vendor cleanup: remove unused,non-go and test files

This commit is contained in:
Madhu Rajanna
2019-01-16 00:05:52 +05:30
parent 52cf4aa902
commit b10ba188e7
15421 changed files with 17 additions and 4208853 deletions

94
vendor/k8s.io/utils/clock/clock.go generated vendored
View File

@ -1,94 +0,0 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package clock
import "time"
// Clock allows for injecting fake or real clocks into code that
// needs to do arbitrary things based on time.
type Clock interface {
Now() time.Time
Since(time.Time) time.Duration
After(d time.Duration) <-chan time.Time
NewTimer(d time.Duration) Timer
Sleep(d time.Duration)
Tick(d time.Duration) <-chan time.Time
}
var _ = Clock(RealClock{})
// RealClock really calls time.Now()
type RealClock struct{}
// Now returns the current time.
func (RealClock) Now() time.Time {
return time.Now()
}
// Since returns time since the specified timestamp.
func (RealClock) Since(ts time.Time) time.Duration {
return time.Since(ts)
}
// Same as time.After(d).
func (RealClock) After(d time.Duration) <-chan time.Time {
return time.After(d)
}
func (RealClock) NewTimer(d time.Duration) Timer {
return &realTimer{
timer: time.NewTimer(d),
}
}
func (RealClock) Tick(d time.Duration) <-chan time.Time {
return time.Tick(d)
}
func (RealClock) Sleep(d time.Duration) {
time.Sleep(d)
}
// Timer allows for injecting fake or real timers into code that
// needs to do arbitrary things based on time.
type Timer interface {
C() <-chan time.Time
Stop() bool
Reset(d time.Duration) bool
}
var _ = Timer(&realTimer{})
// realTimer is backed by an actual time.Timer.
type realTimer struct {
timer *time.Timer
}
// C returns the underlying timer's channel.
func (r *realTimer) C() <-chan time.Time {
return r.timer.C
}
// Stop calls Stop() on the underlying timer.
func (r *realTimer) Stop() bool {
return r.timer.Stop()
}
// Reset calls Reset() on the underlying timer.
func (r *realTimer) Reset(d time.Duration) bool {
return r.timer.Reset(d)
}

View File

@ -1,274 +0,0 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package testing
import (
"sync"
"time"
"k8s.io/utils/clock"
)
var (
_ = clock.Clock(&FakeClock{})
_ = clock.Clock(&IntervalClock{})
)
// FakeClock implements clock.Clock, but returns an arbitrary time.
type FakeClock struct {
lock sync.RWMutex
time time.Time
// waiters are waiting for the fake time to pass their specified time
waiters []*fakeClockWaiter
}
type fakeClockWaiter struct {
targetTime time.Time
stepInterval time.Duration
skipIfBlocked bool
destChan chan time.Time
fired bool
}
// NewFakeClock constructs a fake clock set to the provided time.
func NewFakeClock(t time.Time) *FakeClock {
return &FakeClock{
time: t,
}
}
// Now returns f's time.
func (f *FakeClock) Now() time.Time {
f.lock.RLock()
defer f.lock.RUnlock()
return f.time
}
// Since returns time since the time in f.
func (f *FakeClock) Since(ts time.Time) time.Duration {
f.lock.RLock()
defer f.lock.RUnlock()
return f.time.Sub(ts)
}
// After is the fake version of time.After(d).
func (f *FakeClock) After(d time.Duration) <-chan time.Time {
f.lock.Lock()
defer f.lock.Unlock()
stopTime := f.time.Add(d)
ch := make(chan time.Time, 1) // Don't block!
f.waiters = append(f.waiters, &fakeClockWaiter{
targetTime: stopTime,
destChan: ch,
})
return ch
}
// NewTimer constructs a fake timer, akin to time.NewTimer(d).
func (f *FakeClock) NewTimer(d time.Duration) clock.Timer {
f.lock.Lock()
defer f.lock.Unlock()
stopTime := f.time.Add(d)
ch := make(chan time.Time, 1) // Don't block!
timer := &fakeTimer{
fakeClock: f,
waiter: fakeClockWaiter{
targetTime: stopTime,
destChan: ch,
},
}
f.waiters = append(f.waiters, &timer.waiter)
return timer
}
// Tick constructs a fake ticker, akin to time.Tick
func (f *FakeClock) Tick(d time.Duration) <-chan time.Time {
if d <= 0 {
return nil
}
f.lock.Lock()
defer f.lock.Unlock()
tickTime := f.time.Add(d)
ch := make(chan time.Time, 1) // hold one tick
f.waiters = append(f.waiters, &fakeClockWaiter{
targetTime: tickTime,
stepInterval: d,
skipIfBlocked: true,
destChan: ch,
})
return ch
}
// Step moves the clock by Duration and notifies anyone that's called After,
// Tick, or NewTimer.
func (f *FakeClock) Step(d time.Duration) {
f.lock.Lock()
defer f.lock.Unlock()
f.setTimeLocked(f.time.Add(d))
}
// SetTime sets the time.
func (f *FakeClock) SetTime(t time.Time) {
f.lock.Lock()
defer f.lock.Unlock()
f.setTimeLocked(t)
}
// Actually changes the time and checks any waiters. f must be write-locked.
func (f *FakeClock) setTimeLocked(t time.Time) {
f.time = t
newWaiters := make([]*fakeClockWaiter, 0, len(f.waiters))
for i := range f.waiters {
w := f.waiters[i]
if !w.targetTime.After(t) {
if w.skipIfBlocked {
select {
case w.destChan <- t:
w.fired = true
default:
}
} else {
w.destChan <- t
w.fired = true
}
if w.stepInterval > 0 {
for !w.targetTime.After(t) {
w.targetTime = w.targetTime.Add(w.stepInterval)
}
newWaiters = append(newWaiters, w)
}
} else {
newWaiters = append(newWaiters, f.waiters[i])
}
}
f.waiters = newWaiters
}
// HasWaiters returns true if After has been called on f but not yet satisfied (so you can
// write race-free tests).
func (f *FakeClock) HasWaiters() bool {
f.lock.RLock()
defer f.lock.RUnlock()
return len(f.waiters) > 0
}
// Sleep is akin to time.Sleep
func (f *FakeClock) Sleep(d time.Duration) {
f.Step(d)
}
// IntervalClock implements clock.Clock, but each invocation of Now steps the clock forward the specified duration
type IntervalClock struct {
Time time.Time
Duration time.Duration
}
// Now returns i's time.
func (i *IntervalClock) Now() time.Time {
i.Time = i.Time.Add(i.Duration)
return i.Time
}
// Since returns time since the time in i.
func (i *IntervalClock) Since(ts time.Time) time.Duration {
return i.Time.Sub(ts)
}
// After is unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) After(d time.Duration) <-chan time.Time {
panic("IntervalClock doesn't implement After")
}
// NewTimer is unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) NewTimer(d time.Duration) clock.Timer {
panic("IntervalClock doesn't implement NewTimer")
}
// Tick is unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) Tick(d time.Duration) <-chan time.Time {
panic("IntervalClock doesn't implement Tick")
}
// Sleep is unimplemented, will panic.
func (*IntervalClock) Sleep(d time.Duration) {
panic("IntervalClock doesn't implement Sleep")
}
var _ = clock.Timer(&fakeTimer{})
// fakeTimer implements clock.Timer based on a FakeClock.
type fakeTimer struct {
fakeClock *FakeClock
waiter fakeClockWaiter
}
// C returns the channel that notifies when this timer has fired.
func (f *fakeTimer) C() <-chan time.Time {
return f.waiter.destChan
}
// Stop stops the timer and returns true if the timer has not yet fired, or false otherwise.
func (f *fakeTimer) Stop() bool {
f.fakeClock.lock.Lock()
defer f.fakeClock.lock.Unlock()
newWaiters := make([]*fakeClockWaiter, 0, len(f.fakeClock.waiters))
for i := range f.fakeClock.waiters {
w := f.fakeClock.waiters[i]
if w != &f.waiter {
newWaiters = append(newWaiters, w)
}
}
f.fakeClock.waiters = newWaiters
return !f.waiter.fired
}
// Reset resets the timer to the fake clock's "now" + d. It returns true if the timer has not yet
// fired, or false otherwise.
func (f *fakeTimer) Reset(d time.Duration) bool {
f.fakeClock.lock.Lock()
defer f.fakeClock.lock.Unlock()
active := !f.waiter.fired
f.waiter.fired = false
f.waiter.targetTime = f.fakeClock.time.Add(d)
var isWaiting bool
for i := range f.fakeClock.waiters {
w := f.fakeClock.waiters[i]
if w == &f.waiter {
isWaiting = true
break
}
}
if !isWaiting {
f.fakeClock.waiters = append(f.fakeClock.waiters, &f.waiter)
}
return active
}

View File

@ -1,274 +0,0 @@
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package testing
import (
"testing"
"time"
)
func TestFakeClock(t *testing.T) {
startTime := time.Now()
tc := NewFakeClock(startTime)
tc.Step(time.Second)
now := tc.Now()
if now.Sub(startTime) != time.Second {
t.Errorf("input: %s now=%s gap=%s expected=%s", startTime, now, now.Sub(startTime), time.Second)
}
tt := tc.Now()
tc.SetTime(tt.Add(time.Hour))
if tc.Now().Sub(tt) != time.Hour {
t.Errorf("input: %s now=%s gap=%s expected=%s", tt, tc.Now(), tc.Now().Sub(tt), time.Hour)
}
}
func TestFakeClockSleep(t *testing.T) {
startTime := time.Now()
tc := NewFakeClock(startTime)
tc.Sleep(time.Duration(1) * time.Hour)
now := tc.Now()
if now.Sub(startTime) != time.Hour {
t.Errorf("Fake sleep failed, expected time to advance by one hour, instead, its %v", now.Sub(startTime))
}
}
func TestFakeAfter(t *testing.T) {
tc := NewFakeClock(time.Now())
if tc.HasWaiters() {
t.Errorf("unexpected waiter?")
}
oneSec := tc.After(time.Second)
if !tc.HasWaiters() {
t.Errorf("unexpected lack of waiter?")
}
oneOhOneSec := tc.After(time.Second + time.Millisecond)
twoSec := tc.After(2 * time.Second)
select {
case <-oneSec:
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
}
tc.Step(999 * time.Millisecond)
select {
case <-oneSec:
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
}
tc.Step(time.Millisecond)
select {
case <-oneSec:
// Expected!
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
t.Errorf("unexpected non-channel read")
}
tc.Step(time.Millisecond)
select {
case <-oneSec:
// should not double-trigger!
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
// Expected!
case <-twoSec:
t.Errorf("unexpected channel read")
default:
t.Errorf("unexpected non-channel read")
}
}
func TestFakeTick(t *testing.T) {
tc := NewFakeClock(time.Now())
if tc.HasWaiters() {
t.Errorf("unexpected waiter?")
}
oneSec := tc.Tick(time.Second)
if !tc.HasWaiters() {
t.Errorf("unexpected lack of waiter?")
}
oneOhOneSec := tc.Tick(time.Second + time.Millisecond)
twoSec := tc.Tick(2 * time.Second)
select {
case <-oneSec:
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
}
tc.Step(999 * time.Millisecond) // t=.999
select {
case <-oneSec:
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
}
tc.Step(time.Millisecond) // t=1.000
select {
case <-oneSec:
// Expected!
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
t.Errorf("unexpected non-channel read")
}
tc.Step(time.Millisecond) // t=1.001
select {
case <-oneSec:
// should not double-trigger!
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
// Expected!
case <-twoSec:
t.Errorf("unexpected channel read")
default:
t.Errorf("unexpected non-channel read")
}
tc.Step(time.Second) // t=2.001
tc.Step(time.Second) // t=3.001
tc.Step(time.Second) // t=4.001
tc.Step(time.Second) // t=5.001
// The one second ticker should not accumulate ticks
accumulatedTicks := 0
drained := false
for !drained {
select {
case <-oneSec:
accumulatedTicks++
default:
drained = true
}
}
if accumulatedTicks != 1 {
t.Errorf("unexpected number of accumulated ticks: %d", accumulatedTicks)
}
}
func TestFakeStop(t *testing.T) {
tc := NewFakeClock(time.Now())
timer := tc.NewTimer(time.Second)
if !tc.HasWaiters() {
t.Errorf("expected a waiter to be present, but it is not")
}
timer.Stop()
if tc.HasWaiters() {
t.Errorf("expected existing waiter to be cleaned up, but it is still present")
}
}
// This tests the pattern documented in the go docs here: https://golang.org/pkg/time/#Timer.Stop
// This pattern is required to safely reset a timer, so should be common.
// This also tests resetting the timer
func TestFakeStopDrain(t *testing.T) {
start := time.Time{}
tc := NewFakeClock(start)
timer := tc.NewTimer(time.Second)
tc.Step(1 * time.Second)
// Effectively `if !timer.Stop { <-t.C }` but with more asserts
if timer.Stop() {
t.Errorf("stop should report the timer had triggered")
}
if readTime := assertReadTime(t, timer.C()); !readTime.Equal(start.Add(1 * time.Second)) {
t.Errorf("timer should have ticked after 1 second, got %v", readTime)
}
timer.Reset(time.Second)
if !tc.HasWaiters() {
t.Errorf("expected a waiter to be present, but it is not")
}
select {
case <-timer.C():
t.Fatal("got time early on clock; haven't stepped yet")
default:
}
tc.Step(1 * time.Second)
if readTime := assertReadTime(t, timer.C()); !readTime.Equal(start.Add(2 * time.Second)) {
t.Errorf("timer should have ticked again after reset + 1 more second, got %v", readTime)
}
}
func TestTimerNegative(t *testing.T) {
tc := NewFakeClock(time.Now())
timer := tc.NewTimer(-1 * time.Second)
if !tc.HasWaiters() {
t.Errorf("expected a waiter to be present, but it is not")
}
// force waiters to be called
tc.Step(0)
tick := assertReadTime(t, timer.C())
if tick != tc.Now() {
t.Errorf("expected -1s to turn into now: %v != %v", tick, tc.Now())
}
}
func TestTickNegative(t *testing.T) {
// The stdlib 'Tick' returns nil for negative and zero values, so our fake
// should too.
tc := NewFakeClock(time.Now())
if tick := tc.Tick(-1 * time.Second); tick != nil {
t.Errorf("expected negative tick to be nil: %v", tick)
}
if tick := tc.Tick(0); tick != nil {
t.Errorf("expected negative tick to be nil: %v", tick)
}
}
// assertReadTime asserts that the channel can be read and returns the time it
// reads from the channel.
func assertReadTime(t testing.TB, c <-chan time.Time) time.Time {
type helper interface {
Helper()
}
if h, ok := t.(helper); ok {
h.Helper()
}
select {
case ti, ok := <-c:
if !ok {
t.Fatalf("expected to read time from channel, but it was closed")
}
return ti
default:
t.Fatalf("expected to read time from channel, but couldn't")
}
panic("unreachable")
}