mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-06-14 18:53:35 +00:00
build: move e2e dependencies into e2e/go.mod
Several packages are only used while running the e2e suite. These packages are less important to update, as the they can not influence the final executable that is part of the Ceph-CSI container-image. By moving these dependencies out of the main Ceph-CSI go.mod, it is easier to identify if a reported CVE affects Ceph-CSI, or only the testing (like most of the Kubernetes CVEs). Signed-off-by: Niels de Vos <ndevos@ibm.com>
This commit is contained in:
committed by
mergify[bot]
parent
15da101b1b
commit
bec6090996
79
e2e/vendor/github.com/klauspost/compress/fse/README.md
generated
vendored
Normal file
79
e2e/vendor/github.com/klauspost/compress/fse/README.md
generated
vendored
Normal file
@ -0,0 +1,79 @@
|
||||
# Finite State Entropy
|
||||
|
||||
This package provides Finite State Entropy encoding and decoding.
|
||||
|
||||
Finite State Entropy (also referenced as [tANS](https://en.wikipedia.org/wiki/Asymmetric_numeral_systems#tANS))
|
||||
encoding provides a fast near-optimal symbol encoding/decoding
|
||||
for byte blocks as implemented in [zstandard](https://github.com/facebook/zstd).
|
||||
|
||||
This can be used for compressing input with a lot of similar input values to the smallest number of bytes.
|
||||
This does not perform any multi-byte [dictionary coding](https://en.wikipedia.org/wiki/Dictionary_coder) as LZ coders,
|
||||
but it can be used as a secondary step to compressors (like Snappy) that does not do entropy encoding.
|
||||
|
||||
* [Godoc documentation](https://godoc.org/github.com/klauspost/compress/fse)
|
||||
|
||||
## News
|
||||
|
||||
* Feb 2018: First implementation released. Consider this beta software for now.
|
||||
|
||||
# Usage
|
||||
|
||||
This package provides a low level interface that allows to compress single independent blocks.
|
||||
|
||||
Each block is separate, and there is no built in integrity checks.
|
||||
This means that the caller should keep track of block sizes and also do checksums if needed.
|
||||
|
||||
Compressing a block is done via the [`Compress`](https://godoc.org/github.com/klauspost/compress/fse#Compress) function.
|
||||
You must provide input and will receive the output and maybe an error.
|
||||
|
||||
These error values can be returned:
|
||||
|
||||
| Error | Description |
|
||||
|---------------------|-----------------------------------------------------------------------------|
|
||||
| `<nil>` | Everything ok, output is returned |
|
||||
| `ErrIncompressible` | Returned when input is judged to be too hard to compress |
|
||||
| `ErrUseRLE` | Returned from the compressor when the input is a single byte value repeated |
|
||||
| `(error)` | An internal error occurred. |
|
||||
|
||||
As can be seen above there are errors that will be returned even under normal operation so it is important to handle these.
|
||||
|
||||
To reduce allocations you can provide a [`Scratch`](https://godoc.org/github.com/klauspost/compress/fse#Scratch) object
|
||||
that can be re-used for successive calls. Both compression and decompression accepts a `Scratch` object, and the same
|
||||
object can be used for both.
|
||||
|
||||
Be aware, that when re-using a `Scratch` object that the *output* buffer is also re-used, so if you are still using this
|
||||
you must set the `Out` field in the scratch to nil. The same buffer is used for compression and decompression output.
|
||||
|
||||
Decompressing is done by calling the [`Decompress`](https://godoc.org/github.com/klauspost/compress/fse#Decompress) function.
|
||||
You must provide the output from the compression stage, at exactly the size you got back. If you receive an error back
|
||||
your input was likely corrupted.
|
||||
|
||||
It is important to note that a successful decoding does *not* mean your output matches your original input.
|
||||
There are no integrity checks, so relying on errors from the decompressor does not assure your data is valid.
|
||||
|
||||
For more detailed usage, see examples in the [godoc documentation](https://godoc.org/github.com/klauspost/compress/fse#pkg-examples).
|
||||
|
||||
# Performance
|
||||
|
||||
A lot of factors are affecting speed. Block sizes and compressibility of the material are primary factors.
|
||||
All compression functions are currently only running on the calling goroutine so only one core will be used per block.
|
||||
|
||||
The compressor is significantly faster if symbols are kept as small as possible. The highest byte value of the input
|
||||
is used to reduce some of the processing, so if all your input is above byte value 64 for instance, it may be
|
||||
beneficial to transpose all your input values down by 64.
|
||||
|
||||
With moderate block sizes around 64k speed are typically 200MB/s per core for compression and
|
||||
around 300MB/s decompression speed.
|
||||
|
||||
The same hardware typically does Huffman (deflate) encoding at 125MB/s and decompression at 100MB/s.
|
||||
|
||||
# Plans
|
||||
|
||||
At one point, more internals will be exposed to facilitate more "expert" usage of the components.
|
||||
|
||||
A streaming interface is also likely to be implemented. Likely compatible with [FSE stream format](https://github.com/Cyan4973/FiniteStateEntropy/blob/dev/programs/fileio.c#L261).
|
||||
|
||||
# Contributing
|
||||
|
||||
Contributions are always welcome. Be aware that adding public functions will require good justification and breaking
|
||||
changes will likely not be accepted. If in doubt open an issue before writing the PR.
|
122
e2e/vendor/github.com/klauspost/compress/fse/bitreader.go
generated
vendored
Normal file
122
e2e/vendor/github.com/klauspost/compress/fse/bitreader.go
generated
vendored
Normal file
@ -0,0 +1,122 @@
|
||||
// Copyright 2018 Klaus Post. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
|
||||
|
||||
package fse
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"io"
|
||||
)
|
||||
|
||||
// bitReader reads a bitstream in reverse.
|
||||
// The last set bit indicates the start of the stream and is used
|
||||
// for aligning the input.
|
||||
type bitReader struct {
|
||||
in []byte
|
||||
off uint // next byte to read is at in[off - 1]
|
||||
value uint64
|
||||
bitsRead uint8
|
||||
}
|
||||
|
||||
// init initializes and resets the bit reader.
|
||||
func (b *bitReader) init(in []byte) error {
|
||||
if len(in) < 1 {
|
||||
return errors.New("corrupt stream: too short")
|
||||
}
|
||||
b.in = in
|
||||
b.off = uint(len(in))
|
||||
// The highest bit of the last byte indicates where to start
|
||||
v := in[len(in)-1]
|
||||
if v == 0 {
|
||||
return errors.New("corrupt stream, did not find end of stream")
|
||||
}
|
||||
b.bitsRead = 64
|
||||
b.value = 0
|
||||
if len(in) >= 8 {
|
||||
b.fillFastStart()
|
||||
} else {
|
||||
b.fill()
|
||||
b.fill()
|
||||
}
|
||||
b.bitsRead += 8 - uint8(highBits(uint32(v)))
|
||||
return nil
|
||||
}
|
||||
|
||||
// getBits will return n bits. n can be 0.
|
||||
func (b *bitReader) getBits(n uint8) uint16 {
|
||||
if n == 0 || b.bitsRead >= 64 {
|
||||
return 0
|
||||
}
|
||||
return b.getBitsFast(n)
|
||||
}
|
||||
|
||||
// getBitsFast requires that at least one bit is requested every time.
|
||||
// There are no checks if the buffer is filled.
|
||||
func (b *bitReader) getBitsFast(n uint8) uint16 {
|
||||
const regMask = 64 - 1
|
||||
v := uint16((b.value << (b.bitsRead & regMask)) >> ((regMask + 1 - n) & regMask))
|
||||
b.bitsRead += n
|
||||
return v
|
||||
}
|
||||
|
||||
// fillFast() will make sure at least 32 bits are available.
|
||||
// There must be at least 4 bytes available.
|
||||
func (b *bitReader) fillFast() {
|
||||
if b.bitsRead < 32 {
|
||||
return
|
||||
}
|
||||
// 2 bounds checks.
|
||||
v := b.in[b.off-4:]
|
||||
v = v[:4]
|
||||
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
|
||||
b.value = (b.value << 32) | uint64(low)
|
||||
b.bitsRead -= 32
|
||||
b.off -= 4
|
||||
}
|
||||
|
||||
// fill() will make sure at least 32 bits are available.
|
||||
func (b *bitReader) fill() {
|
||||
if b.bitsRead < 32 {
|
||||
return
|
||||
}
|
||||
if b.off > 4 {
|
||||
v := b.in[b.off-4:]
|
||||
v = v[:4]
|
||||
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
|
||||
b.value = (b.value << 32) | uint64(low)
|
||||
b.bitsRead -= 32
|
||||
b.off -= 4
|
||||
return
|
||||
}
|
||||
for b.off > 0 {
|
||||
b.value = (b.value << 8) | uint64(b.in[b.off-1])
|
||||
b.bitsRead -= 8
|
||||
b.off--
|
||||
}
|
||||
}
|
||||
|
||||
// fillFastStart() assumes the bitreader is empty and there is at least 8 bytes to read.
|
||||
func (b *bitReader) fillFastStart() {
|
||||
// Do single re-slice to avoid bounds checks.
|
||||
b.value = binary.LittleEndian.Uint64(b.in[b.off-8:])
|
||||
b.bitsRead = 0
|
||||
b.off -= 8
|
||||
}
|
||||
|
||||
// finished returns true if all bits have been read from the bit stream.
|
||||
func (b *bitReader) finished() bool {
|
||||
return b.bitsRead >= 64 && b.off == 0
|
||||
}
|
||||
|
||||
// close the bitstream and returns an error if out-of-buffer reads occurred.
|
||||
func (b *bitReader) close() error {
|
||||
// Release reference.
|
||||
b.in = nil
|
||||
if b.bitsRead > 64 {
|
||||
return io.ErrUnexpectedEOF
|
||||
}
|
||||
return nil
|
||||
}
|
167
e2e/vendor/github.com/klauspost/compress/fse/bitwriter.go
generated
vendored
Normal file
167
e2e/vendor/github.com/klauspost/compress/fse/bitwriter.go
generated
vendored
Normal file
@ -0,0 +1,167 @@
|
||||
// Copyright 2018 Klaus Post. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
|
||||
|
||||
package fse
|
||||
|
||||
import "fmt"
|
||||
|
||||
// bitWriter will write bits.
|
||||
// First bit will be LSB of the first byte of output.
|
||||
type bitWriter struct {
|
||||
bitContainer uint64
|
||||
nBits uint8
|
||||
out []byte
|
||||
}
|
||||
|
||||
// bitMask16 is bitmasks. Has extra to avoid bounds check.
|
||||
var bitMask16 = [32]uint16{
|
||||
0, 1, 3, 7, 0xF, 0x1F,
|
||||
0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF,
|
||||
0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0xFFFF,
|
||||
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
|
||||
0xFFFF, 0xFFFF} /* up to 16 bits */
|
||||
|
||||
// addBits16NC will add up to 16 bits.
|
||||
// It will not check if there is space for them,
|
||||
// so the caller must ensure that it has flushed recently.
|
||||
func (b *bitWriter) addBits16NC(value uint16, bits uint8) {
|
||||
b.bitContainer |= uint64(value&bitMask16[bits&31]) << (b.nBits & 63)
|
||||
b.nBits += bits
|
||||
}
|
||||
|
||||
// addBits16Clean will add up to 16 bits. value may not contain more set bits than indicated.
|
||||
// It will not check if there is space for them, so the caller must ensure that it has flushed recently.
|
||||
func (b *bitWriter) addBits16Clean(value uint16, bits uint8) {
|
||||
b.bitContainer |= uint64(value) << (b.nBits & 63)
|
||||
b.nBits += bits
|
||||
}
|
||||
|
||||
// addBits16ZeroNC will add up to 16 bits.
|
||||
// It will not check if there is space for them,
|
||||
// so the caller must ensure that it has flushed recently.
|
||||
// This is fastest if bits can be zero.
|
||||
func (b *bitWriter) addBits16ZeroNC(value uint16, bits uint8) {
|
||||
if bits == 0 {
|
||||
return
|
||||
}
|
||||
value <<= (16 - bits) & 15
|
||||
value >>= (16 - bits) & 15
|
||||
b.bitContainer |= uint64(value) << (b.nBits & 63)
|
||||
b.nBits += bits
|
||||
}
|
||||
|
||||
// flush will flush all pending full bytes.
|
||||
// There will be at least 56 bits available for writing when this has been called.
|
||||
// Using flush32 is faster, but leaves less space for writing.
|
||||
func (b *bitWriter) flush() {
|
||||
v := b.nBits >> 3
|
||||
switch v {
|
||||
case 0:
|
||||
case 1:
|
||||
b.out = append(b.out,
|
||||
byte(b.bitContainer),
|
||||
)
|
||||
case 2:
|
||||
b.out = append(b.out,
|
||||
byte(b.bitContainer),
|
||||
byte(b.bitContainer>>8),
|
||||
)
|
||||
case 3:
|
||||
b.out = append(b.out,
|
||||
byte(b.bitContainer),
|
||||
byte(b.bitContainer>>8),
|
||||
byte(b.bitContainer>>16),
|
||||
)
|
||||
case 4:
|
||||
b.out = append(b.out,
|
||||
byte(b.bitContainer),
|
||||
byte(b.bitContainer>>8),
|
||||
byte(b.bitContainer>>16),
|
||||
byte(b.bitContainer>>24),
|
||||
)
|
||||
case 5:
|
||||
b.out = append(b.out,
|
||||
byte(b.bitContainer),
|
||||
byte(b.bitContainer>>8),
|
||||
byte(b.bitContainer>>16),
|
||||
byte(b.bitContainer>>24),
|
||||
byte(b.bitContainer>>32),
|
||||
)
|
||||
case 6:
|
||||
b.out = append(b.out,
|
||||
byte(b.bitContainer),
|
||||
byte(b.bitContainer>>8),
|
||||
byte(b.bitContainer>>16),
|
||||
byte(b.bitContainer>>24),
|
||||
byte(b.bitContainer>>32),
|
||||
byte(b.bitContainer>>40),
|
||||
)
|
||||
case 7:
|
||||
b.out = append(b.out,
|
||||
byte(b.bitContainer),
|
||||
byte(b.bitContainer>>8),
|
||||
byte(b.bitContainer>>16),
|
||||
byte(b.bitContainer>>24),
|
||||
byte(b.bitContainer>>32),
|
||||
byte(b.bitContainer>>40),
|
||||
byte(b.bitContainer>>48),
|
||||
)
|
||||
case 8:
|
||||
b.out = append(b.out,
|
||||
byte(b.bitContainer),
|
||||
byte(b.bitContainer>>8),
|
||||
byte(b.bitContainer>>16),
|
||||
byte(b.bitContainer>>24),
|
||||
byte(b.bitContainer>>32),
|
||||
byte(b.bitContainer>>40),
|
||||
byte(b.bitContainer>>48),
|
||||
byte(b.bitContainer>>56),
|
||||
)
|
||||
default:
|
||||
panic(fmt.Errorf("bits (%d) > 64", b.nBits))
|
||||
}
|
||||
b.bitContainer >>= v << 3
|
||||
b.nBits &= 7
|
||||
}
|
||||
|
||||
// flush32 will flush out, so there are at least 32 bits available for writing.
|
||||
func (b *bitWriter) flush32() {
|
||||
if b.nBits < 32 {
|
||||
return
|
||||
}
|
||||
b.out = append(b.out,
|
||||
byte(b.bitContainer),
|
||||
byte(b.bitContainer>>8),
|
||||
byte(b.bitContainer>>16),
|
||||
byte(b.bitContainer>>24))
|
||||
b.nBits -= 32
|
||||
b.bitContainer >>= 32
|
||||
}
|
||||
|
||||
// flushAlign will flush remaining full bytes and align to next byte boundary.
|
||||
func (b *bitWriter) flushAlign() {
|
||||
nbBytes := (b.nBits + 7) >> 3
|
||||
for i := uint8(0); i < nbBytes; i++ {
|
||||
b.out = append(b.out, byte(b.bitContainer>>(i*8)))
|
||||
}
|
||||
b.nBits = 0
|
||||
b.bitContainer = 0
|
||||
}
|
||||
|
||||
// close will write the alignment bit and write the final byte(s)
|
||||
// to the output.
|
||||
func (b *bitWriter) close() {
|
||||
// End mark
|
||||
b.addBits16Clean(1, 1)
|
||||
// flush until next byte.
|
||||
b.flushAlign()
|
||||
}
|
||||
|
||||
// reset and continue writing by appending to out.
|
||||
func (b *bitWriter) reset(out []byte) {
|
||||
b.bitContainer = 0
|
||||
b.nBits = 0
|
||||
b.out = out
|
||||
}
|
47
e2e/vendor/github.com/klauspost/compress/fse/bytereader.go
generated
vendored
Normal file
47
e2e/vendor/github.com/klauspost/compress/fse/bytereader.go
generated
vendored
Normal file
@ -0,0 +1,47 @@
|
||||
// Copyright 2018 Klaus Post. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
|
||||
|
||||
package fse
|
||||
|
||||
// byteReader provides a byte reader that reads
|
||||
// little endian values from a byte stream.
|
||||
// The input stream is manually advanced.
|
||||
// The reader performs no bounds checks.
|
||||
type byteReader struct {
|
||||
b []byte
|
||||
off int
|
||||
}
|
||||
|
||||
// init will initialize the reader and set the input.
|
||||
func (b *byteReader) init(in []byte) {
|
||||
b.b = in
|
||||
b.off = 0
|
||||
}
|
||||
|
||||
// advance the stream b n bytes.
|
||||
func (b *byteReader) advance(n uint) {
|
||||
b.off += int(n)
|
||||
}
|
||||
|
||||
// Uint32 returns a little endian uint32 starting at current offset.
|
||||
func (b byteReader) Uint32() uint32 {
|
||||
b2 := b.b[b.off:]
|
||||
b2 = b2[:4]
|
||||
v3 := uint32(b2[3])
|
||||
v2 := uint32(b2[2])
|
||||
v1 := uint32(b2[1])
|
||||
v0 := uint32(b2[0])
|
||||
return v0 | (v1 << 8) | (v2 << 16) | (v3 << 24)
|
||||
}
|
||||
|
||||
// unread returns the unread portion of the input.
|
||||
func (b byteReader) unread() []byte {
|
||||
return b.b[b.off:]
|
||||
}
|
||||
|
||||
// remain will return the number of bytes remaining.
|
||||
func (b byteReader) remain() int {
|
||||
return len(b.b) - b.off
|
||||
}
|
683
e2e/vendor/github.com/klauspost/compress/fse/compress.go
generated
vendored
Normal file
683
e2e/vendor/github.com/klauspost/compress/fse/compress.go
generated
vendored
Normal file
@ -0,0 +1,683 @@
|
||||
// Copyright 2018 Klaus Post. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
|
||||
|
||||
package fse
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
)
|
||||
|
||||
// Compress the input bytes. Input must be < 2GB.
|
||||
// Provide a Scratch buffer to avoid memory allocations.
|
||||
// Note that the output is also kept in the scratch buffer.
|
||||
// If input is too hard to compress, ErrIncompressible is returned.
|
||||
// If input is a single byte value repeated ErrUseRLE is returned.
|
||||
func Compress(in []byte, s *Scratch) ([]byte, error) {
|
||||
if len(in) <= 1 {
|
||||
return nil, ErrIncompressible
|
||||
}
|
||||
if len(in) > (2<<30)-1 {
|
||||
return nil, errors.New("input too big, must be < 2GB")
|
||||
}
|
||||
s, err := s.prepare(in)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Create histogram, if none was provided.
|
||||
maxCount := s.maxCount
|
||||
if maxCount == 0 {
|
||||
maxCount = s.countSimple(in)
|
||||
}
|
||||
// Reset for next run.
|
||||
s.clearCount = true
|
||||
s.maxCount = 0
|
||||
if maxCount == len(in) {
|
||||
// One symbol, use RLE
|
||||
return nil, ErrUseRLE
|
||||
}
|
||||
if maxCount == 1 || maxCount < (len(in)>>7) {
|
||||
// Each symbol present maximum once or too well distributed.
|
||||
return nil, ErrIncompressible
|
||||
}
|
||||
s.optimalTableLog()
|
||||
err = s.normalizeCount()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
err = s.writeCount()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if false {
|
||||
err = s.validateNorm()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
err = s.buildCTable()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
err = s.compress(in)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
s.Out = s.bw.out
|
||||
// Check if we compressed.
|
||||
if len(s.Out) >= len(in) {
|
||||
return nil, ErrIncompressible
|
||||
}
|
||||
return s.Out, nil
|
||||
}
|
||||
|
||||
// cState contains the compression state of a stream.
|
||||
type cState struct {
|
||||
bw *bitWriter
|
||||
stateTable []uint16
|
||||
state uint16
|
||||
}
|
||||
|
||||
// init will initialize the compression state to the first symbol of the stream.
|
||||
func (c *cState) init(bw *bitWriter, ct *cTable, tableLog uint8, first symbolTransform) {
|
||||
c.bw = bw
|
||||
c.stateTable = ct.stateTable
|
||||
|
||||
nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
|
||||
im := int32((nbBitsOut << 16) - first.deltaNbBits)
|
||||
lu := (im >> nbBitsOut) + first.deltaFindState
|
||||
c.state = c.stateTable[lu]
|
||||
}
|
||||
|
||||
// encode the output symbol provided and write it to the bitstream.
|
||||
func (c *cState) encode(symbolTT symbolTransform) {
|
||||
nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
|
||||
dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
|
||||
c.bw.addBits16NC(c.state, uint8(nbBitsOut))
|
||||
c.state = c.stateTable[dstState]
|
||||
}
|
||||
|
||||
// encode the output symbol provided and write it to the bitstream.
|
||||
func (c *cState) encodeZero(symbolTT symbolTransform) {
|
||||
nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
|
||||
dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
|
||||
c.bw.addBits16ZeroNC(c.state, uint8(nbBitsOut))
|
||||
c.state = c.stateTable[dstState]
|
||||
}
|
||||
|
||||
// flush will write the tablelog to the output and flush the remaining full bytes.
|
||||
func (c *cState) flush(tableLog uint8) {
|
||||
c.bw.flush32()
|
||||
c.bw.addBits16NC(c.state, tableLog)
|
||||
c.bw.flush()
|
||||
}
|
||||
|
||||
// compress is the main compression loop that will encode the input from the last byte to the first.
|
||||
func (s *Scratch) compress(src []byte) error {
|
||||
if len(src) <= 2 {
|
||||
return errors.New("compress: src too small")
|
||||
}
|
||||
tt := s.ct.symbolTT[:256]
|
||||
s.bw.reset(s.Out)
|
||||
|
||||
// Our two states each encodes every second byte.
|
||||
// Last byte encoded (first byte decoded) will always be encoded by c1.
|
||||
var c1, c2 cState
|
||||
|
||||
// Encode so remaining size is divisible by 4.
|
||||
ip := len(src)
|
||||
if ip&1 == 1 {
|
||||
c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
|
||||
c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
|
||||
c1.encodeZero(tt[src[ip-3]])
|
||||
ip -= 3
|
||||
} else {
|
||||
c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
|
||||
c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
|
||||
ip -= 2
|
||||
}
|
||||
if ip&2 != 0 {
|
||||
c2.encodeZero(tt[src[ip-1]])
|
||||
c1.encodeZero(tt[src[ip-2]])
|
||||
ip -= 2
|
||||
}
|
||||
src = src[:ip]
|
||||
|
||||
// Main compression loop.
|
||||
switch {
|
||||
case !s.zeroBits && s.actualTableLog <= 8:
|
||||
// We can encode 4 symbols without requiring a flush.
|
||||
// We do not need to check if any output is 0 bits.
|
||||
for ; len(src) >= 4; src = src[:len(src)-4] {
|
||||
s.bw.flush32()
|
||||
v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
|
||||
c2.encode(tt[v0])
|
||||
c1.encode(tt[v1])
|
||||
c2.encode(tt[v2])
|
||||
c1.encode(tt[v3])
|
||||
}
|
||||
case !s.zeroBits:
|
||||
// We do not need to check if any output is 0 bits.
|
||||
for ; len(src) >= 4; src = src[:len(src)-4] {
|
||||
s.bw.flush32()
|
||||
v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
|
||||
c2.encode(tt[v0])
|
||||
c1.encode(tt[v1])
|
||||
s.bw.flush32()
|
||||
c2.encode(tt[v2])
|
||||
c1.encode(tt[v3])
|
||||
}
|
||||
case s.actualTableLog <= 8:
|
||||
// We can encode 4 symbols without requiring a flush
|
||||
for ; len(src) >= 4; src = src[:len(src)-4] {
|
||||
s.bw.flush32()
|
||||
v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
|
||||
c2.encodeZero(tt[v0])
|
||||
c1.encodeZero(tt[v1])
|
||||
c2.encodeZero(tt[v2])
|
||||
c1.encodeZero(tt[v3])
|
||||
}
|
||||
default:
|
||||
for ; len(src) >= 4; src = src[:len(src)-4] {
|
||||
s.bw.flush32()
|
||||
v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
|
||||
c2.encodeZero(tt[v0])
|
||||
c1.encodeZero(tt[v1])
|
||||
s.bw.flush32()
|
||||
c2.encodeZero(tt[v2])
|
||||
c1.encodeZero(tt[v3])
|
||||
}
|
||||
}
|
||||
|
||||
// Flush final state.
|
||||
// Used to initialize state when decoding.
|
||||
c2.flush(s.actualTableLog)
|
||||
c1.flush(s.actualTableLog)
|
||||
|
||||
s.bw.close()
|
||||
return nil
|
||||
}
|
||||
|
||||
// writeCount will write the normalized histogram count to header.
|
||||
// This is read back by readNCount.
|
||||
func (s *Scratch) writeCount() error {
|
||||
var (
|
||||
tableLog = s.actualTableLog
|
||||
tableSize = 1 << tableLog
|
||||
previous0 bool
|
||||
charnum uint16
|
||||
|
||||
maxHeaderSize = ((int(s.symbolLen)*int(tableLog) + 4 + 2) >> 3) + 3
|
||||
|
||||
// Write Table Size
|
||||
bitStream = uint32(tableLog - minTablelog)
|
||||
bitCount = uint(4)
|
||||
remaining = int16(tableSize + 1) /* +1 for extra accuracy */
|
||||
threshold = int16(tableSize)
|
||||
nbBits = uint(tableLog + 1)
|
||||
)
|
||||
if cap(s.Out) < maxHeaderSize {
|
||||
s.Out = make([]byte, 0, s.br.remain()+maxHeaderSize)
|
||||
}
|
||||
outP := uint(0)
|
||||
out := s.Out[:maxHeaderSize]
|
||||
|
||||
// stops at 1
|
||||
for remaining > 1 {
|
||||
if previous0 {
|
||||
start := charnum
|
||||
for s.norm[charnum] == 0 {
|
||||
charnum++
|
||||
}
|
||||
for charnum >= start+24 {
|
||||
start += 24
|
||||
bitStream += uint32(0xFFFF) << bitCount
|
||||
out[outP] = byte(bitStream)
|
||||
out[outP+1] = byte(bitStream >> 8)
|
||||
outP += 2
|
||||
bitStream >>= 16
|
||||
}
|
||||
for charnum >= start+3 {
|
||||
start += 3
|
||||
bitStream += 3 << bitCount
|
||||
bitCount += 2
|
||||
}
|
||||
bitStream += uint32(charnum-start) << bitCount
|
||||
bitCount += 2
|
||||
if bitCount > 16 {
|
||||
out[outP] = byte(bitStream)
|
||||
out[outP+1] = byte(bitStream >> 8)
|
||||
outP += 2
|
||||
bitStream >>= 16
|
||||
bitCount -= 16
|
||||
}
|
||||
}
|
||||
|
||||
count := s.norm[charnum]
|
||||
charnum++
|
||||
max := (2*threshold - 1) - remaining
|
||||
if count < 0 {
|
||||
remaining += count
|
||||
} else {
|
||||
remaining -= count
|
||||
}
|
||||
count++ // +1 for extra accuracy
|
||||
if count >= threshold {
|
||||
count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
|
||||
}
|
||||
bitStream += uint32(count) << bitCount
|
||||
bitCount += nbBits
|
||||
if count < max {
|
||||
bitCount--
|
||||
}
|
||||
|
||||
previous0 = count == 1
|
||||
if remaining < 1 {
|
||||
return errors.New("internal error: remaining<1")
|
||||
}
|
||||
for remaining < threshold {
|
||||
nbBits--
|
||||
threshold >>= 1
|
||||
}
|
||||
|
||||
if bitCount > 16 {
|
||||
out[outP] = byte(bitStream)
|
||||
out[outP+1] = byte(bitStream >> 8)
|
||||
outP += 2
|
||||
bitStream >>= 16
|
||||
bitCount -= 16
|
||||
}
|
||||
}
|
||||
|
||||
out[outP] = byte(bitStream)
|
||||
out[outP+1] = byte(bitStream >> 8)
|
||||
outP += (bitCount + 7) / 8
|
||||
|
||||
if charnum > s.symbolLen {
|
||||
return errors.New("internal error: charnum > s.symbolLen")
|
||||
}
|
||||
s.Out = out[:outP]
|
||||
return nil
|
||||
}
|
||||
|
||||
// symbolTransform contains the state transform for a symbol.
|
||||
type symbolTransform struct {
|
||||
deltaFindState int32
|
||||
deltaNbBits uint32
|
||||
}
|
||||
|
||||
// String prints values as a human readable string.
|
||||
func (s symbolTransform) String() string {
|
||||
return fmt.Sprintf("dnbits: %08x, fs:%d", s.deltaNbBits, s.deltaFindState)
|
||||
}
|
||||
|
||||
// cTable contains tables used for compression.
|
||||
type cTable struct {
|
||||
tableSymbol []byte
|
||||
stateTable []uint16
|
||||
symbolTT []symbolTransform
|
||||
}
|
||||
|
||||
// allocCtable will allocate tables needed for compression.
|
||||
// If existing tables a re big enough, they are simply re-used.
|
||||
func (s *Scratch) allocCtable() {
|
||||
tableSize := 1 << s.actualTableLog
|
||||
// get tableSymbol that is big enough.
|
||||
if cap(s.ct.tableSymbol) < tableSize {
|
||||
s.ct.tableSymbol = make([]byte, tableSize)
|
||||
}
|
||||
s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
|
||||
|
||||
ctSize := tableSize
|
||||
if cap(s.ct.stateTable) < ctSize {
|
||||
s.ct.stateTable = make([]uint16, ctSize)
|
||||
}
|
||||
s.ct.stateTable = s.ct.stateTable[:ctSize]
|
||||
|
||||
if cap(s.ct.symbolTT) < 256 {
|
||||
s.ct.symbolTT = make([]symbolTransform, 256)
|
||||
}
|
||||
s.ct.symbolTT = s.ct.symbolTT[:256]
|
||||
}
|
||||
|
||||
// buildCTable will populate the compression table so it is ready to be used.
|
||||
func (s *Scratch) buildCTable() error {
|
||||
tableSize := uint32(1 << s.actualTableLog)
|
||||
highThreshold := tableSize - 1
|
||||
var cumul [maxSymbolValue + 2]int16
|
||||
|
||||
s.allocCtable()
|
||||
tableSymbol := s.ct.tableSymbol[:tableSize]
|
||||
// symbol start positions
|
||||
{
|
||||
cumul[0] = 0
|
||||
for ui, v := range s.norm[:s.symbolLen-1] {
|
||||
u := byte(ui) // one less than reference
|
||||
if v == -1 {
|
||||
// Low proba symbol
|
||||
cumul[u+1] = cumul[u] + 1
|
||||
tableSymbol[highThreshold] = u
|
||||
highThreshold--
|
||||
} else {
|
||||
cumul[u+1] = cumul[u] + v
|
||||
}
|
||||
}
|
||||
// Encode last symbol separately to avoid overflowing u
|
||||
u := int(s.symbolLen - 1)
|
||||
v := s.norm[s.symbolLen-1]
|
||||
if v == -1 {
|
||||
// Low proba symbol
|
||||
cumul[u+1] = cumul[u] + 1
|
||||
tableSymbol[highThreshold] = byte(u)
|
||||
highThreshold--
|
||||
} else {
|
||||
cumul[u+1] = cumul[u] + v
|
||||
}
|
||||
if uint32(cumul[s.symbolLen]) != tableSize {
|
||||
return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
|
||||
}
|
||||
cumul[s.symbolLen] = int16(tableSize) + 1
|
||||
}
|
||||
// Spread symbols
|
||||
s.zeroBits = false
|
||||
{
|
||||
step := tableStep(tableSize)
|
||||
tableMask := tableSize - 1
|
||||
var position uint32
|
||||
// if any symbol > largeLimit, we may have 0 bits output.
|
||||
largeLimit := int16(1 << (s.actualTableLog - 1))
|
||||
for ui, v := range s.norm[:s.symbolLen] {
|
||||
symbol := byte(ui)
|
||||
if v > largeLimit {
|
||||
s.zeroBits = true
|
||||
}
|
||||
for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
|
||||
tableSymbol[position] = symbol
|
||||
position = (position + step) & tableMask
|
||||
for position > highThreshold {
|
||||
position = (position + step) & tableMask
|
||||
} /* Low proba area */
|
||||
}
|
||||
}
|
||||
|
||||
// Check if we have gone through all positions
|
||||
if position != 0 {
|
||||
return errors.New("position!=0")
|
||||
}
|
||||
}
|
||||
|
||||
// Build table
|
||||
table := s.ct.stateTable
|
||||
{
|
||||
tsi := int(tableSize)
|
||||
for u, v := range tableSymbol {
|
||||
// TableU16 : sorted by symbol order; gives next state value
|
||||
table[cumul[v]] = uint16(tsi + u)
|
||||
cumul[v]++
|
||||
}
|
||||
}
|
||||
|
||||
// Build Symbol Transformation Table
|
||||
{
|
||||
total := int16(0)
|
||||
symbolTT := s.ct.symbolTT[:s.symbolLen]
|
||||
tableLog := s.actualTableLog
|
||||
tl := (uint32(tableLog) << 16) - (1 << tableLog)
|
||||
for i, v := range s.norm[:s.symbolLen] {
|
||||
switch v {
|
||||
case 0:
|
||||
case -1, 1:
|
||||
symbolTT[i].deltaNbBits = tl
|
||||
symbolTT[i].deltaFindState = int32(total - 1)
|
||||
total++
|
||||
default:
|
||||
maxBitsOut := uint32(tableLog) - highBits(uint32(v-1))
|
||||
minStatePlus := uint32(v) << maxBitsOut
|
||||
symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
|
||||
symbolTT[i].deltaFindState = int32(total - v)
|
||||
total += v
|
||||
}
|
||||
}
|
||||
if total != int16(tableSize) {
|
||||
return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// countSimple will create a simple histogram in s.count.
|
||||
// Returns the biggest count.
|
||||
// Does not update s.clearCount.
|
||||
func (s *Scratch) countSimple(in []byte) (max int) {
|
||||
for _, v := range in {
|
||||
s.count[v]++
|
||||
}
|
||||
m, symlen := uint32(0), s.symbolLen
|
||||
for i, v := range s.count[:] {
|
||||
if v == 0 {
|
||||
continue
|
||||
}
|
||||
if v > m {
|
||||
m = v
|
||||
}
|
||||
symlen = uint16(i) + 1
|
||||
}
|
||||
s.symbolLen = symlen
|
||||
return int(m)
|
||||
}
|
||||
|
||||
// minTableLog provides the minimum logSize to safely represent a distribution.
|
||||
func (s *Scratch) minTableLog() uint8 {
|
||||
minBitsSrc := highBits(uint32(s.br.remain()-1)) + 1
|
||||
minBitsSymbols := highBits(uint32(s.symbolLen-1)) + 2
|
||||
if minBitsSrc < minBitsSymbols {
|
||||
return uint8(minBitsSrc)
|
||||
}
|
||||
return uint8(minBitsSymbols)
|
||||
}
|
||||
|
||||
// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
|
||||
func (s *Scratch) optimalTableLog() {
|
||||
tableLog := s.TableLog
|
||||
minBits := s.minTableLog()
|
||||
maxBitsSrc := uint8(highBits(uint32(s.br.remain()-1))) - 2
|
||||
if maxBitsSrc < tableLog {
|
||||
// Accuracy can be reduced
|
||||
tableLog = maxBitsSrc
|
||||
}
|
||||
if minBits > tableLog {
|
||||
tableLog = minBits
|
||||
}
|
||||
// Need a minimum to safely represent all symbol values
|
||||
if tableLog < minTablelog {
|
||||
tableLog = minTablelog
|
||||
}
|
||||
if tableLog > maxTableLog {
|
||||
tableLog = maxTableLog
|
||||
}
|
||||
s.actualTableLog = tableLog
|
||||
}
|
||||
|
||||
var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
|
||||
|
||||
// normalizeCount will normalize the count of the symbols so
|
||||
// the total is equal to the table size.
|
||||
func (s *Scratch) normalizeCount() error {
|
||||
var (
|
||||
tableLog = s.actualTableLog
|
||||
scale = 62 - uint64(tableLog)
|
||||
step = (1 << 62) / uint64(s.br.remain())
|
||||
vStep = uint64(1) << (scale - 20)
|
||||
stillToDistribute = int16(1 << tableLog)
|
||||
largest int
|
||||
largestP int16
|
||||
lowThreshold = (uint32)(s.br.remain() >> tableLog)
|
||||
)
|
||||
|
||||
for i, cnt := range s.count[:s.symbolLen] {
|
||||
// already handled
|
||||
// if (count[s] == s.length) return 0; /* rle special case */
|
||||
|
||||
if cnt == 0 {
|
||||
s.norm[i] = 0
|
||||
continue
|
||||
}
|
||||
if cnt <= lowThreshold {
|
||||
s.norm[i] = -1
|
||||
stillToDistribute--
|
||||
} else {
|
||||
proba := (int16)((uint64(cnt) * step) >> scale)
|
||||
if proba < 8 {
|
||||
restToBeat := vStep * uint64(rtbTable[proba])
|
||||
v := uint64(cnt)*step - (uint64(proba) << scale)
|
||||
if v > restToBeat {
|
||||
proba++
|
||||
}
|
||||
}
|
||||
if proba > largestP {
|
||||
largestP = proba
|
||||
largest = i
|
||||
}
|
||||
s.norm[i] = proba
|
||||
stillToDistribute -= proba
|
||||
}
|
||||
}
|
||||
|
||||
if -stillToDistribute >= (s.norm[largest] >> 1) {
|
||||
// corner case, need another normalization method
|
||||
return s.normalizeCount2()
|
||||
}
|
||||
s.norm[largest] += stillToDistribute
|
||||
return nil
|
||||
}
|
||||
|
||||
// Secondary normalization method.
|
||||
// To be used when primary method fails.
|
||||
func (s *Scratch) normalizeCount2() error {
|
||||
const notYetAssigned = -2
|
||||
var (
|
||||
distributed uint32
|
||||
total = uint32(s.br.remain())
|
||||
tableLog = s.actualTableLog
|
||||
lowThreshold = total >> tableLog
|
||||
lowOne = (total * 3) >> (tableLog + 1)
|
||||
)
|
||||
for i, cnt := range s.count[:s.symbolLen] {
|
||||
if cnt == 0 {
|
||||
s.norm[i] = 0
|
||||
continue
|
||||
}
|
||||
if cnt <= lowThreshold {
|
||||
s.norm[i] = -1
|
||||
distributed++
|
||||
total -= cnt
|
||||
continue
|
||||
}
|
||||
if cnt <= lowOne {
|
||||
s.norm[i] = 1
|
||||
distributed++
|
||||
total -= cnt
|
||||
continue
|
||||
}
|
||||
s.norm[i] = notYetAssigned
|
||||
}
|
||||
toDistribute := (1 << tableLog) - distributed
|
||||
|
||||
if (total / toDistribute) > lowOne {
|
||||
// risk of rounding to zero
|
||||
lowOne = (total * 3) / (toDistribute * 2)
|
||||
for i, cnt := range s.count[:s.symbolLen] {
|
||||
if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
|
||||
s.norm[i] = 1
|
||||
distributed++
|
||||
total -= cnt
|
||||
continue
|
||||
}
|
||||
}
|
||||
toDistribute = (1 << tableLog) - distributed
|
||||
}
|
||||
if distributed == uint32(s.symbolLen)+1 {
|
||||
// all values are pretty poor;
|
||||
// probably incompressible data (should have already been detected);
|
||||
// find max, then give all remaining points to max
|
||||
var maxV int
|
||||
var maxC uint32
|
||||
for i, cnt := range s.count[:s.symbolLen] {
|
||||
if cnt > maxC {
|
||||
maxV = i
|
||||
maxC = cnt
|
||||
}
|
||||
}
|
||||
s.norm[maxV] += int16(toDistribute)
|
||||
return nil
|
||||
}
|
||||
|
||||
if total == 0 {
|
||||
// all of the symbols were low enough for the lowOne or lowThreshold
|
||||
for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
|
||||
if s.norm[i] > 0 {
|
||||
toDistribute--
|
||||
s.norm[i]++
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
var (
|
||||
vStepLog = 62 - uint64(tableLog)
|
||||
mid = uint64((1 << (vStepLog - 1)) - 1)
|
||||
rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
|
||||
tmpTotal = mid
|
||||
)
|
||||
for i, cnt := range s.count[:s.symbolLen] {
|
||||
if s.norm[i] == notYetAssigned {
|
||||
var (
|
||||
end = tmpTotal + uint64(cnt)*rStep
|
||||
sStart = uint32(tmpTotal >> vStepLog)
|
||||
sEnd = uint32(end >> vStepLog)
|
||||
weight = sEnd - sStart
|
||||
)
|
||||
if weight < 1 {
|
||||
return errors.New("weight < 1")
|
||||
}
|
||||
s.norm[i] = int16(weight)
|
||||
tmpTotal = end
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// validateNorm validates the normalized histogram table.
|
||||
func (s *Scratch) validateNorm() (err error) {
|
||||
var total int
|
||||
for _, v := range s.norm[:s.symbolLen] {
|
||||
if v >= 0 {
|
||||
total += int(v)
|
||||
} else {
|
||||
total -= int(v)
|
||||
}
|
||||
}
|
||||
defer func() {
|
||||
if err == nil {
|
||||
return
|
||||
}
|
||||
fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
|
||||
for i, v := range s.norm[:s.symbolLen] {
|
||||
fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
|
||||
}
|
||||
}()
|
||||
if total != (1 << s.actualTableLog) {
|
||||
return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
|
||||
}
|
||||
for i, v := range s.count[s.symbolLen:] {
|
||||
if v != 0 {
|
||||
return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
376
e2e/vendor/github.com/klauspost/compress/fse/decompress.go
generated
vendored
Normal file
376
e2e/vendor/github.com/klauspost/compress/fse/decompress.go
generated
vendored
Normal file
@ -0,0 +1,376 @@
|
||||
package fse
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
)
|
||||
|
||||
const (
|
||||
tablelogAbsoluteMax = 15
|
||||
)
|
||||
|
||||
// Decompress a block of data.
|
||||
// You can provide a scratch buffer to avoid allocations.
|
||||
// If nil is provided a temporary one will be allocated.
|
||||
// It is possible, but by no way guaranteed that corrupt data will
|
||||
// return an error.
|
||||
// It is up to the caller to verify integrity of the returned data.
|
||||
// Use a predefined Scratch to set maximum acceptable output size.
|
||||
func Decompress(b []byte, s *Scratch) ([]byte, error) {
|
||||
s, err := s.prepare(b)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
s.Out = s.Out[:0]
|
||||
err = s.readNCount()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
err = s.buildDtable()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
err = s.decompress()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return s.Out, nil
|
||||
}
|
||||
|
||||
// readNCount will read the symbol distribution so decoding tables can be constructed.
|
||||
func (s *Scratch) readNCount() error {
|
||||
var (
|
||||
charnum uint16
|
||||
previous0 bool
|
||||
b = &s.br
|
||||
)
|
||||
iend := b.remain()
|
||||
if iend < 4 {
|
||||
return errors.New("input too small")
|
||||
}
|
||||
bitStream := b.Uint32()
|
||||
nbBits := uint((bitStream & 0xF) + minTablelog) // extract tableLog
|
||||
if nbBits > tablelogAbsoluteMax {
|
||||
return errors.New("tableLog too large")
|
||||
}
|
||||
bitStream >>= 4
|
||||
bitCount := uint(4)
|
||||
|
||||
s.actualTableLog = uint8(nbBits)
|
||||
remaining := int32((1 << nbBits) + 1)
|
||||
threshold := int32(1 << nbBits)
|
||||
gotTotal := int32(0)
|
||||
nbBits++
|
||||
|
||||
for remaining > 1 {
|
||||
if previous0 {
|
||||
n0 := charnum
|
||||
for (bitStream & 0xFFFF) == 0xFFFF {
|
||||
n0 += 24
|
||||
if b.off < iend-5 {
|
||||
b.advance(2)
|
||||
bitStream = b.Uint32() >> bitCount
|
||||
} else {
|
||||
bitStream >>= 16
|
||||
bitCount += 16
|
||||
}
|
||||
}
|
||||
for (bitStream & 3) == 3 {
|
||||
n0 += 3
|
||||
bitStream >>= 2
|
||||
bitCount += 2
|
||||
}
|
||||
n0 += uint16(bitStream & 3)
|
||||
bitCount += 2
|
||||
if n0 > maxSymbolValue {
|
||||
return errors.New("maxSymbolValue too small")
|
||||
}
|
||||
for charnum < n0 {
|
||||
s.norm[charnum&0xff] = 0
|
||||
charnum++
|
||||
}
|
||||
|
||||
if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 {
|
||||
b.advance(bitCount >> 3)
|
||||
bitCount &= 7
|
||||
bitStream = b.Uint32() >> bitCount
|
||||
} else {
|
||||
bitStream >>= 2
|
||||
}
|
||||
}
|
||||
|
||||
max := (2*(threshold) - 1) - (remaining)
|
||||
var count int32
|
||||
|
||||
if (int32(bitStream) & (threshold - 1)) < max {
|
||||
count = int32(bitStream) & (threshold - 1)
|
||||
bitCount += nbBits - 1
|
||||
} else {
|
||||
count = int32(bitStream) & (2*threshold - 1)
|
||||
if count >= threshold {
|
||||
count -= max
|
||||
}
|
||||
bitCount += nbBits
|
||||
}
|
||||
|
||||
count-- // extra accuracy
|
||||
if count < 0 {
|
||||
// -1 means +1
|
||||
remaining += count
|
||||
gotTotal -= count
|
||||
} else {
|
||||
remaining -= count
|
||||
gotTotal += count
|
||||
}
|
||||
s.norm[charnum&0xff] = int16(count)
|
||||
charnum++
|
||||
previous0 = count == 0
|
||||
for remaining < threshold {
|
||||
nbBits--
|
||||
threshold >>= 1
|
||||
}
|
||||
if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 {
|
||||
b.advance(bitCount >> 3)
|
||||
bitCount &= 7
|
||||
} else {
|
||||
bitCount -= (uint)(8 * (len(b.b) - 4 - b.off))
|
||||
b.off = len(b.b) - 4
|
||||
}
|
||||
bitStream = b.Uint32() >> (bitCount & 31)
|
||||
}
|
||||
s.symbolLen = charnum
|
||||
|
||||
if s.symbolLen <= 1 {
|
||||
return fmt.Errorf("symbolLen (%d) too small", s.symbolLen)
|
||||
}
|
||||
if s.symbolLen > maxSymbolValue+1 {
|
||||
return fmt.Errorf("symbolLen (%d) too big", s.symbolLen)
|
||||
}
|
||||
if remaining != 1 {
|
||||
return fmt.Errorf("corruption detected (remaining %d != 1)", remaining)
|
||||
}
|
||||
if bitCount > 32 {
|
||||
return fmt.Errorf("corruption detected (bitCount %d > 32)", bitCount)
|
||||
}
|
||||
if gotTotal != 1<<s.actualTableLog {
|
||||
return fmt.Errorf("corruption detected (total %d != %d)", gotTotal, 1<<s.actualTableLog)
|
||||
}
|
||||
b.advance((bitCount + 7) >> 3)
|
||||
return nil
|
||||
}
|
||||
|
||||
// decSymbol contains information about a state entry,
|
||||
// Including the state offset base, the output symbol and
|
||||
// the number of bits to read for the low part of the destination state.
|
||||
type decSymbol struct {
|
||||
newState uint16
|
||||
symbol uint8
|
||||
nbBits uint8
|
||||
}
|
||||
|
||||
// allocDtable will allocate decoding tables if they are not big enough.
|
||||
func (s *Scratch) allocDtable() {
|
||||
tableSize := 1 << s.actualTableLog
|
||||
if cap(s.decTable) < tableSize {
|
||||
s.decTable = make([]decSymbol, tableSize)
|
||||
}
|
||||
s.decTable = s.decTable[:tableSize]
|
||||
|
||||
if cap(s.ct.tableSymbol) < 256 {
|
||||
s.ct.tableSymbol = make([]byte, 256)
|
||||
}
|
||||
s.ct.tableSymbol = s.ct.tableSymbol[:256]
|
||||
|
||||
if cap(s.ct.stateTable) < 256 {
|
||||
s.ct.stateTable = make([]uint16, 256)
|
||||
}
|
||||
s.ct.stateTable = s.ct.stateTable[:256]
|
||||
}
|
||||
|
||||
// buildDtable will build the decoding table.
|
||||
func (s *Scratch) buildDtable() error {
|
||||
tableSize := uint32(1 << s.actualTableLog)
|
||||
highThreshold := tableSize - 1
|
||||
s.allocDtable()
|
||||
symbolNext := s.ct.stateTable[:256]
|
||||
|
||||
// Init, lay down lowprob symbols
|
||||
s.zeroBits = false
|
||||
{
|
||||
largeLimit := int16(1 << (s.actualTableLog - 1))
|
||||
for i, v := range s.norm[:s.symbolLen] {
|
||||
if v == -1 {
|
||||
s.decTable[highThreshold].symbol = uint8(i)
|
||||
highThreshold--
|
||||
symbolNext[i] = 1
|
||||
} else {
|
||||
if v >= largeLimit {
|
||||
s.zeroBits = true
|
||||
}
|
||||
symbolNext[i] = uint16(v)
|
||||
}
|
||||
}
|
||||
}
|
||||
// Spread symbols
|
||||
{
|
||||
tableMask := tableSize - 1
|
||||
step := tableStep(tableSize)
|
||||
position := uint32(0)
|
||||
for ss, v := range s.norm[:s.symbolLen] {
|
||||
for i := 0; i < int(v); i++ {
|
||||
s.decTable[position].symbol = uint8(ss)
|
||||
position = (position + step) & tableMask
|
||||
for position > highThreshold {
|
||||
// lowprob area
|
||||
position = (position + step) & tableMask
|
||||
}
|
||||
}
|
||||
}
|
||||
if position != 0 {
|
||||
// position must reach all cells once, otherwise normalizedCounter is incorrect
|
||||
return errors.New("corrupted input (position != 0)")
|
||||
}
|
||||
}
|
||||
|
||||
// Build Decoding table
|
||||
{
|
||||
tableSize := uint16(1 << s.actualTableLog)
|
||||
for u, v := range s.decTable {
|
||||
symbol := v.symbol
|
||||
nextState := symbolNext[symbol]
|
||||
symbolNext[symbol] = nextState + 1
|
||||
nBits := s.actualTableLog - byte(highBits(uint32(nextState)))
|
||||
s.decTable[u].nbBits = nBits
|
||||
newState := (nextState << nBits) - tableSize
|
||||
if newState >= tableSize {
|
||||
return fmt.Errorf("newState (%d) outside table size (%d)", newState, tableSize)
|
||||
}
|
||||
if newState == uint16(u) && nBits == 0 {
|
||||
// Seems weird that this is possible with nbits > 0.
|
||||
return fmt.Errorf("newState (%d) == oldState (%d) and no bits", newState, u)
|
||||
}
|
||||
s.decTable[u].newState = newState
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// decompress will decompress the bitstream.
|
||||
// If the buffer is over-read an error is returned.
|
||||
func (s *Scratch) decompress() error {
|
||||
br := &s.bits
|
||||
if err := br.init(s.br.unread()); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var s1, s2 decoder
|
||||
// Initialize and decode first state and symbol.
|
||||
s1.init(br, s.decTable, s.actualTableLog)
|
||||
s2.init(br, s.decTable, s.actualTableLog)
|
||||
|
||||
// Use temp table to avoid bound checks/append penalty.
|
||||
var tmp = s.ct.tableSymbol[:256]
|
||||
var off uint8
|
||||
|
||||
// Main part
|
||||
if !s.zeroBits {
|
||||
for br.off >= 8 {
|
||||
br.fillFast()
|
||||
tmp[off+0] = s1.nextFast()
|
||||
tmp[off+1] = s2.nextFast()
|
||||
br.fillFast()
|
||||
tmp[off+2] = s1.nextFast()
|
||||
tmp[off+3] = s2.nextFast()
|
||||
off += 4
|
||||
// When off is 0, we have overflowed and should write.
|
||||
if off == 0 {
|
||||
s.Out = append(s.Out, tmp...)
|
||||
if len(s.Out) >= s.DecompressLimit {
|
||||
return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for br.off >= 8 {
|
||||
br.fillFast()
|
||||
tmp[off+0] = s1.next()
|
||||
tmp[off+1] = s2.next()
|
||||
br.fillFast()
|
||||
tmp[off+2] = s1.next()
|
||||
tmp[off+3] = s2.next()
|
||||
off += 4
|
||||
if off == 0 {
|
||||
s.Out = append(s.Out, tmp...)
|
||||
// When off is 0, we have overflowed and should write.
|
||||
if len(s.Out) >= s.DecompressLimit {
|
||||
return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
s.Out = append(s.Out, tmp[:off]...)
|
||||
|
||||
// Final bits, a bit more expensive check
|
||||
for {
|
||||
if s1.finished() {
|
||||
s.Out = append(s.Out, s1.final(), s2.final())
|
||||
break
|
||||
}
|
||||
br.fill()
|
||||
s.Out = append(s.Out, s1.next())
|
||||
if s2.finished() {
|
||||
s.Out = append(s.Out, s2.final(), s1.final())
|
||||
break
|
||||
}
|
||||
s.Out = append(s.Out, s2.next())
|
||||
if len(s.Out) >= s.DecompressLimit {
|
||||
return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
|
||||
}
|
||||
}
|
||||
return br.close()
|
||||
}
|
||||
|
||||
// decoder keeps track of the current state and updates it from the bitstream.
|
||||
type decoder struct {
|
||||
state uint16
|
||||
br *bitReader
|
||||
dt []decSymbol
|
||||
}
|
||||
|
||||
// init will initialize the decoder and read the first state from the stream.
|
||||
func (d *decoder) init(in *bitReader, dt []decSymbol, tableLog uint8) {
|
||||
d.dt = dt
|
||||
d.br = in
|
||||
d.state = in.getBits(tableLog)
|
||||
}
|
||||
|
||||
// next returns the next symbol and sets the next state.
|
||||
// At least tablelog bits must be available in the bit reader.
|
||||
func (d *decoder) next() uint8 {
|
||||
n := &d.dt[d.state]
|
||||
lowBits := d.br.getBits(n.nbBits)
|
||||
d.state = n.newState + lowBits
|
||||
return n.symbol
|
||||
}
|
||||
|
||||
// finished returns true if all bits have been read from the bitstream
|
||||
// and the next state would require reading bits from the input.
|
||||
func (d *decoder) finished() bool {
|
||||
return d.br.finished() && d.dt[d.state].nbBits > 0
|
||||
}
|
||||
|
||||
// final returns the current state symbol without decoding the next.
|
||||
func (d *decoder) final() uint8 {
|
||||
return d.dt[d.state].symbol
|
||||
}
|
||||
|
||||
// nextFast returns the next symbol and sets the next state.
|
||||
// This can only be used if no symbols are 0 bits.
|
||||
// At least tablelog bits must be available in the bit reader.
|
||||
func (d *decoder) nextFast() uint8 {
|
||||
n := d.dt[d.state]
|
||||
lowBits := d.br.getBitsFast(n.nbBits)
|
||||
d.state = n.newState + lowBits
|
||||
return n.symbol
|
||||
}
|
144
e2e/vendor/github.com/klauspost/compress/fse/fse.go
generated
vendored
Normal file
144
e2e/vendor/github.com/klauspost/compress/fse/fse.go
generated
vendored
Normal file
@ -0,0 +1,144 @@
|
||||
// Copyright 2018 Klaus Post. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
|
||||
|
||||
// Package fse provides Finite State Entropy encoding and decoding.
|
||||
//
|
||||
// Finite State Entropy encoding provides a fast near-optimal symbol encoding/decoding
|
||||
// for byte blocks as implemented in zstd.
|
||||
//
|
||||
// See https://github.com/klauspost/compress/tree/master/fse for more information.
|
||||
package fse
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"math/bits"
|
||||
)
|
||||
|
||||
const (
|
||||
/*!MEMORY_USAGE :
|
||||
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
|
||||
* Increasing memory usage improves compression ratio
|
||||
* Reduced memory usage can improve speed, due to cache effect
|
||||
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
|
||||
maxMemoryUsage = 14
|
||||
defaultMemoryUsage = 13
|
||||
|
||||
maxTableLog = maxMemoryUsage - 2
|
||||
maxTablesize = 1 << maxTableLog
|
||||
defaultTablelog = defaultMemoryUsage - 2
|
||||
minTablelog = 5
|
||||
maxSymbolValue = 255
|
||||
)
|
||||
|
||||
var (
|
||||
// ErrIncompressible is returned when input is judged to be too hard to compress.
|
||||
ErrIncompressible = errors.New("input is not compressible")
|
||||
|
||||
// ErrUseRLE is returned from the compressor when the input is a single byte value repeated.
|
||||
ErrUseRLE = errors.New("input is single value repeated")
|
||||
)
|
||||
|
||||
// Scratch provides temporary storage for compression and decompression.
|
||||
type Scratch struct {
|
||||
// Private
|
||||
count [maxSymbolValue + 1]uint32
|
||||
norm [maxSymbolValue + 1]int16
|
||||
br byteReader
|
||||
bits bitReader
|
||||
bw bitWriter
|
||||
ct cTable // Compression tables.
|
||||
decTable []decSymbol // Decompression table.
|
||||
maxCount int // count of the most probable symbol
|
||||
|
||||
// Per block parameters.
|
||||
// These can be used to override compression parameters of the block.
|
||||
// Do not touch, unless you know what you are doing.
|
||||
|
||||
// Out is output buffer.
|
||||
// If the scratch is re-used before the caller is done processing the output,
|
||||
// set this field to nil.
|
||||
// Otherwise the output buffer will be re-used for next Compression/Decompression step
|
||||
// and allocation will be avoided.
|
||||
Out []byte
|
||||
|
||||
// DecompressLimit limits the maximum decoded size acceptable.
|
||||
// If > 0 decompression will stop when approximately this many bytes
|
||||
// has been decoded.
|
||||
// If 0, maximum size will be 2GB.
|
||||
DecompressLimit int
|
||||
|
||||
symbolLen uint16 // Length of active part of the symbol table.
|
||||
actualTableLog uint8 // Selected tablelog.
|
||||
zeroBits bool // no bits has prob > 50%.
|
||||
clearCount bool // clear count
|
||||
|
||||
// MaxSymbolValue will override the maximum symbol value of the next block.
|
||||
MaxSymbolValue uint8
|
||||
|
||||
// TableLog will attempt to override the tablelog for the next block.
|
||||
TableLog uint8
|
||||
}
|
||||
|
||||
// Histogram allows to populate the histogram and skip that step in the compression,
|
||||
// It otherwise allows to inspect the histogram when compression is done.
|
||||
// To indicate that you have populated the histogram call HistogramFinished
|
||||
// with the value of the highest populated symbol, as well as the number of entries
|
||||
// in the most populated entry. These are accepted at face value.
|
||||
// The returned slice will always be length 256.
|
||||
func (s *Scratch) Histogram() []uint32 {
|
||||
return s.count[:]
|
||||
}
|
||||
|
||||
// HistogramFinished can be called to indicate that the histogram has been populated.
|
||||
// maxSymbol is the index of the highest set symbol of the next data segment.
|
||||
// maxCount is the number of entries in the most populated entry.
|
||||
// These are accepted at face value.
|
||||
func (s *Scratch) HistogramFinished(maxSymbol uint8, maxCount int) {
|
||||
s.maxCount = maxCount
|
||||
s.symbolLen = uint16(maxSymbol) + 1
|
||||
s.clearCount = maxCount != 0
|
||||
}
|
||||
|
||||
// prepare will prepare and allocate scratch tables used for both compression and decompression.
|
||||
func (s *Scratch) prepare(in []byte) (*Scratch, error) {
|
||||
if s == nil {
|
||||
s = &Scratch{}
|
||||
}
|
||||
if s.MaxSymbolValue == 0 {
|
||||
s.MaxSymbolValue = 255
|
||||
}
|
||||
if s.TableLog == 0 {
|
||||
s.TableLog = defaultTablelog
|
||||
}
|
||||
if s.TableLog > maxTableLog {
|
||||
return nil, fmt.Errorf("tableLog (%d) > maxTableLog (%d)", s.TableLog, maxTableLog)
|
||||
}
|
||||
if cap(s.Out) == 0 {
|
||||
s.Out = make([]byte, 0, len(in))
|
||||
}
|
||||
if s.clearCount && s.maxCount == 0 {
|
||||
for i := range s.count {
|
||||
s.count[i] = 0
|
||||
}
|
||||
s.clearCount = false
|
||||
}
|
||||
s.br.init(in)
|
||||
if s.DecompressLimit == 0 {
|
||||
// Max size 2GB.
|
||||
s.DecompressLimit = (2 << 30) - 1
|
||||
}
|
||||
|
||||
return s, nil
|
||||
}
|
||||
|
||||
// tableStep returns the next table index.
|
||||
func tableStep(tableSize uint32) uint32 {
|
||||
return (tableSize >> 1) + (tableSize >> 3) + 3
|
||||
}
|
||||
|
||||
func highBits(val uint32) (n uint32) {
|
||||
return uint32(bits.Len32(val) - 1)
|
||||
}
|
Reference in New Issue
Block a user