rebase: update kubernetes to v1.25.0

update kubernetes to latest v1.25.0
release.

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
This commit is contained in:
Madhu Rajanna
2022-08-24 07:54:25 +05:30
committed by mergify[bot]
parent f47839d73d
commit e3bf375035
645 changed files with 42507 additions and 9219 deletions

View File

@ -30,8 +30,9 @@ import (
"golang.org/x/crypto/ssh/internal/bcrypt_pbkdf"
)
// These constants represent the algorithm names for key types supported by this
// package.
// Public key algorithms names. These values can appear in PublicKey.Type,
// ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner
// arguments.
const (
KeyAlgoRSA = "ssh-rsa"
KeyAlgoDSA = "ssh-dss"
@ -41,16 +42,21 @@ const (
KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"
KeyAlgoED25519 = "ssh-ed25519"
KeyAlgoSKED25519 = "sk-ssh-ed25519@openssh.com"
// KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not
// public key formats, so they can't appear as a PublicKey.Type. The
// corresponding PublicKey.Type is KeyAlgoRSA. See RFC 8332, Section 2.
KeyAlgoRSASHA256 = "rsa-sha2-256"
KeyAlgoRSASHA512 = "rsa-sha2-512"
)
// These constants represent non-default signature algorithms that are supported
// as algorithm parameters to AlgorithmSigner.SignWithAlgorithm methods. See
// [PROTOCOL.agent] section 4.5.1 and
// https://tools.ietf.org/html/draft-ietf-curdle-rsa-sha2-10
const (
SigAlgoRSA = "ssh-rsa"
SigAlgoRSASHA2256 = "rsa-sha2-256"
SigAlgoRSASHA2512 = "rsa-sha2-512"
// Deprecated: use KeyAlgoRSA.
SigAlgoRSA = KeyAlgoRSA
// Deprecated: use KeyAlgoRSASHA256.
SigAlgoRSASHA2256 = KeyAlgoRSASHA256
// Deprecated: use KeyAlgoRSASHA512.
SigAlgoRSASHA2512 = KeyAlgoRSASHA512
)
// parsePubKey parses a public key of the given algorithm.
@ -70,7 +76,7 @@ func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err err
case KeyAlgoSKED25519:
return parseSKEd25519(in)
case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
cert, err := parseCert(in, certToPrivAlgo(algo))
cert, err := parseCert(in, certKeyAlgoNames[algo])
if err != nil {
return nil, nil, err
}
@ -289,18 +295,21 @@ func MarshalAuthorizedKey(key PublicKey) []byte {
return b.Bytes()
}
// PublicKey is an abstraction of different types of public keys.
// PublicKey represents a public key using an unspecified algorithm.
//
// Some PublicKeys provided by this package also implement CryptoPublicKey.
type PublicKey interface {
// Type returns the key's type, e.g. "ssh-rsa".
// Type returns the key format name, e.g. "ssh-rsa".
Type() string
// Marshal returns the serialized key data in SSH wire format,
// with the name prefix. To unmarshal the returned data, use
// the ParsePublicKey function.
// Marshal returns the serialized key data in SSH wire format, with the name
// prefix. To unmarshal the returned data, use the ParsePublicKey function.
Marshal() []byte
// Verify that sig is a signature on the given data using this
// key. This function will hash the data appropriately first.
// Verify that sig is a signature on the given data using this key. This
// method will hash the data appropriately first. sig.Format is allowed to
// be any signature algorithm compatible with the key type, the caller
// should check if it has more stringent requirements.
Verify(data []byte, sig *Signature) error
}
@ -311,25 +320,32 @@ type CryptoPublicKey interface {
}
// A Signer can create signatures that verify against a public key.
//
// Some Signers provided by this package also implement AlgorithmSigner.
type Signer interface {
// PublicKey returns an associated PublicKey instance.
// PublicKey returns the associated PublicKey.
PublicKey() PublicKey
// Sign returns raw signature for the given data. This method
// will apply the hash specified for the keytype to the data.
// Sign returns a signature for the given data. This method will hash the
// data appropriately first. The signature algorithm is expected to match
// the key format returned by the PublicKey.Type method (and not to be any
// alternative algorithm supported by the key format).
Sign(rand io.Reader, data []byte) (*Signature, error)
}
// A AlgorithmSigner is a Signer that also supports specifying a specific
// algorithm to use for signing.
// An AlgorithmSigner is a Signer that also supports specifying an algorithm to
// use for signing.
//
// An AlgorithmSigner can't advertise the algorithms it supports, so it should
// be prepared to be invoked with every algorithm supported by the public key
// format.
type AlgorithmSigner interface {
Signer
// SignWithAlgorithm is like Signer.Sign, but allows specification of a
// non-default signing algorithm. See the SigAlgo* constants in this
// package for signature algorithms supported by this package. Callers may
// pass an empty string for the algorithm in which case the AlgorithmSigner
// will use its default algorithm.
// SignWithAlgorithm is like Signer.Sign, but allows specifying a desired
// signing algorithm. Callers may pass an empty string for the algorithm in
// which case the AlgorithmSigner will use a default algorithm. This default
// doesn't currently control any behavior in this package.
SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
}
@ -381,17 +397,11 @@ func (r *rsaPublicKey) Marshal() []byte {
}
func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
var hash crypto.Hash
switch sig.Format {
case SigAlgoRSA:
hash = crypto.SHA1
case SigAlgoRSASHA2256:
hash = crypto.SHA256
case SigAlgoRSASHA2512:
hash = crypto.SHA512
default:
supportedAlgos := algorithmsForKeyFormat(r.Type())
if !contains(supportedAlgos, sig.Format) {
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
}
hash := hashFuncs[sig.Format]
h := hash.New()
h.Write(data)
digest := h.Sum(nil)
@ -466,7 +476,7 @@ func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
if sig.Format != k.Type() {
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
}
h := crypto.SHA1.New()
h := hashFuncs[sig.Format].New()
h.Write(data)
digest := h.Sum(nil)
@ -499,7 +509,7 @@ func (k *dsaPrivateKey) PublicKey() PublicKey {
}
func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
return k.SignWithAlgorithm(rand, data, "")
return k.SignWithAlgorithm(rand, data, k.PublicKey().Type())
}
func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
@ -507,7 +517,7 @@ func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm
return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
}
h := crypto.SHA1.New()
h := hashFuncs[k.PublicKey().Type()].New()
h.Write(data)
digest := h.Sum(nil)
r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
@ -603,19 +613,6 @@ func supportedEllipticCurve(curve elliptic.Curve) bool {
return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
}
// ecHash returns the hash to match the given elliptic curve, see RFC
// 5656, section 6.2.1
func ecHash(curve elliptic.Curve) crypto.Hash {
bitSize := curve.Params().BitSize
switch {
case bitSize <= 256:
return crypto.SHA256
case bitSize <= 384:
return crypto.SHA384
}
return crypto.SHA512
}
// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
var w struct {
@ -671,7 +668,7 @@ func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
}
h := ecHash(k.Curve).New()
h := hashFuncs[sig.Format].New()
h.Write(data)
digest := h.Sum(nil)
@ -775,7 +772,7 @@ func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
}
h := ecHash(k.Curve).New()
h := hashFuncs[sig.Format].New()
h.Write([]byte(k.application))
appDigest := h.Sum(nil)
@ -874,7 +871,7 @@ func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
return fmt.Errorf("invalid size %d for Ed25519 public key", l)
}
h := sha256.New()
h := hashFuncs[sig.Format].New()
h.Write([]byte(k.application))
appDigest := h.Sum(nil)
@ -939,15 +936,6 @@ func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
return &dsaPrivateKey{key}, nil
}
type rsaSigner struct {
AlgorithmSigner
defaultAlgorithm string
}
func (s *rsaSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
return s.AlgorithmSigner.SignWithAlgorithm(rand, data, s.defaultAlgorithm)
}
type wrappedSigner struct {
signer crypto.Signer
pubKey PublicKey
@ -970,44 +958,20 @@ func (s *wrappedSigner) PublicKey() PublicKey {
}
func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
return s.SignWithAlgorithm(rand, data, "")
return s.SignWithAlgorithm(rand, data, s.pubKey.Type())
}
func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
var hashFunc crypto.Hash
if _, ok := s.pubKey.(*rsaPublicKey); ok {
// RSA keys support a few hash functions determined by the requested signature algorithm
switch algorithm {
case "", SigAlgoRSA:
algorithm = SigAlgoRSA
hashFunc = crypto.SHA1
case SigAlgoRSASHA2256:
hashFunc = crypto.SHA256
case SigAlgoRSASHA2512:
hashFunc = crypto.SHA512
default:
return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
}
} else {
// The only supported algorithm for all other key types is the same as the type of the key
if algorithm == "" {
algorithm = s.pubKey.Type()
} else if algorithm != s.pubKey.Type() {
return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
}
switch key := s.pubKey.(type) {
case *dsaPublicKey:
hashFunc = crypto.SHA1
case *ecdsaPublicKey:
hashFunc = ecHash(key.Curve)
case ed25519PublicKey:
default:
return nil, fmt.Errorf("ssh: unsupported key type %T", key)
}
if algorithm == "" {
algorithm = s.pubKey.Type()
}
supportedAlgos := algorithmsForKeyFormat(s.pubKey.Type())
if !contains(supportedAlgos, algorithm) {
return nil, fmt.Errorf("ssh: unsupported signature algorithm %q for key format %q", algorithm, s.pubKey.Type())
}
hashFunc := hashFuncs[algorithm]
var digest []byte
if hashFunc != 0 {
h := hashFunc.New()