vendor update for E2E framework

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
This commit is contained in:
Madhu Rajanna
2019-05-31 15:15:11 +05:30
parent 9bb23e4e32
commit d300da19b7
2149 changed files with 598692 additions and 14107 deletions

View File

@ -0,0 +1,220 @@
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package util
import (
"fmt"
"sync"
"sync/atomic"
"time"
ktypes "k8s.io/apimachinery/pkg/types"
"k8s.io/klog"
)
type clock interface {
Now() time.Time
}
type realClock struct{}
func (realClock) Now() time.Time {
return time.Now()
}
// backoffEntry is single threaded. in particular, it only allows a single action to be waiting on backoff at a time.
// It is also not safe to copy this object.
type backoffEntry struct {
initialized bool
podName ktypes.NamespacedName
backoff time.Duration
lastUpdate time.Time
reqInFlight int32
}
// tryLock attempts to acquire a lock via atomic compare and swap.
// returns true if the lock was acquired, false otherwise
func (b *backoffEntry) tryLock() bool {
return atomic.CompareAndSwapInt32(&b.reqInFlight, 0, 1)
}
// unlock returns the lock. panics if the lock isn't held
func (b *backoffEntry) unlock() {
if !atomic.CompareAndSwapInt32(&b.reqInFlight, 1, 0) {
panic(fmt.Sprintf("unexpected state on unlocking: %+v", b))
}
}
// backoffTime returns the Time when a backoffEntry completes backoff
func (b *backoffEntry) backoffTime() time.Time {
return b.lastUpdate.Add(b.backoff)
}
// getBackoff returns the duration until this entry completes backoff
func (b *backoffEntry) getBackoff(maxDuration time.Duration) time.Duration {
if !b.initialized {
b.initialized = true
return b.backoff
}
newDuration := b.backoff * 2
if newDuration > maxDuration {
newDuration = maxDuration
}
b.backoff = newDuration
klog.V(4).Infof("Backing off %s", newDuration.String())
return newDuration
}
// PodBackoff is used to restart a pod with back-off delay.
type PodBackoff struct {
// expiryQ stores backoffEntry orderedy by lastUpdate until they reach maxDuration and are GC'd
expiryQ *Heap
lock sync.Mutex
clock clock
defaultDuration time.Duration
maxDuration time.Duration
}
// MaxDuration returns the max time duration of the back-off.
func (p *PodBackoff) MaxDuration() time.Duration {
return p.maxDuration
}
// CreateDefaultPodBackoff creates a default pod back-off object.
func CreateDefaultPodBackoff() *PodBackoff {
return CreatePodBackoff(1*time.Second, 60*time.Second)
}
// CreatePodBackoff creates a pod back-off object by default duration and max duration.
func CreatePodBackoff(defaultDuration, maxDuration time.Duration) *PodBackoff {
return CreatePodBackoffWithClock(defaultDuration, maxDuration, realClock{})
}
// CreatePodBackoffWithClock creates a pod back-off object by default duration, max duration and clock.
func CreatePodBackoffWithClock(defaultDuration, maxDuration time.Duration, clock clock) *PodBackoff {
return &PodBackoff{
expiryQ: NewHeap(backoffEntryKeyFunc, backoffEntryCompareUpdate),
clock: clock,
defaultDuration: defaultDuration,
maxDuration: maxDuration,
}
}
// getEntry returns the backoffEntry for a given podID
func (p *PodBackoff) getEntry(podID ktypes.NamespacedName) *backoffEntry {
entry, exists, _ := p.expiryQ.GetByKey(podID.String())
var be *backoffEntry
if !exists {
be = &backoffEntry{
initialized: false,
podName: podID,
backoff: p.defaultDuration,
}
p.expiryQ.Update(be)
} else {
be = entry.(*backoffEntry)
}
return be
}
// BackoffPod updates the backoff for a podId and returns the duration until backoff completion
func (p *PodBackoff) BackoffPod(podID ktypes.NamespacedName) time.Duration {
p.lock.Lock()
defer p.lock.Unlock()
entry := p.getEntry(podID)
entry.lastUpdate = p.clock.Now()
p.expiryQ.Update(entry)
return entry.getBackoff(p.maxDuration)
}
// TryBackoffAndWait tries to acquire the backoff lock
func (p *PodBackoff) TryBackoffAndWait(podID ktypes.NamespacedName, stop <-chan struct{}) bool {
p.lock.Lock()
entry := p.getEntry(podID)
if !entry.tryLock() {
p.lock.Unlock()
return false
}
defer entry.unlock()
duration := entry.getBackoff(p.maxDuration)
p.lock.Unlock()
select {
case <-time.After(duration):
return true
case <-stop:
return false
}
}
// Gc execute garbage collection on the pod back-off.
func (p *PodBackoff) Gc() {
p.lock.Lock()
defer p.lock.Unlock()
now := p.clock.Now()
var be *backoffEntry
for {
entry := p.expiryQ.Peek()
if entry == nil {
break
}
be = entry.(*backoffEntry)
if now.Sub(be.lastUpdate) > p.maxDuration {
p.expiryQ.Pop()
} else {
break
}
}
}
// GetBackoffTime returns the time that podID completes backoff
func (p *PodBackoff) GetBackoffTime(podID ktypes.NamespacedName) (time.Time, bool) {
p.lock.Lock()
defer p.lock.Unlock()
rawBe, exists, _ := p.expiryQ.GetByKey(podID.String())
if !exists {
return time.Time{}, false
}
be := rawBe.(*backoffEntry)
return be.lastUpdate.Add(be.backoff), true
}
// ClearPodBackoff removes all tracking information for podID (clears expiry)
func (p *PodBackoff) ClearPodBackoff(podID ktypes.NamespacedName) bool {
p.lock.Lock()
defer p.lock.Unlock()
entry, exists, _ := p.expiryQ.GetByKey(podID.String())
if exists {
err := p.expiryQ.Delete(entry)
return err == nil
}
return false
}
// backoffEntryKeyFunc is the keying function used for mapping a backoffEntry to string for heap
func backoffEntryKeyFunc(b interface{}) (string, error) {
be := b.(*backoffEntry)
return be.podName.String(), nil
}
// backoffEntryCompareUpdate returns true when b1's backoff time is before b2's
func backoffEntryCompareUpdate(b1, b2 interface{}) bool {
be1 := b1.(*backoffEntry)
be2 := b2.(*backoffEntry)
return be1.lastUpdate.Before(be2.lastUpdate)
}

34
vendor/k8s.io/kubernetes/pkg/scheduler/util/clock.go generated vendored Normal file
View File

@ -0,0 +1,34 @@
/*
Copyright 2018 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package util
import (
"time"
)
// Clock provides an interface for getting the current time
type Clock interface {
Now() time.Time
}
// RealClock implements a clock using time
type RealClock struct{}
// Now returns the current time with time.Now
func (RealClock) Now() time.Time {
return time.Now()
}

236
vendor/k8s.io/kubernetes/pkg/scheduler/util/heap.go generated vendored Normal file
View File

@ -0,0 +1,236 @@
/*
Copyright 2018 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Below is the implementation of the a heap. The logic is pretty much the same
// as cache.heap, however, this heap does not perform synchronization. It leaves
// synchronization to the SchedulingQueue.
package util
import (
"container/heap"
"fmt"
"k8s.io/client-go/tools/cache"
)
// KeyFunc is a function type to get the key from an object.
type KeyFunc func(obj interface{}) (string, error)
type heapItem struct {
obj interface{} // The object which is stored in the heap.
index int // The index of the object's key in the Heap.queue.
}
type itemKeyValue struct {
key string
obj interface{}
}
// heapData is an internal struct that implements the standard heap interface
// and keeps the data stored in the heap.
type heapData struct {
// items is a map from key of the objects to the objects and their index.
// We depend on the property that items in the map are in the queue and vice versa.
items map[string]*heapItem
// queue implements a heap data structure and keeps the order of elements
// according to the heap invariant. The queue keeps the keys of objects stored
// in "items".
queue []string
// keyFunc is used to make the key used for queued item insertion and retrieval, and
// should be deterministic.
keyFunc KeyFunc
// lessFunc is used to compare two objects in the heap.
lessFunc LessFunc
}
var (
_ = heap.Interface(&heapData{}) // heapData is a standard heap
)
// Less compares two objects and returns true if the first one should go
// in front of the second one in the heap.
func (h *heapData) Less(i, j int) bool {
if i > len(h.queue) || j > len(h.queue) {
return false
}
itemi, ok := h.items[h.queue[i]]
if !ok {
return false
}
itemj, ok := h.items[h.queue[j]]
if !ok {
return false
}
return h.lessFunc(itemi.obj, itemj.obj)
}
// Len returns the number of items in the Heap.
func (h *heapData) Len() int { return len(h.queue) }
// Swap implements swapping of two elements in the heap. This is a part of standard
// heap interface and should never be called directly.
func (h *heapData) Swap(i, j int) {
h.queue[i], h.queue[j] = h.queue[j], h.queue[i]
item := h.items[h.queue[i]]
item.index = i
item = h.items[h.queue[j]]
item.index = j
}
// Push is supposed to be called by heap.Push only.
func (h *heapData) Push(kv interface{}) {
keyValue := kv.(*itemKeyValue)
n := len(h.queue)
h.items[keyValue.key] = &heapItem{keyValue.obj, n}
h.queue = append(h.queue, keyValue.key)
}
// Pop is supposed to be called by heap.Pop only.
func (h *heapData) Pop() interface{} {
key := h.queue[len(h.queue)-1]
h.queue = h.queue[0 : len(h.queue)-1]
item, ok := h.items[key]
if !ok {
// This is an error
return nil
}
delete(h.items, key)
return item.obj
}
// Peek is supposed to be called by heap.Peek only.
func (h *heapData) Peek() interface{} {
if len(h.queue) > 0 {
return h.items[h.queue[0]].obj
}
return nil
}
// Heap is a producer/consumer queue that implements a heap data structure.
// It can be used to implement priority queues and similar data structures.
type Heap struct {
// data stores objects and has a queue that keeps their ordering according
// to the heap invariant.
data *heapData
}
// Add inserts an item, and puts it in the queue. The item is updated if it
// already exists.
func (h *Heap) Add(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; exists {
h.data.items[key].obj = obj
heap.Fix(h.data, h.data.items[key].index)
} else {
heap.Push(h.data, &itemKeyValue{key, obj})
}
return nil
}
// AddIfNotPresent inserts an item, and puts it in the queue. If an item with
// the key is present in the map, no changes is made to the item.
func (h *Heap) AddIfNotPresent(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; !exists {
heap.Push(h.data, &itemKeyValue{key, obj})
}
return nil
}
// Update is the same as Add in this implementation. When the item does not
// exist, it is added.
func (h *Heap) Update(obj interface{}) error {
return h.Add(obj)
}
// Delete removes an item.
func (h *Heap) Delete(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if item, ok := h.data.items[key]; ok {
heap.Remove(h.data, item.index)
return nil
}
return fmt.Errorf("object not found")
}
// Peek returns the head of the heap without removing it.
func (h *Heap) Peek() interface{} {
return h.data.Peek()
}
// Pop returns the head of the heap and removes it.
func (h *Heap) Pop() (interface{}, error) {
obj := heap.Pop(h.data)
if obj != nil {
return obj, nil
}
return nil, fmt.Errorf("object was removed from heap data")
}
// Get returns the requested item, or sets exists=false.
func (h *Heap) Get(obj interface{}) (interface{}, bool, error) {
key, err := h.data.keyFunc(obj)
if err != nil {
return nil, false, cache.KeyError{Obj: obj, Err: err}
}
return h.GetByKey(key)
}
// GetByKey returns the requested item, or sets exists=false.
func (h *Heap) GetByKey(key string) (interface{}, bool, error) {
item, exists := h.data.items[key]
if !exists {
return nil, false, nil
}
return item.obj, true, nil
}
// List returns a list of all the items.
func (h *Heap) List() []interface{} {
list := make([]interface{}, 0, len(h.data.items))
for _, item := range h.data.items {
list = append(list, item.obj)
}
return list
}
// Len returns the number of items in the heap.
func (h *Heap) Len() int {
return len(h.data.queue)
}
// NewHeap returns a Heap which can be used to queue up items to process.
func NewHeap(keyFn KeyFunc, lessFn LessFunc) *Heap {
return &Heap{
data: &heapData{
items: map[string]*heapItem{},
queue: []string{},
keyFunc: keyFn,
lessFunc: lessFn,
},
}
}

99
vendor/k8s.io/kubernetes/pkg/scheduler/util/utils.go generated vendored Normal file
View File

@ -0,0 +1,99 @@
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package util
import (
"sort"
"k8s.io/api/core/v1"
"k8s.io/apiserver/pkg/util/feature"
"k8s.io/kubernetes/pkg/apis/scheduling"
"k8s.io/kubernetes/pkg/features"
)
// GetContainerPorts returns the used host ports of Pods: if 'port' was used, a 'port:true' pair
// will be in the result; but it does not resolve port conflict.
func GetContainerPorts(pods ...*v1.Pod) []*v1.ContainerPort {
var ports []*v1.ContainerPort
for _, pod := range pods {
for j := range pod.Spec.Containers {
container := &pod.Spec.Containers[j]
for k := range container.Ports {
ports = append(ports, &container.Ports[k])
}
}
}
return ports
}
// PodPriorityEnabled indicates whether pod priority feature is enabled.
func PodPriorityEnabled() bool {
return feature.DefaultFeatureGate.Enabled(features.PodPriority)
}
// GetPodFullName returns a name that uniquely identifies a pod.
func GetPodFullName(pod *v1.Pod) string {
// Use underscore as the delimiter because it is not allowed in pod name
// (DNS subdomain format).
return pod.Name + "_" + pod.Namespace
}
// GetPodPriority return priority of the given pod.
func GetPodPriority(pod *v1.Pod) int32 {
if pod.Spec.Priority != nil {
return *pod.Spec.Priority
}
// When priority of a running pod is nil, it means it was created at a time
// that there was no global default priority class and the priority class
// name of the pod was empty. So, we resolve to the static default priority.
return scheduling.DefaultPriorityWhenNoDefaultClassExists
}
// SortableList is a list that implements sort.Interface.
type SortableList struct {
Items []interface{}
CompFunc LessFunc
}
// LessFunc is a function that receives two items and returns true if the first
// item should be placed before the second one when the list is sorted.
type LessFunc func(item1, item2 interface{}) bool
var _ = sort.Interface(&SortableList{})
func (l *SortableList) Len() int { return len(l.Items) }
func (l *SortableList) Less(i, j int) bool {
return l.CompFunc(l.Items[i], l.Items[j])
}
func (l *SortableList) Swap(i, j int) {
l.Items[i], l.Items[j] = l.Items[j], l.Items[i]
}
// Sort sorts the items in the list using the given CompFunc. Item1 is placed
// before Item2 when CompFunc(Item1, Item2) returns true.
func (l *SortableList) Sort() {
sort.Sort(l)
}
// HigherPriorityPod return true when priority of the first pod is higher than
// the second one. It takes arguments of the type "interface{}" to be used with
// SortableList, but expects those arguments to be *v1.Pod.
func HigherPriorityPod(pod1, pod2 interface{}) bool {
return GetPodPriority(pod1.(*v1.Pod)) > GetPodPriority(pod2.(*v1.Pod))
}