mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-06-13 02:33:34 +00:00
vendor update for E2E framework
Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
This commit is contained in:
308
vendor/golang.org/x/crypto/internal/chacha20/asm_arm64.s
generated
vendored
Normal file
308
vendor/golang.org/x/crypto/internal/chacha20/asm_arm64.s
generated
vendored
Normal file
@ -0,0 +1,308 @@
|
||||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.11
|
||||
// +build !gccgo,!appengine
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
#define NUM_ROUNDS 10
|
||||
|
||||
// func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
|
||||
TEXT ·xorKeyStreamVX(SB), NOSPLIT, $0
|
||||
MOVD dst+0(FP), R1
|
||||
MOVD src+24(FP), R2
|
||||
MOVD src_len+32(FP), R3
|
||||
MOVD key+48(FP), R4
|
||||
MOVD nonce+56(FP), R6
|
||||
MOVD counter+64(FP), R7
|
||||
|
||||
MOVD $·constants(SB), R10
|
||||
MOVD $·incRotMatrix(SB), R11
|
||||
|
||||
MOVW (R7), R20
|
||||
|
||||
AND $~255, R3, R13
|
||||
ADD R2, R13, R12 // R12 for block end
|
||||
AND $255, R3, R13
|
||||
loop:
|
||||
MOVD $NUM_ROUNDS, R21
|
||||
VLD1 (R11), [V30.S4, V31.S4]
|
||||
|
||||
// load contants
|
||||
// VLD4R (R10), [V0.S4, V1.S4, V2.S4, V3.S4]
|
||||
WORD $0x4D60E940
|
||||
|
||||
// load keys
|
||||
// VLD4R 16(R4), [V4.S4, V5.S4, V6.S4, V7.S4]
|
||||
WORD $0x4DFFE884
|
||||
// VLD4R 16(R4), [V8.S4, V9.S4, V10.S4, V11.S4]
|
||||
WORD $0x4DFFE888
|
||||
SUB $32, R4
|
||||
|
||||
// load counter + nonce
|
||||
// VLD1R (R7), [V12.S4]
|
||||
WORD $0x4D40C8EC
|
||||
|
||||
// VLD3R (R6), [V13.S4, V14.S4, V15.S4]
|
||||
WORD $0x4D40E8CD
|
||||
|
||||
// update counter
|
||||
VADD V30.S4, V12.S4, V12.S4
|
||||
|
||||
chacha:
|
||||
// V0..V3 += V4..V7
|
||||
// V12..V15 <<<= ((V12..V15 XOR V0..V3), 16)
|
||||
VADD V0.S4, V4.S4, V0.S4
|
||||
VADD V1.S4, V5.S4, V1.S4
|
||||
VADD V2.S4, V6.S4, V2.S4
|
||||
VADD V3.S4, V7.S4, V3.S4
|
||||
VEOR V12.B16, V0.B16, V12.B16
|
||||
VEOR V13.B16, V1.B16, V13.B16
|
||||
VEOR V14.B16, V2.B16, V14.B16
|
||||
VEOR V15.B16, V3.B16, V15.B16
|
||||
VREV32 V12.H8, V12.H8
|
||||
VREV32 V13.H8, V13.H8
|
||||
VREV32 V14.H8, V14.H8
|
||||
VREV32 V15.H8, V15.H8
|
||||
// V8..V11 += V12..V15
|
||||
// V4..V7 <<<= ((V4..V7 XOR V8..V11), 12)
|
||||
VADD V8.S4, V12.S4, V8.S4
|
||||
VADD V9.S4, V13.S4, V9.S4
|
||||
VADD V10.S4, V14.S4, V10.S4
|
||||
VADD V11.S4, V15.S4, V11.S4
|
||||
VEOR V8.B16, V4.B16, V16.B16
|
||||
VEOR V9.B16, V5.B16, V17.B16
|
||||
VEOR V10.B16, V6.B16, V18.B16
|
||||
VEOR V11.B16, V7.B16, V19.B16
|
||||
VSHL $12, V16.S4, V4.S4
|
||||
VSHL $12, V17.S4, V5.S4
|
||||
VSHL $12, V18.S4, V6.S4
|
||||
VSHL $12, V19.S4, V7.S4
|
||||
VSRI $20, V16.S4, V4.S4
|
||||
VSRI $20, V17.S4, V5.S4
|
||||
VSRI $20, V18.S4, V6.S4
|
||||
VSRI $20, V19.S4, V7.S4
|
||||
|
||||
// V0..V3 += V4..V7
|
||||
// V12..V15 <<<= ((V12..V15 XOR V0..V3), 8)
|
||||
VADD V0.S4, V4.S4, V0.S4
|
||||
VADD V1.S4, V5.S4, V1.S4
|
||||
VADD V2.S4, V6.S4, V2.S4
|
||||
VADD V3.S4, V7.S4, V3.S4
|
||||
VEOR V12.B16, V0.B16, V12.B16
|
||||
VEOR V13.B16, V1.B16, V13.B16
|
||||
VEOR V14.B16, V2.B16, V14.B16
|
||||
VEOR V15.B16, V3.B16, V15.B16
|
||||
VTBL V31.B16, [V12.B16], V12.B16
|
||||
VTBL V31.B16, [V13.B16], V13.B16
|
||||
VTBL V31.B16, [V14.B16], V14.B16
|
||||
VTBL V31.B16, [V15.B16], V15.B16
|
||||
|
||||
// V8..V11 += V12..V15
|
||||
// V4..V7 <<<= ((V4..V7 XOR V8..V11), 7)
|
||||
VADD V12.S4, V8.S4, V8.S4
|
||||
VADD V13.S4, V9.S4, V9.S4
|
||||
VADD V14.S4, V10.S4, V10.S4
|
||||
VADD V15.S4, V11.S4, V11.S4
|
||||
VEOR V8.B16, V4.B16, V16.B16
|
||||
VEOR V9.B16, V5.B16, V17.B16
|
||||
VEOR V10.B16, V6.B16, V18.B16
|
||||
VEOR V11.B16, V7.B16, V19.B16
|
||||
VSHL $7, V16.S4, V4.S4
|
||||
VSHL $7, V17.S4, V5.S4
|
||||
VSHL $7, V18.S4, V6.S4
|
||||
VSHL $7, V19.S4, V7.S4
|
||||
VSRI $25, V16.S4, V4.S4
|
||||
VSRI $25, V17.S4, V5.S4
|
||||
VSRI $25, V18.S4, V6.S4
|
||||
VSRI $25, V19.S4, V7.S4
|
||||
|
||||
// V0..V3 += V5..V7, V4
|
||||
// V15,V12-V14 <<<= ((V15,V12-V14 XOR V0..V3), 16)
|
||||
VADD V0.S4, V5.S4, V0.S4
|
||||
VADD V1.S4, V6.S4, V1.S4
|
||||
VADD V2.S4, V7.S4, V2.S4
|
||||
VADD V3.S4, V4.S4, V3.S4
|
||||
VEOR V15.B16, V0.B16, V15.B16
|
||||
VEOR V12.B16, V1.B16, V12.B16
|
||||
VEOR V13.B16, V2.B16, V13.B16
|
||||
VEOR V14.B16, V3.B16, V14.B16
|
||||
VREV32 V12.H8, V12.H8
|
||||
VREV32 V13.H8, V13.H8
|
||||
VREV32 V14.H8, V14.H8
|
||||
VREV32 V15.H8, V15.H8
|
||||
|
||||
// V10 += V15; V5 <<<= ((V10 XOR V5), 12)
|
||||
// ...
|
||||
VADD V15.S4, V10.S4, V10.S4
|
||||
VADD V12.S4, V11.S4, V11.S4
|
||||
VADD V13.S4, V8.S4, V8.S4
|
||||
VADD V14.S4, V9.S4, V9.S4
|
||||
VEOR V10.B16, V5.B16, V16.B16
|
||||
VEOR V11.B16, V6.B16, V17.B16
|
||||
VEOR V8.B16, V7.B16, V18.B16
|
||||
VEOR V9.B16, V4.B16, V19.B16
|
||||
VSHL $12, V16.S4, V5.S4
|
||||
VSHL $12, V17.S4, V6.S4
|
||||
VSHL $12, V18.S4, V7.S4
|
||||
VSHL $12, V19.S4, V4.S4
|
||||
VSRI $20, V16.S4, V5.S4
|
||||
VSRI $20, V17.S4, V6.S4
|
||||
VSRI $20, V18.S4, V7.S4
|
||||
VSRI $20, V19.S4, V4.S4
|
||||
|
||||
// V0 += V5; V15 <<<= ((V0 XOR V15), 8)
|
||||
// ...
|
||||
VADD V5.S4, V0.S4, V0.S4
|
||||
VADD V6.S4, V1.S4, V1.S4
|
||||
VADD V7.S4, V2.S4, V2.S4
|
||||
VADD V4.S4, V3.S4, V3.S4
|
||||
VEOR V0.B16, V15.B16, V15.B16
|
||||
VEOR V1.B16, V12.B16, V12.B16
|
||||
VEOR V2.B16, V13.B16, V13.B16
|
||||
VEOR V3.B16, V14.B16, V14.B16
|
||||
VTBL V31.B16, [V12.B16], V12.B16
|
||||
VTBL V31.B16, [V13.B16], V13.B16
|
||||
VTBL V31.B16, [V14.B16], V14.B16
|
||||
VTBL V31.B16, [V15.B16], V15.B16
|
||||
|
||||
// V10 += V15; V5 <<<= ((V10 XOR V5), 7)
|
||||
// ...
|
||||
VADD V15.S4, V10.S4, V10.S4
|
||||
VADD V12.S4, V11.S4, V11.S4
|
||||
VADD V13.S4, V8.S4, V8.S4
|
||||
VADD V14.S4, V9.S4, V9.S4
|
||||
VEOR V10.B16, V5.B16, V16.B16
|
||||
VEOR V11.B16, V6.B16, V17.B16
|
||||
VEOR V8.B16, V7.B16, V18.B16
|
||||
VEOR V9.B16, V4.B16, V19.B16
|
||||
VSHL $7, V16.S4, V5.S4
|
||||
VSHL $7, V17.S4, V6.S4
|
||||
VSHL $7, V18.S4, V7.S4
|
||||
VSHL $7, V19.S4, V4.S4
|
||||
VSRI $25, V16.S4, V5.S4
|
||||
VSRI $25, V17.S4, V6.S4
|
||||
VSRI $25, V18.S4, V7.S4
|
||||
VSRI $25, V19.S4, V4.S4
|
||||
|
||||
SUB $1, R21
|
||||
CBNZ R21, chacha
|
||||
|
||||
// VLD4R (R10), [V16.S4, V17.S4, V18.S4, V19.S4]
|
||||
WORD $0x4D60E950
|
||||
|
||||
// VLD4R 16(R4), [V20.S4, V21.S4, V22.S4, V23.S4]
|
||||
WORD $0x4DFFE894
|
||||
VADD V30.S4, V12.S4, V12.S4
|
||||
VADD V16.S4, V0.S4, V0.S4
|
||||
VADD V17.S4, V1.S4, V1.S4
|
||||
VADD V18.S4, V2.S4, V2.S4
|
||||
VADD V19.S4, V3.S4, V3.S4
|
||||
// VLD4R 16(R4), [V24.S4, V25.S4, V26.S4, V27.S4]
|
||||
WORD $0x4DFFE898
|
||||
// restore R4
|
||||
SUB $32, R4
|
||||
|
||||
// load counter + nonce
|
||||
// VLD1R (R7), [V28.S4]
|
||||
WORD $0x4D40C8FC
|
||||
// VLD3R (R6), [V29.S4, V30.S4, V31.S4]
|
||||
WORD $0x4D40E8DD
|
||||
|
||||
VADD V20.S4, V4.S4, V4.S4
|
||||
VADD V21.S4, V5.S4, V5.S4
|
||||
VADD V22.S4, V6.S4, V6.S4
|
||||
VADD V23.S4, V7.S4, V7.S4
|
||||
VADD V24.S4, V8.S4, V8.S4
|
||||
VADD V25.S4, V9.S4, V9.S4
|
||||
VADD V26.S4, V10.S4, V10.S4
|
||||
VADD V27.S4, V11.S4, V11.S4
|
||||
VADD V28.S4, V12.S4, V12.S4
|
||||
VADD V29.S4, V13.S4, V13.S4
|
||||
VADD V30.S4, V14.S4, V14.S4
|
||||
VADD V31.S4, V15.S4, V15.S4
|
||||
|
||||
VZIP1 V1.S4, V0.S4, V16.S4
|
||||
VZIP2 V1.S4, V0.S4, V17.S4
|
||||
VZIP1 V3.S4, V2.S4, V18.S4
|
||||
VZIP2 V3.S4, V2.S4, V19.S4
|
||||
VZIP1 V5.S4, V4.S4, V20.S4
|
||||
VZIP2 V5.S4, V4.S4, V21.S4
|
||||
VZIP1 V7.S4, V6.S4, V22.S4
|
||||
VZIP2 V7.S4, V6.S4, V23.S4
|
||||
VZIP1 V9.S4, V8.S4, V24.S4
|
||||
VZIP2 V9.S4, V8.S4, V25.S4
|
||||
VZIP1 V11.S4, V10.S4, V26.S4
|
||||
VZIP2 V11.S4, V10.S4, V27.S4
|
||||
VZIP1 V13.S4, V12.S4, V28.S4
|
||||
VZIP2 V13.S4, V12.S4, V29.S4
|
||||
VZIP1 V15.S4, V14.S4, V30.S4
|
||||
VZIP2 V15.S4, V14.S4, V31.S4
|
||||
VZIP1 V18.D2, V16.D2, V0.D2
|
||||
VZIP2 V18.D2, V16.D2, V4.D2
|
||||
VZIP1 V19.D2, V17.D2, V8.D2
|
||||
VZIP2 V19.D2, V17.D2, V12.D2
|
||||
VLD1.P 64(R2), [V16.B16, V17.B16, V18.B16, V19.B16]
|
||||
|
||||
VZIP1 V22.D2, V20.D2, V1.D2
|
||||
VZIP2 V22.D2, V20.D2, V5.D2
|
||||
VZIP1 V23.D2, V21.D2, V9.D2
|
||||
VZIP2 V23.D2, V21.D2, V13.D2
|
||||
VLD1.P 64(R2), [V20.B16, V21.B16, V22.B16, V23.B16]
|
||||
VZIP1 V26.D2, V24.D2, V2.D2
|
||||
VZIP2 V26.D2, V24.D2, V6.D2
|
||||
VZIP1 V27.D2, V25.D2, V10.D2
|
||||
VZIP2 V27.D2, V25.D2, V14.D2
|
||||
VLD1.P 64(R2), [V24.B16, V25.B16, V26.B16, V27.B16]
|
||||
VZIP1 V30.D2, V28.D2, V3.D2
|
||||
VZIP2 V30.D2, V28.D2, V7.D2
|
||||
VZIP1 V31.D2, V29.D2, V11.D2
|
||||
VZIP2 V31.D2, V29.D2, V15.D2
|
||||
VLD1.P 64(R2), [V28.B16, V29.B16, V30.B16, V31.B16]
|
||||
VEOR V0.B16, V16.B16, V16.B16
|
||||
VEOR V1.B16, V17.B16, V17.B16
|
||||
VEOR V2.B16, V18.B16, V18.B16
|
||||
VEOR V3.B16, V19.B16, V19.B16
|
||||
VST1.P [V16.B16, V17.B16, V18.B16, V19.B16], 64(R1)
|
||||
VEOR V4.B16, V20.B16, V20.B16
|
||||
VEOR V5.B16, V21.B16, V21.B16
|
||||
VEOR V6.B16, V22.B16, V22.B16
|
||||
VEOR V7.B16, V23.B16, V23.B16
|
||||
VST1.P [V20.B16, V21.B16, V22.B16, V23.B16], 64(R1)
|
||||
VEOR V8.B16, V24.B16, V24.B16
|
||||
VEOR V9.B16, V25.B16, V25.B16
|
||||
VEOR V10.B16, V26.B16, V26.B16
|
||||
VEOR V11.B16, V27.B16, V27.B16
|
||||
VST1.P [V24.B16, V25.B16, V26.B16, V27.B16], 64(R1)
|
||||
VEOR V12.B16, V28.B16, V28.B16
|
||||
VEOR V13.B16, V29.B16, V29.B16
|
||||
VEOR V14.B16, V30.B16, V30.B16
|
||||
VEOR V15.B16, V31.B16, V31.B16
|
||||
VST1.P [V28.B16, V29.B16, V30.B16, V31.B16], 64(R1)
|
||||
|
||||
ADD $4, R20
|
||||
MOVW R20, (R7) // update counter
|
||||
|
||||
CMP R2, R12
|
||||
BGT loop
|
||||
|
||||
RET
|
||||
|
||||
|
||||
DATA ·constants+0x00(SB)/4, $0x61707865
|
||||
DATA ·constants+0x04(SB)/4, $0x3320646e
|
||||
DATA ·constants+0x08(SB)/4, $0x79622d32
|
||||
DATA ·constants+0x0c(SB)/4, $0x6b206574
|
||||
GLOBL ·constants(SB), NOPTR|RODATA, $32
|
||||
|
||||
DATA ·incRotMatrix+0x00(SB)/4, $0x00000000
|
||||
DATA ·incRotMatrix+0x04(SB)/4, $0x00000001
|
||||
DATA ·incRotMatrix+0x08(SB)/4, $0x00000002
|
||||
DATA ·incRotMatrix+0x0c(SB)/4, $0x00000003
|
||||
DATA ·incRotMatrix+0x10(SB)/4, $0x02010003
|
||||
DATA ·incRotMatrix+0x14(SB)/4, $0x06050407
|
||||
DATA ·incRotMatrix+0x18(SB)/4, $0x0A09080B
|
||||
DATA ·incRotMatrix+0x1c(SB)/4, $0x0E0D0C0F
|
||||
GLOBL ·incRotMatrix(SB), NOPTR|RODATA, $32
|
668
vendor/golang.org/x/crypto/internal/chacha20/asm_ppc64le.s
generated
vendored
Normal file
668
vendor/golang.org/x/crypto/internal/chacha20/asm_ppc64le.s
generated
vendored
Normal file
@ -0,0 +1,668 @@
|
||||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Based on CRYPTOGAMS code with the following comment:
|
||||
// # ====================================================================
|
||||
// # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
||||
// # project. The module is, however, dual licensed under OpenSSL and
|
||||
// # CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
// # details see http://www.openssl.org/~appro/cryptogams/.
|
||||
// # ====================================================================
|
||||
|
||||
// Original code can be found at the link below:
|
||||
// https://github.com/dot-asm/cryptogams/commit/a60f5b50ed908e91e5c39ca79126a4a876d5d8ff
|
||||
|
||||
// There are some differences between CRYPTOGAMS code and this one. The round
|
||||
// loop for "_int" isn't the same as the original. Some adjustments were
|
||||
// necessary because there are less vector registers available. For example, some
|
||||
// X variables (r12, r13, r14, and r15) share the same register used by the
|
||||
// counter. The original code uses ctr to name the counter. Here we use CNT
|
||||
// because golang uses CTR as the counter register name.
|
||||
|
||||
// +build ppc64le,!gccgo,!appengine
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
#define OUT R3
|
||||
#define INP R4
|
||||
#define LEN R5
|
||||
#define KEY R6
|
||||
#define CNT R7
|
||||
|
||||
#define TEMP R8
|
||||
|
||||
#define X0 R11
|
||||
#define X1 R12
|
||||
#define X2 R14
|
||||
#define X3 R15
|
||||
#define X4 R16
|
||||
#define X5 R17
|
||||
#define X6 R18
|
||||
#define X7 R19
|
||||
#define X8 R20
|
||||
#define X9 R21
|
||||
#define X10 R22
|
||||
#define X11 R23
|
||||
#define X12 R24
|
||||
#define X13 R25
|
||||
#define X14 R26
|
||||
#define X15 R27
|
||||
|
||||
#define CON0 X0
|
||||
#define CON1 X1
|
||||
#define CON2 X2
|
||||
#define CON3 X3
|
||||
|
||||
#define KEY0 X4
|
||||
#define KEY1 X5
|
||||
#define KEY2 X6
|
||||
#define KEY3 X7
|
||||
#define KEY4 X8
|
||||
#define KEY5 X9
|
||||
#define KEY6 X10
|
||||
#define KEY7 X11
|
||||
|
||||
#define CNT0 X12
|
||||
#define CNT1 X13
|
||||
#define CNT2 X14
|
||||
#define CNT3 X15
|
||||
|
||||
#define TMP0 R9
|
||||
#define TMP1 R10
|
||||
#define TMP2 R28
|
||||
#define TMP3 R29
|
||||
|
||||
#define CONSTS R8
|
||||
|
||||
#define A0 V0
|
||||
#define B0 V1
|
||||
#define C0 V2
|
||||
#define D0 V3
|
||||
#define A1 V4
|
||||
#define B1 V5
|
||||
#define C1 V6
|
||||
#define D1 V7
|
||||
#define A2 V8
|
||||
#define B2 V9
|
||||
#define C2 V10
|
||||
#define D2 V11
|
||||
#define T0 V12
|
||||
#define T1 V13
|
||||
#define T2 V14
|
||||
|
||||
#define K0 V15
|
||||
#define K1 V16
|
||||
#define K2 V17
|
||||
#define K3 V18
|
||||
#define K4 V19
|
||||
#define K5 V20
|
||||
|
||||
#define FOUR V21
|
||||
#define SIXTEEN V22
|
||||
#define TWENTY4 V23
|
||||
#define TWENTY V24
|
||||
#define TWELVE V25
|
||||
#define TWENTY5 V26
|
||||
#define SEVEN V27
|
||||
|
||||
#define INPPERM V28
|
||||
#define OUTPERM V29
|
||||
#define OUTMASK V30
|
||||
|
||||
#define DD0 V31
|
||||
#define DD1 SEVEN
|
||||
#define DD2 T0
|
||||
#define DD3 T1
|
||||
#define DD4 T2
|
||||
|
||||
DATA ·consts+0x00(SB)/8, $0x3320646e61707865
|
||||
DATA ·consts+0x08(SB)/8, $0x6b20657479622d32
|
||||
DATA ·consts+0x10(SB)/8, $0x0000000000000001
|
||||
DATA ·consts+0x18(SB)/8, $0x0000000000000000
|
||||
DATA ·consts+0x20(SB)/8, $0x0000000000000004
|
||||
DATA ·consts+0x28(SB)/8, $0x0000000000000000
|
||||
DATA ·consts+0x30(SB)/8, $0x0a0b08090e0f0c0d
|
||||
DATA ·consts+0x38(SB)/8, $0x0203000106070405
|
||||
DATA ·consts+0x40(SB)/8, $0x090a0b080d0e0f0c
|
||||
DATA ·consts+0x48(SB)/8, $0x0102030005060704
|
||||
GLOBL ·consts(SB), RODATA, $80
|
||||
|
||||
//func chaCha20_ctr32_vmx(out, inp *byte, len int, key *[32]byte, counter *[16]byte)
|
||||
TEXT ·chaCha20_ctr32_vmx(SB),NOSPLIT|NOFRAME,$0
|
||||
// Load the arguments inside the registers
|
||||
MOVD out+0(FP), OUT
|
||||
MOVD inp+8(FP), INP
|
||||
MOVD len+16(FP), LEN
|
||||
MOVD key+24(FP), KEY
|
||||
MOVD cnt+32(FP), CNT
|
||||
|
||||
MOVD $·consts(SB), CONSTS // point to consts addr
|
||||
|
||||
MOVD $16, X0
|
||||
MOVD $32, X1
|
||||
MOVD $48, X2
|
||||
MOVD $64, X3
|
||||
MOVD $31, X4
|
||||
MOVD $15, X5
|
||||
|
||||
// Load key
|
||||
LVX (KEY)(R0), K1
|
||||
LVSR (KEY)(R0), T0
|
||||
LVX (KEY)(X0), K2
|
||||
LVX (KEY)(X4), DD0
|
||||
|
||||
// Load counter
|
||||
LVX (CNT)(R0), K3
|
||||
LVSR (CNT)(R0), T1
|
||||
LVX (CNT)(X5), DD1
|
||||
|
||||
// Load constants
|
||||
LVX (CONSTS)(R0), K0
|
||||
LVX (CONSTS)(X0), K5
|
||||
LVX (CONSTS)(X1), FOUR
|
||||
LVX (CONSTS)(X2), SIXTEEN
|
||||
LVX (CONSTS)(X3), TWENTY4
|
||||
|
||||
// Align key and counter
|
||||
VPERM K2, K1, T0, K1
|
||||
VPERM DD0, K2, T0, K2
|
||||
VPERM DD1, K3, T1, K3
|
||||
|
||||
// Load counter to GPR
|
||||
MOVWZ 0(CNT), CNT0
|
||||
MOVWZ 4(CNT), CNT1
|
||||
MOVWZ 8(CNT), CNT2
|
||||
MOVWZ 12(CNT), CNT3
|
||||
|
||||
// Adjust vectors for the initial state
|
||||
VADDUWM K3, K5, K3
|
||||
VADDUWM K3, K5, K4
|
||||
VADDUWM K4, K5, K5
|
||||
|
||||
// Synthesized constants
|
||||
VSPLTISW $-12, TWENTY
|
||||
VSPLTISW $12, TWELVE
|
||||
VSPLTISW $-7, TWENTY5
|
||||
|
||||
VXOR T0, T0, T0
|
||||
VSPLTISW $-1, OUTMASK
|
||||
LVSR (INP)(R0), INPPERM
|
||||
LVSL (OUT)(R0), OUTPERM
|
||||
VPERM OUTMASK, T0, OUTPERM, OUTMASK
|
||||
|
||||
loop_outer_vmx:
|
||||
// Load constant
|
||||
MOVD $0x61707865, CON0
|
||||
MOVD $0x3320646e, CON1
|
||||
MOVD $0x79622d32, CON2
|
||||
MOVD $0x6b206574, CON3
|
||||
|
||||
VOR K0, K0, A0
|
||||
VOR K0, K0, A1
|
||||
VOR K0, K0, A2
|
||||
VOR K1, K1, B0
|
||||
|
||||
MOVD $10, TEMP
|
||||
|
||||
// Load key to GPR
|
||||
MOVWZ 0(KEY), X4
|
||||
MOVWZ 4(KEY), X5
|
||||
MOVWZ 8(KEY), X6
|
||||
MOVWZ 12(KEY), X7
|
||||
VOR K1, K1, B1
|
||||
VOR K1, K1, B2
|
||||
MOVWZ 16(KEY), X8
|
||||
MOVWZ 0(CNT), X12
|
||||
MOVWZ 20(KEY), X9
|
||||
MOVWZ 4(CNT), X13
|
||||
VOR K2, K2, C0
|
||||
VOR K2, K2, C1
|
||||
MOVWZ 24(KEY), X10
|
||||
MOVWZ 8(CNT), X14
|
||||
VOR K2, K2, C2
|
||||
VOR K3, K3, D0
|
||||
MOVWZ 28(KEY), X11
|
||||
MOVWZ 12(CNT), X15
|
||||
VOR K4, K4, D1
|
||||
VOR K5, K5, D2
|
||||
|
||||
MOVD X4, TMP0
|
||||
MOVD X5, TMP1
|
||||
MOVD X6, TMP2
|
||||
MOVD X7, TMP3
|
||||
VSPLTISW $7, SEVEN
|
||||
|
||||
MOVD TEMP, CTR
|
||||
|
||||
loop_vmx:
|
||||
// CRYPTOGAMS uses a macro to create a loop using perl. This isn't possible
|
||||
// using assembly macros. Therefore, the macro expansion result was used
|
||||
// in order to maintain the algorithm efficiency.
|
||||
// This loop generates three keystream blocks using VMX instructions and,
|
||||
// in parallel, one keystream block using scalar instructions.
|
||||
ADD X4, X0, X0
|
||||
ADD X5, X1, X1
|
||||
VADDUWM A0, B0, A0
|
||||
VADDUWM A1, B1, A1
|
||||
ADD X6, X2, X2
|
||||
ADD X7, X3, X3
|
||||
VADDUWM A2, B2, A2
|
||||
VXOR D0, A0, D0
|
||||
XOR X0, X12, X12
|
||||
XOR X1, X13, X13
|
||||
VXOR D1, A1, D1
|
||||
VXOR D2, A2, D2
|
||||
XOR X2, X14, X14
|
||||
XOR X3, X15, X15
|
||||
VPERM D0, D0, SIXTEEN, D0
|
||||
VPERM D1, D1, SIXTEEN, D1
|
||||
ROTLW $16, X12, X12
|
||||
ROTLW $16, X13, X13
|
||||
VPERM D2, D2, SIXTEEN, D2
|
||||
VADDUWM C0, D0, C0
|
||||
ROTLW $16, X14, X14
|
||||
ROTLW $16, X15, X15
|
||||
VADDUWM C1, D1, C1
|
||||
VADDUWM C2, D2, C2
|
||||
ADD X12, X8, X8
|
||||
ADD X13, X9, X9
|
||||
VXOR B0, C0, T0
|
||||
VXOR B1, C1, T1
|
||||
ADD X14, X10, X10
|
||||
ADD X15, X11, X11
|
||||
VXOR B2, C2, T2
|
||||
VRLW T0, TWELVE, B0
|
||||
XOR X8, X4, X4
|
||||
XOR X9, X5, X5
|
||||
VRLW T1, TWELVE, B1
|
||||
VRLW T2, TWELVE, B2
|
||||
XOR X10, X6, X6
|
||||
XOR X11, X7, X7
|
||||
VADDUWM A0, B0, A0
|
||||
VADDUWM A1, B1, A1
|
||||
ROTLW $12, X4, X4
|
||||
ROTLW $12, X5, X5
|
||||
VADDUWM A2, B2, A2
|
||||
VXOR D0, A0, D0
|
||||
ROTLW $12, X6, X6
|
||||
ROTLW $12, X7, X7
|
||||
VXOR D1, A1, D1
|
||||
VXOR D2, A2, D2
|
||||
ADD X4, X0, X0
|
||||
ADD X5, X1, X1
|
||||
VPERM D0, D0, TWENTY4, D0
|
||||
VPERM D1, D1, TWENTY4, D1
|
||||
ADD X6, X2, X2
|
||||
ADD X7, X3, X3
|
||||
VPERM D2, D2, TWENTY4, D2
|
||||
VADDUWM C0, D0, C0
|
||||
XOR X0, X12, X12
|
||||
XOR X1, X13, X13
|
||||
VADDUWM C1, D1, C1
|
||||
VADDUWM C2, D2, C2
|
||||
XOR X2, X14, X14
|
||||
XOR X3, X15, X15
|
||||
VXOR B0, C0, T0
|
||||
VXOR B1, C1, T1
|
||||
ROTLW $8, X12, X12
|
||||
ROTLW $8, X13, X13
|
||||
VXOR B2, C2, T2
|
||||
VRLW T0, SEVEN, B0
|
||||
ROTLW $8, X14, X14
|
||||
ROTLW $8, X15, X15
|
||||
VRLW T1, SEVEN, B1
|
||||
VRLW T2, SEVEN, B2
|
||||
ADD X12, X8, X8
|
||||
ADD X13, X9, X9
|
||||
VSLDOI $8, C0, C0, C0
|
||||
VSLDOI $8, C1, C1, C1
|
||||
ADD X14, X10, X10
|
||||
ADD X15, X11, X11
|
||||
VSLDOI $8, C2, C2, C2
|
||||
VSLDOI $12, B0, B0, B0
|
||||
XOR X8, X4, X4
|
||||
XOR X9, X5, X5
|
||||
VSLDOI $12, B1, B1, B1
|
||||
VSLDOI $12, B2, B2, B2
|
||||
XOR X10, X6, X6
|
||||
XOR X11, X7, X7
|
||||
VSLDOI $4, D0, D0, D0
|
||||
VSLDOI $4, D1, D1, D1
|
||||
ROTLW $7, X4, X4
|
||||
ROTLW $7, X5, X5
|
||||
VSLDOI $4, D2, D2, D2
|
||||
VADDUWM A0, B0, A0
|
||||
ROTLW $7, X6, X6
|
||||
ROTLW $7, X7, X7
|
||||
VADDUWM A1, B1, A1
|
||||
VADDUWM A2, B2, A2
|
||||
ADD X5, X0, X0
|
||||
ADD X6, X1, X1
|
||||
VXOR D0, A0, D0
|
||||
VXOR D1, A1, D1
|
||||
ADD X7, X2, X2
|
||||
ADD X4, X3, X3
|
||||
VXOR D2, A2, D2
|
||||
VPERM D0, D0, SIXTEEN, D0
|
||||
XOR X0, X15, X15
|
||||
XOR X1, X12, X12
|
||||
VPERM D1, D1, SIXTEEN, D1
|
||||
VPERM D2, D2, SIXTEEN, D2
|
||||
XOR X2, X13, X13
|
||||
XOR X3, X14, X14
|
||||
VADDUWM C0, D0, C0
|
||||
VADDUWM C1, D1, C1
|
||||
ROTLW $16, X15, X15
|
||||
ROTLW $16, X12, X12
|
||||
VADDUWM C2, D2, C2
|
||||
VXOR B0, C0, T0
|
||||
ROTLW $16, X13, X13
|
||||
ROTLW $16, X14, X14
|
||||
VXOR B1, C1, T1
|
||||
VXOR B2, C2, T2
|
||||
ADD X15, X10, X10
|
||||
ADD X12, X11, X11
|
||||
VRLW T0, TWELVE, B0
|
||||
VRLW T1, TWELVE, B1
|
||||
ADD X13, X8, X8
|
||||
ADD X14, X9, X9
|
||||
VRLW T2, TWELVE, B2
|
||||
VADDUWM A0, B0, A0
|
||||
XOR X10, X5, X5
|
||||
XOR X11, X6, X6
|
||||
VADDUWM A1, B1, A1
|
||||
VADDUWM A2, B2, A2
|
||||
XOR X8, X7, X7
|
||||
XOR X9, X4, X4
|
||||
VXOR D0, A0, D0
|
||||
VXOR D1, A1, D1
|
||||
ROTLW $12, X5, X5
|
||||
ROTLW $12, X6, X6
|
||||
VXOR D2, A2, D2
|
||||
VPERM D0, D0, TWENTY4, D0
|
||||
ROTLW $12, X7, X7
|
||||
ROTLW $12, X4, X4
|
||||
VPERM D1, D1, TWENTY4, D1
|
||||
VPERM D2, D2, TWENTY4, D2
|
||||
ADD X5, X0, X0
|
||||
ADD X6, X1, X1
|
||||
VADDUWM C0, D0, C0
|
||||
VADDUWM C1, D1, C1
|
||||
ADD X7, X2, X2
|
||||
ADD X4, X3, X3
|
||||
VADDUWM C2, D2, C2
|
||||
VXOR B0, C0, T0
|
||||
XOR X0, X15, X15
|
||||
XOR X1, X12, X12
|
||||
VXOR B1, C1, T1
|
||||
VXOR B2, C2, T2
|
||||
XOR X2, X13, X13
|
||||
XOR X3, X14, X14
|
||||
VRLW T0, SEVEN, B0
|
||||
VRLW T1, SEVEN, B1
|
||||
ROTLW $8, X15, X15
|
||||
ROTLW $8, X12, X12
|
||||
VRLW T2, SEVEN, B2
|
||||
VSLDOI $8, C0, C0, C0
|
||||
ROTLW $8, X13, X13
|
||||
ROTLW $8, X14, X14
|
||||
VSLDOI $8, C1, C1, C1
|
||||
VSLDOI $8, C2, C2, C2
|
||||
ADD X15, X10, X10
|
||||
ADD X12, X11, X11
|
||||
VSLDOI $4, B0, B0, B0
|
||||
VSLDOI $4, B1, B1, B1
|
||||
ADD X13, X8, X8
|
||||
ADD X14, X9, X9
|
||||
VSLDOI $4, B2, B2, B2
|
||||
VSLDOI $12, D0, D0, D0
|
||||
XOR X10, X5, X5
|
||||
XOR X11, X6, X6
|
||||
VSLDOI $12, D1, D1, D1
|
||||
VSLDOI $12, D2, D2, D2
|
||||
XOR X8, X7, X7
|
||||
XOR X9, X4, X4
|
||||
ROTLW $7, X5, X5
|
||||
ROTLW $7, X6, X6
|
||||
ROTLW $7, X7, X7
|
||||
ROTLW $7, X4, X4
|
||||
BC 0x10, 0, loop_vmx
|
||||
|
||||
SUB $256, LEN, LEN
|
||||
|
||||
// Accumulate key block
|
||||
ADD $0x61707865, X0, X0
|
||||
ADD $0x3320646e, X1, X1
|
||||
ADD $0x79622d32, X2, X2
|
||||
ADD $0x6b206574, X3, X3
|
||||
ADD TMP0, X4, X4
|
||||
ADD TMP1, X5, X5
|
||||
ADD TMP2, X6, X6
|
||||
ADD TMP3, X7, X7
|
||||
MOVWZ 16(KEY), TMP0
|
||||
MOVWZ 20(KEY), TMP1
|
||||
MOVWZ 24(KEY), TMP2
|
||||
MOVWZ 28(KEY), TMP3
|
||||
ADD TMP0, X8, X8
|
||||
ADD TMP1, X9, X9
|
||||
ADD TMP2, X10, X10
|
||||
ADD TMP3, X11, X11
|
||||
|
||||
MOVWZ 12(CNT), TMP0
|
||||
MOVWZ 8(CNT), TMP1
|
||||
MOVWZ 4(CNT), TMP2
|
||||
MOVWZ 0(CNT), TEMP
|
||||
ADD TMP0, X15, X15
|
||||
ADD TMP1, X14, X14
|
||||
ADD TMP2, X13, X13
|
||||
ADD TEMP, X12, X12
|
||||
|
||||
// Accumulate key block
|
||||
VADDUWM A0, K0, A0
|
||||
VADDUWM A1, K0, A1
|
||||
VADDUWM A2, K0, A2
|
||||
VADDUWM B0, K1, B0
|
||||
VADDUWM B1, K1, B1
|
||||
VADDUWM B2, K1, B2
|
||||
VADDUWM C0, K2, C0
|
||||
VADDUWM C1, K2, C1
|
||||
VADDUWM C2, K2, C2
|
||||
VADDUWM D0, K3, D0
|
||||
VADDUWM D1, K4, D1
|
||||
VADDUWM D2, K5, D2
|
||||
|
||||
// Increment counter
|
||||
ADD $4, TEMP, TEMP
|
||||
MOVW TEMP, 0(CNT)
|
||||
|
||||
VADDUWM K3, FOUR, K3
|
||||
VADDUWM K4, FOUR, K4
|
||||
VADDUWM K5, FOUR, K5
|
||||
|
||||
// XOR the input slice (INP) with the keystream, which is stored in GPRs (X0-X3).
|
||||
|
||||
// Load input (aligned or not)
|
||||
MOVWZ 0(INP), TMP0
|
||||
MOVWZ 4(INP), TMP1
|
||||
MOVWZ 8(INP), TMP2
|
||||
MOVWZ 12(INP), TMP3
|
||||
|
||||
// XOR with input
|
||||
XOR TMP0, X0, X0
|
||||
XOR TMP1, X1, X1
|
||||
XOR TMP2, X2, X2
|
||||
XOR TMP3, X3, X3
|
||||
MOVWZ 16(INP), TMP0
|
||||
MOVWZ 20(INP), TMP1
|
||||
MOVWZ 24(INP), TMP2
|
||||
MOVWZ 28(INP), TMP3
|
||||
XOR TMP0, X4, X4
|
||||
XOR TMP1, X5, X5
|
||||
XOR TMP2, X6, X6
|
||||
XOR TMP3, X7, X7
|
||||
MOVWZ 32(INP), TMP0
|
||||
MOVWZ 36(INP), TMP1
|
||||
MOVWZ 40(INP), TMP2
|
||||
MOVWZ 44(INP), TMP3
|
||||
XOR TMP0, X8, X8
|
||||
XOR TMP1, X9, X9
|
||||
XOR TMP2, X10, X10
|
||||
XOR TMP3, X11, X11
|
||||
MOVWZ 48(INP), TMP0
|
||||
MOVWZ 52(INP), TMP1
|
||||
MOVWZ 56(INP), TMP2
|
||||
MOVWZ 60(INP), TMP3
|
||||
XOR TMP0, X12, X12
|
||||
XOR TMP1, X13, X13
|
||||
XOR TMP2, X14, X14
|
||||
XOR TMP3, X15, X15
|
||||
|
||||
// Store output (aligned or not)
|
||||
MOVW X0, 0(OUT)
|
||||
MOVW X1, 4(OUT)
|
||||
MOVW X2, 8(OUT)
|
||||
MOVW X3, 12(OUT)
|
||||
|
||||
ADD $64, INP, INP // INP points to the end of the slice for the alignment code below
|
||||
|
||||
MOVW X4, 16(OUT)
|
||||
MOVD $16, TMP0
|
||||
MOVW X5, 20(OUT)
|
||||
MOVD $32, TMP1
|
||||
MOVW X6, 24(OUT)
|
||||
MOVD $48, TMP2
|
||||
MOVW X7, 28(OUT)
|
||||
MOVD $64, TMP3
|
||||
MOVW X8, 32(OUT)
|
||||
MOVW X9, 36(OUT)
|
||||
MOVW X10, 40(OUT)
|
||||
MOVW X11, 44(OUT)
|
||||
MOVW X12, 48(OUT)
|
||||
MOVW X13, 52(OUT)
|
||||
MOVW X14, 56(OUT)
|
||||
MOVW X15, 60(OUT)
|
||||
ADD $64, OUT, OUT
|
||||
|
||||
// Load input
|
||||
LVX (INP)(R0), DD0
|
||||
LVX (INP)(TMP0), DD1
|
||||
LVX (INP)(TMP1), DD2
|
||||
LVX (INP)(TMP2), DD3
|
||||
LVX (INP)(TMP3), DD4
|
||||
ADD $64, INP, INP
|
||||
|
||||
VPERM DD1, DD0, INPPERM, DD0 // Align input
|
||||
VPERM DD2, DD1, INPPERM, DD1
|
||||
VPERM DD3, DD2, INPPERM, DD2
|
||||
VPERM DD4, DD3, INPPERM, DD3
|
||||
VXOR A0, DD0, A0 // XOR with input
|
||||
VXOR B0, DD1, B0
|
||||
LVX (INP)(TMP0), DD1 // Keep loading input
|
||||
VXOR C0, DD2, C0
|
||||
LVX (INP)(TMP1), DD2
|
||||
VXOR D0, DD3, D0
|
||||
LVX (INP)(TMP2), DD3
|
||||
LVX (INP)(TMP3), DD0
|
||||
ADD $64, INP, INP
|
||||
MOVD $63, TMP3 // 63 is not a typo
|
||||
VPERM A0, A0, OUTPERM, A0
|
||||
VPERM B0, B0, OUTPERM, B0
|
||||
VPERM C0, C0, OUTPERM, C0
|
||||
VPERM D0, D0, OUTPERM, D0
|
||||
|
||||
VPERM DD1, DD4, INPPERM, DD4 // Align input
|
||||
VPERM DD2, DD1, INPPERM, DD1
|
||||
VPERM DD3, DD2, INPPERM, DD2
|
||||
VPERM DD0, DD3, INPPERM, DD3
|
||||
VXOR A1, DD4, A1
|
||||
VXOR B1, DD1, B1
|
||||
LVX (INP)(TMP0), DD1 // Keep loading
|
||||
VXOR C1, DD2, C1
|
||||
LVX (INP)(TMP1), DD2
|
||||
VXOR D1, DD3, D1
|
||||
LVX (INP)(TMP2), DD3
|
||||
|
||||
// Note that the LVX address is always rounded down to the nearest 16-byte
|
||||
// boundary, and that it always points to at most 15 bytes beyond the end of
|
||||
// the slice, so we cannot cross a page boundary.
|
||||
LVX (INP)(TMP3), DD4 // Redundant in aligned case.
|
||||
ADD $64, INP, INP
|
||||
VPERM A1, A1, OUTPERM, A1 // Pre-misalign output
|
||||
VPERM B1, B1, OUTPERM, B1
|
||||
VPERM C1, C1, OUTPERM, C1
|
||||
VPERM D1, D1, OUTPERM, D1
|
||||
|
||||
VPERM DD1, DD0, INPPERM, DD0 // Align Input
|
||||
VPERM DD2, DD1, INPPERM, DD1
|
||||
VPERM DD3, DD2, INPPERM, DD2
|
||||
VPERM DD4, DD3, INPPERM, DD3
|
||||
VXOR A2, DD0, A2
|
||||
VXOR B2, DD1, B2
|
||||
VXOR C2, DD2, C2
|
||||
VXOR D2, DD3, D2
|
||||
VPERM A2, A2, OUTPERM, A2
|
||||
VPERM B2, B2, OUTPERM, B2
|
||||
VPERM C2, C2, OUTPERM, C2
|
||||
VPERM D2, D2, OUTPERM, D2
|
||||
|
||||
ANDCC $15, OUT, X1 // Is out aligned?
|
||||
MOVD OUT, X0
|
||||
|
||||
VSEL A0, B0, OUTMASK, DD0 // Collect pre-misaligned output
|
||||
VSEL B0, C0, OUTMASK, DD1
|
||||
VSEL C0, D0, OUTMASK, DD2
|
||||
VSEL D0, A1, OUTMASK, DD3
|
||||
VSEL A1, B1, OUTMASK, B0
|
||||
VSEL B1, C1, OUTMASK, C0
|
||||
VSEL C1, D1, OUTMASK, D0
|
||||
VSEL D1, A2, OUTMASK, A1
|
||||
VSEL A2, B2, OUTMASK, B1
|
||||
VSEL B2, C2, OUTMASK, C1
|
||||
VSEL C2, D2, OUTMASK, D1
|
||||
|
||||
STVX DD0, (OUT+TMP0)
|
||||
STVX DD1, (OUT+TMP1)
|
||||
STVX DD2, (OUT+TMP2)
|
||||
ADD $64, OUT, OUT
|
||||
STVX DD3, (OUT+R0)
|
||||
STVX B0, (OUT+TMP0)
|
||||
STVX C0, (OUT+TMP1)
|
||||
STVX D0, (OUT+TMP2)
|
||||
ADD $64, OUT, OUT
|
||||
STVX A1, (OUT+R0)
|
||||
STVX B1, (OUT+TMP0)
|
||||
STVX C1, (OUT+TMP1)
|
||||
STVX D1, (OUT+TMP2)
|
||||
ADD $64, OUT, OUT
|
||||
|
||||
BEQ aligned_vmx
|
||||
|
||||
SUB X1, OUT, X2 // in misaligned case edges
|
||||
MOVD $0, X3 // are written byte-by-byte
|
||||
|
||||
unaligned_tail_vmx:
|
||||
STVEBX D2, (X2+X3)
|
||||
ADD $1, X3, X3
|
||||
CMPW X3, X1
|
||||
BNE unaligned_tail_vmx
|
||||
SUB X1, X0, X2
|
||||
|
||||
unaligned_head_vmx:
|
||||
STVEBX A0, (X2+X1)
|
||||
CMPW X1, $15
|
||||
ADD $1, X1, X1
|
||||
BNE unaligned_head_vmx
|
||||
|
||||
CMPU LEN, $255 // done with 256-byte block yet?
|
||||
BGT loop_outer_vmx
|
||||
|
||||
JMP done_vmx
|
||||
|
||||
aligned_vmx:
|
||||
STVX A0, (X0+R0)
|
||||
CMPU LEN, $255 // done with 256-byte block yet?
|
||||
BGT loop_outer_vmx
|
||||
|
||||
done_vmx:
|
||||
RET
|
31
vendor/golang.org/x/crypto/internal/chacha20/chacha_arm64.go
generated
vendored
Normal file
31
vendor/golang.org/x/crypto/internal/chacha20/chacha_arm64.go
generated
vendored
Normal file
@ -0,0 +1,31 @@
|
||||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.11
|
||||
// +build !gccgo
|
||||
|
||||
package chacha20
|
||||
|
||||
const (
|
||||
haveAsm = true
|
||||
bufSize = 256
|
||||
)
|
||||
|
||||
//go:noescape
|
||||
func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
|
||||
|
||||
func (c *Cipher) xorKeyStreamAsm(dst, src []byte) {
|
||||
|
||||
if len(src) >= bufSize {
|
||||
xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter)
|
||||
}
|
||||
|
||||
if len(src)%bufSize != 0 {
|
||||
i := len(src) - len(src)%bufSize
|
||||
c.buf = [bufSize]byte{}
|
||||
copy(c.buf[:], src[i:])
|
||||
xorKeyStreamVX(c.buf[:], c.buf[:], &c.key, &c.nonce, &c.counter)
|
||||
c.len = bufSize - copy(dst[i:], c.buf[:len(src)%bufSize])
|
||||
}
|
||||
}
|
264
vendor/golang.org/x/crypto/internal/chacha20/chacha_generic.go
generated
vendored
Normal file
264
vendor/golang.org/x/crypto/internal/chacha20/chacha_generic.go
generated
vendored
Normal file
@ -0,0 +1,264 @@
|
||||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package ChaCha20 implements the core ChaCha20 function as specified
|
||||
// in https://tools.ietf.org/html/rfc7539#section-2.3.
|
||||
package chacha20
|
||||
|
||||
import (
|
||||
"crypto/cipher"
|
||||
"encoding/binary"
|
||||
|
||||
"golang.org/x/crypto/internal/subtle"
|
||||
)
|
||||
|
||||
// assert that *Cipher implements cipher.Stream
|
||||
var _ cipher.Stream = (*Cipher)(nil)
|
||||
|
||||
// Cipher is a stateful instance of ChaCha20 using a particular key
|
||||
// and nonce. A *Cipher implements the cipher.Stream interface.
|
||||
type Cipher struct {
|
||||
key [8]uint32
|
||||
counter uint32 // incremented after each block
|
||||
nonce [3]uint32
|
||||
buf [bufSize]byte // buffer for unused keystream bytes
|
||||
len int // number of unused keystream bytes at end of buf
|
||||
}
|
||||
|
||||
// New creates a new ChaCha20 stream cipher with the given key and nonce.
|
||||
// The initial counter value is set to 0.
|
||||
func New(key [8]uint32, nonce [3]uint32) *Cipher {
|
||||
return &Cipher{key: key, nonce: nonce}
|
||||
}
|
||||
|
||||
// ChaCha20 constants spelling "expand 32-byte k"
|
||||
const (
|
||||
j0 uint32 = 0x61707865
|
||||
j1 uint32 = 0x3320646e
|
||||
j2 uint32 = 0x79622d32
|
||||
j3 uint32 = 0x6b206574
|
||||
)
|
||||
|
||||
func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
|
||||
a += b
|
||||
d ^= a
|
||||
d = (d << 16) | (d >> 16)
|
||||
c += d
|
||||
b ^= c
|
||||
b = (b << 12) | (b >> 20)
|
||||
a += b
|
||||
d ^= a
|
||||
d = (d << 8) | (d >> 24)
|
||||
c += d
|
||||
b ^= c
|
||||
b = (b << 7) | (b >> 25)
|
||||
return a, b, c, d
|
||||
}
|
||||
|
||||
// XORKeyStream XORs each byte in the given slice with a byte from the
|
||||
// cipher's key stream. Dst and src must overlap entirely or not at all.
|
||||
//
|
||||
// If len(dst) < len(src), XORKeyStream will panic. It is acceptable
|
||||
// to pass a dst bigger than src, and in that case, XORKeyStream will
|
||||
// only update dst[:len(src)] and will not touch the rest of dst.
|
||||
//
|
||||
// Multiple calls to XORKeyStream behave as if the concatenation of
|
||||
// the src buffers was passed in a single run. That is, Cipher
|
||||
// maintains state and does not reset at each XORKeyStream call.
|
||||
func (s *Cipher) XORKeyStream(dst, src []byte) {
|
||||
if len(dst) < len(src) {
|
||||
panic("chacha20: output smaller than input")
|
||||
}
|
||||
if subtle.InexactOverlap(dst[:len(src)], src) {
|
||||
panic("chacha20: invalid buffer overlap")
|
||||
}
|
||||
|
||||
// xor src with buffered keystream first
|
||||
if s.len != 0 {
|
||||
buf := s.buf[len(s.buf)-s.len:]
|
||||
if len(src) < len(buf) {
|
||||
buf = buf[:len(src)]
|
||||
}
|
||||
td, ts := dst[:len(buf)], src[:len(buf)] // BCE hint
|
||||
for i, b := range buf {
|
||||
td[i] = ts[i] ^ b
|
||||
}
|
||||
s.len -= len(buf)
|
||||
if s.len != 0 {
|
||||
return
|
||||
}
|
||||
s.buf = [len(s.buf)]byte{} // zero the empty buffer
|
||||
src = src[len(buf):]
|
||||
dst = dst[len(buf):]
|
||||
}
|
||||
|
||||
if len(src) == 0 {
|
||||
return
|
||||
}
|
||||
if haveAsm {
|
||||
if uint64(len(src))+uint64(s.counter)*64 > (1<<38)-64 {
|
||||
panic("chacha20: counter overflow")
|
||||
}
|
||||
s.xorKeyStreamAsm(dst, src)
|
||||
return
|
||||
}
|
||||
|
||||
// set up a 64-byte buffer to pad out the final block if needed
|
||||
// (hoisted out of the main loop to avoid spills)
|
||||
rem := len(src) % 64 // length of final block
|
||||
fin := len(src) - rem // index of final block
|
||||
if rem > 0 {
|
||||
copy(s.buf[len(s.buf)-64:], src[fin:])
|
||||
}
|
||||
|
||||
// pre-calculate most of the first round
|
||||
s1, s5, s9, s13 := quarterRound(j1, s.key[1], s.key[5], s.nonce[0])
|
||||
s2, s6, s10, s14 := quarterRound(j2, s.key[2], s.key[6], s.nonce[1])
|
||||
s3, s7, s11, s15 := quarterRound(j3, s.key[3], s.key[7], s.nonce[2])
|
||||
|
||||
n := len(src)
|
||||
src, dst = src[:n:n], dst[:n:n] // BCE hint
|
||||
for i := 0; i < n; i += 64 {
|
||||
// calculate the remainder of the first round
|
||||
s0, s4, s8, s12 := quarterRound(j0, s.key[0], s.key[4], s.counter)
|
||||
|
||||
// execute the second round
|
||||
x0, x5, x10, x15 := quarterRound(s0, s5, s10, s15)
|
||||
x1, x6, x11, x12 := quarterRound(s1, s6, s11, s12)
|
||||
x2, x7, x8, x13 := quarterRound(s2, s7, s8, s13)
|
||||
x3, x4, x9, x14 := quarterRound(s3, s4, s9, s14)
|
||||
|
||||
// execute the remaining 18 rounds
|
||||
for i := 0; i < 9; i++ {
|
||||
x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
|
||||
x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
|
||||
x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
|
||||
x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
|
||||
|
||||
x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
|
||||
x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
|
||||
x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
|
||||
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
|
||||
}
|
||||
|
||||
x0 += j0
|
||||
x1 += j1
|
||||
x2 += j2
|
||||
x3 += j3
|
||||
|
||||
x4 += s.key[0]
|
||||
x5 += s.key[1]
|
||||
x6 += s.key[2]
|
||||
x7 += s.key[3]
|
||||
x8 += s.key[4]
|
||||
x9 += s.key[5]
|
||||
x10 += s.key[6]
|
||||
x11 += s.key[7]
|
||||
|
||||
x12 += s.counter
|
||||
x13 += s.nonce[0]
|
||||
x14 += s.nonce[1]
|
||||
x15 += s.nonce[2]
|
||||
|
||||
// increment the counter
|
||||
s.counter += 1
|
||||
if s.counter == 0 {
|
||||
panic("chacha20: counter overflow")
|
||||
}
|
||||
|
||||
// pad to 64 bytes if needed
|
||||
in, out := src[i:], dst[i:]
|
||||
if i == fin {
|
||||
// src[fin:] has already been copied into s.buf before
|
||||
// the main loop
|
||||
in, out = s.buf[len(s.buf)-64:], s.buf[len(s.buf)-64:]
|
||||
}
|
||||
in, out = in[:64], out[:64] // BCE hint
|
||||
|
||||
// XOR the key stream with the source and write out the result
|
||||
xor(out[0:], in[0:], x0)
|
||||
xor(out[4:], in[4:], x1)
|
||||
xor(out[8:], in[8:], x2)
|
||||
xor(out[12:], in[12:], x3)
|
||||
xor(out[16:], in[16:], x4)
|
||||
xor(out[20:], in[20:], x5)
|
||||
xor(out[24:], in[24:], x6)
|
||||
xor(out[28:], in[28:], x7)
|
||||
xor(out[32:], in[32:], x8)
|
||||
xor(out[36:], in[36:], x9)
|
||||
xor(out[40:], in[40:], x10)
|
||||
xor(out[44:], in[44:], x11)
|
||||
xor(out[48:], in[48:], x12)
|
||||
xor(out[52:], in[52:], x13)
|
||||
xor(out[56:], in[56:], x14)
|
||||
xor(out[60:], in[60:], x15)
|
||||
}
|
||||
// copy any trailing bytes out of the buffer and into dst
|
||||
if rem != 0 {
|
||||
s.len = 64 - rem
|
||||
copy(dst[fin:], s.buf[len(s.buf)-64:])
|
||||
}
|
||||
}
|
||||
|
||||
// Advance discards bytes in the key stream until the next 64 byte block
|
||||
// boundary is reached and updates the counter accordingly. If the key
|
||||
// stream is already at a block boundary no bytes will be discarded and
|
||||
// the counter will be unchanged.
|
||||
func (s *Cipher) Advance() {
|
||||
s.len -= s.len % 64
|
||||
if s.len == 0 {
|
||||
s.buf = [len(s.buf)]byte{}
|
||||
}
|
||||
}
|
||||
|
||||
// XORKeyStream crypts bytes from in to out using the given key and counters.
|
||||
// In and out must overlap entirely or not at all. Counter contains the raw
|
||||
// ChaCha20 counter bytes (i.e. block counter followed by nonce).
|
||||
func XORKeyStream(out, in []byte, counter *[16]byte, key *[32]byte) {
|
||||
s := Cipher{
|
||||
key: [8]uint32{
|
||||
binary.LittleEndian.Uint32(key[0:4]),
|
||||
binary.LittleEndian.Uint32(key[4:8]),
|
||||
binary.LittleEndian.Uint32(key[8:12]),
|
||||
binary.LittleEndian.Uint32(key[12:16]),
|
||||
binary.LittleEndian.Uint32(key[16:20]),
|
||||
binary.LittleEndian.Uint32(key[20:24]),
|
||||
binary.LittleEndian.Uint32(key[24:28]),
|
||||
binary.LittleEndian.Uint32(key[28:32]),
|
||||
},
|
||||
nonce: [3]uint32{
|
||||
binary.LittleEndian.Uint32(counter[4:8]),
|
||||
binary.LittleEndian.Uint32(counter[8:12]),
|
||||
binary.LittleEndian.Uint32(counter[12:16]),
|
||||
},
|
||||
counter: binary.LittleEndian.Uint32(counter[0:4]),
|
||||
}
|
||||
s.XORKeyStream(out, in)
|
||||
}
|
||||
|
||||
// HChaCha20 uses the ChaCha20 core to generate a derived key from a key and a
|
||||
// nonce. It should only be used as part of the XChaCha20 construction.
|
||||
func HChaCha20(key *[8]uint32, nonce *[4]uint32) [8]uint32 {
|
||||
x0, x1, x2, x3 := j0, j1, j2, j3
|
||||
x4, x5, x6, x7 := key[0], key[1], key[2], key[3]
|
||||
x8, x9, x10, x11 := key[4], key[5], key[6], key[7]
|
||||
x12, x13, x14, x15 := nonce[0], nonce[1], nonce[2], nonce[3]
|
||||
|
||||
for i := 0; i < 10; i++ {
|
||||
x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
|
||||
x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
|
||||
x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
|
||||
x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
|
||||
|
||||
x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
|
||||
x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
|
||||
x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
|
||||
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
|
||||
}
|
||||
|
||||
var out [8]uint32
|
||||
out[0], out[1], out[2], out[3] = x0, x1, x2, x3
|
||||
out[4], out[5], out[6], out[7] = x12, x13, x14, x15
|
||||
return out
|
||||
}
|
16
vendor/golang.org/x/crypto/internal/chacha20/chacha_noasm.go
generated
vendored
Normal file
16
vendor/golang.org/x/crypto/internal/chacha20/chacha_noasm.go
generated
vendored
Normal file
@ -0,0 +1,16 @@
|
||||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !ppc64le,!arm64,!s390x arm64,!go1.11 gccgo appengine
|
||||
|
||||
package chacha20
|
||||
|
||||
const (
|
||||
bufSize = 64
|
||||
haveAsm = false
|
||||
)
|
||||
|
||||
func (*Cipher) xorKeyStreamAsm(dst, src []byte) {
|
||||
panic("not implemented")
|
||||
}
|
51
vendor/golang.org/x/crypto/internal/chacha20/chacha_ppc64le.go
generated
vendored
Normal file
51
vendor/golang.org/x/crypto/internal/chacha20/chacha_ppc64le.go
generated
vendored
Normal file
@ -0,0 +1,51 @@
|
||||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build ppc64le,!gccgo,!appengine
|
||||
|
||||
package chacha20
|
||||
|
||||
import "encoding/binary"
|
||||
|
||||
var haveAsm = true
|
||||
|
||||
const bufSize = 256
|
||||
|
||||
//go:noescape
|
||||
func chaCha20_ctr32_vmx(out, inp *byte, len int, key *[8]uint32, counter *uint32)
|
||||
|
||||
func (c *Cipher) xorKeyStreamAsm(dst, src []byte) {
|
||||
if len(src) >= bufSize {
|
||||
chaCha20_ctr32_vmx(&dst[0], &src[0], len(src)-len(src)%bufSize, &c.key, &c.counter)
|
||||
}
|
||||
if len(src)%bufSize != 0 {
|
||||
chaCha20_ctr32_vmx(&c.buf[0], &c.buf[0], bufSize, &c.key, &c.counter)
|
||||
start := len(src) - len(src)%bufSize
|
||||
ts, td, tb := src[start:], dst[start:], c.buf[:]
|
||||
// Unroll loop to XOR 32 bytes per iteration.
|
||||
for i := 0; i < len(ts)-32; i += 32 {
|
||||
td, tb = td[:len(ts)], tb[:len(ts)] // bounds check elimination
|
||||
s0 := binary.LittleEndian.Uint64(ts[0:8])
|
||||
s1 := binary.LittleEndian.Uint64(ts[8:16])
|
||||
s2 := binary.LittleEndian.Uint64(ts[16:24])
|
||||
s3 := binary.LittleEndian.Uint64(ts[24:32])
|
||||
b0 := binary.LittleEndian.Uint64(tb[0:8])
|
||||
b1 := binary.LittleEndian.Uint64(tb[8:16])
|
||||
b2 := binary.LittleEndian.Uint64(tb[16:24])
|
||||
b3 := binary.LittleEndian.Uint64(tb[24:32])
|
||||
binary.LittleEndian.PutUint64(td[0:8], s0^b0)
|
||||
binary.LittleEndian.PutUint64(td[8:16], s1^b1)
|
||||
binary.LittleEndian.PutUint64(td[16:24], s2^b2)
|
||||
binary.LittleEndian.PutUint64(td[24:32], s3^b3)
|
||||
ts, td, tb = ts[32:], td[32:], tb[32:]
|
||||
}
|
||||
td, tb = td[:len(ts)], tb[:len(ts)] // bounds check elimination
|
||||
for i, v := range ts {
|
||||
td[i] = tb[i] ^ v
|
||||
}
|
||||
c.len = bufSize - (len(src) % bufSize)
|
||||
|
||||
}
|
||||
|
||||
}
|
29
vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.go
generated
vendored
Normal file
29
vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.go
generated
vendored
Normal file
@ -0,0 +1,29 @@
|
||||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build s390x,!gccgo,!appengine
|
||||
|
||||
package chacha20
|
||||
|
||||
import (
|
||||
"golang.org/x/sys/cpu"
|
||||
)
|
||||
|
||||
var haveAsm = cpu.S390X.HasVX
|
||||
|
||||
const bufSize = 256
|
||||
|
||||
// xorKeyStreamVX is an assembly implementation of XORKeyStream. It must only
|
||||
// be called when the vector facility is available.
|
||||
// Implementation in asm_s390x.s.
|
||||
//go:noescape
|
||||
func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32, buf *[256]byte, len *int)
|
||||
|
||||
func (c *Cipher) xorKeyStreamAsm(dst, src []byte) {
|
||||
xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter, &c.buf, &c.len)
|
||||
}
|
||||
|
||||
// EXRL targets, DO NOT CALL!
|
||||
func mvcSrcToBuf()
|
||||
func mvcBufToDst()
|
260
vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.s
generated
vendored
Normal file
260
vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.s
generated
vendored
Normal file
@ -0,0 +1,260 @@
|
||||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build s390x,!gccgo,!appengine
|
||||
|
||||
#include "go_asm.h"
|
||||
#include "textflag.h"
|
||||
|
||||
// This is an implementation of the ChaCha20 encryption algorithm as
|
||||
// specified in RFC 7539. It uses vector instructions to compute
|
||||
// 4 keystream blocks in parallel (256 bytes) which are then XORed
|
||||
// with the bytes in the input slice.
|
||||
|
||||
GLOBL ·constants<>(SB), RODATA|NOPTR, $32
|
||||
// BSWAP: swap bytes in each 4-byte element
|
||||
DATA ·constants<>+0x00(SB)/4, $0x03020100
|
||||
DATA ·constants<>+0x04(SB)/4, $0x07060504
|
||||
DATA ·constants<>+0x08(SB)/4, $0x0b0a0908
|
||||
DATA ·constants<>+0x0c(SB)/4, $0x0f0e0d0c
|
||||
// J0: [j0, j1, j2, j3]
|
||||
DATA ·constants<>+0x10(SB)/4, $0x61707865
|
||||
DATA ·constants<>+0x14(SB)/4, $0x3320646e
|
||||
DATA ·constants<>+0x18(SB)/4, $0x79622d32
|
||||
DATA ·constants<>+0x1c(SB)/4, $0x6b206574
|
||||
|
||||
// EXRL targets:
|
||||
TEXT ·mvcSrcToBuf(SB), NOFRAME|NOSPLIT, $0
|
||||
MVC $1, (R1), (R8)
|
||||
RET
|
||||
|
||||
TEXT ·mvcBufToDst(SB), NOFRAME|NOSPLIT, $0
|
||||
MVC $1, (R8), (R9)
|
||||
RET
|
||||
|
||||
#define BSWAP V5
|
||||
#define J0 V6
|
||||
#define KEY0 V7
|
||||
#define KEY1 V8
|
||||
#define NONCE V9
|
||||
#define CTR V10
|
||||
#define M0 V11
|
||||
#define M1 V12
|
||||
#define M2 V13
|
||||
#define M3 V14
|
||||
#define INC V15
|
||||
#define X0 V16
|
||||
#define X1 V17
|
||||
#define X2 V18
|
||||
#define X3 V19
|
||||
#define X4 V20
|
||||
#define X5 V21
|
||||
#define X6 V22
|
||||
#define X7 V23
|
||||
#define X8 V24
|
||||
#define X9 V25
|
||||
#define X10 V26
|
||||
#define X11 V27
|
||||
#define X12 V28
|
||||
#define X13 V29
|
||||
#define X14 V30
|
||||
#define X15 V31
|
||||
|
||||
#define NUM_ROUNDS 20
|
||||
|
||||
#define ROUND4(a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3, d0, d1, d2, d3) \
|
||||
VAF a1, a0, a0 \
|
||||
VAF b1, b0, b0 \
|
||||
VAF c1, c0, c0 \
|
||||
VAF d1, d0, d0 \
|
||||
VX a0, a2, a2 \
|
||||
VX b0, b2, b2 \
|
||||
VX c0, c2, c2 \
|
||||
VX d0, d2, d2 \
|
||||
VERLLF $16, a2, a2 \
|
||||
VERLLF $16, b2, b2 \
|
||||
VERLLF $16, c2, c2 \
|
||||
VERLLF $16, d2, d2 \
|
||||
VAF a2, a3, a3 \
|
||||
VAF b2, b3, b3 \
|
||||
VAF c2, c3, c3 \
|
||||
VAF d2, d3, d3 \
|
||||
VX a3, a1, a1 \
|
||||
VX b3, b1, b1 \
|
||||
VX c3, c1, c1 \
|
||||
VX d3, d1, d1 \
|
||||
VERLLF $12, a1, a1 \
|
||||
VERLLF $12, b1, b1 \
|
||||
VERLLF $12, c1, c1 \
|
||||
VERLLF $12, d1, d1 \
|
||||
VAF a1, a0, a0 \
|
||||
VAF b1, b0, b0 \
|
||||
VAF c1, c0, c0 \
|
||||
VAF d1, d0, d0 \
|
||||
VX a0, a2, a2 \
|
||||
VX b0, b2, b2 \
|
||||
VX c0, c2, c2 \
|
||||
VX d0, d2, d2 \
|
||||
VERLLF $8, a2, a2 \
|
||||
VERLLF $8, b2, b2 \
|
||||
VERLLF $8, c2, c2 \
|
||||
VERLLF $8, d2, d2 \
|
||||
VAF a2, a3, a3 \
|
||||
VAF b2, b3, b3 \
|
||||
VAF c2, c3, c3 \
|
||||
VAF d2, d3, d3 \
|
||||
VX a3, a1, a1 \
|
||||
VX b3, b1, b1 \
|
||||
VX c3, c1, c1 \
|
||||
VX d3, d1, d1 \
|
||||
VERLLF $7, a1, a1 \
|
||||
VERLLF $7, b1, b1 \
|
||||
VERLLF $7, c1, c1 \
|
||||
VERLLF $7, d1, d1
|
||||
|
||||
#define PERMUTE(mask, v0, v1, v2, v3) \
|
||||
VPERM v0, v0, mask, v0 \
|
||||
VPERM v1, v1, mask, v1 \
|
||||
VPERM v2, v2, mask, v2 \
|
||||
VPERM v3, v3, mask, v3
|
||||
|
||||
#define ADDV(x, v0, v1, v2, v3) \
|
||||
VAF x, v0, v0 \
|
||||
VAF x, v1, v1 \
|
||||
VAF x, v2, v2 \
|
||||
VAF x, v3, v3
|
||||
|
||||
#define XORV(off, dst, src, v0, v1, v2, v3) \
|
||||
VLM off(src), M0, M3 \
|
||||
PERMUTE(BSWAP, v0, v1, v2, v3) \
|
||||
VX v0, M0, M0 \
|
||||
VX v1, M1, M1 \
|
||||
VX v2, M2, M2 \
|
||||
VX v3, M3, M3 \
|
||||
VSTM M0, M3, off(dst)
|
||||
|
||||
#define SHUFFLE(a, b, c, d, t, u, v, w) \
|
||||
VMRHF a, c, t \ // t = {a[0], c[0], a[1], c[1]}
|
||||
VMRHF b, d, u \ // u = {b[0], d[0], b[1], d[1]}
|
||||
VMRLF a, c, v \ // v = {a[2], c[2], a[3], c[3]}
|
||||
VMRLF b, d, w \ // w = {b[2], d[2], b[3], d[3]}
|
||||
VMRHF t, u, a \ // a = {a[0], b[0], c[0], d[0]}
|
||||
VMRLF t, u, b \ // b = {a[1], b[1], c[1], d[1]}
|
||||
VMRHF v, w, c \ // c = {a[2], b[2], c[2], d[2]}
|
||||
VMRLF v, w, d // d = {a[3], b[3], c[3], d[3]}
|
||||
|
||||
// func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32, buf *[256]byte, len *int)
|
||||
TEXT ·xorKeyStreamVX(SB), NOSPLIT, $0
|
||||
MOVD $·constants<>(SB), R1
|
||||
MOVD dst+0(FP), R2 // R2=&dst[0]
|
||||
LMG src+24(FP), R3, R4 // R3=&src[0] R4=len(src)
|
||||
MOVD key+48(FP), R5 // R5=key
|
||||
MOVD nonce+56(FP), R6 // R6=nonce
|
||||
MOVD counter+64(FP), R7 // R7=counter
|
||||
MOVD buf+72(FP), R8 // R8=buf
|
||||
MOVD len+80(FP), R9 // R9=len
|
||||
|
||||
// load BSWAP and J0
|
||||
VLM (R1), BSWAP, J0
|
||||
|
||||
// set up tail buffer
|
||||
ADD $-1, R4, R12
|
||||
MOVBZ R12, R12
|
||||
CMPUBEQ R12, $255, aligned
|
||||
MOVD R4, R1
|
||||
AND $~255, R1
|
||||
MOVD $(R3)(R1*1), R1
|
||||
EXRL $·mvcSrcToBuf(SB), R12
|
||||
MOVD $255, R0
|
||||
SUB R12, R0
|
||||
MOVD R0, (R9) // update len
|
||||
|
||||
aligned:
|
||||
// setup
|
||||
MOVD $95, R0
|
||||
VLM (R5), KEY0, KEY1
|
||||
VLL R0, (R6), NONCE
|
||||
VZERO M0
|
||||
VLEIB $7, $32, M0
|
||||
VSRLB M0, NONCE, NONCE
|
||||
|
||||
// initialize counter values
|
||||
VLREPF (R7), CTR
|
||||
VZERO INC
|
||||
VLEIF $1, $1, INC
|
||||
VLEIF $2, $2, INC
|
||||
VLEIF $3, $3, INC
|
||||
VAF INC, CTR, CTR
|
||||
VREPIF $4, INC
|
||||
|
||||
chacha:
|
||||
VREPF $0, J0, X0
|
||||
VREPF $1, J0, X1
|
||||
VREPF $2, J0, X2
|
||||
VREPF $3, J0, X3
|
||||
VREPF $0, KEY0, X4
|
||||
VREPF $1, KEY0, X5
|
||||
VREPF $2, KEY0, X6
|
||||
VREPF $3, KEY0, X7
|
||||
VREPF $0, KEY1, X8
|
||||
VREPF $1, KEY1, X9
|
||||
VREPF $2, KEY1, X10
|
||||
VREPF $3, KEY1, X11
|
||||
VLR CTR, X12
|
||||
VREPF $1, NONCE, X13
|
||||
VREPF $2, NONCE, X14
|
||||
VREPF $3, NONCE, X15
|
||||
|
||||
MOVD $(NUM_ROUNDS/2), R1
|
||||
|
||||
loop:
|
||||
ROUND4(X0, X4, X12, X8, X1, X5, X13, X9, X2, X6, X14, X10, X3, X7, X15, X11)
|
||||
ROUND4(X0, X5, X15, X10, X1, X6, X12, X11, X2, X7, X13, X8, X3, X4, X14, X9)
|
||||
|
||||
ADD $-1, R1
|
||||
BNE loop
|
||||
|
||||
// decrement length
|
||||
ADD $-256, R4
|
||||
BLT tail
|
||||
|
||||
continue:
|
||||
// rearrange vectors
|
||||
SHUFFLE(X0, X1, X2, X3, M0, M1, M2, M3)
|
||||
ADDV(J0, X0, X1, X2, X3)
|
||||
SHUFFLE(X4, X5, X6, X7, M0, M1, M2, M3)
|
||||
ADDV(KEY0, X4, X5, X6, X7)
|
||||
SHUFFLE(X8, X9, X10, X11, M0, M1, M2, M3)
|
||||
ADDV(KEY1, X8, X9, X10, X11)
|
||||
VAF CTR, X12, X12
|
||||
SHUFFLE(X12, X13, X14, X15, M0, M1, M2, M3)
|
||||
ADDV(NONCE, X12, X13, X14, X15)
|
||||
|
||||
// increment counters
|
||||
VAF INC, CTR, CTR
|
||||
|
||||
// xor keystream with plaintext
|
||||
XORV(0*64, R2, R3, X0, X4, X8, X12)
|
||||
XORV(1*64, R2, R3, X1, X5, X9, X13)
|
||||
XORV(2*64, R2, R3, X2, X6, X10, X14)
|
||||
XORV(3*64, R2, R3, X3, X7, X11, X15)
|
||||
|
||||
// increment pointers
|
||||
MOVD $256(R2), R2
|
||||
MOVD $256(R3), R3
|
||||
|
||||
CMPBNE R4, $0, chacha
|
||||
CMPUBEQ R12, $255, return
|
||||
EXRL $·mvcBufToDst(SB), R12 // len was updated during setup
|
||||
|
||||
return:
|
||||
VSTEF $0, CTR, (R7)
|
||||
RET
|
||||
|
||||
tail:
|
||||
MOVD R2, R9
|
||||
MOVD R8, R2
|
||||
MOVD R8, R3
|
||||
MOVD $0, R4
|
||||
JMP continue
|
43
vendor/golang.org/x/crypto/internal/chacha20/xor.go
generated
vendored
Normal file
43
vendor/golang.org/x/crypto/internal/chacha20/xor.go
generated
vendored
Normal file
@ -0,0 +1,43 @@
|
||||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found src the LICENSE file.
|
||||
|
||||
package chacha20
|
||||
|
||||
import (
|
||||
"runtime"
|
||||
)
|
||||
|
||||
// Platforms that have fast unaligned 32-bit little endian accesses.
|
||||
const unaligned = runtime.GOARCH == "386" ||
|
||||
runtime.GOARCH == "amd64" ||
|
||||
runtime.GOARCH == "arm64" ||
|
||||
runtime.GOARCH == "ppc64le" ||
|
||||
runtime.GOARCH == "s390x"
|
||||
|
||||
// xor reads a little endian uint32 from src, XORs it with u and
|
||||
// places the result in little endian byte order in dst.
|
||||
func xor(dst, src []byte, u uint32) {
|
||||
_, _ = src[3], dst[3] // eliminate bounds checks
|
||||
if unaligned {
|
||||
// The compiler should optimize this code into
|
||||
// 32-bit unaligned little endian loads and stores.
|
||||
// TODO: delete once the compiler does a reliably
|
||||
// good job with the generic code below.
|
||||
// See issue #25111 for more details.
|
||||
v := uint32(src[0])
|
||||
v |= uint32(src[1]) << 8
|
||||
v |= uint32(src[2]) << 16
|
||||
v |= uint32(src[3]) << 24
|
||||
v ^= u
|
||||
dst[0] = byte(v)
|
||||
dst[1] = byte(v >> 8)
|
||||
dst[2] = byte(v >> 16)
|
||||
dst[3] = byte(v >> 24)
|
||||
} else {
|
||||
dst[0] = src[0] ^ byte(u)
|
||||
dst[1] = src[1] ^ byte(u>>8)
|
||||
dst[2] = src[2] ^ byte(u>>16)
|
||||
dst[3] = src[3] ^ byte(u>>24)
|
||||
}
|
||||
}
|
32
vendor/golang.org/x/crypto/internal/subtle/aliasing.go
generated
vendored
Normal file
32
vendor/golang.org/x/crypto/internal/subtle/aliasing.go
generated
vendored
Normal file
@ -0,0 +1,32 @@
|
||||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !appengine
|
||||
|
||||
// Package subtle implements functions that are often useful in cryptographic
|
||||
// code but require careful thought to use correctly.
|
||||
package subtle // import "golang.org/x/crypto/internal/subtle"
|
||||
|
||||
import "unsafe"
|
||||
|
||||
// AnyOverlap reports whether x and y share memory at any (not necessarily
|
||||
// corresponding) index. The memory beyond the slice length is ignored.
|
||||
func AnyOverlap(x, y []byte) bool {
|
||||
return len(x) > 0 && len(y) > 0 &&
|
||||
uintptr(unsafe.Pointer(&x[0])) <= uintptr(unsafe.Pointer(&y[len(y)-1])) &&
|
||||
uintptr(unsafe.Pointer(&y[0])) <= uintptr(unsafe.Pointer(&x[len(x)-1]))
|
||||
}
|
||||
|
||||
// InexactOverlap reports whether x and y share memory at any non-corresponding
|
||||
// index. The memory beyond the slice length is ignored. Note that x and y can
|
||||
// have different lengths and still not have any inexact overlap.
|
||||
//
|
||||
// InexactOverlap can be used to implement the requirements of the crypto/cipher
|
||||
// AEAD, Block, BlockMode and Stream interfaces.
|
||||
func InexactOverlap(x, y []byte) bool {
|
||||
if len(x) == 0 || len(y) == 0 || &x[0] == &y[0] {
|
||||
return false
|
||||
}
|
||||
return AnyOverlap(x, y)
|
||||
}
|
35
vendor/golang.org/x/crypto/internal/subtle/aliasing_appengine.go
generated
vendored
Normal file
35
vendor/golang.org/x/crypto/internal/subtle/aliasing_appengine.go
generated
vendored
Normal file
@ -0,0 +1,35 @@
|
||||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build appengine
|
||||
|
||||
// Package subtle implements functions that are often useful in cryptographic
|
||||
// code but require careful thought to use correctly.
|
||||
package subtle // import "golang.org/x/crypto/internal/subtle"
|
||||
|
||||
// This is the Google App Engine standard variant based on reflect
|
||||
// because the unsafe package and cgo are disallowed.
|
||||
|
||||
import "reflect"
|
||||
|
||||
// AnyOverlap reports whether x and y share memory at any (not necessarily
|
||||
// corresponding) index. The memory beyond the slice length is ignored.
|
||||
func AnyOverlap(x, y []byte) bool {
|
||||
return len(x) > 0 && len(y) > 0 &&
|
||||
reflect.ValueOf(&x[0]).Pointer() <= reflect.ValueOf(&y[len(y)-1]).Pointer() &&
|
||||
reflect.ValueOf(&y[0]).Pointer() <= reflect.ValueOf(&x[len(x)-1]).Pointer()
|
||||
}
|
||||
|
||||
// InexactOverlap reports whether x and y share memory at any non-corresponding
|
||||
// index. The memory beyond the slice length is ignored. Note that x and y can
|
||||
// have different lengths and still not have any inexact overlap.
|
||||
//
|
||||
// InexactOverlap can be used to implement the requirements of the crypto/cipher
|
||||
// AEAD, Block, BlockMode and Stream interfaces.
|
||||
func InexactOverlap(x, y []byte) bool {
|
||||
if len(x) == 0 || len(y) == 0 || &x[0] == &y[0] {
|
||||
return false
|
||||
}
|
||||
return AnyOverlap(x, y)
|
||||
}
|
Reference in New Issue
Block a user