
if T != nil {
check.typeAssertion(e.Pos(), x, xtyp, T)
}
}
return
}
// stmt typechecks statement s.
func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) {
// statements cannot use iota in general
// (constant declarations set it explicitly)
assert(check.iota == nil)
// statements must end with the same top scope as they started with
if debug {
defer func(scope *Scope) {
// don't check if code is panicking
if p := recover(); p != nil {
panic(p)
}
assert(scope == check.scope)
}(check.scope)
}
inner := ctxt &^ (fallthroughOk | finalSwitchCase)
switch s := s.(type) {
case *ast.BadStmt, *ast.EmptyStmt:
// ignore
case *ast.DeclStmt:
check.declStmt(s.Decl)
case *ast.LabeledStmt:
check.hasLabel = true
check.stmt(ctxt, s.Stmt)
case *ast.ExprStmt:
// spec: "With the exception of specific built-in functions,
// function and method calls and receive operations can appear
// in statement context. Such statements may be parenthesized."
var x operand
kind := check.rawExpr(&x, s.X, nil)
var msg string
switch x.mode {
default:
if kind == statement {
return
}
msg = "is not used"
case builtin:
msg = "must be called"
case typexpr:
msg = "is not an expression"
}
check.errorf(x.pos(), "%s %s", &x, msg)
case *ast.SendStmt:
var ch, x operand
check.expr(&ch, s.Chan)
check.expr(&x, s.Value)
if ch.mode == invalid || x.mode == invalid {
return
}
tch, ok := ch.typ.Underlying().(*Chan)
if !ok {
check.invalidOp(s.Arrow, "cannot send to non-chan type %s", ch.typ)
return
}
if tch.dir == RecvOnly {
check.invalidOp(s.Arrow, "cannot send to receive-only type %s", tch)
return
}
check.assignment(&x, tch.elem, "send")
case *ast.IncDecStmt:
var op token.Token
switch s.Tok {
case token.INC:
op = token.ADD
case token.DEC:
op = token.SUB
default:
check.invalidAST(s.TokPos, "unknown inc/dec operation %s", s.Tok)
return
}
var x operand
check.expr(&x, s.X)
if x.mode == invalid {
return
}
if !isNumeric(x.typ) {
check.invalidOp(s.X.Pos(), "%s%s (non-numeric type %s)", s.X, s.Tok, x.typ)
return
}
Y := &ast.BasicLit{ValuePos: s.X.Pos(), Kind: token.INT, Value: "1"} // use x's position
check.binary(&x, nil, s.X, Y, op)
if x.mode == invalid {
return
}
check.assignVar(s.X, &x)
case *ast.AssignStmt:
switch s.Tok {
case token.ASSIGN, token.DEFINE:
if len(s.Lhs) == 0 {
check.invalidAST(s.Pos(), "missing lhs in assignment")
return
}
if s.Tok == token.DEFINE {
check.shortVarDecl(s.TokPos, s.Lhs, s.Rhs)
} else {
// regular assignment
check.assignVars(s.Lhs, s.Rhs)
}
default:
// assignment operations
if len(s.Lhs) != 1 || len(s.Rhs) != 1 {
check.errorf(s.TokPos, "assignment operation %s requires single-valued expressions", s.Tok)
return
}
op := assignOp(s.Tok)
if op == token.ILLEGAL {
check.invalidAST(s.TokPos, "unknown assignment operation %s", s.Tok)
return
}
var x operand
check.binary(&x, nil, s.Lhs[0], s.Rhs[0], op)
if x.mode == invalid {
return
}
check.assignVar(s.Lhs[0], &x)
}
case *ast.GoStmt:
check.suspendedCall("go", s.Call)
case *ast.DeferStmt:
check.suspendedCall("defer", s.Call)
case *ast.ReturnStmt:
res := check.sig.results
if res.Len() > 0 {
// function returns results
// (if one, say the first, result parameter is named, all of them are named)
if len(s.Results) == 0 && res.vars[0].name != "" {
// spec: "Implementation restriction: A compiler may disallow an empty expression
// list in a "return" statement if a different entity (constant, type, or variable)
// with the same name as a result parameter is in scope at the place of the return."
for _, obj := range res.vars {
if _, alt := check.scope.LookupParent(obj.name, check.pos); alt != nil && alt != obj {
check.errorf(s.Pos(), "result parameter %s not in scope at return", obj.name)
check.errorf(alt.Pos(), "\tinner declaration of %s", obj)
// ok to continue
}
}
} else {
// return has results or result parameters are unnamed
check.initVars(res.vars, s.Results, s.Return)
}
} else if len(s.Results) > 0 {
check.error(s.Results[0].Pos(), "no result values expected")
check.use(s.Results...)
}
case *ast.BranchStmt:
if s.Label != nil {
check.hasLabel = true
return // checked in 2nd pass (check.labels)
}
switch s.Tok {
case token.BREAK:
if ctxt&breakOk == 0 {
check.error(s.Pos(), "break not in for, switch, or select statement")
}
case token.CONTINUE:
if ctxt&continueOk == 0 {
check.error(s.Pos(), "continue not in for statement")
}
case token.FALLTHROUGH:
if ctxt&fallthroughOk == 0 {
msg := "fallthrough statement out of place"
if ctxt&finalSwitchCase != 0 {
msg = "cannot fallthrough final case in switch"
}
check.error(s.Pos(), msg)
}
default:
check.invalidAST(s.Pos(), "branch statement: %s", s.Tok)
}
case *ast.BlockStmt:
check.openScope(s, "block")
defer check.closeScope()
check.stmtList(inner, s.List)
case *ast.IfStmt:
check.openScope(s, "if")
defer check.closeScope()
check.simpleStmt(s.Init)
var x operand
check.expr(&x, s.Cond)
if x.mode != invalid && !isBoolean(x.typ) {
check.error(s.Cond.Pos(), "non-boolean condition in if statement")
}
check.stmt(inner, s.Body)
// The parser produces a correct AST but if it was modified
// elsewhere the else branch may be invalid. Check again.
switch s.Else.(type) {
case nil, *ast.BadStmt:
// valid or error already reported
case *ast.IfStmt, *ast.BlockStmt:
check.stmt(inner, s.Else)
default:
check.error(s.Else.Pos(), "invalid else branch in if statement")
}
case *ast.SwitchStmt:
inner |= breakOk
check.openScope(s, "switch")
defer check.closeScope()
check.simpleStmt(s.Init)
var x operand
if s.Tag != nil {
check.expr(&x, s.Tag)
// By checking assignment of x to an invisible temporary
// (as a compiler would), we get all the relevant checks.
check.assignment(&x, nil, "switch expression")
} else {
// spec: "A missing switch expression is
// equivalent to the boolean value true."
x.mode = constant_
x.typ = Typ[Bool]
x.val = constant.MakeBool(true)
x.expr = &ast.Ident{NamePos: s.Body.Lbrace, Name: "true"}
}
check.multipleDefaults(s.Body.List)
seen := make(valueMap) // map of seen case values to positions and types
for i, c := range s.Body.List {
clause, _ := c.(*ast.CaseClause)
if clause == nil {
check.invalidAST(c.Pos(), "incorrect expression switch case")
continue
}
check.caseValues(&x, clause.List, seen)
check.openScope(clause, "case")
inner := inner
if i+1 < len(s.Body.List) {
inner |= fallthroughOk
} else {
inner |= finalSwitchCase
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
case *ast.TypeSwitchStmt:
inner |= breakOk
check.openScope(s, "type switch")
defer check.closeScope()
check.simpleStmt(s.Init)
// A type switch guard must be of the form:
//
// TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
//
// The parser is checking syntactic correctness;
// remaining syntactic errors are considered AST errors here.
// TODO(gri) better factoring of error handling (invalid ASTs)
//
var lhs *ast.Ident // lhs identifier or nil
var rhs ast.Expr
switch guard := s.Assign.(type) {
case *ast.ExprStmt:
rhs = guard.X
case *ast.AssignStmt:
if len(guard.Lhs) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs) != 1 {
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
lhs, _ = guard.Lhs[0].(*ast.Ident)
if lhs == nil {
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
if lhs.Name == "_" {
// _ := x.(type) is an invalid short variable declaration
check.softErrorf(lhs.Pos(), "no new variable on left side of :=")
lhs = nil // avoid declared but not used error below
} else {
check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause
}
rhs = guard.Rhs[0]
default:
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
// rhs must be of the form: expr.(type) and expr must be an interface
expr, _ := rhs.(*ast.TypeAssertExpr)
if expr == nil || expr.Type != nil {
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
var x operand
check.expr(&x, expr.X)
if x.mode == invalid {
return
}
xtyp, _ := x.typ.Underlying().(*Interface)
if xtyp == nil {
check.errorf(x.pos(), "%s is not an interface", &x)
return
}
check.multipleDefaults(s.Body.List)
var lhsVars []*Var // list of implicitly declared lhs variables
seen := make(map[Type]token.Pos) // map of seen types to positions
for _, s := range s.Body.List {
clause, _ := s.(*ast.CaseClause)
if clause == nil {
check.invalidAST(s.Pos(), "incorrect type switch case")
continue
}
// Check each type in this type switch case.
T := check.caseTypes(&x, xtyp, clause.List, seen)
check.openScope(clause, "case")
// If lhs exists, declare a corresponding variable in the case-local scope.
if lhs != nil {
// spec: "The TypeSwitchGuard may include a short variable declaration.
// When that form is used, the variable is declared at the beginning of
// the implicit block in each clause. In clauses with a case listing
// exactly one type, the variable has that type; otherwise, the variable
// has the type of the expression in the TypeSwitchGuard."
if len(clause.List) != 1 || T == nil {
T = x.typ
}
obj := NewVar(lhs.Pos(), check.pkg, lhs.Name, T)
scopePos := clause.Pos() + token.Pos(len("default")) // for default clause (len(List) == 0)
if n := len(clause.List); n > 0 {
scopePos = clause.List[n-1].End()
}
check.declare(check.scope, nil, obj, scopePos)
check.recordImplicit(clause, obj)
// For the "declared but not used" error, all lhs variables act as
// one; i.e., if any one of them is 'used', all of them are 'used'.
// Collect them for later analysis.
lhsVars = append(lhsVars, obj)
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
// If lhs exists, we must have at least one lhs variable that was used.
if lhs != nil {
var used bool
for _, v := range lhsVars {
if v.used {
used = true
}
v.used = true // avoid usage error when checking entire function
}
if !used {
check.softErrorf(lhs.Pos(), "%s declared but not used", lhs.Name)
}
}
case *ast.SelectStmt:
inner |= breakOk
check.multipleDefaults(s.Body.List)
for _, s := range s.Body.List {
clause, _ := s.(*ast.CommClause)
if clause == nil {
continue // error reported before
}
// clause.Comm must be a SendStmt, RecvStmt, or default case
valid := false
var rhs ast.Expr // rhs of RecvStmt, or nil
switch s := clause.Comm.(type) {
case nil, *ast.SendStmt:
valid = true
case *ast.AssignStmt:
if len(s.Rhs) == 1 {
rhs = s.Rhs[0]
}
case *ast.ExprStmt:
rhs = s.X
}
// if present, rhs must be a receive operation
if rhs != nil {
if x, _ := unparen(rhs).(*ast.UnaryExpr); x != nil && x.Op == token.ARROW {
valid = true
}
}
if !valid {
check.error(clause.Comm.Pos(), "select case must be send or receive (possibly with assignment)")
continue
}
check.openScope(s, "case")
if clause.Comm != nil {
check.stmt(inner, clause.Comm)
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
case *ast.ForStmt:
inner |= breakOk | continueOk
check.openScope(s, "for")
defer check.closeScope()
check.simpleStmt(s.Init)
if s.Cond != nil {
var x operand
check.expr(&x, s.Cond)
if x.mode != invalid && !isBoolean(x.typ) {
check.error(s.Cond.Pos(), "non-boolean condition in for statement")
}
}
check.simpleStmt(s.Post)
// spec: "The init statement may be a short variable
// declaration, but the post statement must not."
if s, _ := s.Post.(*ast.AssignStmt); s != nil && s.Tok == token.DEFINE {
check.softErrorf(s.Pos(), "cannot declare in post statement")
// Don't call useLHS here because we want to use the lhs in
// this erroneous statement so that we don't get errors about
// these lhs variables being declared but not used.
check.use(s.Lhs...) // avoid follow-up errors
}
check.stmt(inner, s.Body)
case *ast.RangeStmt:
inner |= breakOk | continueOk
check.openScope(s, "for")
defer check.closeScope()
// check expression to iterate over
var x operand
check.expr(&x, s.X)
// determine key/value types
var key, val Type
if x.mode != invalid {
switch typ := x.typ.Underlying().(type) {
case *Basic:
if isString(typ) {
key = Typ[Int]
val = universeRune // use 'rune' name
}
case *Array:
key = Typ[Int]
val = typ.elem
case *Slice:
key = Typ[Int]
val = typ.elem
case *Pointer:
if typ, _ := typ.base.Underlying().(*Array); typ != nil {
key = Typ[Int]
val = typ.elem
}
case *Map:
key = typ.key
val = typ.elem
case *Chan:
key = typ.elem
val = Typ[Invalid]
if typ.dir == SendOnly {
check.errorf(x.pos(), "cannot range over send-only channel %s", &x)
// ok to continue
}
if s.Value != nil {
check.errorf(s.Value.Pos(), "iteration over %s permits only one iteration variable", &x)
// ok to continue
}
}
}
if key == nil {
check.errorf(x.pos(), "cannot range over %s", &x)
// ok to continue
}
// check assignment to/declaration of iteration variables
// (irregular assignment, cannot easily map to existing assignment checks)
// lhs expressions and initialization value (rhs) types
lhs := [2]ast.Expr{s.Key, s.Value}
rhs := [2]Type{key, val} // key, val may be nil
if s.Tok == token.DEFINE {
// short variable declaration; variable scope starts after the range clause
// (the for loop opens a new scope, so variables on the lhs never redeclare
// previously declared variables)
var vars []*Var
for i, lhs := range lhs {
if lhs == nil {
continue
}
// determine lhs variable
var obj *Var
if ident, _ := lhs.(*ast.Ident); ident != nil {
// declare new variable
name := ident.Name
obj = NewVar(ident.Pos(), check.pkg, name, nil)
check.recordDef(ident, obj)
// _ variables don't count as new variables
if name != "_" {
vars = append(vars, obj)
}
} else {
check.errorf(lhs.Pos(), "cannot declare %s", lhs)
obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
}
// initialize lhs variable
if typ := rhs[i]; typ != nil {
x.mode = value
x.expr = lhs // we don't have a better rhs expression to use here
x.typ = typ
check.initVar(obj, &x, "range clause")
} else {
obj.typ = Typ[Invalid]
obj.used = true // don't complain about unused variable
}
}
// declare variables
if len(vars) > 0 {
scopePos := s.X.End()
for _, obj := range vars {
// spec: "The scope of a constant or variable identifier declared inside
// a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl
// for short variable declarations) and ends at the end of the innermost
// containing block."
check.declare(check.scope, nil /* recordDef already called */, obj, scopePos)
}
} else {
check.error(s.TokPos, "no new variables on left side of :=")
}
} else {
// ordinary assignment
for i, lhs := range lhs {
if lhs == nil {
continue
}
if typ := rhs[i]; typ != nil {
x.mode = value
x.expr = lhs // we don't have a better rhs expression to use here
x.typ = typ
check.assignVar(lhs, &x)
}
}
}
check.stmt(inner, s.Body)
default:
check.error(s.Pos(), "invalid statement")
}
}

View File

@ -1,464 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import "sort"
// A Type represents a type of Go.
// All types implement the Type interface.
type Type interface {
// Underlying returns the underlying type of a type.
Underlying() Type
// String returns a string representation of a type.
String() string
}
// BasicKind describes the kind of basic type.
type BasicKind int
const (
Invalid BasicKind = iota // type is invalid
// predeclared types
Bool
Int
Int8
Int16
Int32
Int64
Uint
Uint8
Uint16
Uint32
Uint64
Uintptr
Float32
Float64
Complex64
Complex128
String
UnsafePointer
// types for untyped values
UntypedBool
UntypedInt
UntypedRune
UntypedFloat
UntypedComplex
UntypedString
UntypedNil
// aliases
Byte = Uint8
Rune = Int32
)
// BasicInfo is a set of flags describing properties of a basic type.
type BasicInfo int
// Properties of basic types.
const (
IsBoolean BasicInfo = 1 << iota
IsInteger
IsUnsigned
IsFloat
IsComplex
IsString
IsUntyped
IsOrdered = IsInteger | IsFloat | IsString
IsNumeric = IsInteger | IsFloat | IsComplex
IsConstType = IsBoolean | IsNumeric | IsString
)
// A Basic represents a basic type.
type Basic struct {
kind BasicKind
info BasicInfo
name string
}
// Kind returns the kind of basic type b.
func (b *Basic) Kind() BasicKind { return b.kind }
// Info returns information about properties of basic type b.
func (b *Basic) Info() BasicInfo { return b.info }
// Name returns the name of basic type b.
func (b *Basic) Name() string { return b.name }
// An Array represents an array type.
type Array struct {
len int64
elem Type
}
// NewArray returns a new array type for the given element type and length.
// A negative length indicates an unknown length.
func NewArray(elem Type, len int64) *Array { return &Array{len, elem} }
// Len returns the length of array a.
// A negative result indicates an unknown length.
func (a *Array) Len() int64 { return a.len }
// Elem returns element type of array a.
func (a *Array) Elem() Type { return a.elem }
// A Slice represents a slice type.
type Slice struct {
elem Type
}
// NewSlice returns a new slice type for the given element type.
func NewSlice(elem Type) *Slice { return &Slice{elem} }
// Elem returns the element type of slice s.
func (s *Slice) Elem() Type { return s.elem }
// A Struct represents a struct type.
type Struct struct {
fields []*Var
tags []string // field tags; nil if there are no tags
}
// NewStruct returns a new struct with the given fields and corresponding field tags.
// If a field with index i has a tag, tags[i] must be that tag, but len(tags) may be
// only as long as required to hold the tag with the largest index i. Consequently,
// if no field has a tag, tags may be nil.
func NewStruct(fields []*Var, tags []string) *Struct {
var fset objset
for _, f := range fields {
if f.name != "_" && fset.insert(f) != nil {
panic("multiple fields with the same name")
}
}
if len(tags) > len(fields) {
panic("more tags than fields")
}
return &Struct{fields: fields, tags: tags}
}
// NumFields returns the number of fields in the struct (including blank and anonymous fields).
func (s *Struct) NumFields() int { return len(s.fields) }
// Field returns the i'th field for 0 <= i < NumFields().
func (s *Struct) Field(i int) *Var { return s.fields[i] }
// Tag returns the i'th field tag for 0 <= i < NumFields().
func (s *Struct) Tag(i int) string {
if i < len(s.tags) {
return s.tags[i]
}
return ""
}
// A Pointer represents a pointer type.
type Pointer struct {
base Type // element type
}
// NewPointer returns a new pointer type for the given element (base) type.
func NewPointer(elem Type) *Pointer { return &Pointer{base: elem} }
// Elem returns the element type for the given pointer p.
func (p *Pointer) Elem() Type { return p.base }
// A Tuple represents an ordered list of variables; a nil *Tuple is a valid (empty) tuple.
// Tuples are used as components of signatures and to represent the type of multiple
// assignments; they are not first class types of Go.
type Tuple struct {
vars []*Var
}
// NewTuple returns a new tuple for the given variables.
func NewTuple(x ...*Var) *Tuple {
if len(x) > 0 {
return &Tuple{x}
}
return nil
}
// Len returns the number variables of tuple t.
func (t *Tuple) Len() int {
if t != nil {
return len(t.vars)
}
return 0
}
// At returns the i'th variable of tuple t.
func (t *Tuple) At(i int) *Var { return t.vars[i] }
// A Signature represents a (non-builtin) function or method type.
// The receiver is ignored when comparing signatures for identity.
type Signature struct {
// We need to keep the scope in Signature (rather than passing it around
// and store it in the Func Object) because when type-checking a function
// literal we call the general type checker which returns a general Type.
// We then unpack the *Signature and use the scope for the literal body.
scope *Scope // function scope, present for package-local signatures
recv *Var // nil if not a method
params *Tuple // (incoming) parameters from left to right; or nil
results *Tuple // (outgoing) results from left to right; or nil
variadic bool // true if the last parameter's type is of the form ...T (or string, for append built-in only)
}
// NewSignature returns a new function type for the given receiver, parameters,
// and results, either of which may be nil. If variadic is set, the function
// is variadic, it must have at least one parameter, and the last parameter
// must be of unnamed slice type.
func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature {
if variadic {
n := params.Len()
if n == 0 {
panic("types.NewSignature: variadic function must have at least one parameter")
}
if _, ok := params.At(n - 1).typ.(*Slice); !ok {
panic("types.NewSignature: variadic parameter must be of unnamed slice type")
}
}
return &Signature{nil, recv, params, results, variadic}
}
// Recv returns the receiver of signature s (if a method), or nil if a
// function. It is ignored when comparing signatures for identity.
//
// For an abstract method, Recv returns the enclosing interface either
// as a *Named or an *Interface. Due to embedding, an interface may
// contain methods whose receiver type is a different interface.
func (s *Signature) Recv() *Var { return s.recv }
// Params returns the parameters of signature s, or nil.
func (s *Signature) Params() *Tuple { return s.params }
// Results returns the results of signature s, or nil.
func (s *Signature) Results() *Tuple { return s.results }
// Variadic reports whether the signature s is variadic.
func (s *Signature) Variadic() bool { return s.variadic }
// An Interface represents an interface type.
type Interface struct {
methods []*Func // ordered list of explicitly declared methods
embeddeds []*Named // ordered list of explicitly embedded types
allMethods []*Func // ordered list of methods declared with or embedded in this interface (TODO(gri): replace with mset)
}
// emptyInterface represents the empty (completed) interface
var emptyInterface = Interface{allMethods: markComplete}
// markComplete is used to mark an empty interface as completely
// set up by setting the allMethods field to a non-nil empty slice.
var markComplete = make([]*Func, 0)
// NewInterface returns a new (incomplete) interface for the given methods and embedded types.
// To compute the method set of the interface, Complete must be called.
func NewInterface(methods []*Func, embeddeds []*Named) *Interface {
typ := new(Interface)
if len(methods) == 0 && len(embeddeds) == 0 {
return typ
}
var mset objset
for _, m := range methods {
if mset.insert(m) != nil {
panic("multiple methods with the same name")
}
// set receiver
// TODO(gri) Ideally, we should use a named type here instead of
// typ, for less verbose printing of interface method signatures.
m.typ.(*Signature).recv = NewVar(m.pos, m.pkg, "", typ)
}
sort.Sort(byUniqueMethodName(methods))
if embeddeds != nil {
sort.Sort(byUniqueTypeName(embeddeds))
}
typ.methods = methods
typ.embeddeds = embeddeds
return typ
}
// NumExplicitMethods returns the number of explicitly declared methods of interface t.
func (t *Interface) NumExplicitMethods() int { return len(t.methods) }
// ExplicitMethod returns the i'th explicitly declared method of interface t for 0 <= i < t.NumExplicitMethods().
// The methods are ordered by their unique Id.
func (t *Interface) ExplicitMethod(i int) *Func { return t.methods[i] }
// NumEmbeddeds returns the number of embedded types in interface t.
func (t *Interface) NumEmbeddeds() int { return len(t.embeddeds) }
// Embedded returns the i'th embedded type of interface t for 0 <= i < t.NumEmbeddeds().
// The types are ordered by the corresponding TypeName's unique Id.
func (t *Interface) Embedded(i int) *Named { return t.embeddeds[i] }
// NumMethods returns the total number of methods of interface t.
func (t *Interface) NumMethods() int { return len(t.allMethods) }
// Method returns the i'th method of interface t for 0 <= i < t.NumMethods().
// The methods are ordered by their unique Id.
func (t *Interface) Method(i int) *Func { return t.allMethods[i] }
// Empty returns true if t is the empty interface.
func (t *Interface) Empty() bool { return len(t.allMethods) == 0 }
// Complete computes the interface's method set. It must be called by users of
// NewInterface after the interface's embedded types are fully defined and
// before using the interface type in any way other than to form other types.
// Complete returns the receiver.
func (t *Interface) Complete() *Interface {
if t.allMethods != nil {
return t
}
var allMethods []*Func
if t.embeddeds == nil {
if t.methods == nil {
allMethods = make([]*Func, 0, 1)
} else {
allMethods = t.methods
}
} else {
allMethods = append(allMethods, t.methods...)
for _, et := range t.embeddeds {
it := et.Underlying().(*Interface)
it.Complete()
for _, tm := range it.allMethods {
// Make a copy of the method and adjust its receiver type.
newm := *tm
newmtyp := *tm.typ.(*Signature)
newm.typ = &newmtyp
newmtyp.recv = NewVar(newm.pos, newm.pkg, "", t)
allMethods = append(allMethods, &newm)
}
}
sort.Sort(byUniqueMethodName(allMethods))
}
t.allMethods = allMethods
return t
}
// A Map represents a map type.
type Map struct {
key, elem Type
}
// NewMap returns a new map for the given key and element types.
func NewMap(key, elem Type) *Map {
return &Map{key, elem}
}
// Key returns the key type of map m.
func (m *Map) Key() Type { return m.key }
// Elem returns the element type of map m.
func (m *Map) Elem() Type { return m.elem }
// A Chan represents a channel type.
type Chan struct {
dir ChanDir
elem Type
}
// A ChanDir value indicates a channel direction.
type ChanDir int
// The direction of a channel is indicated by one of these constants.
const (
SendRecv ChanDir = iota
SendOnly
RecvOnly
)
// NewChan returns a new channel type for the given direction and element type.
func NewChan(dir ChanDir, elem Type) *Chan {
return &Chan{dir, elem}
}
// Dir returns the direction of channel c.
func (c *Chan) Dir() ChanDir { return c.dir }
// Elem returns the element type of channel c.
func (c *Chan) Elem() Type { return c.elem }
// A Named represents a named type.
type Named struct {
obj *TypeName // corresponding declared object
underlying Type // possibly a *Named during setup; never a *Named once set up completely
methods []*Func // methods declared for this type (not the method set of this type)
}
// NewNamed returns a new named type for the given type name, underlying type, and associated methods.
// If the given type name obj doesn't have a type yet, its type is set to the returned named type.
// The underlying type must not be a *Named.
func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named {
if _, ok := underlying.(*Named); ok {
panic("types.NewNamed: underlying type must not be *Named")
}
typ := &Named{obj: obj, underlying: underlying, methods: methods}
if obj.typ == nil {
obj.typ = typ
}
return typ
}
// Obj returns the type name for the named type t.
func (t *Named) Obj() *TypeName { return t.obj }
// NumMethods returns the number of explicit methods whose receiver is named type t.
func (t *Named) NumMethods() int { return len(t.methods) }
// Method returns the i'th method of named type t for 0 <= i < t.NumMethods().
func (t *Named) Method(i int) *Func { return t.methods[i] }
// SetUnderlying sets the underlying type and marks t as complete.
func (t *Named) SetUnderlying(underlying Type) {
if underlying == nil {
panic("types.Named.SetUnderlying: underlying type must not be nil")
}
if _, ok := underlying.(*Named); ok {
panic("types.Named.SetUnderlying: underlying type must not be *Named")
}
t.underlying = underlying
}
// AddMethod adds method m unless it is already in the method list.
func (t *Named) AddMethod(m *Func) {
if i, _ := lookupMethod(t.methods, m.pkg, m.name); i < 0 {
t.methods = append(t.methods, m)
}
}
// Implementations for Type methods.
func (t *Basic) Underlying() Type { return t }
func (t *Array) Underlying() Type { return t }
func (t *Slice) Underlying() Type { return t }
func (t *Struct) Underlying() Type { return t }
func (t *Pointer) Underlying() Type { return t }
func (t *Tuple) Underlying() Type { return t }
func (t *Signature) Underlying() Type { return t }
func (t *Interface) Underlying() Type { return t }
func (t *Map) Underlying() Type { return t }
func (t *Chan) Underlying() Type { return t }
func (t *Named) Underlying() Type { return t.underlying }
func (t *Basic) String() string { return TypeString(t, nil) }
func (t *Array) String() string { return TypeString(t, nil) }
func (t *Slice) String() string { return TypeString(t, nil) }
func (t *Struct) String() string { return TypeString(t, nil) }
func (t *Pointer) String() string { return TypeString(t, nil) }
func (t *Tuple) String() string { return TypeString(t, nil) }
func (t *Signature) String() string { return TypeString(t, nil) }
func (t *Interface) String() string { return TypeString(t, nil) }
func (t *Map) String() string { return TypeString(t, nil) }
func (t *Chan) String() string { return TypeString(t, nil) }
func (t *Named) String() string { return TypeString(t, nil) }

View File

@ -1,307 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements printing of types.
package types
import (
"bytes"
"fmt"
)
// A Qualifier controls how named package-level objects are printed in
// calls to TypeString, ObjectString, and SelectionString.
//
// These three formatting routines call the Qualifier for each
// package-level object O, and if the Qualifier returns a non-empty
// string p, the object is printed in the form p.O.
// If it returns an empty string, only the object name O is printed.
//
// Using a nil Qualifier is equivalent to using (*Package).Path: the
// object is qualified by the import path, e.g., "encoding/json.Marshal".
//
type Qualifier func(*Package) string
// RelativeTo(pkg) returns a Qualifier that fully qualifies members of
// all packages other than pkg.
func RelativeTo(pkg *Package) Qualifier {
if pkg == nil {
return nil
}
return func(other *Package) string {
if pkg == other {
return "" // same package; unqualified
}
return other.Path()
}
}
// If gcCompatibilityMode is set, printing of types is modified
// to match the representation of some types in the gc compiler:
//
// - byte and rune lose their alias name and simply stand for
// uint8 and int32 respectively
// - embedded interfaces get flattened (the embedding info is lost,
// and certain recursive interface types cannot be printed anymore)
//
// This makes it easier to compare packages computed with the type-
// checker vs packages imported from gc export data.
//
// Caution: This flag affects all uses of WriteType, globally.
// It is only provided for testing in conjunction with
// gc-generated data.
//
// This flag is exported in the x/tools/go/types package. We don't
// need it at the moment in the std repo and so we don't export it
// anymore. We should eventually try to remove it altogether.
// TODO(gri) remove this
var gcCompatibilityMode bool
// TypeString returns the string representation of typ.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func TypeString(typ Type, qf Qualifier) string {
var buf bytes.Buffer
WriteType(&buf, typ, qf)
return buf.String()
}
// WriteType writes the string representation of typ to buf.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func WriteType(buf *bytes.Buffer, typ Type, qf Qualifier) {
writeType(buf, typ, qf, make([]Type, 0, 8))
}
func writeType(buf *bytes.Buffer, typ Type, qf Qualifier, visited []Type) {
// Theoretically, this is a quadratic lookup algorithm, but in
// practice deeply nested composite types with unnamed component
// types are uncommon. This code is likely more efficient than
// using a map.
for _, t := range visited {
if t == typ {
fmt.Fprintf(buf, "○%T", typ) // cycle to typ
return
}
}
visited = append(visited, typ)
switch t := typ.(type) {
case nil:
buf.WriteString("<nil>")
case *Basic:
if t.kind == UnsafePointer {
buf.WriteString("unsafe.")
}
if gcCompatibilityMode {
// forget the alias names
switch t.kind {
case Byte:
t = Typ[Uint8]
case Rune:
t = Typ[Int32]
}
}
buf.WriteString(t.name)
case *Array:
fmt.Fprintf(buf, "[%d]", t.len)
writeType(buf, t.elem, qf, visited)
case *Slice:
buf.WriteString("[]")
writeType(buf, t.elem, qf, visited)
case *Struct:
buf.WriteString("struct{")
for i, f := range t.fields {
if i > 0 {
buf.WriteString("; ")
}
if !f.anonymous {
buf.WriteString(f.name)
buf.WriteByte(' ')
}
writeType(buf, f.typ, qf, visited)
if tag := t.Tag(i); tag != "" {
fmt.Fprintf(buf, " %q", tag)
}
}
buf.WriteByte('}')
case *Pointer:
buf.WriteByte('*')
writeType(buf, t.base, qf, visited)
case *Tuple:
writeTuple(buf, t, false, qf, visited)
case *Signature:
buf.WriteString("func")
writeSignature(buf, t, qf, visited)
case *Interface:
// We write the source-level methods and embedded types rather
// than the actual method set since resolved method signatures
// may have non-printable cycles if parameters have anonymous
// interface types that (directly or indirectly) embed the
// current interface. For instance, consider the result type
// of m:
//
// type T interface{
// m() interface{ T }
// }
//
buf.WriteString("interface{")
empty := true
if gcCompatibilityMode {
// print flattened interface
// (useful to compare against gc-generated interfaces)
for i, m := range t.allMethods {
if i > 0 {
buf.WriteString("; ")
}
buf.WriteString(m.name)
writeSignature(buf, m.typ.(*Signature), qf, visited)
empty = false
}
} else {
// print explicit interface methods and embedded types
for i, m := range t.methods {
if i > 0 {
buf.WriteString("; ")
}
buf.WriteString(m.name)
writeSignature(buf, m.typ.(*Signature), qf, visited)
empty = false
}
for i, typ := range t.embeddeds {
if i > 0 || len(t.methods) > 0 {
buf.WriteString("; ")
}
writeType(buf, typ, qf, visited)
empty = false
}
}
if t.allMethods == nil || len(t.methods) > len(t.allMethods) {
if !empty {
buf.WriteByte(' ')
}
buf.WriteString("/* incomplete */")
}
buf.WriteByte('}')
case *Map:
buf.WriteString("map[")
writeType(buf, t.key, qf, visited)
buf.WriteByte(']')
writeType(buf, t.elem, qf, visited)
case *Chan:
var s string
var parens bool
switch t.dir {
case SendRecv:
s = "chan "
// chan (<-chan T) requires parentheses
if c, _ := t.elem.(*Chan); c != nil && c.dir == RecvOnly {
parens = true
}
case SendOnly:
s = "chan<- "
case RecvOnly:
s = "<-chan "
default:
panic("unreachable")
}
buf.WriteString(s)
if parens {
buf.WriteByte('(')
}
writeType(buf, t.elem, qf, visited)
if parens {
buf.WriteByte(')')
}
case *Named:
s := "<Named w/o object>"
if obj := t.obj; obj != nil {
if obj.pkg != nil {
writePackage(buf, obj.pkg, qf)
}
// TODO(gri): function-local named types should be displayed
// differently from named types at package level to avoid
// ambiguity.
s = obj.name
}
buf.WriteString(s)
default:
// For externally defined implementations of Type.
buf.WriteString(t.String())
}
}
func writeTuple(buf *bytes.Buffer, tup *Tuple, variadic bool, qf Qualifier, visited []Type) {
buf.WriteByte('(')
if tup != nil {
for i, v := range tup.vars {
if i > 0 {
buf.WriteString(", ")
}
if v.name != "" {
buf.WriteString(v.name)
buf.WriteByte(' ')
}
typ := v.typ
if variadic && i == len(tup.vars)-1 {
if s, ok := typ.(*Slice); ok {
buf.WriteString("...")
typ = s.elem
} else {
// special case:
// append(s, "foo"...) leads to signature func([]byte, string...)
if t, ok := typ.Underlying().(*Basic); !ok || t.kind != String {
panic("internal error: string type expected")
}
writeType(buf, typ, qf, visited)
buf.WriteString("...")
continue
}
}
writeType(buf, typ, qf, visited)
}
}
buf.WriteByte(')')
}
// WriteSignature writes the representation of the signature sig to buf,
// without a leading "func" keyword.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func WriteSignature(buf *bytes.Buffer, sig *Signature, qf Qualifier) {
writeSignature(buf, sig, qf, make([]Type, 0, 8))
}
func writeSignature(buf *bytes.Buffer, sig *Signature, qf Qualifier, visited []Type) {
writeTuple(buf, sig.params, sig.variadic, qf, visited)
n := sig.results.Len()
if n == 0 {
// no result
return
}
buf.WriteByte(' ')
if n == 1 && sig.results.vars[0].name == "" {
// single unnamed result
writeType(buf, sig.results.vars[0].typ, qf, visited)
return
}
// multiple or named result(s)
writeTuple(buf, sig.results, false, qf, visited)
}

View File

@ -1,722 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type-checking of identifiers and type expressions.
package types
import (
"go/ast"
"go/constant"
"go/token"
"sort"
"strconv"
)
// ident type-checks identifier e and initializes x with the value or type of e.
// If an error occurred, x.mode is set to invalid.
// For the meaning of def and path, see check.typ, below.
//
func (check *Checker) ident(x *operand, e *ast.Ident, def *Named, path []*TypeName) {
x.mode = invalid
x.expr = e
scope, obj := check.scope.LookupParent(e.Name, check.pos)
if obj == nil {
if e.Name == "_" {
check.errorf(e.Pos(), "cannot use _ as value or type")
} else {
check.errorf(e.Pos(), "undeclared name: %s", e.Name)
}
return
}
check.recordUse(e, obj)
check.objDecl(obj, def, path)
typ := obj.Type()
assert(typ != nil)
// The object may be dot-imported: If so, remove its package from
// the map of unused dot imports for the respective file scope.
// (This code is only needed for dot-imports. Without them,
// we only have to mark variables, see *Var case below).
if pkg := obj.Pkg(); pkg != check.pkg && pkg != nil {
delete(check.unusedDotImports[scope], pkg)
}
switch obj := obj.(type) {
case *PkgName:
check.errorf(e.Pos(), "use of package %s not in selector", obj.name)
return
case *Const:
check.addDeclDep(obj)
if typ == Typ[Invalid] {
return
}
if obj == universeIota {
if check.iota == nil {
check.errorf(e.Pos(), "cannot use iota outside constant declaration")
return
}
x.val = check.iota
} else {
x.val = obj.val
}
assert(x.val != nil)
x.mode = constant_
case *TypeName:
x.mode = typexpr
// check for cycle
// (it's ok to iterate forward because each named type appears at most once in path)
for i, prev := range path {
if prev == obj {
check.errorf(obj.pos, "illegal cycle in declaration of %s", obj.name)
// print cycle
for _, obj := range path[i:] {
check.errorf(obj.Pos(), "\t%s refers to", obj.Name()) // secondary error, \t indented
}
check.errorf(obj.Pos(), "\t%s", obj.Name())
// maintain x.mode == typexpr despite error
typ = Typ[Invalid]
break
}
}
case *Var:
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if obj.pkg == check.pkg {
obj.used = true
}
check.addDeclDep(obj)
if typ == Typ[Invalid] {
return
}
x.mode = variable
case *Func:
check.addDeclDep(obj)
x.mode = value
case *Builtin:
x.id = obj.id
x.mode = builtin
case *Nil:
x.mode = value
default:
unreachable()
}
x.typ = typ
}
// typExpr type-checks the type expression e and returns its type, or Typ[Invalid].
// If def != nil, e is the type specification for the named type def, declared
// in a type declaration, and def.underlying will be set to the type of e before
// any components of e are type-checked. Path contains the path of named types
// referring to this type.
//
func (check *Checker) typExpr(e ast.Expr, def *Named, path []*TypeName) (T Type) {
if trace {
check.trace(e.Pos(), "%s", e)
check.indent++
defer func() {
check.indent--
check.trace(e.Pos(), "=> %s", T)
}()
}
T = check.typExprInternal(e, def, path)
assert(isTyped(T))
check.recordTypeAndValue(e, typexpr, T, nil)
return
}
func (check *Checker) typ(e ast.Expr) Type {
return check.typExpr(e, nil, nil)
}
// funcType type-checks a function or method type.
func (check *Checker) funcType(sig *Signature, recvPar *ast.FieldList, ftyp *ast.FuncType) {
scope := NewScope(check.scope, token.NoPos, token.NoPos, "function")
scope.isFunc = true
check.recordScope(ftyp, scope)
recvList, _ := check.collectParams(scope, recvPar, false)
params, variadic := check.collectParams(scope, ftyp.Params, true)
results, _ := check.collectParams(scope, ftyp.Results, false)
if recvPar != nil {
// recv parameter list present (may be empty)
// spec: "The receiver is specified via an extra parameter section preceding the
// method name. That parameter section must declare a single parameter, the receiver."
var recv *Var
switch len(recvList) {
case 0:
check.error(recvPar.Pos(), "method is missing receiver")
recv = NewParam(0, nil, "", Typ[Invalid]) // ignore recv below
default:
// more than one receiver
check.error(recvList[len(recvList)-1].Pos(), "method must have exactly one receiver")
fallthrough // continue with first receiver
case 1:
recv = recvList[0]
}
// spec: "The receiver type must be of the form T or *T where T is a type name."
// (ignore invalid types - error was reported before)
if t, _ := deref(recv.typ); t != Typ[Invalid] {
var err string
if T, _ := t.(*Named); T != nil {
// spec: "The type denoted by T is called the receiver base type; it must not
// be a pointer or interface type and it must be declared in the same package
// as the method."
if T.obj.pkg != check.pkg {
err = "type not defined in this package"
} else {
// TODO(gri) This is not correct if the underlying type is unknown yet.
switch u := T.underlying.(type) {
case *Basic:
// unsafe.Pointer is treated like a regular pointer
if u.kind == UnsafePointer {
err = "unsafe.Pointer"
}
case *Pointer, *Interface:
err = "pointer or interface type"
}
}
} else {
err = "basic or unnamed type"
}
if err != "" {
check.errorf(recv.pos, "invalid receiver %s (%s)", recv.typ, err)
// ok to continue
}
}
sig.recv = recv
}
sig.scope = scope
sig.params = NewTuple(params...)
sig.results = NewTuple(results...)
sig.variadic = variadic
}
// typExprInternal drives type checking of types.
// Must only be called by typExpr.
//
func (check *Checker) typExprInternal(e ast.Expr, def *Named, path []*TypeName) Type {
switch e := e.(type) {
case *ast.BadExpr:
// ignore - error reported before
case *ast.Ident:
var x operand
check.ident(&x, e, def, path)
switch x.mode {
case typexpr:
typ := x.typ
def.setUnderlying(typ)
return typ
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as type", &x)
default:
check.errorf(x.pos(), "%s is not a type", &x)
}
case *ast.SelectorExpr:
var x operand
check.selector(&x, e)
switch x.mode {
case typexpr:
typ := x.typ
def.setUnderlying(typ)
return typ
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as type", &x)
default:
check.errorf(x.pos(), "%s is not a type", &x)
}
case *ast.ParenExpr:
return check.typExpr(e.X, def, path)
case *ast.ArrayType:
if e.Len != nil {
typ := new(Array)
def.setUnderlying(typ)
typ.len = check.arrayLength(e.Len)
typ.elem = check.typExpr(e.Elt, nil, path)
return typ
} else {
typ := new(Slice)
def.setUnderlying(typ)
typ.elem = check.typ(e.Elt)
return typ
}
case *ast.StructType:
typ := new(Struct)
def.setUnderlying(typ)
check.structType(typ, e, path)
return typ
case *ast.StarExpr:
typ := new(Pointer)
def.setUnderlying(typ)
typ.base = check.typ(e.X)
return typ
case *ast.FuncType:
typ := new(Signature)
def.setUnderlying(typ)
check.funcType(typ, nil, e)
return typ
case *ast.InterfaceType:
typ := new(Interface)
def.setUnderlying(typ)
check.interfaceType(typ, e, def, path)
return typ
case *ast.MapType:
typ := new(Map)
def.setUnderlying(typ)
typ.key = check.typ(e.Key)
typ.elem = check.typ(e.Value)
// spec: "The comparison operators == and != must be fully defined
// for operands of the key type; thus the key type must not be a
// function, map, or slice."
//
// Delay this check because it requires fully setup types;
// it is safe to continue in any case (was issue 6667).
check.delay(func() {
if !Comparable(typ.key) {
check.errorf(e.Key.Pos(), "invalid map key type %s", typ.key)
}
})
return typ
case *ast.ChanType:
typ := new(Chan)
def.setUnderlying(typ)
dir := SendRecv
switch e.Dir {
case ast.SEND | ast.RECV:
// nothing to do
case ast.SEND:
dir = SendOnly
case ast.RECV:
dir = RecvOnly
default:
check.invalidAST(e.Pos(), "unknown channel direction %d", e.Dir)
// ok to continue
}
typ.dir = dir
typ.elem = check.typ(e.Value)
return typ
default:
check.errorf(e.Pos(), "%s is not a type", e)
}
typ := Typ[Invalid]
def.setUnderlying(typ)
return typ
}
// typeOrNil type-checks the type expression (or nil value) e
// and returns the typ of e, or nil.
// If e is neither a type nor nil, typOrNil returns Typ[Invalid].
//
func (check *Checker) typOrNil(e ast.Expr) Type {
var x operand
check.rawExpr(&x, e, nil)
switch x.mode {
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as type", &x)
case typexpr:
return x.typ
case value:
if x.isNil() {
return nil
}
fallthrough
default:
check.errorf(x.pos(), "%s is not a type", &x)
}
return Typ[Invalid]
}
// arrayLength type-checks the array length expression e
// and returns the constant length >= 0, or a value < 0
// to indicate an error (and thus an unknown length).
func (check *Checker) arrayLength(e ast.Expr) int64 {
var x operand
check.expr(&x, e)
if x.mode != constant_ {
if x.mode != invalid {
check.errorf(x.pos(), "array length %s must be constant", &x)
}
return -1
}
if isUntyped(x.typ) || isInteger(x.typ) {
if val := constant.ToInt(x.val); val.Kind() == constant.Int {
if representableConst(val, check.conf, Typ[Int], nil) {
if n, ok := constant.Int64Val(val); ok && n >= 0 {
return n
}
check.errorf(x.pos(), "invalid array length %s", &x)
return -1
}
}
}
check.errorf(x.pos(), "array length %s must be integer", &x)
return -1
}
func (check *Checker) collectParams(scope *Scope, list *ast.FieldList, variadicOk bool) (params []*Var, variadic bool) {
if list == nil {
return
}
var named, anonymous bool
for i, field := range list.List {
ftype := field.Type
if t, _ := ftype.(*ast.Ellipsis); t != nil {
ftype = t.Elt
if variadicOk && i == len(list.List)-1 {
variadic = true
} else {
check.invalidAST(field.Pos(), "... not permitted")
// ignore ... and continue
}
}
typ := check.typ(ftype)
// The parser ensures that f.Tag is nil and we don't
// care if a constructed AST contains a non-nil tag.
if len(field.Names) > 0 {
// named parameter
for _, name := range field.Names {
if name.Name == "" {
check.invalidAST(name.Pos(), "anonymous parameter")
// ok to continue
}
par := NewParam(name.Pos(), check.pkg, name.Name, typ)
check.declare(scope, name, par, scope.pos)
params = append(params, par)
}
named = true
} else {
// anonymous parameter
par := NewParam(ftype.Pos(), check.pkg, "", typ)
check.recordImplicit(field, par)
params = append(params, par)
anonymous = true
}
}
if named && anonymous {
check.invalidAST(list.Pos(), "list contains both named and anonymous parameters")
// ok to continue
}
// For a variadic function, change the last parameter's type from T to []T.
if variadic && len(params) > 0 {
last := params[len(params)-1]
last.typ = &Slice{elem: last.typ}
}
return
}
func (check *Checker) declareInSet(oset *objset, pos token.Pos, obj Object) bool {
if alt := oset.insert(obj); alt != nil {
check.errorf(pos, "%s redeclared", obj.Name())
check.reportAltDecl(alt)
return false
}
return true
}
func (check *Checker) interfaceType(iface *Interface, ityp *ast.InterfaceType, def *Named, path []*TypeName) {
// empty interface: common case
if ityp.Methods == nil {
return
}
// The parser ensures that field tags are nil and we don't
// care if a constructed AST contains non-nil tags.
// use named receiver type if available (for better error messages)
var recvTyp Type = iface
if def != nil {
recvTyp = def
}
// Phase 1: Collect explicitly declared methods, the corresponding
// signature (AST) expressions, and the list of embedded
// type (AST) expressions. Do not resolve signatures or
// embedded types yet to avoid cycles referring to this
// interface.
var (
mset objset
signatures []ast.Expr // list of corresponding method signatures
embedded []ast.Expr // list of embedded types
)
for _, f := range ityp.Methods.List {
if len(f.Names) > 0 {
// The parser ensures that there's only one method
// and we don't care if a constructed AST has more.
name := f.Names[0]
pos := name.Pos()
// spec: "As with all method sets, in an interface type,
// each method must have a unique non-blank name."
if name.Name == "_" {
check.errorf(pos, "invalid method name _")
continue
}
// Don't type-check signature yet - use an
// empty signature now and update it later.
// Since we know the receiver, set it up now
// (required to avoid crash in ptrRecv; see
// e.g. test case for issue 6638).
// TODO(gri) Consider marking methods signatures
// as incomplete, for better error messages. See
// also the T4 and T5 tests in testdata/cycles2.src.
sig := new(Signature)
sig.recv = NewVar(pos, check.pkg, "", recvTyp)
m := NewFunc(pos, check.pkg, name.Name, sig)
if check.declareInSet(&mset, pos, m) {
iface.methods = append(iface.methods, m)
iface.allMethods = append(iface.allMethods, m)
signatures = append(signatures, f.Type)
check.recordDef(name, m)
}
} else {
// embedded type
embedded = append(embedded, f.Type)
}
}
// Phase 2: Resolve embedded interfaces. Because an interface must not
// embed itself (directly or indirectly), each embedded interface
// can be fully resolved without depending on any method of this
// interface (if there is a cycle or another error, the embedded
// type resolves to an invalid type and is ignored).
// In particular, the list of methods for each embedded interface
// must be complete (it cannot depend on this interface), and so
// those methods can be added to the list of all methods of this
// interface.
for _, e := range embedded {
pos := e.Pos()
typ := check.typExpr(e, nil, path)
// Determine underlying embedded (possibly incomplete) type
// by following its forward chain.
named, _ := typ.(*Named)
under := underlying(named)
embed, _ := under.(*Interface)
if embed == nil {
if typ != Typ[Invalid] {
check.errorf(pos, "%s is not an interface", typ)
}
continue
}
iface.embeddeds = append(iface.embeddeds, named)
// collect embedded methods
if embed.allMethods == nil {
check.errorf(pos, "internal error: incomplete embedded interface %s (issue #18395)", named)
}
for _, m := range embed.allMethods {
if check.declareInSet(&mset, pos, m) {
iface.allMethods = append(iface.allMethods, m)
}
}
}
// Phase 3: At this point all methods have been collected for this interface.
// It is now safe to type-check the signatures of all explicitly
// declared methods, even if they refer to this interface via a cycle
// and embed the methods of this interface in a parameter of interface
// type.
for i, m := range iface.methods {
expr := signatures[i]
typ := check.typ(expr)
sig, _ := typ.(*Signature)
if sig == nil {
if typ != Typ[Invalid] {
check.invalidAST(expr.Pos(), "%s is not a method signature", typ)
}
continue // keep method with empty method signature
}
// update signature, but keep recv that was set up before
old := m.typ.(*Signature)
sig.recv = old.recv
*old = *sig // update signature (don't replace it!)
}
// TODO(gri) The list of explicit methods is only sorted for now to
// produce the same Interface as NewInterface. We may be able to
// claim source order in the future. Revisit.
sort.Sort(byUniqueMethodName(iface.methods))
// TODO(gri) The list of embedded types is only sorted for now to
// produce the same Interface as NewInterface. We may be able to
// claim source order in the future. Revisit.
sort.Sort(byUniqueTypeName(iface.embeddeds))
if iface.allMethods == nil {
iface.allMethods = make([]*Func, 0) // mark interface as complete
} else {
sort.Sort(byUniqueMethodName(iface.allMethods))
}
}
// byUniqueTypeName named type lists can be sorted by their unique type names.
type byUniqueTypeName []*Named
func (a byUniqueTypeName) Len() int { return len(a) }
func (a byUniqueTypeName) Less(i, j int) bool { return a[i].obj.Id() < a[j].obj.Id() }
func (a byUniqueTypeName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// byUniqueMethodName method lists can be sorted by their unique method names.
type byUniqueMethodName []*Func
func (a byUniqueMethodName) Len() int { return len(a) }
func (a byUniqueMethodName) Less(i, j int) bool { return a[i].Id() < a[j].Id() }
func (a byUniqueMethodName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (check *Checker) tag(t *ast.BasicLit) string {
if t != nil {
if t.Kind == token.STRING {
if val, err := strconv.Unquote(t.Value); err == nil {
return val
}
}
check.invalidAST(t.Pos(), "incorrect tag syntax: %q", t.Value)
}
return ""
}
func (check *Checker) structType(styp *Struct, e *ast.StructType, path []*TypeName) {
list := e.Fields
if list == nil {
return
}
// struct fields and tags
var fields []*Var
var tags []string
// for double-declaration checks
var fset objset
// current field typ and tag
var typ Type
var tag string
add := func(ident *ast.Ident, anonymous bool, pos token.Pos) {
if tag != "" && tags == nil {
tags = make([]string, len(fields))
}
if tags != nil {
tags = append(tags, tag)
}
name := ident.Name
fld := NewField(pos, check.pkg, name, typ, anonymous)
// spec: "Within a struct, non-blank field names must be unique."
if name == "_" || check.declareInSet(&fset, pos, fld) {
fields = append(fields, fld)
check.recordDef(ident, fld)
}
}
for _, f := range list.List {
typ = check.typExpr(f.Type, nil, path)
tag = check.tag(f.Tag)
if len(f.Names) > 0 {
// named fields
for _, name := range f.Names {
add(name, false, name.Pos())
}
} else {
// anonymous field
// spec: "An embedded type must be specified as a type name T or as a pointer
// to a non-interface type name *T, and T itself may not be a pointer type."
pos := f.Type.Pos()
name := anonymousFieldIdent(f.Type)
if name == nil {
check.invalidAST(pos, "anonymous field type %s has no name", f.Type)
continue
}
t, isPtr := deref(typ)
// Because we have a name, typ must be of the form T or *T, where T is the name
// of a (named or alias) type, and t (= deref(typ)) must be the type of T.
switch t := t.Underlying().(type) {
case *Basic:
if t == Typ[Invalid] {
// error was reported before
continue
}
// unsafe.Pointer is treated like a regular pointer
if t.kind == UnsafePointer {
check.errorf(pos, "anonymous field type cannot be unsafe.Pointer")
continue
}
case *Pointer:
check.errorf(pos, "anonymous field type cannot be a pointer")
continue
case *Interface:
if isPtr {
check.errorf(pos, "anonymous field type cannot be a pointer to an interface")
continue
}
}
add(name, true, pos)
}
}
styp.fields = fields
styp.tags = tags
}
func anonymousFieldIdent(e ast.Expr) *ast.Ident {
switch e := e.(type) {
case *ast.Ident:
return e
case *ast.StarExpr:
// *T is valid, but **T is not
if _, ok := e.X.(*ast.StarExpr); !ok {
return anonymousFieldIdent(e.X)
}
case *ast.SelectorExpr:
return e.Sel
}
return nil // invalid anonymous field
}

View File

@ -1,229 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file sets up the universe scope and the unsafe package.
package types
import (
"go/constant"
"go/token"
"strings"
)
var (
Universe *Scope
Unsafe *Package
universeIota *Const
universeByte *Basic // uint8 alias, but has name "byte"
universeRune *Basic // int32 alias, but has name "rune"
)
// Typ contains the predeclared *Basic types indexed by their
// corresponding BasicKind.
//
// The *Basic type for Typ[Byte] will have the name "uint8".
// Use Universe.Lookup("byte").Type() to obtain the specific
// alias basic type named "byte" (and analogous for "rune").
var Typ = []*Basic{
Invalid: {Invalid, 0, "invalid type"},
Bool: {Bool, IsBoolean, "bool"},
Int: {Int, IsInteger, "int"},
Int8: {Int8, IsInteger, "int8"},
Int16: {Int16, IsInteger, "int16"},
Int32: {Int32, IsInteger, "int32"},
Int64: {Int64, IsInteger, "int64"},
Uint: {Uint, IsInteger | IsUnsigned, "uint"},
Uint8: {Uint8, IsInteger | IsUnsigned, "uint8"},
Uint16: {Uint16, IsInteger | IsUnsigned, "uint16"},
Uint32: {Uint32, IsInteger | IsUnsigned, "uint32"},
Uint64: {Uint64, IsInteger | IsUnsigned, "uint64"},
Uintptr: {Uintptr, IsInteger | IsUnsigned, "uintptr"},
Float32: {Float32, IsFloat, "float32"},
Float64: {Float64, IsFloat, "float64"},
Complex64: {Complex64, IsComplex, "complex64"},
Complex128: {Complex128, IsComplex, "complex128"},
String: {String, IsString, "string"},
UnsafePointer: {UnsafePointer, 0, "Pointer"},
UntypedBool: {UntypedBool, IsBoolean | IsUntyped, "untyped bool"},
UntypedInt: {UntypedInt, IsInteger | IsUntyped, "untyped int"},
UntypedRune: {UntypedRune, IsInteger | IsUntyped, "untyped rune"},
UntypedFloat: {UntypedFloat, IsFloat | IsUntyped, "untyped float"},
UntypedComplex: {UntypedComplex, IsComplex | IsUntyped, "untyped complex"},
UntypedString: {UntypedString, IsString | IsUntyped, "untyped string"},
UntypedNil: {UntypedNil, IsUntyped, "untyped nil"},
}
var aliases = [...]*Basic{
{Byte, IsInteger | IsUnsigned, "byte"},
{Rune, IsInteger, "rune"},
}
func defPredeclaredTypes() {
for _, t := range Typ {
def(NewTypeName(token.NoPos, nil, t.name, t))
}
for _, t := range aliases {
def(NewTypeName(token.NoPos, nil, t.name, t))
}
// Error has a nil package in its qualified name since it is in no package
res := NewVar(token.NoPos, nil, "", Typ[String])
sig := &Signature{results: NewTuple(res)}
err := NewFunc(token.NoPos, nil, "Error", sig)
typ := &Named{underlying: NewInterface([]*Func{err}, nil).Complete()}
sig.recv = NewVar(token.NoPos, nil, "", typ)
def(NewTypeName(token.NoPos, nil, "error", typ))
}
var predeclaredConsts = [...]struct {
name string
kind BasicKind
val constant.Value
}{
{"true", UntypedBool, constant.MakeBool(true)},
{"false", UntypedBool, constant.MakeBool(false)},
{"iota", UntypedInt, constant.MakeInt64(0)},
}
func defPredeclaredConsts() {
for _, c := range predeclaredConsts {
def(NewConst(token.NoPos, nil, c.name, Typ[c.kind], c.val))
}
}
func defPredeclaredNil() {
def(&Nil{object{name: "nil", typ: Typ[UntypedNil]}})
}
// A builtinId is the id of a builtin function.
type builtinId int
const (
// universe scope
_Append builtinId = iota
_Cap
_Close
_Complex
_Copy
_Delete
_Imag
_Len
_Make
_New
_Panic
_Print
_Println
_Real
_Recover
// package unsafe
_Alignof
_Offsetof
_Sizeof
// testing support
_Assert
_Trace
)
var predeclaredFuncs = [...]struct {
name string
nargs int
variadic bool
kind exprKind
}{
_Append: {"append", 1, true, expression},
_Cap: {"cap", 1, false, expression},
_Close: {"close", 1, false, statement},
_Complex: {"complex", 2, false, expression},
_Copy: {"copy", 2, false, statement},
_Delete: {"delete", 2, false, statement},
_Imag: {"imag", 1, false, expression},
_Len: {"len", 1, false, expression},
_Make: {"make", 1, true, expression},
_New: {"new", 1, false, expression},
_Panic: {"panic", 1, false, statement},
_Print: {"print", 0, true, statement},
_Println: {"println", 0, true, statement},
_Real: {"real", 1, false, expression},
_Recover: {"recover", 0, false, statement},
_Alignof: {"Alignof", 1, false, expression},
_Offsetof: {"Offsetof", 1, false, expression},
_Sizeof: {"Sizeof", 1, false, expression},
_Assert: {"assert", 1, false, statement},
_Trace: {"trace", 0, true, statement},
}
func defPredeclaredFuncs() {
for i := range predeclaredFuncs {
id := builtinId(i)
if id == _Assert || id == _Trace {
continue // only define these in testing environment
}
def(newBuiltin(id))
}
}
// DefPredeclaredTestFuncs defines the assert and trace built-ins.
// These built-ins are intended for debugging and testing of this
// package only.
func DefPredeclaredTestFuncs() {
if Universe.Lookup("assert") != nil {
return // already defined
}
def(newBuiltin(_Assert))
def(newBuiltin(_Trace))
}
func init() {
Universe = NewScope(nil, token.NoPos, token.NoPos, "universe")
Unsafe = NewPackage("unsafe", "unsafe")
Unsafe.complete = true
defPredeclaredTypes()
defPredeclaredConsts()
defPredeclaredNil()
defPredeclaredFuncs()
universeIota = Universe.Lookup("iota").(*Const)
universeByte = Universe.Lookup("byte").(*TypeName).typ.(*Basic)
universeRune = Universe.Lookup("rune").(*TypeName).typ.(*Basic)
}
// Objects with names containing blanks are internal and not entered into
// a scope. Objects with exported names are inserted in the unsafe package
// scope; other objects are inserted in the universe scope.
//
func def(obj Object) {
name := obj.Name()
if strings.Contains(name, " ") {
return // nothing to do
}
// fix Obj link for named types
if typ, ok := obj.Type().(*Named); ok {
typ.obj = obj.(*TypeName)
}
// exported identifiers go into package unsafe
scope := Universe
if obj.Exported() {
scope = Unsafe.scope
// set Pkg field
switch obj := obj.(type) {
case *TypeName:
obj.pkg = Unsafe
case *Builtin:
obj.pkg = Unsafe
default:
unreachable()
}
}
if scope.Insert(obj) != nil {
panic("internal error: double declaration")
}
}

View File

@ -1,37 +0,0 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"])
load(
"@io_bazel_rules_go//go:def.bzl",
"go_library",
"go_test",
)
go_library(
name = "go_default_library",
srcs = [
"deep_equal.go",
"type.go",
],
importpath = "k8s.io/kubernetes/third_party/forked/golang/reflect",
)
go_test(
name = "go_default_test",
srcs = ["deep_equal_test.go"],
embed = [":go_default_library"],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [":package-srcs"],
tags = ["automanaged"],
)

View File

@ -1,388 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package reflect is a fork of go's standard library reflection package, which
// allows for deep equal with equality functions defined.
package reflect
import (
"fmt"
"reflect"
"strings"
)
// Equalities is a map from type to a function comparing two values of
// that type.
type Equalities map[reflect.Type]reflect.Value
// For convenience, panics on errrors
func EqualitiesOrDie(funcs ...interface{}) Equalities {
e := Equalities{}
if err := e.AddFuncs(funcs...); err != nil {
panic(err)
}
return e
}
// AddFuncs is a shortcut for multiple calls to AddFunc.
func (e Equalities) AddFuncs(funcs ...interface{}) error {
for _, f := range funcs {
if err := e.AddFunc(f); err != nil {
return err
}
}
return nil
}
// AddFunc uses func as an equality function: it must take
// two parameters of the same type, and return a boolean.
func (e Equalities) AddFunc(eqFunc interface{}) error {
fv := reflect.ValueOf(eqFunc)
ft := fv.Type()
if ft.Kind() != reflect.Func {
return fmt.Errorf("expected func, got: %v", ft)
}
if ft.NumIn() != 2 {
return fmt.Errorf("expected two 'in' params, got: %v", ft)
}
if ft.NumOut() != 1 {
return fmt.Errorf("expected one 'out' param, got: %v", ft)
}
if ft.In(0) != ft.In(1) {
return fmt.Errorf("expected arg 1 and 2 to have same type, but got %v", ft)
}
var forReturnType bool
boolType := reflect.TypeOf(forReturnType)
if ft.Out(0) != boolType {
return fmt.Errorf("expected bool return, got: %v", ft)
}
e[ft.In(0)] = fv
return nil
}
// Below here is forked from go's reflect/deepequal.go
// During deepValueEqual, must keep track of checks that are
// in progress. The comparison algorithm assumes that all
// checks in progress are true when it reencounters them.
// Visited comparisons are stored in a map indexed by visit.
type visit struct {
a1 uintptr
a2 uintptr
typ reflect.Type
}
// unexportedTypePanic is thrown when you use this DeepEqual on something that has an
// unexported type. It indicates a programmer error, so should not occur at runtime,
// which is why it's not public and thus impossible to catch.
type unexportedTypePanic []reflect.Type
func (u unexportedTypePanic) Error() string { return u.String() }
func (u unexportedTypePanic) String() string {
strs := make([]string, len(u))
for i, t := range u {
strs[i] = fmt.Sprintf("%v", t)
}
return "an unexported field was encountered, nested like this: " + strings.Join(strs, " -> ")
}
func makeUsefulPanic(v reflect.Value) {
if x := recover(); x != nil {
if u, ok := x.(unexportedTypePanic); ok {
u = append(unexportedTypePanic{v.Type()}, u...)
x = u
}
panic(x)
}
}
// Tests for deep equality using reflected types. The map argument tracks
// comparisons that have already been seen, which allows short circuiting on
// recursive types.
func (e Equalities) deepValueEqual(v1, v2 reflect.Value, visited map[visit]bool, depth int) bool {
defer makeUsefulPanic(v1)
if !v1.IsValid() || !v2.IsValid() {
return v1.IsValid() == v2.IsValid()
}
if v1.Type() != v2.Type() {
return false
}
if fv, ok := e[v1.Type()]; ok {
return fv.Call([]reflect.Value{v1, v2})[0].Bool()
}
hard := func(k reflect.Kind) bool {
switch k {
case reflect.Array, reflect.Map, reflect.Slice, reflect.Struct:
return true
}
return false
}
if v1.CanAddr() && v2.CanAddr() && hard(v1.Kind()) {
addr1 := v1.UnsafeAddr()
addr2 := v2.UnsafeAddr()
if addr1 > addr2 {
// Canonicalize order to reduce number of entries in visited.
addr1, addr2 = addr2, addr1
}
// Short circuit if references are identical ...
if addr1 == addr2 {
return true
}
// ... or already seen
typ := v1.Type()
v := visit{addr1, addr2, typ}
if visited[v] {
return true
}
// Remember for later.
visited[v] = true
}
switch v1.Kind() {
case reflect.Array:
// We don't need to check length here because length is part of
// an array's type, which has already been filtered for.
for i := 0; i < v1.Len(); i++ {
if !e.deepValueEqual(v1.Index(i), v2.Index(i), visited, depth+1) {
return false
}
}
return true
case reflect.Slice:
if (v1.IsNil() || v1.Len() == 0) != (v2.IsNil() || v2.Len() == 0) {
return false
}
if v1.IsNil() || v1.Len() == 0 {
return true
}
if v1.Len() != v2.Len() {
return false
}
if v1.Pointer() == v2.Pointer() {
return true
}
for i := 0; i < v1.Len(); i++ {
if !e.deepValueEqual(v1.Index(i), v2.Index(i), visited, depth+1) {
return false
}
}
return true
case reflect.Interface:
if v1.IsNil() || v2.IsNil() {
return v1.IsNil() == v2.IsNil()
}
return e.deepValueEqual(v1.Elem(), v2.Elem(), visited, depth+1)
case reflect.Ptr:
return e.deepValueEqual(v1.Elem(), v2.Elem(), visited, depth+1)
case reflect.Struct:
for i, n := 0, v1.NumField(); i < n; i++ {
if !e.deepValueEqual(v1.Field(i), v2.Field(i), visited, depth+1) {
return false
}
}
return true
case reflect.Map:
if (v1.IsNil() || v1.Len() == 0) != (v2.IsNil() || v2.Len() == 0) {
return false
}
if v1.IsNil() || v1.Len() == 0 {
return true
}
if v1.Len() != v2.Len() {
return false
}
if v1.Pointer() == v2.Pointer() {
return true
}
for _, k := range v1.MapKeys() {
if !e.deepValueEqual(v1.MapIndex(k), v2.MapIndex(k), visited, depth+1) {
return false
}
}
return true
case reflect.Func:
if v1.IsNil() && v2.IsNil() {
return true
}
// Can't do better than this:
return false
default:
// Normal equality suffices
if !v1.CanInterface() || !v2.CanInterface() {
panic(unexportedTypePanic{})
}
return v1.Interface() == v2.Interface()
}
}
// DeepEqual is like reflect.DeepEqual, but focused on semantic equality
// instead of memory equality.
//
// It will use e's equality functions if it finds types that match.
//
// An empty slice *is* equal to a nil slice for our purposes; same for maps.
//
// Unexported field members cannot be compared and will cause an imformative panic; you must add an Equality
// function for these types.
func (e Equalities) DeepEqual(a1, a2 interface{}) bool {
if a1 == nil || a2 == nil {
return a1 == a2
}
v1 := reflect.ValueOf(a1)
v2 := reflect.ValueOf(a2)
if v1.Type() != v2.Type() {
return false
}
return e.deepValueEqual(v1, v2, make(map[visit]bool), 0)
}
func (e Equalities) deepValueDerive(v1, v2 reflect.Value, visited map[visit]bool, depth int) bool {
defer makeUsefulPanic(v1)
if !v1.IsValid() || !v2.IsValid() {
return v1.IsValid() == v2.IsValid()
}
if v1.Type() != v2.Type() {
return false
}
if fv, ok := e[v1.Type()]; ok {
return fv.Call([]reflect.Value{v1, v2})[0].Bool()
}
hard := func(k reflect.Kind) bool {
switch k {
case reflect.Array, reflect.Map, reflect.Slice, reflect.Struct:
return true
}
return false
}
if v1.CanAddr() && v2.CanAddr() && hard(v1.Kind()) {
addr1 := v1.UnsafeAddr()
addr2 := v2.UnsafeAddr()
if addr1 > addr2 {
// Canonicalize order to reduce number of entries in visited.
addr1, addr2 = addr2, addr1
}
// Short circuit if references are identical ...
if addr1 == addr2 {
return true
}
// ... or already seen
typ := v1.Type()
v := visit{addr1, addr2, typ}
if visited[v] {
return true
}
// Remember for later.
visited[v] = true
}
switch v1.Kind() {
case reflect.Array:
// We don't need to check length here because length is part of
// an array's type, which has already been filtered for.
for i := 0; i < v1.Len(); i++ {
if !e.deepValueDerive(v1.Index(i), v2.Index(i), visited, depth+1) {
return false
}
}
return true
case reflect.Slice:
if v1.IsNil() || v1.Len() == 0 {
return true
}
if v1.Len() > v2.Len() {
return false
}
if v1.Pointer() == v2.Pointer() {
return true
}
for i := 0; i < v1.Len(); i++ {
if !e.deepValueDerive(v1.Index(i), v2.Index(i), visited, depth+1) {
return false
}
}
return true
case reflect.String:
if v1.Len() == 0 {
return true
}
if v1.Len() > v2.Len() {
return false
}
return v1.String() == v2.String()
case reflect.Interface:
if v1.IsNil() {
return true
}
return e.deepValueDerive(v1.Elem(), v2.Elem(), visited, depth+1)
case reflect.Ptr:
if v1.IsNil() {
return true
}
return e.deepValueDerive(v1.Elem(), v2.Elem(), visited, depth+1)
case reflect.Struct:
for i, n := 0, v1.NumField(); i < n; i++ {
if !e.deepValueDerive(v1.Field(i), v2.Field(i), visited, depth+1) {
return false
}
}
return true
case reflect.Map:
if v1.IsNil() || v1.Len() == 0 {
return true
}
if v1.Len() > v2.Len() {
return false
}
if v1.Pointer() == v2.Pointer() {
return true
}
for _, k := range v1.MapKeys() {
if !e.deepValueDerive(v1.MapIndex(k), v2.MapIndex(k), visited, depth+1) {
return false
}
}
return true
case reflect.Func:
if v1.IsNil() && v2.IsNil() {
return true
}
// Can't do better than this:
return false
default:
// Normal equality suffices
if !v1.CanInterface() || !v2.CanInterface() {
panic(unexportedTypePanic{})
}
return v1.Interface() == v2.Interface()
}
}
// DeepDerivative is similar to DeepEqual except that unset fields in a1 are
// ignored (not compared). This allows us to focus on the fields that matter to
// the semantic comparison.
//
// The unset fields include a nil pointer and an empty string.
func (e Equalities) DeepDerivative(a1, a2 interface{}) bool {
if a1 == nil {
return true
}
v1 := reflect.ValueOf(a1)
v2 := reflect.ValueOf(a2)
if v1.Type() != v2.Type() {
return false
}
return e.deepValueDerive(v1, v2, make(map[visit]bool), 0)
}

View File

@ -1,137 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect
import (
"testing"
)
func TestEqualities(t *testing.T) {
e := Equalities{}
type Bar struct {
X int
}
type Baz struct {
Y Bar
}
err := e.AddFuncs(
func(a, b int) bool {
return a+1 == b
},
func(a, b Bar) bool {
return a.X*10 == b.X
},
)
if err != nil {
t.Fatalf("Unexpected: %v", err)
}
type Foo struct {
X int
}
table := []struct {
a, b interface{}
equal bool
}{
{1, 2, true},
{2, 1, false},
{"foo", "fo", false},
{"foo", "foo", true},
{"foo", "foobar", false},
{Foo{1}, Foo{2}, true},
{Foo{2}, Foo{1}, false},
{Bar{1}, Bar{10}, true},
{&Bar{1}, &Bar{10}, true},
{Baz{Bar{1}}, Baz{Bar{10}}, true},
{[...]string{}, [...]string{"1", "2", "3"}, false},
{[...]string{"1"}, [...]string{"1", "2", "3"}, false},
{[...]string{"1", "2", "3"}, [...]string{}, false},
{[...]string{"1", "2", "3"}, [...]string{"1", "2", "3"}, true},
{map[string]int{"foo": 1}, map[string]int{}, false},
{map[string]int{"foo": 1}, map[string]int{"foo": 2}, true},
{map[string]int{"foo": 2}, map[string]int{"foo": 1}, false},
{map[string]int{"foo": 1}, map[string]int{"foo": 2, "bar": 6}, false},
{map[string]int{"foo": 1, "bar": 6}, map[string]int{"foo": 2}, false},
{map[string]int{}, map[string]int(nil), true},
{[]string(nil), []string(nil), true},
{[]string{}, []string(nil), true},
{[]string(nil), []string{}, true},
{[]string{"1"}, []string(nil), false},
{[]string{}, []string{"1", "2", "3"}, false},
{[]string{"1"}, []string{"1", "2", "3"}, false},
{[]string{"1", "2", "3"}, []string{}, false},
}
for _, item := range table {
if e, a := item.equal, e.DeepEqual(item.a, item.b); e != a {
t.Errorf("Expected (%+v == %+v) == %v, but got %v", item.a, item.b, e, a)
}
}
}
func TestDerivates(t *testing.T) {
e := Equalities{}
type Bar struct {
X int
}
type Baz struct {
Y Bar
}
err := e.AddFuncs(
func(a, b int) bool {
return a+1 == b
},
func(a, b Bar) bool {
return a.X*10 == b.X
},
)
if err != nil {
t.Fatalf("Unexpected: %v", err)
}
type Foo struct {
X int
}
table := []struct {
a, b interface{}
equal bool
}{
{1, 2, true},
{2, 1, false},
{"foo", "fo", false},
{"foo", "foo", true},
{"foo", "foobar", false},
{Foo{1}, Foo{2}, true},
{Foo{2}, Foo{1}, false},
{Bar{1}, Bar{10}, true},
{&Bar{1}, &Bar{10}, true},
{Baz{Bar{1}}, Baz{Bar{10}}, true},
{[...]string{}, [...]string{"1", "2", "3"}, false},
{[...]string{"1"}, [...]string{"1", "2", "3"}, false},
{[...]string{"1", "2", "3"}, [...]string{}, false},
{[...]string{"1", "2", "3"}, [...]string{"1", "2", "3"}, true},
{map[string]int{"foo": 1}, map[string]int{}, false},
{map[string]int{"foo": 1}, map[string]int{"foo": 2}, true},
{map[string]int{"foo": 2}, map[string]int{"foo": 1}, false},
{map[string]int{"foo": 1}, map[string]int{"foo": 2, "bar": 6}, true},
{map[string]int{"foo": 1, "bar": 6}, map[string]int{"foo": 2}, false},
{map[string]int{}, map[string]int(nil), true},
{[]string(nil), []string(nil), true},
{[]string{}, []string(nil), true},
{[]string(nil), []string{}, true},
{[]string{"1"}, []string(nil), false},
{[]string{}, []string{"1", "2", "3"}, true},
{[]string{"1"}, []string{"1", "2", "3"}, true},
{[]string{"1", "2", "3"}, []string{}, false},
}
for _, item := range table {
if e, a := item.equal, e.DeepDerivative(item.a, item.b); e != a {
t.Errorf("Expected (%+v ~ %+v) == %v, but got %v", item.a, item.b, e, a)
}
}
}

Some files were not shown because too many files have changed in this diff Show More