build: move e2e dependencies into e2e/go.mod

Several packages are only used while running the e2e suite. These
packages are less important to update, as the they can not influence the
final executable that is part of the Ceph-CSI container-image.

By moving these dependencies out of the main Ceph-CSI go.mod, it is
easier to identify if a reported CVE affects Ceph-CSI, or only the
testing (like most of the Kubernetes CVEs).

Signed-off-by: Niels de Vos <ndevos@ibm.com>
This commit is contained in:
Niels de Vos
2025-03-04 08:57:28 +01:00
committed by mergify[bot]
parent 15da101b1b
commit bec6090996
8047 changed files with 1407827 additions and 3453 deletions

View File

@ -0,0 +1,7 @@
# Contributing guidelines
Do not open pull requests directly against this repository, they will be ignored. Instead, please open pull requests against [kubernetes/kubernetes](https://git.k8s.io/kubernetes/). Please follow the same [contributing guide](https://git.k8s.io/kubernetes/CONTRIBUTING.md) you would follow for any other pull request made to kubernetes/kubernetes.
This repository is published from [kubernetes/kubernetes/staging/src/k8s.io/csi-translation-lib](https://git.k8s.io/kubernetes/staging/src/k8s.io/csi-translation-lib) by the [kubernetes publishing-bot](https://git.k8s.io/publishing-bot).
Please see [Staging Directory and Publishing](https://git.k8s.io/community/contributors/devel/sig-architecture/staging.md) for more information.

201
e2e/vendor/k8s.io/csi-translation-lib/LICENSE generated vendored Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

11
e2e/vendor/k8s.io/csi-translation-lib/OWNERS generated vendored Normal file
View File

@ -0,0 +1,11 @@
# See the OWNERS docs at https://go.k8s.io/owners
reviewers:
- sig-storage-reviewers
- andyzhangx
approvers:
- sig-storage-approvers
labels:
- sig/storage
emeritus_approvers:
- davidz627

30
e2e/vendor/k8s.io/csi-translation-lib/README.md generated vendored Normal file
View File

@ -0,0 +1,30 @@
## Purpose
This repository contains functions to be consumed by various Kubernetes and
out-of-tree CSI components like external provisioner to facilitate migration of
code from Kubernetes In-tree plugin code to CSI plugin repositories.
Consumers of this repository can make use of functions like `TranslateToCSI` and
`TranslateToInTree` functions to translate PV sources.
## Community, discussion, contribution, and support
Learn how to engage with the Kubernetes community on the [community
page](http://kubernetes.io/community/).
You can reach the maintainers of this repository at:
- Slack: #sig-storage (on https://kubernetes.slack.com -- get an
invite at slack.kubernetes.io)
- Mailing List:
https://groups.google.com/forum/#!forum/kubernetes-sig-storage
### Code of Conduct
Participation in the Kubernetes community is governed by the [Kubernetes
Code of Conduct](code-of-conduct.md).
### Contibution Guidelines
See [CONTRIBUTING.md](CONTRIBUTING.md) for more information.

View File

@ -0,0 +1,18 @@
# Defined below are the security contacts for this repo.
#
# They are the contact point for the Product Security Committee to reach out
# to for triaging and handling of incoming issues.
#
# The below names agree to abide by the
# [Embargo Policy](https://git.k8s.io/security/private-distributors-list.md#embargo-policy)
# and will be removed and replaced if they violate that agreement.
#
# DO NOT REPORT SECURITY VULNERABILITIES DIRECTLY TO THESE NAMES, FOLLOW THE
# INSTRUCTIONS AT https://kubernetes.io/security/
saad-ali
cjcullen
joelsmith
liggitt
philips
tallclair

View File

@ -0,0 +1,3 @@
# Kubernetes Community Code of Conduct
Please refer to our [Kubernetes Community Code of Conduct](https://git.k8s.io/community/code-of-conduct.md)

View File

@ -0,0 +1,305 @@
/*
Copyright 2019 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package plugins
import (
"fmt"
"net/url"
"regexp"
"strconv"
"strings"
v1 "k8s.io/api/core/v1"
storage "k8s.io/api/storage/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/util/sets"
"k8s.io/klog/v2"
)
const (
// AWSEBSDriverName is the name of the CSI driver for EBS
AWSEBSDriverName = "ebs.csi.aws.com"
// AWSEBSInTreePluginName is the name of the intree plugin for EBS
AWSEBSInTreePluginName = "kubernetes.io/aws-ebs"
// AWSEBSTopologyKey is the zonal topology key for AWS EBS CSI driver
AWSEBSTopologyKey = "topology." + AWSEBSDriverName + "/zone"
// iopsPerGBKey is StorageClass parameter name that specifies IOPS
// Per GB.
iopsPerGBKey = "iopspergb"
// allowIncreaseIOPSKey is parameter name that allows the CSI driver
// to increase IOPS to the minimum value supported by AWS when IOPS
// Per GB is too low for a given volume size. This preserves current
// in-tree volume plugin behavior.
allowIncreaseIOPSKey = "allowautoiopspergbincrease"
)
var _ InTreePlugin = &awsElasticBlockStoreCSITranslator{}
// awsElasticBlockStoreTranslator handles translation of PV spec from In-tree EBS to CSI EBS and vice versa
type awsElasticBlockStoreCSITranslator struct{}
// NewAWSElasticBlockStoreCSITranslator returns a new instance of awsElasticBlockStoreTranslator
func NewAWSElasticBlockStoreCSITranslator() InTreePlugin {
return &awsElasticBlockStoreCSITranslator{}
}
// TranslateInTreeStorageClassToCSI translates InTree EBS storage class parameters to CSI storage class
func (t *awsElasticBlockStoreCSITranslator) TranslateInTreeStorageClassToCSI(logger klog.Logger, sc *storage.StorageClass) (*storage.StorageClass, error) {
var (
generatedTopologies []v1.TopologySelectorTerm
params = map[string]string{}
)
for k, v := range sc.Parameters {
switch strings.ToLower(k) {
case fsTypeKey:
params[csiFsTypeKey] = v
case zoneKey:
generatedTopologies = generateToplogySelectors(AWSEBSTopologyKey, []string{v})
case zonesKey:
generatedTopologies = generateToplogySelectors(AWSEBSTopologyKey, strings.Split(v, ","))
case iopsPerGBKey:
// Keep iopsPerGBKey
params[k] = v
// Preserve current in-tree volume plugin behavior and allow the CSI
// driver to bump volume IOPS when volume size * iopsPerGB is too low.
params[allowIncreaseIOPSKey] = "true"
default:
params[k] = v
}
}
if len(generatedTopologies) > 0 && len(sc.AllowedTopologies) > 0 {
return nil, fmt.Errorf("cannot simultaneously set allowed topologies and zone/zones parameters")
} else if len(generatedTopologies) > 0 {
sc.AllowedTopologies = generatedTopologies
} else if len(sc.AllowedTopologies) > 0 {
newTopologies, err := translateAllowedTopologies(sc.AllowedTopologies, AWSEBSTopologyKey)
if err != nil {
return nil, fmt.Errorf("failed translating allowed topologies: %v", err)
}
sc.AllowedTopologies = newTopologies
}
sc.Parameters = params
return sc, nil
}
// TranslateInTreeInlineVolumeToCSI takes a Volume with AWSElasticBlockStore set from in-tree
// and converts the AWSElasticBlockStore source to a CSIPersistentVolumeSource
func (t *awsElasticBlockStoreCSITranslator) TranslateInTreeInlineVolumeToCSI(logger klog.Logger, volume *v1.Volume, podNamespace string) (*v1.PersistentVolume, error) {
if volume == nil || volume.AWSElasticBlockStore == nil {
return nil, fmt.Errorf("volume is nil or AWS EBS not defined on volume")
}
ebsSource := volume.AWSElasticBlockStore
volumeHandle, err := KubernetesVolumeIDToEBSVolumeID(ebsSource.VolumeID)
if err != nil {
return nil, fmt.Errorf("failed to translate Kubernetes ID to EBS Volume ID %v", err)
}
pv := &v1.PersistentVolume{
ObjectMeta: metav1.ObjectMeta{
// Must be unique per disk as it is used as the unique part of the
// staging path
Name: fmt.Sprintf("%s-%s", AWSEBSDriverName, volumeHandle),
},
Spec: v1.PersistentVolumeSpec{
PersistentVolumeSource: v1.PersistentVolumeSource{
CSI: &v1.CSIPersistentVolumeSource{
Driver: AWSEBSDriverName,
VolumeHandle: volumeHandle,
ReadOnly: ebsSource.ReadOnly,
FSType: ebsSource.FSType,
VolumeAttributes: map[string]string{
"partition": strconv.FormatInt(int64(ebsSource.Partition), 10),
},
},
},
AccessModes: []v1.PersistentVolumeAccessMode{v1.ReadWriteOnce},
},
}
return pv, nil
}
// TranslateInTreePVToCSI takes a PV with AWSElasticBlockStore set from in-tree
// and converts the AWSElasticBlockStore source to a CSIPersistentVolumeSource
func (t *awsElasticBlockStoreCSITranslator) TranslateInTreePVToCSI(logger klog.Logger, pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.AWSElasticBlockStore == nil {
return nil, fmt.Errorf("pv is nil or AWS EBS not defined on pv")
}
ebsSource := pv.Spec.AWSElasticBlockStore
volumeHandle, err := KubernetesVolumeIDToEBSVolumeID(ebsSource.VolumeID)
if err != nil {
return nil, fmt.Errorf("failed to translate Kubernetes ID to EBS Volume ID %v", err)
}
csiSource := &v1.CSIPersistentVolumeSource{
Driver: AWSEBSDriverName,
VolumeHandle: volumeHandle,
ReadOnly: ebsSource.ReadOnly,
FSType: ebsSource.FSType,
VolumeAttributes: map[string]string{
"partition": strconv.FormatInt(int64(ebsSource.Partition), 10),
},
}
if err := translateTopologyFromInTreeToCSI(pv, AWSEBSTopologyKey); err != nil {
return nil, fmt.Errorf("failed to translate topology: %v", err)
}
pv.Spec.AWSElasticBlockStore = nil
pv.Spec.CSI = csiSource
return pv, nil
}
// TranslateCSIPVToInTree takes a PV with CSIPersistentVolumeSource set and
// translates the EBS CSI source to a AWSElasticBlockStore source.
func (t *awsElasticBlockStoreCSITranslator) TranslateCSIPVToInTree(pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.CSI == nil {
return nil, fmt.Errorf("pv is nil or CSI source not defined on pv")
}
csiSource := pv.Spec.CSI
ebsSource := &v1.AWSElasticBlockStoreVolumeSource{
VolumeID: csiSource.VolumeHandle,
FSType: csiSource.FSType,
ReadOnly: csiSource.ReadOnly,
}
if partition, ok := csiSource.VolumeAttributes["partition"]; ok {
partValue, err := strconv.Atoi(partition)
if err != nil {
return nil, fmt.Errorf("failed to convert partition %v to integer: %v", partition, err)
}
ebsSource.Partition = int32(partValue)
}
// translate CSI topology to In-tree topology for rollback compatibility
if err := translateTopologyFromCSIToInTree(pv, AWSEBSTopologyKey, getAwsRegionFromZones); err != nil {
return nil, fmt.Errorf("failed to translate topology. PV:%+v. Error:%v", *pv, err)
}
pv.Spec.CSI = nil
pv.Spec.AWSElasticBlockStore = ebsSource
return pv, nil
}
// CanSupport tests whether the plugin supports a given persistent volume
// specification from the API. The spec pointer should be considered
// const.
func (t *awsElasticBlockStoreCSITranslator) CanSupport(pv *v1.PersistentVolume) bool {
return pv != nil && pv.Spec.AWSElasticBlockStore != nil
}
// CanSupportInline tests whether the plugin supports a given inline volume
// specification from the API. The spec pointer should be considered
// const.
func (t *awsElasticBlockStoreCSITranslator) CanSupportInline(volume *v1.Volume) bool {
return volume != nil && volume.AWSElasticBlockStore != nil
}
// GetInTreePluginName returns the name of the intree plugin driver
func (t *awsElasticBlockStoreCSITranslator) GetInTreePluginName() string {
return AWSEBSInTreePluginName
}
// GetCSIPluginName returns the name of the CSI plugin
func (t *awsElasticBlockStoreCSITranslator) GetCSIPluginName() string {
return AWSEBSDriverName
}
func (t *awsElasticBlockStoreCSITranslator) RepairVolumeHandle(volumeHandle, nodeID string) (string, error) {
return volumeHandle, nil
}
// awsVolumeRegMatch represents Regex Match for AWS volume.
var awsVolumeRegMatch = regexp.MustCompile("^vol-[^/]*$")
// KubernetesVolumeIDToEBSVolumeID translates Kubernetes volume ID to EBS volume ID
// KubernetesVolumeID forms:
// - aws://<zone>/<awsVolumeId>
// - aws:///<awsVolumeId>
// - <awsVolumeId>
//
// EBS Volume ID form:
// - vol-<alphanumberic>
//
// This translation shouldn't be needed and should be fixed in long run
// See https://github.com/kubernetes/kubernetes/issues/73730
func KubernetesVolumeIDToEBSVolumeID(kubernetesID string) (string, error) {
// name looks like aws://availability-zone/awsVolumeId
// The original idea of the URL-style name was to put the AZ into the
// host, so we could find the AZ immediately from the name without
// querying the API. But it turns out we don't actually need it for
// multi-AZ clusters, as we put the AZ into the labels on the PV instead.
// However, if in future we want to support multi-AZ cluster
// volume-awareness without using PersistentVolumes, we likely will
// want the AZ in the host.
if !strings.HasPrefix(kubernetesID, "aws://") {
// Assume a bare aws volume id (vol-1234...)
return kubernetesID, nil
}
url, err := url.Parse(kubernetesID)
if err != nil {
// TODO: Maybe we should pass a URL into the Volume functions
return "", fmt.Errorf("Invalid disk name (%s): %v", kubernetesID, err)
}
if url.Scheme != "aws" {
return "", fmt.Errorf("Invalid scheme for AWS volume (%s)", kubernetesID)
}
awsID := url.Path
awsID = strings.Trim(awsID, "/")
// We sanity check the resulting volume; the two known formats are
// vol-12345678 and vol-12345678abcdef01
if !awsVolumeRegMatch.MatchString(awsID) {
return "", fmt.Errorf("Invalid format for AWS volume (%s)", kubernetesID)
}
return awsID, nil
}
func getAwsRegionFromZones(zones []string) (string, error) {
regions := sets.String{}
if len(zones) < 1 {
return "", fmt.Errorf("no zones specified")
}
// AWS zones can be in four forms:
// us-west-2a, us-gov-east-1a, us-west-2-lax-1a (local zone) and us-east-1-wl1-bos-wlz-1 (wavelength).
for _, zone := range zones {
splitZone := strings.Split(zone, "-")
if (len(splitZone) == 3 || len(splitZone) == 4) && len(splitZone[len(splitZone)-1]) == 2 {
// this would break if we ever have a location with more than 9 regions, ie us-west-10.
splitZone[len(splitZone)-1] = splitZone[len(splitZone)-1][:1]
regions.Insert(strings.Join(splitZone, "-"))
} else if len(splitZone) == 5 || len(splitZone) == 7 {
// local zone or wavelength
regions.Insert(strings.Join(splitZone[:3], "-"))
} else {
return "", fmt.Errorf("Unexpected zone format: %v is not a valid AWS zone", zone)
}
}
if regions.Len() != 1 {
return "", fmt.Errorf("multiple or no regions gotten from zones, got: %v", regions)
}
return regions.UnsortedList()[0], nil
}

View File

@ -0,0 +1,309 @@
/*
Copyright 2019 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package plugins
import (
"fmt"
"regexp"
"strings"
v1 "k8s.io/api/core/v1"
storage "k8s.io/api/storage/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/klog/v2"
)
const (
// AzureDiskDriverName is the name of the CSI driver for Azure Disk
AzureDiskDriverName = "disk.csi.azure.com"
// AzureDiskTopologyKey is the topology key of Azure Disk CSI driver
AzureDiskTopologyKey = "topology.disk.csi.azure.com/zone"
// AzureDiskInTreePluginName is the name of the intree plugin for Azure Disk
AzureDiskInTreePluginName = "kubernetes.io/azure-disk"
// Parameter names defined in azure disk CSI driver, refer to
// https://github.com/kubernetes-sigs/azuredisk-csi-driver/blob/master/docs/driver-parameters.md
azureDiskKind = "kind"
azureDiskCachingMode = "cachingmode"
azureDiskFSType = "fstype"
)
var (
managedDiskPathRE = regexp.MustCompile(`.*/subscriptions/(?:.*)/resourceGroups/(?:.*)/providers/Microsoft.Compute/disks/(.+)`)
unmanagedDiskPathRE = regexp.MustCompile(`http(?:.*)://(?:.*)/vhds/(.+)`)
managed = string(v1.AzureManagedDisk)
unzonedCSIRegionRE = regexp.MustCompile(`^[0-9]+$`)
)
var _ InTreePlugin = &azureDiskCSITranslator{}
// azureDiskCSITranslator handles translation of PV spec from In-tree
// Azure Disk to CSI Azure Disk and vice versa
type azureDiskCSITranslator struct{}
// NewAzureDiskCSITranslator returns a new instance of azureDiskTranslator
func NewAzureDiskCSITranslator() InTreePlugin {
return &azureDiskCSITranslator{}
}
// TranslateInTreeStorageClassToCSI translates InTree Azure Disk storage class parameters to CSI storage class
func (t *azureDiskCSITranslator) TranslateInTreeStorageClassToCSI(logger klog.Logger, sc *storage.StorageClass) (*storage.StorageClass, error) {
var (
generatedTopologies []v1.TopologySelectorTerm
params = map[string]string{}
)
for k, v := range sc.Parameters {
switch strings.ToLower(k) {
case zoneKey:
generatedTopologies = generateToplogySelectors(AzureDiskTopologyKey, []string{v})
case zonesKey:
generatedTopologies = generateToplogySelectors(AzureDiskTopologyKey, strings.Split(v, ","))
default:
params[k] = v
}
}
if len(generatedTopologies) > 0 && len(sc.AllowedTopologies) > 0 {
return nil, fmt.Errorf("cannot simultaneously set allowed topologies and zone/zones parameters")
} else if len(generatedTopologies) > 0 {
sc.AllowedTopologies = generatedTopologies
} else if len(sc.AllowedTopologies) > 0 {
newTopologies, err := translateAllowedTopologies(sc.AllowedTopologies, AzureDiskTopologyKey)
if err != nil {
return nil, fmt.Errorf("failed translating allowed topologies: %v", err)
}
sc.AllowedTopologies = newTopologies
}
sc.AllowedTopologies = t.replaceFailureDomainsToCSI(sc.AllowedTopologies)
sc.Parameters = params
return sc, nil
}
// TranslateInTreeInlineVolumeToCSI takes a Volume with AzureDisk set from in-tree
// and converts the AzureDisk source to a CSIPersistentVolumeSource
func (t *azureDiskCSITranslator) TranslateInTreeInlineVolumeToCSI(logger klog.Logger, volume *v1.Volume, podNamespace string) (*v1.PersistentVolume, error) {
if volume == nil || volume.AzureDisk == nil {
return nil, fmt.Errorf("volume is nil or Azure Disk not defined on volume")
}
azureSource := volume.AzureDisk
if azureSource.Kind != nil && !strings.EqualFold(string(*azureSource.Kind), managed) {
return nil, fmt.Errorf("kind(%v) is not supported in csi migration", *azureSource.Kind)
}
pv := &v1.PersistentVolume{
ObjectMeta: metav1.ObjectMeta{
// Must be unique per disk as it is used as the unique part of the
// staging path
Name: azureSource.DataDiskURI,
},
Spec: v1.PersistentVolumeSpec{
PersistentVolumeSource: v1.PersistentVolumeSource{
CSI: &v1.CSIPersistentVolumeSource{
Driver: AzureDiskDriverName,
VolumeHandle: azureSource.DataDiskURI,
VolumeAttributes: map[string]string{azureDiskKind: managed},
},
},
AccessModes: []v1.PersistentVolumeAccessMode{v1.ReadWriteOnce},
},
}
if azureSource.ReadOnly != nil {
pv.Spec.PersistentVolumeSource.CSI.ReadOnly = *azureSource.ReadOnly
}
if azureSource.CachingMode != nil && *azureSource.CachingMode != "" {
pv.Spec.PersistentVolumeSource.CSI.VolumeAttributes[azureDiskCachingMode] = string(*azureSource.CachingMode)
}
if azureSource.FSType != nil {
pv.Spec.PersistentVolumeSource.CSI.FSType = *azureSource.FSType
pv.Spec.PersistentVolumeSource.CSI.VolumeAttributes[azureDiskFSType] = *azureSource.FSType
}
pv.Spec.PersistentVolumeSource.CSI.VolumeAttributes[azureDiskKind] = managed
return pv, nil
}
// TranslateInTreePVToCSI takes a PV with AzureDisk set from in-tree
// and converts the AzureDisk source to a CSIPersistentVolumeSource
func (t *azureDiskCSITranslator) TranslateInTreePVToCSI(logger klog.Logger, pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.AzureDisk == nil {
return nil, fmt.Errorf("pv is nil or Azure Disk source not defined on pv")
}
var (
azureSource = pv.Spec.PersistentVolumeSource.AzureDisk
// refer to https://github.com/kubernetes-sigs/azuredisk-csi-driver/blob/master/docs/driver-parameters.md
csiSource = &v1.CSIPersistentVolumeSource{
Driver: AzureDiskDriverName,
VolumeAttributes: map[string]string{azureDiskKind: managed},
VolumeHandle: azureSource.DataDiskURI,
}
)
if azureSource.Kind != nil && !strings.EqualFold(string(*azureSource.Kind), managed) {
return nil, fmt.Errorf("kind(%v) is not supported in csi migration", *azureSource.Kind)
}
if azureSource.CachingMode != nil {
csiSource.VolumeAttributes[azureDiskCachingMode] = string(*azureSource.CachingMode)
}
if azureSource.FSType != nil {
csiSource.FSType = *azureSource.FSType
csiSource.VolumeAttributes[azureDiskFSType] = *azureSource.FSType
}
csiSource.VolumeAttributes[azureDiskKind] = managed
if azureSource.ReadOnly != nil {
csiSource.ReadOnly = *azureSource.ReadOnly
}
pv.Spec.PersistentVolumeSource.AzureDisk = nil
pv.Spec.PersistentVolumeSource.CSI = csiSource
return pv, nil
}
// TranslateCSIPVToInTree takes a PV with CSIPersistentVolumeSource set and
// translates the Azure Disk CSI source to a AzureDisk source.
func (t *azureDiskCSITranslator) TranslateCSIPVToInTree(pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.CSI == nil {
return nil, fmt.Errorf("pv is nil or CSI source not defined on pv")
}
csiSource := pv.Spec.CSI
diskURI := csiSource.VolumeHandle
diskName, err := getDiskName(diskURI)
if err != nil {
return nil, err
}
// refer to https://github.com/kubernetes-sigs/azuredisk-csi-driver/blob/master/docs/driver-parameters.md
managed := v1.AzureManagedDisk
azureSource := &v1.AzureDiskVolumeSource{
DiskName: diskName,
DataDiskURI: diskURI,
FSType: &csiSource.FSType,
ReadOnly: &csiSource.ReadOnly,
Kind: &managed,
}
if csiSource.VolumeAttributes != nil {
for k, v := range csiSource.VolumeAttributes {
switch strings.ToLower(k) {
case azureDiskCachingMode:
if v != "" {
mode := v1.AzureDataDiskCachingMode(v)
azureSource.CachingMode = &mode
}
case azureDiskFSType:
if v != "" {
fsType := v
azureSource.FSType = &fsType
}
}
}
azureSource.Kind = &managed
}
pv.Spec.CSI = nil
pv.Spec.AzureDisk = azureSource
return pv, nil
}
// CanSupport tests whether the plugin supports a given volume
// specification from the API. The spec pointer should be considered
// const.
func (t *azureDiskCSITranslator) CanSupport(pv *v1.PersistentVolume) bool {
return pv != nil && pv.Spec.AzureDisk != nil
}
// CanSupportInline tests whether the plugin supports a given inline volume
// specification from the API. The spec pointer should be considered
// const.
func (t *azureDiskCSITranslator) CanSupportInline(volume *v1.Volume) bool {
return volume != nil && volume.AzureDisk != nil
}
// GetInTreePluginName returns the name of the intree plugin driver
func (t *azureDiskCSITranslator) GetInTreePluginName() string {
return AzureDiskInTreePluginName
}
// GetCSIPluginName returns the name of the CSI plugin
func (t *azureDiskCSITranslator) GetCSIPluginName() string {
return AzureDiskDriverName
}
func (t *azureDiskCSITranslator) RepairVolumeHandle(volumeHandle, nodeID string) (string, error) {
return volumeHandle, nil
}
func isManagedDisk(diskURI string) bool {
if len(diskURI) > 4 && strings.ToLower(diskURI[:4]) == "http" {
return false
}
return true
}
func getDiskName(diskURI string) (string, error) {
diskPathRE := managedDiskPathRE
if !isManagedDisk(diskURI) {
diskPathRE = unmanagedDiskPathRE
}
matches := diskPathRE.FindStringSubmatch(diskURI)
if len(matches) != 2 {
return "", fmt.Errorf("could not get disk name from %s, correct format: %s", diskURI, diskPathRE)
}
return matches[1], nil
}
// Replace topology values for failure domains ("<number>") to "",
// as it's the value that the CSI driver expects.
func (t *azureDiskCSITranslator) replaceFailureDomainsToCSI(terms []v1.TopologySelectorTerm) []v1.TopologySelectorTerm {
if terms == nil {
return nil
}
newTopologies := []v1.TopologySelectorTerm{}
for _, term := range terms {
newTerm := term.DeepCopy()
for i := range newTerm.MatchLabelExpressions {
exp := &newTerm.MatchLabelExpressions[i]
if exp.Key == AzureDiskTopologyKey {
for j := range exp.Values {
if unzonedCSIRegionRE.Match([]byte(exp.Values[j])) {
// Topologies "0", "1" etc are used when in-tree topology is translated to CSI in Azure
// regions that don't have availability zones. E.g.:
// topology.kubernetes.io/region: westus
// topology.kubernetes.io/zone: "0"
// The CSI driver uses zone "" instead of "0" in this case.
// topology.disk.csi.azure.com/zone": ""
exp.Values[j] = ""
}
}
}
}
newTopologies = append(newTopologies, *newTerm)
}
return newTopologies
}

View File

@ -0,0 +1,282 @@
/*
Copyright 2019 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package plugins
import (
"fmt"
"regexp"
"strings"
v1 "k8s.io/api/core/v1"
storage "k8s.io/api/storage/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/klog/v2"
)
const (
// AzureFileDriverName is the name of the CSI driver for Azure File
AzureFileDriverName = "file.csi.azure.com"
// AzureFileInTreePluginName is the name of the intree plugin for Azure file
AzureFileInTreePluginName = "kubernetes.io/azure-file"
separator = "#"
volumeIDTemplate = "%s#%s#%s#%s#%s"
// Parameter names defined in azure file CSI driver, refer to
// https://github.com/kubernetes-sigs/azurefile-csi-driver/blob/master/docs/driver-parameters.md
shareNameField = "sharename"
secretNameField = "secretname"
secretNamespaceField = "secretnamespace"
secretNameTemplate = "azure-storage-account-%s-secret"
defaultSecretNamespace = "default"
resourceGroupAnnotation = "kubernetes.io/azure-file-resource-group"
)
var _ InTreePlugin = &azureFileCSITranslator{}
var secretNameFormatRE = regexp.MustCompile(`azure-storage-account-(.+)-secret`)
// azureFileCSITranslator handles translation of PV spec from In-tree
// Azure File to CSI Azure File and vice versa
type azureFileCSITranslator struct{}
// NewAzureFileCSITranslator returns a new instance of azureFileTranslator
func NewAzureFileCSITranslator() InTreePlugin {
return &azureFileCSITranslator{}
}
// TranslateInTreeStorageClassToCSI translates InTree Azure File storage class parameters to CSI storage class
func (t *azureFileCSITranslator) TranslateInTreeStorageClassToCSI(logger klog.Logger, sc *storage.StorageClass) (*storage.StorageClass, error) {
return sc, nil
}
// TranslateInTreeInlineVolumeToCSI takes a Volume with AzureFile set from in-tree
// and converts the AzureFile source to a CSIPersistentVolumeSource
func (t *azureFileCSITranslator) TranslateInTreeInlineVolumeToCSI(logger klog.Logger, volume *v1.Volume, podNamespace string) (*v1.PersistentVolume, error) {
if volume == nil || volume.AzureFile == nil {
return nil, fmt.Errorf("volume is nil or Azure File not defined on volume")
}
azureSource := volume.AzureFile
accountName, err := getStorageAccountName(azureSource.SecretName)
if err != nil {
logger.V(5).Info("getStorageAccountName returned with error", "secretName", azureSource.SecretName, "err", err)
accountName = azureSource.SecretName
}
secretNamespace := defaultSecretNamespace
if podNamespace != "" {
secretNamespace = podNamespace
}
volumeID := fmt.Sprintf(volumeIDTemplate, "", accountName, azureSource.ShareName, volume.Name, secretNamespace)
var (
pv = &v1.PersistentVolume{
ObjectMeta: metav1.ObjectMeta{
// Must be unique as it is used as the unique part of the staging path
Name: volumeID,
},
Spec: v1.PersistentVolumeSpec{
PersistentVolumeSource: v1.PersistentVolumeSource{
CSI: &v1.CSIPersistentVolumeSource{
Driver: AzureFileDriverName,
VolumeHandle: volumeID,
ReadOnly: azureSource.ReadOnly,
VolumeAttributes: map[string]string{shareNameField: azureSource.ShareName},
NodeStageSecretRef: &v1.SecretReference{
Name: azureSource.SecretName,
Namespace: secretNamespace,
},
},
},
AccessModes: []v1.PersistentVolumeAccessMode{v1.ReadWriteMany},
},
}
)
return pv, nil
}
// TranslateInTreePVToCSI takes a PV with AzureFile set from in-tree
// and converts the AzureFile source to a CSIPersistentVolumeSource
func (t *azureFileCSITranslator) TranslateInTreePVToCSI(logger klog.Logger, pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.AzureFile == nil {
return nil, fmt.Errorf("pv is nil or Azure File source not defined on pv")
}
azureSource := pv.Spec.PersistentVolumeSource.AzureFile
accountName, err := getStorageAccountName(azureSource.SecretName)
if err != nil {
logger.V(5).Info("getStorageAccountName returned with error", "secretName", azureSource.SecretName, "err", err)
accountName = azureSource.SecretName
}
resourceGroup := ""
if pv.ObjectMeta.Annotations != nil {
if v, ok := pv.ObjectMeta.Annotations[resourceGroupAnnotation]; ok {
resourceGroup = v
}
}
// Secret is required when mounting a volume but pod presence cannot be assumed - we should not try to read pod now.
namespace := ""
// Try to read SecretNamespace from source pv.
if azureSource.SecretNamespace != nil {
namespace = *azureSource.SecretNamespace
} else {
// Try to read namespace from ClaimRef which should be always present.
if pv.Spec.ClaimRef != nil {
namespace = pv.Spec.ClaimRef.Namespace
}
}
if len(namespace) == 0 {
return nil, fmt.Errorf("could not find a secret namespace in PersistentVolumeSource or ClaimRef")
}
volumeID := fmt.Sprintf(volumeIDTemplate, resourceGroup, accountName, azureSource.ShareName, pv.ObjectMeta.Name, namespace)
var (
// refer to https://github.com/kubernetes-sigs/azurefile-csi-driver/blob/master/docs/driver-parameters.md
csiSource = &v1.CSIPersistentVolumeSource{
Driver: AzureFileDriverName,
NodeStageSecretRef: &v1.SecretReference{
Name: azureSource.SecretName,
Namespace: namespace,
},
ReadOnly: azureSource.ReadOnly,
VolumeAttributes: map[string]string{shareNameField: azureSource.ShareName},
VolumeHandle: volumeID,
}
)
pv.Spec.PersistentVolumeSource.AzureFile = nil
pv.Spec.PersistentVolumeSource.CSI = csiSource
return pv, nil
}
// TranslateCSIPVToInTree takes a PV with CSIPersistentVolumeSource set and
// translates the Azure File CSI source to a AzureFile source.
func (t *azureFileCSITranslator) TranslateCSIPVToInTree(pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.CSI == nil {
return nil, fmt.Errorf("pv is nil or CSI source not defined on pv")
}
csiSource := pv.Spec.CSI
// refer to https://github.com/kubernetes-sigs/azurefile-csi-driver/blob/master/docs/driver-parameters.md
azureSource := &v1.AzureFilePersistentVolumeSource{
ReadOnly: csiSource.ReadOnly,
}
for k, v := range csiSource.VolumeAttributes {
switch strings.ToLower(k) {
case shareNameField:
azureSource.ShareName = v
case secretNameField:
azureSource.SecretName = v
case secretNamespaceField:
ns := v
azureSource.SecretNamespace = &ns
}
}
resourceGroup := ""
if csiSource.NodeStageSecretRef != nil && csiSource.NodeStageSecretRef.Name != "" {
azureSource.SecretName = csiSource.NodeStageSecretRef.Name
azureSource.SecretNamespace = &csiSource.NodeStageSecretRef.Namespace
}
if azureSource.ShareName == "" || azureSource.SecretName == "" {
rg, storageAccount, fileShareName, _, err := getFileShareInfo(csiSource.VolumeHandle)
if err != nil {
return nil, err
}
if azureSource.ShareName == "" {
azureSource.ShareName = fileShareName
}
if azureSource.SecretName == "" {
azureSource.SecretName = fmt.Sprintf(secretNameTemplate, storageAccount)
}
resourceGroup = rg
}
if azureSource.SecretNamespace == nil {
ns := defaultSecretNamespace
azureSource.SecretNamespace = &ns
}
pv.Spec.CSI = nil
pv.Spec.AzureFile = azureSource
if pv.ObjectMeta.Annotations == nil {
pv.ObjectMeta.Annotations = map[string]string{}
}
if resourceGroup != "" {
pv.ObjectMeta.Annotations[resourceGroupAnnotation] = resourceGroup
}
return pv, nil
}
// CanSupport tests whether the plugin supports a given volume
// specification from the API. The spec pointer should be considered
// const.
func (t *azureFileCSITranslator) CanSupport(pv *v1.PersistentVolume) bool {
return pv != nil && pv.Spec.AzureFile != nil
}
// CanSupportInline tests whether the plugin supports a given inline volume
// specification from the API. The spec pointer should be considered
// const.
func (t *azureFileCSITranslator) CanSupportInline(volume *v1.Volume) bool {
return volume != nil && volume.AzureFile != nil
}
// GetInTreePluginName returns the name of the intree plugin driver
func (t *azureFileCSITranslator) GetInTreePluginName() string {
return AzureFileInTreePluginName
}
// GetCSIPluginName returns the name of the CSI plugin
func (t *azureFileCSITranslator) GetCSIPluginName() string {
return AzureFileDriverName
}
func (t *azureFileCSITranslator) RepairVolumeHandle(volumeHandle, nodeID string) (string, error) {
return volumeHandle, nil
}
// get file share info according to volume id, e.g.
// input: "rg#f5713de20cde511e8ba4900#pvc-file-dynamic-17e43f84-f474-11e8-acd0-000d3a00df41#diskname.vhd"
// output: rg, f5713de20cde511e8ba4900, pvc-file-dynamic-17e43f84-f474-11e8-acd0-000d3a00df41, diskname.vhd
func getFileShareInfo(id string) (string, string, string, string, error) {
segments := strings.Split(id, separator)
if len(segments) < 3 {
return "", "", "", "", fmt.Errorf("error parsing volume id: %q, should at least contain two #", id)
}
var diskName string
if len(segments) > 3 {
diskName = segments[3]
}
return segments[0], segments[1], segments[2], diskName, nil
}
// get storage account name from secret name
func getStorageAccountName(secretName string) (string, error) {
matches := secretNameFormatRE.FindStringSubmatch(secretName)
if len(matches) != 2 {
return "", fmt.Errorf("could not get account name from %s, correct format: %s", secretName, secretNameFormatRE)
}
return matches[1], nil
}

21
e2e/vendor/k8s.io/csi-translation-lib/plugins/const.go generated vendored Normal file
View File

@ -0,0 +1,21 @@
/*
Copyright 2020 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package plugins
// Matches the delimiter LabelMultiZoneDelimiter used by k8s.io/cloud-provider/volume and is mirrored here to avoid a large dependency
// labelMultiZoneDelimiter separates zones for volumes
const labelMultiZoneDelimiter = "__"

400
e2e/vendor/k8s.io/csi-translation-lib/plugins/gce_pd.go generated vendored Normal file
View File

@ -0,0 +1,400 @@
/*
Copyright 2019 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package plugins
import (
"fmt"
"strconv"
"strings"
v1 "k8s.io/api/core/v1"
storage "k8s.io/api/storage/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/util/sets"
"k8s.io/klog/v2"
)
const (
// GCEPDDriverName is the name of the CSI driver for GCE PD
GCEPDDriverName = "pd.csi.storage.gke.io"
// GCEPDInTreePluginName is the name of the intree plugin for GCE PD
GCEPDInTreePluginName = "kubernetes.io/gce-pd"
// GCEPDTopologyKey is the zonal topology key for GCE PD CSI Driver
GCEPDTopologyKey = "topology.gke.io/zone"
// Volume ID Expected Format
// "projects/{projectName}/zones/{zoneName}/disks/{diskName}"
volIDZonalFmt = "projects/%s/zones/%s/disks/%s"
// "projects/{projectName}/regions/{regionName}/disks/{diskName}"
volIDRegionalFmt = "projects/%s/regions/%s/disks/%s"
volIDProjectValue = 1
volIDRegionalityValue = 2
volIDZoneValue = 3
volIDDiskNameValue = 5
volIDTotalElements = 6
nodeIDFmt = "projects/%s/zones/%s/instances/%s"
// UnspecifiedValue is used for an unknown zone string
UnspecifiedValue = "UNSPECIFIED"
)
var _ InTreePlugin = &gcePersistentDiskCSITranslator{}
// gcePersistentDiskCSITranslator handles translation of PV spec from In-tree
// GCE PD to CSI GCE PD and vice versa
type gcePersistentDiskCSITranslator struct{}
// NewGCEPersistentDiskCSITranslator returns a new instance of gcePersistentDiskTranslator
func NewGCEPersistentDiskCSITranslator() InTreePlugin {
return &gcePersistentDiskCSITranslator{}
}
func generateToplogySelectors(key string, values []string) []v1.TopologySelectorTerm {
return []v1.TopologySelectorTerm{
{
MatchLabelExpressions: []v1.TopologySelectorLabelRequirement{
{
Key: key,
Values: values,
},
},
},
}
}
// TranslateInTreeStorageClassToCSI translates InTree GCE storage class parameters to CSI storage class
func (g *gcePersistentDiskCSITranslator) TranslateInTreeStorageClassToCSI(logger klog.Logger, sc *storage.StorageClass) (*storage.StorageClass, error) {
var generatedTopologies []v1.TopologySelectorTerm
np := map[string]string{}
for k, v := range sc.Parameters {
switch strings.ToLower(k) {
case fsTypeKey:
// prefixed fstype parameter is stripped out by external provisioner
np[csiFsTypeKey] = v
// Strip out zone and zones parameters and translate them into topologies instead
case zoneKey:
generatedTopologies = generateToplogySelectors(GCEPDTopologyKey, []string{v})
case zonesKey:
generatedTopologies = generateToplogySelectors(GCEPDTopologyKey, strings.Split(v, ","))
default:
np[k] = v
}
}
if len(generatedTopologies) > 0 && len(sc.AllowedTopologies) > 0 {
return nil, fmt.Errorf("cannot simultaneously set allowed topologies and zone/zones parameters")
} else if len(generatedTopologies) > 0 {
sc.AllowedTopologies = generatedTopologies
} else if len(sc.AllowedTopologies) > 0 {
newTopologies, err := translateAllowedTopologies(sc.AllowedTopologies, GCEPDTopologyKey)
if err != nil {
return nil, fmt.Errorf("failed translating allowed topologies: %v", err)
}
sc.AllowedTopologies = newTopologies
}
sc.Parameters = np
return sc, nil
}
// backwardCompatibleAccessModes translates all instances of ReadWriteMany
// access mode from the in-tree plugin to ReadWriteOnce. This is because in-tree
// plugin never supported ReadWriteMany but also did not validate or enforce
// this access mode for pre-provisioned volumes. The GCE PD CSI Driver validates
// and enforces (fails) ReadWriteMany. Therefore we treat all in-tree
// ReadWriteMany as ReadWriteOnce volumes to not break legacy volumes. It also
// takes [ReadWriteOnce, ReadOnlyMany] and makes it ReadWriteOnce. This is
// because the in-tree plugin does not enforce access modes and just attaches
// the disk in ReadWriteOnce mode; however, the CSI external-attacher will fail
// this combination because technically [ReadWriteOnce, ReadOnlyMany] is not
// supportable on an attached volume
// See: https://github.com/kubernetes-csi/external-attacher/issues/153
func backwardCompatibleAccessModes(ams []v1.PersistentVolumeAccessMode) []v1.PersistentVolumeAccessMode {
if ams == nil {
return nil
}
s := map[v1.PersistentVolumeAccessMode]bool{}
var newAM []v1.PersistentVolumeAccessMode
for _, am := range ams {
if am == v1.ReadWriteMany {
// ReadWriteMany is unsupported in CSI, but in-tree did no
// validation and treated it as ReadWriteOnce
s[v1.ReadWriteOnce] = true
} else {
s[am] = true
}
}
switch {
case s[v1.ReadOnlyMany] && s[v1.ReadWriteOnce]:
// ROX,RWO is unsupported in CSI, but in-tree did not validation and
// treated it as ReadWriteOnce
newAM = []v1.PersistentVolumeAccessMode{v1.ReadWriteOnce}
case s[v1.ReadWriteOnce]:
newAM = []v1.PersistentVolumeAccessMode{v1.ReadWriteOnce}
case s[v1.ReadOnlyMany]:
newAM = []v1.PersistentVolumeAccessMode{v1.ReadOnlyMany}
default:
newAM = []v1.PersistentVolumeAccessMode{v1.ReadWriteOnce}
}
return newAM
}
// TranslateInTreeInlineVolumeToCSI takes a Volume with GCEPersistentDisk set from in-tree
// and converts the GCEPersistentDisk source to a CSIPersistentVolumeSource
func (g *gcePersistentDiskCSITranslator) TranslateInTreeInlineVolumeToCSI(logger klog.Logger, volume *v1.Volume, podNamespace string) (*v1.PersistentVolume, error) {
if volume == nil || volume.GCEPersistentDisk == nil {
return nil, fmt.Errorf("volume is nil or GCE PD not defined on volume")
}
pdSource := volume.GCEPersistentDisk
partition := ""
if pdSource.Partition != 0 {
partition = strconv.Itoa(int(pdSource.Partition))
}
var am v1.PersistentVolumeAccessMode
if pdSource.ReadOnly {
am = v1.ReadOnlyMany
} else {
am = v1.ReadWriteOnce
}
fsMode := v1.PersistentVolumeFilesystem
return &v1.PersistentVolume{
ObjectMeta: metav1.ObjectMeta{
// Must be unique per disk as it is used as the unique part of the
// staging path
Name: fmt.Sprintf("%s-%s", GCEPDDriverName, pdSource.PDName),
},
Spec: v1.PersistentVolumeSpec{
PersistentVolumeSource: v1.PersistentVolumeSource{
CSI: &v1.CSIPersistentVolumeSource{
Driver: GCEPDDriverName,
VolumeHandle: fmt.Sprintf(volIDZonalFmt, UnspecifiedValue, UnspecifiedValue, pdSource.PDName),
ReadOnly: pdSource.ReadOnly,
FSType: pdSource.FSType,
VolumeAttributes: map[string]string{
"partition": partition,
},
},
},
AccessModes: []v1.PersistentVolumeAccessMode{am},
VolumeMode: &fsMode,
},
}, nil
}
// TranslateInTreePVToCSI takes a PV with GCEPersistentDisk set from in-tree
// and converts the GCEPersistentDisk source to a CSIPersistentVolumeSource
func (g *gcePersistentDiskCSITranslator) TranslateInTreePVToCSI(logger klog.Logger, pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
var volID string
if pv == nil || pv.Spec.GCEPersistentDisk == nil {
return nil, fmt.Errorf("pv is nil or GCE Persistent Disk source not defined on pv")
}
// depend on which version it migrates from, the label could be failuredomain beta or topology GA version
zonesLabel := pv.Labels[v1.LabelFailureDomainBetaZone]
if zonesLabel == "" {
zonesLabel = pv.Labels[v1.LabelTopologyZone]
}
zones := strings.Split(zonesLabel, labelMultiZoneDelimiter)
if len(zones) == 1 && len(zones[0]) != 0 {
// Zonal
volID = fmt.Sprintf(volIDZonalFmt, UnspecifiedValue, zones[0], pv.Spec.GCEPersistentDisk.PDName)
} else if len(zones) > 1 {
// Regional
region, err := gceGetRegionFromZones(zones)
if err != nil {
return nil, fmt.Errorf("failed to get region from zones: %v", err)
}
volID = fmt.Sprintf(volIDRegionalFmt, UnspecifiedValue, region, pv.Spec.GCEPersistentDisk.PDName)
} else {
// Unspecified
volID = fmt.Sprintf(volIDZonalFmt, UnspecifiedValue, UnspecifiedValue, pv.Spec.GCEPersistentDisk.PDName)
}
gceSource := pv.Spec.PersistentVolumeSource.GCEPersistentDisk
partition := ""
if gceSource.Partition != 0 {
partition = strconv.Itoa(int(gceSource.Partition))
}
csiSource := &v1.CSIPersistentVolumeSource{
Driver: GCEPDDriverName,
VolumeHandle: volID,
ReadOnly: gceSource.ReadOnly,
FSType: gceSource.FSType,
VolumeAttributes: map[string]string{
"partition": partition,
},
}
if err := translateTopologyFromInTreeToCSI(pv, GCEPDTopologyKey); err != nil {
return nil, fmt.Errorf("failed to translate topology: %v", err)
}
pv.Spec.PersistentVolumeSource.GCEPersistentDisk = nil
pv.Spec.PersistentVolumeSource.CSI = csiSource
pv.Spec.AccessModes = backwardCompatibleAccessModes(pv.Spec.AccessModes)
return pv, nil
}
// TranslateCSIPVToInTree takes a PV with CSIPersistentVolumeSource set and
// translates the GCE PD CSI source to a GCEPersistentDisk source.
func (g *gcePersistentDiskCSITranslator) TranslateCSIPVToInTree(pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.CSI == nil {
return nil, fmt.Errorf("pv is nil or CSI source not defined on pv")
}
csiSource := pv.Spec.CSI
pdName, err := pdNameFromVolumeID(csiSource.VolumeHandle)
if err != nil {
return nil, err
}
gceSource := &v1.GCEPersistentDiskVolumeSource{
PDName: pdName,
FSType: csiSource.FSType,
ReadOnly: csiSource.ReadOnly,
}
if partition, ok := csiSource.VolumeAttributes["partition"]; ok && partition != "" {
partInt, err := strconv.Atoi(partition)
if err != nil {
return nil, fmt.Errorf("Failed to convert partition %v to integer: %v", partition, err)
}
gceSource.Partition = int32(partInt)
}
// translate CSI topology to In-tree topology for rollback compatibility
if err := translateTopologyFromCSIToInTree(pv, GCEPDTopologyKey, gceGetRegionFromZones); err != nil {
return nil, fmt.Errorf("failed to translate topology. PV:%+v. Error:%v", *pv, err)
}
pv.Spec.CSI = nil
pv.Spec.GCEPersistentDisk = gceSource
return pv, nil
}
// CanSupport tests whether the plugin supports a given persistent volume
// specification from the API. The spec pointer should be considered
// const.
func (g *gcePersistentDiskCSITranslator) CanSupport(pv *v1.PersistentVolume) bool {
return pv != nil && pv.Spec.GCEPersistentDisk != nil
}
// CanSupportInline tests whether the plugin supports a given inline volume
// specification from the API. The spec pointer should be considered
// const.
func (g *gcePersistentDiskCSITranslator) CanSupportInline(volume *v1.Volume) bool {
return volume != nil && volume.GCEPersistentDisk != nil
}
// GetInTreePluginName returns the name of the intree plugin driver
func (g *gcePersistentDiskCSITranslator) GetInTreePluginName() string {
return GCEPDInTreePluginName
}
// GetCSIPluginName returns the name of the CSI plugin
func (g *gcePersistentDiskCSITranslator) GetCSIPluginName() string {
return GCEPDDriverName
}
// RepairVolumeHandle returns a fully specified volume handle by inferring
// project, zone/region from the node ID if the volume handle has UNSPECIFIED
// sections
func (g *gcePersistentDiskCSITranslator) RepairVolumeHandle(volumeHandle, nodeID string) (string, error) {
var err error
tok := strings.Split(volumeHandle, "/")
if len(tok) < volIDTotalElements {
return "", fmt.Errorf("volume handle has wrong number of elements; got %v, wanted %v or more", len(tok), volIDTotalElements)
}
if tok[volIDProjectValue] != UnspecifiedValue {
return volumeHandle, nil
}
nodeTok := strings.Split(nodeID, "/")
if len(nodeTok) < volIDTotalElements {
return "", fmt.Errorf("node handle has wrong number of elements; got %v, wanted %v or more", len(nodeTok), volIDTotalElements)
}
switch tok[volIDRegionalityValue] {
case "zones":
zone := ""
if tok[volIDZoneValue] == UnspecifiedValue {
zone = nodeTok[volIDZoneValue]
} else {
zone = tok[volIDZoneValue]
}
return fmt.Sprintf(volIDZonalFmt, nodeTok[volIDProjectValue], zone, tok[volIDDiskNameValue]), nil
case "regions":
region := ""
if tok[volIDZoneValue] == UnspecifiedValue {
region, err = gceGetRegionFromZones([]string{nodeTok[volIDZoneValue]})
if err != nil {
return "", fmt.Errorf("failed to get region from zone %s: %v", nodeTok[volIDZoneValue], err)
}
} else {
region = tok[volIDZoneValue]
}
return fmt.Sprintf(volIDRegionalFmt, nodeTok[volIDProjectValue], region, tok[volIDDiskNameValue]), nil
default:
return "", fmt.Errorf("expected volume handle to have zones or regions regionality value, got: %s", tok[volIDRegionalityValue])
}
}
func pdNameFromVolumeID(id string) (string, error) {
splitID := strings.Split(id, "/")
if len(splitID) < volIDTotalElements {
return "", fmt.Errorf("failed to get id components.Got: %v, wanted %v components or more. ", len(splitID), volIDTotalElements)
}
return splitID[volIDDiskNameValue], nil
}
// TODO: Replace this with the imported one from GCE PD CSI Driver when
// the driver removes all k8s/k8s dependencies
func gceGetRegionFromZones(zones []string) (string, error) {
regions := sets.String{}
if len(zones) < 1 {
return "", fmt.Errorf("no zones specified")
}
for _, zone := range zones {
// Zone expected format {locale}-{region}-{zone}
splitZone := strings.Split(zone, "-")
if len(splitZone) != 3 {
return "", fmt.Errorf("zone in unexpected format, expected: {locale}-{region}-{zone}, got: %v", zone)
}
regions.Insert(strings.Join(splitZone[0:2], "-"))
}
if regions.Len() != 1 {
return "", fmt.Errorf("multiple or no regions gotten from zones, got: %v", regions)
}
return regions.UnsortedList()[0], nil
}

View File

@ -0,0 +1,398 @@
/*
Copyright 2019 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package plugins
import (
"errors"
"fmt"
"sort"
"strings"
v1 "k8s.io/api/core/v1"
storage "k8s.io/api/storage/v1"
"k8s.io/apimachinery/pkg/util/sets"
"k8s.io/klog/v2"
)
// InTreePlugin handles translations between CSI and in-tree sources in a PV
type InTreePlugin interface {
// TranslateInTreeStorageClassToCSI takes in-tree volume options
// and translates them to a volume options consumable by CSI plugin
TranslateInTreeStorageClassToCSI(logger klog.Logger, sc *storage.StorageClass) (*storage.StorageClass, error)
// TranslateInTreeInlineVolumeToCSI takes a inline volume and will translate
// the in-tree inline volume source to a CSIPersistentVolumeSource
// A PV object containing the CSIPersistentVolumeSource in it's spec is returned
// podNamespace is only needed for azurefile to fetch secret namespace, no need to be set for other plugins.
TranslateInTreeInlineVolumeToCSI(logger klog.Logger, volume *v1.Volume, podNamespace string) (*v1.PersistentVolume, error)
// TranslateInTreePVToCSI takes a persistent volume and will translate
// the in-tree pv source to a CSI Source. The input persistent volume can be modified
TranslateInTreePVToCSI(logger klog.Logger, pv *v1.PersistentVolume) (*v1.PersistentVolume, error)
// TranslateCSIPVToInTree takes a PV with a CSI PersistentVolume Source and will translate
// it to a in-tree Persistent Volume Source for the in-tree volume
// by the `Driver` field in the CSI Source. The input PV object can be modified
TranslateCSIPVToInTree(pv *v1.PersistentVolume) (*v1.PersistentVolume, error)
// CanSupport tests whether the plugin supports a given persistent volume
// specification from the API.
CanSupport(pv *v1.PersistentVolume) bool
// CanSupportInline tests whether the plugin supports a given inline volume
// specification from the API.
CanSupportInline(vol *v1.Volume) bool
// GetInTreePluginName returns the in-tree plugin name this migrates
GetInTreePluginName() string
// GetCSIPluginName returns the name of the CSI plugin that supersedes the in-tree plugin
GetCSIPluginName() string
// RepairVolumeHandle generates a correct volume handle based on node ID information.
RepairVolumeHandle(volumeHandle, nodeID string) (string, error)
}
const (
// fsTypeKey is the deprecated storage class parameter key for fstype
fsTypeKey = "fstype"
// csiFsTypeKey is the storage class parameter key for CSI fstype
csiFsTypeKey = "csi.storage.k8s.io/fstype"
// zoneKey is the deprecated storage class parameter key for zone
zoneKey = "zone"
// zonesKey is the deprecated storage class parameter key for zones
zonesKey = "zones"
)
// replaceTopology overwrites an existing key in NodeAffinity by a new one.
// If there are any newKey already exist in an expression of a term, we will
// not combine the replaced key Values with the existing ones.
// So there might be duplication if there is any newKey expression
// already in the terms.
func replaceTopology(pv *v1.PersistentVolume, oldKey, newKey string) error {
// Make sure the necessary fields exist
if pv == nil || pv.Spec.NodeAffinity == nil || pv.Spec.NodeAffinity.Required == nil ||
pv.Spec.NodeAffinity.Required.NodeSelectorTerms == nil || len(pv.Spec.NodeAffinity.Required.NodeSelectorTerms) == 0 {
return nil
}
for i := range pv.Spec.NodeAffinity.Required.NodeSelectorTerms {
for j, r := range pv.Spec.NodeAffinity.Required.NodeSelectorTerms[i].MatchExpressions {
if r.Key == oldKey {
pv.Spec.NodeAffinity.Required.NodeSelectorTerms[i].MatchExpressions[j].Key = newKey
}
}
}
return nil
}
// getTopologyValues returns all unique topology values with the given key found in
// the PV NodeAffinity. Sort by alphabetical order.
// This function collapses multiple zones into a list that is ORed. This assumes that
// the plugin does not support a constraint like key in "zone1" AND "zone2"
func getTopologyValues(pv *v1.PersistentVolume, key string) []string {
if pv.Spec.NodeAffinity == nil ||
pv.Spec.NodeAffinity.Required == nil ||
len(pv.Spec.NodeAffinity.Required.NodeSelectorTerms) < 1 {
return nil
}
values := make(map[string]bool)
for i := range pv.Spec.NodeAffinity.Required.NodeSelectorTerms {
for _, r := range pv.Spec.NodeAffinity.Required.NodeSelectorTerms[i].MatchExpressions {
if r.Key == key {
for _, v := range r.Values {
values[v] = true
}
}
}
}
// remove duplication and sort them in order for better usage
var re []string
for k := range values {
re = append(re, k)
}
sort.Strings(re)
return re
}
// addTopology appends the topology to the given PV to all Terms.
func addTopology(pv *v1.PersistentVolume, topologyKey string, zones []string) error {
// Make sure there are no duplicate or empty strings
filteredZones := sets.String{}
for i := range zones {
zone := strings.TrimSpace(zones[i])
if len(zone) > 0 {
filteredZones.Insert(zone)
}
}
zones = filteredZones.List()
if len(zones) < 1 {
return errors.New("there are no valid zones to add to pv")
}
// Make sure the necessary fields exist
if pv.Spec.NodeAffinity == nil {
pv.Spec.NodeAffinity = new(v1.VolumeNodeAffinity)
}
if pv.Spec.NodeAffinity.Required == nil {
pv.Spec.NodeAffinity.Required = new(v1.NodeSelector)
}
if len(pv.Spec.NodeAffinity.Required.NodeSelectorTerms) == 0 {
pv.Spec.NodeAffinity.Required.NodeSelectorTerms = make([]v1.NodeSelectorTerm, 1)
}
topology := v1.NodeSelectorRequirement{
Key: topologyKey,
Operator: v1.NodeSelectorOpIn,
Values: zones,
}
// add the CSI topology to each term
for i := range pv.Spec.NodeAffinity.Required.NodeSelectorTerms {
pv.Spec.NodeAffinity.Required.NodeSelectorTerms[i].MatchExpressions = append(
pv.Spec.NodeAffinity.Required.NodeSelectorTerms[i].MatchExpressions,
topology,
)
}
return nil
}
// translateTopologyFromInTreeToCSI converts existing zone labels or in-tree topology to CSI topology.
// In-tree topology has precedence over zone labels. When both in-tree topology and zone labels exist
// for a particular CSI topology, in-tree topology will be used.
// This function will remove the Beta version Kubernetes topology label in case the node upgrade to a
// newer version where it does not have any Beta topology label anymore
func translateTopologyFromInTreeToCSI(pv *v1.PersistentVolume, csiTopologyKey string) error {
zoneLabel, regionLabel := getTopologyLabel(pv)
// If Zone kubernetes topology exist, replace it to use csiTopologyKey
zones := getTopologyValues(pv, zoneLabel)
if len(zones) > 0 {
replaceTopology(pv, zoneLabel, csiTopologyKey)
} else {
// if nothing is in the NodeAffinity, try to fetch the topology from PV labels
if label, ok := pv.Labels[zoneLabel]; ok {
zones = strings.Split(label, labelMultiZoneDelimiter)
if len(zones) > 0 {
addTopology(pv, csiTopologyKey, zones)
}
}
}
// if the in-tree PV has beta region label, replace it with GA label to ensure
// the scheduler is able to schedule it on new nodes with only GA kubernetes label
// No need to check it for zone label because it has already been replaced if exist
if regionLabel == v1.LabelFailureDomainBetaRegion {
regions := getTopologyValues(pv, regionLabel)
if len(regions) > 0 {
replaceTopology(pv, regionLabel, v1.LabelTopologyRegion)
}
}
return nil
}
// getTopologyLabel checks if the kubernetes topology label used in this
// PV is GA and return the zone/region label used.
// The version checking follows the following orders
// 1. Check NodeAffinity
// 1.1 Check if zoneGA exists, if yes return GA labels
// 1.2 Check if zoneBeta exists, if yes return Beta labels
// 2. Check PV labels
// 2.1 Check if zoneGA exists, if yes return GA labels
// 2.2 Check if zoneBeta exists, if yes return Beta labels
func getTopologyLabel(pv *v1.PersistentVolume) (zoneLabel string, regionLabel string) {
if zoneGA := TopologyKeyExist(v1.LabelTopologyZone, pv.Spec.NodeAffinity); zoneGA {
return v1.LabelTopologyZone, v1.LabelTopologyRegion
}
if zoneBeta := TopologyKeyExist(v1.LabelFailureDomainBetaZone, pv.Spec.NodeAffinity); zoneBeta {
return v1.LabelFailureDomainBetaZone, v1.LabelFailureDomainBetaRegion
}
if _, zoneGA := pv.Labels[v1.LabelTopologyZone]; zoneGA {
return v1.LabelTopologyZone, v1.LabelTopologyRegion
}
if _, zoneBeta := pv.Labels[v1.LabelFailureDomainBetaZone]; zoneBeta {
return v1.LabelFailureDomainBetaZone, v1.LabelFailureDomainBetaRegion
}
// No labels or NodeAffinity exist, default to GA version
return v1.LabelTopologyZone, v1.LabelTopologyRegion
}
// TopologyKeyExist checks if a certain key exists in a VolumeNodeAffinity
func TopologyKeyExist(key string, vna *v1.VolumeNodeAffinity) bool {
if vna == nil || vna.Required == nil || vna.Required.NodeSelectorTerms == nil || len(vna.Required.NodeSelectorTerms) == 0 {
return false
}
for _, nodeSelectorTerms := range vna.Required.NodeSelectorTerms {
nsrequirements := nodeSelectorTerms.MatchExpressions
for _, nodeSelectorRequirement := range nsrequirements {
if nodeSelectorRequirement.Key == key {
return true
}
}
}
return false
}
type regionParserFn func([]string) (string, error)
// translateTopologyFromCSIToInTree translate a CSI topology to
// Kubernetes topology and add topology labels to it. Note that this function
// will only work for plugin with a single topologyKey that translates to
// Kubernetes zone(and region if regionParser is passed in).
// If a plugin has more than one topologyKey, it will need to be processed
// separately by the plugin.
// If regionParser is nil, no region NodeAffinity will be added. If not nil,
// it'll be passed to regionTopologyHandler, which will add region topology NodeAffinity
// and labels for the given PV. It assumes the Zone NodeAffinity already exists.
// In short this function will,
// 1. Replace all CSI topology to Kubernetes Zone topology label
// 2. Process and generate region topology if a regionParser is passed
// 3. Add Kubernetes Topology labels(zone) if they do not exist
func translateTopologyFromCSIToInTree(pv *v1.PersistentVolume, csiTopologyKey string, regionParser regionParserFn) error {
zoneLabel, _ := getTopologyLabel(pv)
// 1. Replace all CSI topology to Kubernetes Zone label
err := replaceTopology(pv, csiTopologyKey, zoneLabel)
if err != nil {
return fmt.Errorf("Failed to replace CSI topology to Kubernetes topology, error: %v", err)
}
// 2. Take care of region topology if a regionParser is passed
if regionParser != nil {
// let's make less strict on this one. Even if there is an error in the region processing, just ignore it
err = regionTopologyHandler(pv, regionParser)
if err != nil {
return fmt.Errorf("Failed to handle region topology. error: %v", err)
}
}
// 3. Add labels about Kubernetes Topology
zoneVals := getTopologyValues(pv, zoneLabel)
if len(zoneVals) > 0 {
if pv.Labels == nil {
pv.Labels = make(map[string]string)
}
_, zoneOK := pv.Labels[zoneLabel]
if !zoneOK {
zoneValStr := strings.Join(zoneVals, labelMultiZoneDelimiter)
pv.Labels[zoneLabel] = zoneValStr
}
}
return nil
}
// translateAllowedTopologies translates allowed topologies within storage class or PV
// from legacy failure domain to given CSI topology key
func translateAllowedTopologies(terms []v1.TopologySelectorTerm, key string) ([]v1.TopologySelectorTerm, error) {
if terms == nil {
return nil, nil
}
newTopologies := []v1.TopologySelectorTerm{}
for _, term := range terms {
newTerm := v1.TopologySelectorTerm{}
for _, exp := range term.MatchLabelExpressions {
var newExp v1.TopologySelectorLabelRequirement
if exp.Key == v1.LabelFailureDomainBetaZone || exp.Key == v1.LabelTopologyZone {
newExp = v1.TopologySelectorLabelRequirement{
Key: key,
Values: exp.Values,
}
} else {
// Other topologies are passed through unchanged.
newExp = exp
}
newTerm.MatchLabelExpressions = append(newTerm.MatchLabelExpressions, newExp)
}
newTopologies = append(newTopologies, newTerm)
}
return newTopologies, nil
}
// regionTopologyHandler will process the PV and add region
// kubernetes topology label to its NodeAffinity and labels
// It assumes the Zone NodeAffinity already exists
// Each provider is responsible for providing their own regionParser
func regionTopologyHandler(pv *v1.PersistentVolume, regionParser regionParserFn) error {
// Make sure the necessary fields exist
if pv == nil || pv.Spec.NodeAffinity == nil || pv.Spec.NodeAffinity.Required == nil ||
pv.Spec.NodeAffinity.Required.NodeSelectorTerms == nil || len(pv.Spec.NodeAffinity.Required.NodeSelectorTerms) == 0 {
return nil
}
zoneLabel, regionLabel := getTopologyLabel(pv)
// process each term
for index, nodeSelectorTerm := range pv.Spec.NodeAffinity.Required.NodeSelectorTerms {
// In the first loop, see if regionLabel already exist
regionExist := false
var zoneVals []string
for _, nsRequirement := range nodeSelectorTerm.MatchExpressions {
if nsRequirement.Key == regionLabel {
regionExist = true
break
} else if nsRequirement.Key == zoneLabel {
zoneVals = append(zoneVals, nsRequirement.Values...)
}
}
if regionExist {
// Regionlabel already exist in this term, skip it
continue
}
// If no regionLabel found, generate region label from the zoneLabel we collect from this term
regionVal, err := regionParser(zoneVals)
if err != nil {
return err
}
// Add the regionVal to this term
pv.Spec.NodeAffinity.Required.NodeSelectorTerms[index].MatchExpressions =
append(pv.Spec.NodeAffinity.Required.NodeSelectorTerms[index].MatchExpressions, v1.NodeSelectorRequirement{
Key: regionLabel,
Operator: v1.NodeSelectorOpIn,
Values: []string{regionVal},
})
}
// Add region label
regionVals := getTopologyValues(pv, regionLabel)
if len(regionVals) == 1 {
// We should only have exactly 1 region value
if pv.Labels == nil {
pv.Labels = make(map[string]string)
}
_, regionOK := pv.Labels[regionLabel]
if !regionOK {
pv.Labels[regionLabel] = regionVals[0]
}
}
return nil
}

View File

@ -0,0 +1,185 @@
/*
Copyright 2019 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package plugins
import (
"fmt"
"strings"
v1 "k8s.io/api/core/v1"
storage "k8s.io/api/storage/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/klog/v2"
)
const (
// CinderDriverName is the name of the CSI driver for Cinder
CinderDriverName = "cinder.csi.openstack.org"
// CinderTopologyKey is the zonal topology key for Cinder CSI Driver
CinderTopologyKey = "topology.cinder.csi.openstack.org/zone"
// CinderInTreePluginName is the name of the intree plugin for Cinder
CinderInTreePluginName = "kubernetes.io/cinder"
)
var _ InTreePlugin = (*osCinderCSITranslator)(nil)
// osCinderCSITranslator handles translation of PV spec from In-tree Cinder to CSI Cinder and vice versa
type osCinderCSITranslator struct{}
// NewOpenStackCinderCSITranslator returns a new instance of osCinderCSITranslator
func NewOpenStackCinderCSITranslator() InTreePlugin {
return &osCinderCSITranslator{}
}
// TranslateInTreeStorageClassToCSI translates InTree Cinder storage class parameters to CSI storage class
func (t *osCinderCSITranslator) TranslateInTreeStorageClassToCSI(logger klog.Logger, sc *storage.StorageClass) (*storage.StorageClass, error) {
var (
params = map[string]string{}
)
for k, v := range sc.Parameters {
switch strings.ToLower(k) {
case fsTypeKey:
params[csiFsTypeKey] = v
default:
// All other parameters are supported by the CSI driver.
// This includes also "availability", therefore do not translate it to sc.AllowedTopologies
params[k] = v
}
}
if len(sc.AllowedTopologies) > 0 {
newTopologies, err := translateAllowedTopologies(sc.AllowedTopologies, CinderTopologyKey)
if err != nil {
return nil, fmt.Errorf("failed translating allowed topologies: %v", err)
}
sc.AllowedTopologies = newTopologies
}
sc.Parameters = params
return sc, nil
}
// TranslateInTreeInlineVolumeToCSI takes a Volume with Cinder set from in-tree
// and converts the Cinder source to a CSIPersistentVolumeSource
func (t *osCinderCSITranslator) TranslateInTreeInlineVolumeToCSI(logger klog.Logger, volume *v1.Volume, podNamespace string) (*v1.PersistentVolume, error) {
if volume == nil || volume.Cinder == nil {
return nil, fmt.Errorf("volume is nil or Cinder not defined on volume")
}
cinderSource := volume.Cinder
pv := &v1.PersistentVolume{
ObjectMeta: metav1.ObjectMeta{
// Must be unique per disk as it is used as the unique part of the
// staging path
Name: fmt.Sprintf("%s-%s", CinderDriverName, cinderSource.VolumeID),
},
Spec: v1.PersistentVolumeSpec{
PersistentVolumeSource: v1.PersistentVolumeSource{
CSI: &v1.CSIPersistentVolumeSource{
Driver: CinderDriverName,
VolumeHandle: cinderSource.VolumeID,
ReadOnly: cinderSource.ReadOnly,
FSType: cinderSource.FSType,
VolumeAttributes: map[string]string{},
},
},
AccessModes: []v1.PersistentVolumeAccessMode{v1.ReadWriteOnce},
},
}
return pv, nil
}
// TranslateInTreePVToCSI takes a PV with Cinder set from in-tree
// and converts the Cinder source to a CSIPersistentVolumeSource
func (t *osCinderCSITranslator) TranslateInTreePVToCSI(logger klog.Logger, pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.Cinder == nil {
return nil, fmt.Errorf("pv is nil or Cinder not defined on pv")
}
cinderSource := pv.Spec.Cinder
csiSource := &v1.CSIPersistentVolumeSource{
Driver: CinderDriverName,
VolumeHandle: cinderSource.VolumeID,
ReadOnly: cinderSource.ReadOnly,
FSType: cinderSource.FSType,
VolumeAttributes: map[string]string{},
}
if err := translateTopologyFromInTreeToCSI(pv, CinderTopologyKey); err != nil {
return nil, fmt.Errorf("failed to translate topology: %v", err)
}
pv.Spec.Cinder = nil
pv.Spec.CSI = csiSource
return pv, nil
}
// TranslateCSIPVToInTree takes a PV with CSIPersistentVolumeSource set and
// translates the Cinder CSI source to a Cinder In-tree source.
func (t *osCinderCSITranslator) TranslateCSIPVToInTree(pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.CSI == nil {
return nil, fmt.Errorf("pv is nil or CSI source not defined on pv")
}
csiSource := pv.Spec.CSI
cinderSource := &v1.CinderPersistentVolumeSource{
VolumeID: csiSource.VolumeHandle,
FSType: csiSource.FSType,
ReadOnly: csiSource.ReadOnly,
}
// translate CSI topology to In-tree topology for rollback compatibility.
// It is not possible to guess Cinder Region from the Zone, therefore leave it empty.
if err := translateTopologyFromCSIToInTree(pv, CinderTopologyKey, nil); err != nil {
return nil, fmt.Errorf("failed to translate topology. PV:%+v. Error:%v", *pv, err)
}
pv.Spec.CSI = nil
pv.Spec.Cinder = cinderSource
return pv, nil
}
// CanSupport tests whether the plugin supports a given persistent volume
// specification from the API. The spec pointer should be considered
// const.
func (t *osCinderCSITranslator) CanSupport(pv *v1.PersistentVolume) bool {
return pv != nil && pv.Spec.Cinder != nil
}
// CanSupportInline tests whether the plugin supports a given inline volume
// specification from the API. The spec pointer should be considered
// const.
func (t *osCinderCSITranslator) CanSupportInline(volume *v1.Volume) bool {
return volume != nil && volume.Cinder != nil
}
// GetInTreePluginName returns the name of the intree plugin driver
func (t *osCinderCSITranslator) GetInTreePluginName() string {
return CinderInTreePluginName
}
// GetCSIPluginName returns the name of the CSI plugin
func (t *osCinderCSITranslator) GetCSIPluginName() string {
return CinderDriverName
}
func (t *osCinderCSITranslator) RepairVolumeHandle(volumeHandle, nodeID string) (string, error) {
return volumeHandle, nil
}

View File

@ -0,0 +1,212 @@
/*
Copyright 2021 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package plugins
import (
"fmt"
"strings"
v1 "k8s.io/api/core/v1"
storagev1 "k8s.io/api/storage/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/klog/v2"
)
const (
PortworxVolumePluginName = "kubernetes.io/portworx-volume"
PortworxDriverName = "pxd.portworx.com"
OpenStorageAuthSecretNameKey = "openstorage.io/auth-secret-name"
OpenStorageAuthSecretNamespaceKey = "openstorage.io/auth-secret-namespace"
csiParameterPrefix = "csi.storage.k8s.io/"
prefixedProvisionerSecretNameKey = csiParameterPrefix + "provisioner-secret-name"
prefixedProvisionerSecretNamespaceKey = csiParameterPrefix + "provisioner-secret-namespace"
prefixedControllerPublishSecretNameKey = csiParameterPrefix + "controller-publish-secret-name"
prefixedControllerPublishSecretNamespaceKey = csiParameterPrefix + "controller-publish-secret-namespace"
prefixedNodeStageSecretNameKey = csiParameterPrefix + "node-stage-secret-name"
prefixedNodeStageSecretNamespaceKey = csiParameterPrefix + "node-stage-secret-namespace"
prefixedNodePublishSecretNameKey = csiParameterPrefix + "node-publish-secret-name"
prefixedNodePublishSecretNamespaceKey = csiParameterPrefix + "node-publish-secret-namespace"
prefixedControllerExpandSecretNameKey = csiParameterPrefix + "controller-expand-secret-name"
prefixedControllerExpandSecretNamespaceKey = csiParameterPrefix + "controller-expand-secret-namespace"
prefixedNodeExpandSecretNameKey = csiParameterPrefix + "node-expand-secret-name"
prefixedNodeExpandSecretNamespaceKey = csiParameterPrefix + "node-expand-secret-namespace"
)
var _ InTreePlugin = &portworxCSITranslator{}
type portworxCSITranslator struct{}
func NewPortworxCSITranslator() InTreePlugin {
return &portworxCSITranslator{}
}
// TranslateInTreeStorageClassToCSI takes in-tree storage class used by in-tree plugin
// and translates them to a storageclass consumable by CSI plugin
func (p portworxCSITranslator) TranslateInTreeStorageClassToCSI(logger klog.Logger, sc *storagev1.StorageClass) (*storagev1.StorageClass, error) {
if sc == nil {
return nil, fmt.Errorf("sc is nil")
}
var params = map[string]string{}
for k, v := range sc.Parameters {
switch strings.ToLower(k) {
case OpenStorageAuthSecretNameKey:
params[prefixedProvisionerSecretNameKey] = v
params[prefixedControllerPublishSecretNameKey] = v
params[prefixedNodePublishSecretNameKey] = v
params[prefixedNodeStageSecretNameKey] = v
params[prefixedControllerExpandSecretNameKey] = v
params[prefixedNodeExpandSecretNameKey] = v
case OpenStorageAuthSecretNamespaceKey:
params[prefixedProvisionerSecretNamespaceKey] = v
params[prefixedControllerPublishSecretNamespaceKey] = v
params[prefixedNodePublishSecretNamespaceKey] = v
params[prefixedNodeStageSecretNamespaceKey] = v
params[prefixedControllerExpandSecretNamespaceKey] = v
params[prefixedNodeExpandSecretNamespaceKey] = v
default:
// All other parameters can be copied as is
params[k] = v
}
}
if len(params) > 0 {
sc.Parameters = params
}
sc.Provisioner = PortworxDriverName
return sc, nil
}
// TranslateInTreeInlineVolumeToCSI takes a inline volume and will translate
// the in-tree inline volume source to a CSIPersistentVolumeSource
func (p portworxCSITranslator) TranslateInTreeInlineVolumeToCSI(logger klog.Logger, volume *v1.Volume, podNamespace string) (*v1.PersistentVolume, error) {
if volume == nil || volume.PortworxVolume == nil {
return nil, fmt.Errorf("volume is nil or PortworxVolume not defined on volume")
}
var am v1.PersistentVolumeAccessMode
if volume.PortworxVolume.ReadOnly {
am = v1.ReadOnlyMany
} else {
am = v1.ReadWriteOnce
}
pv := &v1.PersistentVolume{
ObjectMeta: metav1.ObjectMeta{
Name: fmt.Sprintf("%s-%s", PortworxDriverName, volume.PortworxVolume.VolumeID),
},
Spec: v1.PersistentVolumeSpec{
PersistentVolumeSource: v1.PersistentVolumeSource{
CSI: &v1.CSIPersistentVolumeSource{
Driver: PortworxDriverName,
VolumeHandle: volume.PortworxVolume.VolumeID,
FSType: volume.PortworxVolume.FSType,
VolumeAttributes: make(map[string]string),
},
},
AccessModes: []v1.PersistentVolumeAccessMode{am},
},
}
return pv, nil
}
// TranslateInTreePVToCSI takes a Portworx persistent volume and will translate
// the in-tree pv source to a CSI Source
func (p portworxCSITranslator) TranslateInTreePVToCSI(logger klog.Logger, pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.PortworxVolume == nil {
return nil, fmt.Errorf("pv is nil or PortworxVolume not defined on pv")
}
var secretRef *v1.SecretReference
if metav1.HasAnnotation(pv.ObjectMeta, OpenStorageAuthSecretNameKey) &&
metav1.HasAnnotation(pv.ObjectMeta, OpenStorageAuthSecretNamespaceKey) {
secretRef = &v1.SecretReference{
Name: pv.Annotations[OpenStorageAuthSecretNameKey],
Namespace: pv.Annotations[OpenStorageAuthSecretNamespaceKey],
}
}
csiSource := &v1.CSIPersistentVolumeSource{
Driver: PortworxDriverName,
VolumeHandle: pv.Spec.PortworxVolume.VolumeID,
FSType: pv.Spec.PortworxVolume.FSType,
VolumeAttributes: make(map[string]string), // copy access mode
ControllerPublishSecretRef: secretRef,
NodeStageSecretRef: secretRef,
NodePublishSecretRef: secretRef,
ControllerExpandSecretRef: secretRef,
NodeExpandSecretRef: secretRef,
}
pv.Spec.PortworxVolume = nil
pv.Spec.CSI = csiSource
return pv, nil
}
// TranslateCSIPVToInTree takes a PV with a CSI PersistentVolume Source and will translate
// it to a in-tree Persistent Volume Source for the in-tree volume
func (p portworxCSITranslator) TranslateCSIPVToInTree(pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.CSI == nil {
return nil, fmt.Errorf("pv is nil or CSI source not defined on pv")
}
csiSource := pv.Spec.CSI
portworxSource := &v1.PortworxVolumeSource{
VolumeID: csiSource.VolumeHandle,
FSType: csiSource.FSType,
ReadOnly: csiSource.ReadOnly,
}
pv.Spec.CSI = nil
pv.Spec.PortworxVolume = portworxSource
return pv, nil
}
// CanSupport tests whether the plugin supports a given persistent volume
// specification from the API.
func (p portworxCSITranslator) CanSupport(pv *v1.PersistentVolume) bool {
return pv != nil && pv.Spec.PortworxVolume != nil
}
// CanSupportInline tests whether the plugin supports a given inline volume
// specification from the API.
func (p portworxCSITranslator) CanSupportInline(volume *v1.Volume) bool {
return volume != nil && volume.PortworxVolume != nil
}
// GetInTreePluginName returns the in-tree plugin name this migrates
func (p portworxCSITranslator) GetInTreePluginName() string {
return PortworxVolumePluginName
}
// GetCSIPluginName returns the name of the CSI plugin that supersedes the in-tree plugin
func (p portworxCSITranslator) GetCSIPluginName() string {
return PortworxDriverName
}
// RepairVolumeHandle generates a correct volume handle based on node ID information.
func (p portworxCSITranslator) RepairVolumeHandle(volumeHandle, nodeID string) (string, error) {
return volumeHandle, nil
}

View File

@ -0,0 +1,302 @@
/*
Copyright 2020 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package plugins
import (
"fmt"
"strings"
v1 "k8s.io/api/core/v1"
storage "k8s.io/api/storage/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/klog/v2"
)
const (
// VSphereDriverName is the name of the CSI driver for vSphere Volume
VSphereDriverName = "csi.vsphere.vmware.com"
// VSphereInTreePluginName is the name of the in-tree plugin for vSphere Volume
VSphereInTreePluginName = "kubernetes.io/vsphere-volume"
// vSphereCSITopologyZoneKey is the zonal topology key for vSphere CSI Driver
vSphereCSITopologyZoneKey = "topology.csi.vmware.com/zone"
// vSphereCSITopologyRegionKey is the region topology key for vSphere CSI Driver
vSphereCSITopologyRegionKey = "topology.csi.vmware.com/region"
// paramStoragePolicyName used to supply SPBM Policy name for Volume provisioning
paramStoragePolicyName = "storagepolicyname"
// This param is used to tell Driver to return volumePath and not VolumeID
// in-tree vSphere plugin does not understand volume id, it uses volumePath
paramcsiMigration = "csimigration"
// This param is used to supply datastore name for Volume provisioning
paramDatastore = "datastore-migrationparam"
// This param supplies disk foramt (thin, thick, zeoredthick) for Volume provisioning
paramDiskFormat = "diskformat-migrationparam"
// vSAN Policy Parameters
paramHostFailuresToTolerate = "hostfailurestotolerate-migrationparam"
paramForceProvisioning = "forceprovisioning-migrationparam"
paramCacheReservation = "cachereservation-migrationparam"
paramDiskstripes = "diskstripes-migrationparam"
paramObjectspacereservation = "objectspacereservation-migrationparam"
paramIopslimit = "iopslimit-migrationparam"
// AttributeInitialVolumeFilepath represents the path of volume where volume is created
AttributeInitialVolumeFilepath = "initialvolumefilepath"
)
var _ InTreePlugin = &vSphereCSITranslator{}
// vSphereCSITranslator handles translation of PV spec from In-tree vSphere Volume to vSphere CSI
type vSphereCSITranslator struct{}
// NewvSphereCSITranslator returns a new instance of vSphereCSITranslator
func NewvSphereCSITranslator() InTreePlugin {
return &vSphereCSITranslator{}
}
// TranslateInTreeStorageClassToCSI translates InTree vSphere storage class parameters to CSI storage class
func (t *vSphereCSITranslator) TranslateInTreeStorageClassToCSI(logger klog.Logger, sc *storage.StorageClass) (*storage.StorageClass, error) {
if sc == nil {
return nil, fmt.Errorf("sc is nil")
}
var params = map[string]string{}
for k, v := range sc.Parameters {
switch strings.ToLower(k) {
case fsTypeKey:
params[csiFsTypeKey] = v
case paramStoragePolicyName:
params[paramStoragePolicyName] = v
case "datastore":
params[paramDatastore] = v
case "diskformat":
params[paramDiskFormat] = v
case "hostfailurestotolerate":
params[paramHostFailuresToTolerate] = v
case "forceprovisioning":
params[paramForceProvisioning] = v
case "cachereservation":
params[paramCacheReservation] = v
case "diskstripes":
params[paramDiskstripes] = v
case "objectspacereservation":
params[paramObjectspacereservation] = v
case "iopslimit":
params[paramIopslimit] = v
default:
logger.V(2).Info("StorageClass parameter is not supported", "name", k, "value", v)
}
}
// This helps vSphere CSI driver to identify in-tree provisioner request vs CSI provisioner request
// When this is true, Driver returns initialvolumefilepath in the VolumeContext, which is
// used in TranslateCSIPVToInTree
params[paramcsiMigration] = "true"
// translate AllowedTopologies to vSphere CSI Driver topology
if len(sc.AllowedTopologies) > 0 {
newTopologies, err := translateAllowedTopologies(sc.AllowedTopologies, vSphereCSITopologyZoneKey)
if err != nil {
return nil, fmt.Errorf("failed translating allowed topologies: %v", err)
}
sc.AllowedTopologies = newTopologies
}
sc.Parameters = params
return sc, nil
}
// TranslateInTreeInlineVolumeToCSI takes a Volume with VsphereVolume set from in-tree
// and converts the VsphereVolume source to a CSIPersistentVolumeSource
func (t *vSphereCSITranslator) TranslateInTreeInlineVolumeToCSI(logger klog.Logger, volume *v1.Volume, podNamespace string) (*v1.PersistentVolume, error) {
if volume == nil || volume.VsphereVolume == nil {
return nil, fmt.Errorf("volume is nil or VsphereVolume not defined on volume")
}
pv := &v1.PersistentVolume{
ObjectMeta: metav1.ObjectMeta{
// Must be unique per disk as it is used as the unique part of the
// staging path
Name: fmt.Sprintf("%s-%s", VSphereDriverName, volume.VsphereVolume.VolumePath),
},
Spec: v1.PersistentVolumeSpec{
PersistentVolumeSource: v1.PersistentVolumeSource{
CSI: &v1.CSIPersistentVolumeSource{
Driver: VSphereDriverName,
VolumeHandle: volume.VsphereVolume.VolumePath,
FSType: volume.VsphereVolume.FSType,
VolumeAttributes: make(map[string]string),
},
},
AccessModes: []v1.PersistentVolumeAccessMode{v1.ReadWriteOnce},
},
}
if volume.VsphereVolume.StoragePolicyName != "" {
pv.Spec.CSI.VolumeAttributes[paramStoragePolicyName] = pv.Spec.VsphereVolume.StoragePolicyName
}
return pv, nil
}
// TranslateInTreePVToCSI takes a PV with VsphereVolume set from in-tree
// and converts the VsphereVolume source to a CSIPersistentVolumeSource
func (t *vSphereCSITranslator) TranslateInTreePVToCSI(logger klog.Logger, pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.VsphereVolume == nil {
return nil, fmt.Errorf("pv is nil or VsphereVolume not defined on pv")
}
csiSource := &v1.CSIPersistentVolumeSource{
Driver: VSphereDriverName,
VolumeHandle: pv.Spec.VsphereVolume.VolumePath,
FSType: pv.Spec.VsphereVolume.FSType,
VolumeAttributes: make(map[string]string),
}
if pv.Spec.VsphereVolume.StoragePolicyName != "" {
csiSource.VolumeAttributes[paramStoragePolicyName] = pv.Spec.VsphereVolume.StoragePolicyName
}
// translate in-tree topology to CSI topology for migration
if err := translateTopologyFromInTreevSphereToCSI(pv, vSphereCSITopologyZoneKey, vSphereCSITopologyRegionKey); err != nil {
return nil, fmt.Errorf("failed to translate topology: %v", err)
}
pv.Spec.VsphereVolume = nil
pv.Spec.CSI = csiSource
return pv, nil
}
// TranslateCSIPVToInTree takes a PV with CSIPersistentVolumeSource set and
// translates the vSphere CSI source to a vSphereVolume source.
func (t *vSphereCSITranslator) TranslateCSIPVToInTree(pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.CSI == nil {
return nil, fmt.Errorf("pv is nil or CSI source not defined on pv")
}
csiSource := pv.Spec.CSI
vsphereVirtualDiskVolumeSource := &v1.VsphereVirtualDiskVolumeSource{
FSType: csiSource.FSType,
}
volumeFilePath, ok := csiSource.VolumeAttributes[AttributeInitialVolumeFilepath]
if ok {
vsphereVirtualDiskVolumeSource.VolumePath = volumeFilePath
}
// translate CSI topology to In-tree topology for rollback compatibility.
if err := translateTopologyFromCSIToInTreevSphere(pv, vSphereCSITopologyZoneKey, vSphereCSITopologyRegionKey); err != nil {
return nil, fmt.Errorf("failed to translate topology. PV:%+v. Error:%v", *pv, err)
}
pv.Spec.CSI = nil
pv.Spec.VsphereVolume = vsphereVirtualDiskVolumeSource
return pv, nil
}
// CanSupport tests whether the plugin supports a given persistent volume
// specification from the API.
func (t *vSphereCSITranslator) CanSupport(pv *v1.PersistentVolume) bool {
return pv != nil && pv.Spec.VsphereVolume != nil
}
// CanSupportInline tests whether the plugin supports a given inline volume
// specification from the API.
func (t *vSphereCSITranslator) CanSupportInline(volume *v1.Volume) bool {
return volume != nil && volume.VsphereVolume != nil
}
// GetInTreePluginName returns the name of the in-tree plugin driver
func (t *vSphereCSITranslator) GetInTreePluginName() string {
return VSphereInTreePluginName
}
// GetCSIPluginName returns the name of the CSI plugin
func (t *vSphereCSITranslator) GetCSIPluginName() string {
return VSphereDriverName
}
// RepairVolumeHandle is needed in VerifyVolumesAttached on the external attacher when we need to do strict volume
// handle matching to check VolumeAttachment attached status.
// vSphere volume does not need patch to help verify whether that volume is attached.
func (t *vSphereCSITranslator) RepairVolumeHandle(volumeHandle, nodeID string) (string, error) {
return volumeHandle, nil
}
// translateTopologyFromInTreevSphereToCSI converts existing zone labels or in-tree vsphere topology to
// vSphere CSI topology.
func translateTopologyFromInTreevSphereToCSI(pv *v1.PersistentVolume, csiTopologyKeyZone string, csiTopologyKeyRegion string) error {
zoneLabel, regionLabel := getTopologyLabel(pv)
// If Zone kubernetes topology exist, replace it to use csiTopologyKeyZone
zones := getTopologyValues(pv, zoneLabel)
if len(zones) > 0 {
replaceTopology(pv, zoneLabel, csiTopologyKeyZone)
} else {
// if nothing is in the NodeAffinity, try to fetch the topology from PV labels
if label, ok := pv.Labels[zoneLabel]; ok {
if len(label) > 0 {
addTopology(pv, csiTopologyKeyZone, []string{label})
}
}
}
// If region kubernetes topology exist, replace it to use csiTopologyKeyRegion
regions := getTopologyValues(pv, regionLabel)
if len(regions) > 0 {
replaceTopology(pv, regionLabel, csiTopologyKeyRegion)
} else {
// if nothing is in the NodeAffinity, try to fetch the topology from PV labels
if label, ok := pv.Labels[regionLabel]; ok {
if len(label) > 0 {
addTopology(pv, csiTopologyKeyRegion, []string{label})
}
}
}
return nil
}
// translateTopologyFromCSIToInTreevSphere converts CSI zone/region affinity rules to in-tree vSphere zone/region labels
func translateTopologyFromCSIToInTreevSphere(pv *v1.PersistentVolume,
csiTopologyKeyZone string, csiTopologyKeyRegion string) error {
zoneLabel, regionLabel := getTopologyLabel(pv)
// Replace all CSI topology to Kubernetes Zone label
err := replaceTopology(pv, csiTopologyKeyZone, zoneLabel)
if err != nil {
return fmt.Errorf("failed to replace CSI topology to Kubernetes topology, error: %v", err)
}
// Replace all CSI topology to Kubernetes Region label
err = replaceTopology(pv, csiTopologyKeyRegion, regionLabel)
if err != nil {
return fmt.Errorf("failed to replace CSI topology to Kubernetes topology, error: %v", err)
}
zoneVals := getTopologyValues(pv, zoneLabel)
if len(zoneVals) > 0 {
if pv.Labels == nil {
pv.Labels = make(map[string]string)
}
_, zoneOK := pv.Labels[zoneLabel]
if !zoneOK {
pv.Labels[zoneLabel] = zoneVals[0]
}
}
regionVals := getTopologyValues(pv, regionLabel)
if len(regionVals) > 0 {
if pv.Labels == nil {
pv.Labels = make(map[string]string)
}
_, regionOK := pv.Labels[regionLabel]
if !regionOK {
pv.Labels[regionLabel] = regionVals[0]
}
}
return nil
}

212
e2e/vendor/k8s.io/csi-translation-lib/translate.go generated vendored Normal file
View File

@ -0,0 +1,212 @@
/*
Copyright 2019 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package csitranslation
import (
"errors"
"fmt"
v1 "k8s.io/api/core/v1"
storage "k8s.io/api/storage/v1"
"k8s.io/csi-translation-lib/plugins"
"k8s.io/klog/v2"
)
var (
inTreePlugins = map[string]plugins.InTreePlugin{
plugins.GCEPDDriverName: plugins.NewGCEPersistentDiskCSITranslator(),
plugins.AWSEBSDriverName: plugins.NewAWSElasticBlockStoreCSITranslator(),
plugins.CinderDriverName: plugins.NewOpenStackCinderCSITranslator(),
plugins.AzureDiskDriverName: plugins.NewAzureDiskCSITranslator(),
plugins.AzureFileDriverName: plugins.NewAzureFileCSITranslator(),
plugins.VSphereDriverName: plugins.NewvSphereCSITranslator(),
plugins.PortworxDriverName: plugins.NewPortworxCSITranslator(),
}
)
// CSITranslator translates in-tree storage API objects to their equivalent CSI
// API objects. It also provides many helper functions to determine whether
// translation logic exists and the mappings between "in-tree plugin <-> csi driver"
type CSITranslator struct{}
// New creates a new CSITranslator which does real translation
// for "in-tree plugins <-> csi drivers"
func New() CSITranslator {
return CSITranslator{}
}
// TranslateInTreeStorageClassToCSI takes in-tree Storage Class
// and translates it to a set of parameters consumable by CSI plugin
func (CSITranslator) TranslateInTreeStorageClassToCSI(logger klog.Logger, inTreePluginName string, sc *storage.StorageClass) (*storage.StorageClass, error) {
newSC := sc.DeepCopy()
for _, curPlugin := range inTreePlugins {
if inTreePluginName == curPlugin.GetInTreePluginName() {
return curPlugin.TranslateInTreeStorageClassToCSI(logger, newSC)
}
}
return nil, fmt.Errorf("could not find in-tree storage class parameter translation logic for %#v", inTreePluginName)
}
// TranslateInTreeInlineVolumeToCSI takes a inline volume and will translate
// the in-tree volume source to a CSIPersistentVolumeSource (wrapped in a PV)
// if the translation logic has been implemented.
func (CSITranslator) TranslateInTreeInlineVolumeToCSI(logger klog.Logger, volume *v1.Volume, podNamespace string) (*v1.PersistentVolume, error) {
if volume == nil {
return nil, fmt.Errorf("persistent volume was nil")
}
for _, curPlugin := range inTreePlugins {
if curPlugin.CanSupportInline(volume) {
pv, err := curPlugin.TranslateInTreeInlineVolumeToCSI(logger, volume, podNamespace)
if err != nil {
return nil, err
}
// Inline volumes only support PersistentVolumeFilesystem (and not block).
// If VolumeMode has not been set explicitly by plugin-specific
// translator, set it to Filesystem here.
// This is only necessary for inline volumes as the default PV
// initialization that populates VolumeMode does not apply to inline volumes.
if pv.Spec.VolumeMode == nil {
volumeMode := v1.PersistentVolumeFilesystem
pv.Spec.VolumeMode = &volumeMode
}
return pv, nil
}
}
return nil, fmt.Errorf("could not find in-tree plugin translation logic for %#v", volume.Name)
}
// TranslateInTreePVToCSI takes a persistent volume and will translate
// the in-tree source to a CSI Source if the translation logic
// has been implemented. The input persistent volume will not
// be modified
func (CSITranslator) TranslateInTreePVToCSI(logger klog.Logger, pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil {
return nil, errors.New("persistent volume was nil")
}
copiedPV := pv.DeepCopy()
for _, curPlugin := range inTreePlugins {
if curPlugin.CanSupport(copiedPV) {
return curPlugin.TranslateInTreePVToCSI(logger, copiedPV)
}
}
return nil, fmt.Errorf("could not find in-tree plugin translation logic for %#v", copiedPV.Name)
}
// TranslateCSIPVToInTree takes a PV with a CSI PersistentVolume Source and will translate
// it to a in-tree Persistent Volume Source for the specific in-tree volume specified
// by the `Driver` field in the CSI Source. The input PV object will not be modified.
func (CSITranslator) TranslateCSIPVToInTree(pv *v1.PersistentVolume) (*v1.PersistentVolume, error) {
if pv == nil || pv.Spec.CSI == nil {
return nil, errors.New("CSI persistent volume was nil")
}
copiedPV := pv.DeepCopy()
for driverName, curPlugin := range inTreePlugins {
if copiedPV.Spec.CSI.Driver == driverName {
return curPlugin.TranslateCSIPVToInTree(copiedPV)
}
}
return nil, fmt.Errorf("could not find in-tree plugin translation logic for %s", copiedPV.Spec.CSI.Driver)
}
// IsMigratableIntreePluginByName tests whether there is migration logic for the in-tree plugin
// whose name matches the given name
func (CSITranslator) IsMigratableIntreePluginByName(inTreePluginName string) bool {
for _, curPlugin := range inTreePlugins {
if curPlugin.GetInTreePluginName() == inTreePluginName {
return true
}
}
return false
}
// IsMigratedCSIDriverByName tests whether there exists an in-tree plugin with logic
// to migrate to the CSI driver with given name
func (CSITranslator) IsMigratedCSIDriverByName(csiPluginName string) bool {
if _, ok := inTreePlugins[csiPluginName]; ok {
return true
}
return false
}
// GetInTreePluginNameFromSpec returns the plugin name
func (CSITranslator) GetInTreePluginNameFromSpec(pv *v1.PersistentVolume, vol *v1.Volume) (string, error) {
if pv != nil {
for _, curPlugin := range inTreePlugins {
if curPlugin.CanSupport(pv) {
return curPlugin.GetInTreePluginName(), nil
}
}
return "", fmt.Errorf("could not find in-tree plugin name from persistent volume %s", pv.Name)
} else if vol != nil {
for _, curPlugin := range inTreePlugins {
if curPlugin.CanSupportInline(vol) {
return curPlugin.GetInTreePluginName(), nil
}
}
return "", fmt.Errorf("could not find in-tree plugin name from volume %s", vol.Name)
} else {
return "", errors.New("both persistent volume and volume are nil")
}
}
// GetCSINameFromInTreeName returns the name of a CSI driver that supersedes the
// in-tree plugin with the given name
func (CSITranslator) GetCSINameFromInTreeName(pluginName string) (string, error) {
for csiDriverName, curPlugin := range inTreePlugins {
if curPlugin.GetInTreePluginName() == pluginName {
return csiDriverName, nil
}
}
return "", fmt.Errorf("could not find CSI Driver name for plugin %s", pluginName)
}
// GetInTreeNameFromCSIName returns the name of the in-tree plugin superseded by
// a CSI driver with the given name
func (CSITranslator) GetInTreeNameFromCSIName(pluginName string) (string, error) {
if plugin, ok := inTreePlugins[pluginName]; ok {
return plugin.GetInTreePluginName(), nil
}
return "", fmt.Errorf("could not find In-Tree driver name for CSI plugin %s", pluginName)
}
// IsPVMigratable tests whether there is migration logic for the given Persistent Volume
func (CSITranslator) IsPVMigratable(pv *v1.PersistentVolume) bool {
for _, curPlugin := range inTreePlugins {
if curPlugin.CanSupport(pv) {
return true
}
}
return false
}
// IsInlineMigratable tests whether there is Migration logic for the given Inline Volume
func (CSITranslator) IsInlineMigratable(vol *v1.Volume) bool {
for _, curPlugin := range inTreePlugins {
if curPlugin.CanSupportInline(vol) {
return true
}
}
return false
}
// RepairVolumeHandle generates a correct volume handle based on node ID information.
func (CSITranslator) RepairVolumeHandle(driverName, volumeHandle, nodeID string) (string, error) {
if plugin, ok := inTreePlugins[driverName]; ok {
return plugin.RepairVolumeHandle(volumeHandle, nodeID)
}
return "", fmt.Errorf("could not find In-Tree driver name for CSI plugin %s", driverName)
}