vendor updates

This commit is contained in:
Serguei Bezverkhi
2018-03-06 17:33:18 -05:00
parent 4b3ebc171b
commit e9033989a0
5854 changed files with 248382 additions and 119809 deletions

View File

@ -16,28 +16,65 @@ go_test(
"preallocate_test.go",
"purge_test.go",
],
importpath = "k8s.io/kubernetes/third_party/forked/etcd221/pkg/fileutil",
library = ":go_default_library",
embed = [":go_default_library"],
)
go_library(
name = "go_default_library",
srcs = [
"fileutil.go",
"lock_unix.go",
"perallocate_unsupported.go",
"purge.go",
] + select({
"@io_bazel_rules_go//go/platform:linux_amd64": [
"@io_bazel_rules_go//go/platform:android": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:darwin": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:dragonfly": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:freebsd": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:linux": [
"lock_unix.go",
"preallocate.go",
],
"@io_bazel_rules_go//go/platform:windows_amd64": [
"@io_bazel_rules_go//go/platform:nacl": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:netbsd": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:openbsd": [
"lock_unix.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:plan9": [
"lock_plan9.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:solaris": [
"lock_solaris.go",
"perallocate_unsupported.go",
],
"@io_bazel_rules_go//go/platform:windows": [
"lock_windows.go",
"perallocate_unsupported.go",
],
"//conditions:default": [],
}),
importpath = "k8s.io/kubernetes/third_party/forked/etcd221/pkg/fileutil",
deps = ["//vendor/github.com/coreos/pkg/capnslog:go_default_library"],
deps = [
"//vendor/github.com/coreos/pkg/capnslog:go_default_library",
],
)
filegroup(

View File

@ -16,8 +16,7 @@ go_test(
"preallocate_test.go",
"purge_test.go",
],
importpath = "k8s.io/kubernetes/third_party/forked/etcd237/pkg/fileutil",
library = ":go_default_library",
embed = [":go_default_library"],
)
go_library(
@ -25,22 +24,69 @@ go_library(
srcs = [
"fileutil.go",
"lock.go",
"lock_unix.go",
"perallocate_unsupported.go",
"purge.go",
"sync.go",
] + select({
"@io_bazel_rules_go//go/platform:linux_amd64": [
"@io_bazel_rules_go//go/platform:android": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:darwin": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:dragonfly": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:freebsd": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:linux": [
"lock_unix.go",
"preallocate.go",
"sync_linux.go",
],
"@io_bazel_rules_go//go/platform:windows_amd64": [
"@io_bazel_rules_go//go/platform:nacl": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:netbsd": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:openbsd": [
"lock_unix.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:plan9": [
"lock_plan9.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:solaris": [
"lock_solaris.go",
"perallocate_unsupported.go",
"sync.go",
],
"@io_bazel_rules_go//go/platform:windows": [
"lock_windows.go",
"perallocate_unsupported.go",
"sync.go",
],
"//conditions:default": [],
}),
importpath = "k8s.io/kubernetes/third_party/forked/etcd237/pkg/fileutil",
deps = ["//vendor/github.com/coreos/pkg/capnslog:go_default_library"],
deps = [
"//vendor/github.com/coreos/pkg/capnslog:go_default_library",
],
)
filegroup(

View File

@ -17,8 +17,7 @@ go_library(
go_test(
name = "go_default_test",
srcs = ["expand_test.go"],
importpath = "k8s.io/kubernetes/third_party/forked/golang/expansion",
library = ":go_default_library",
embed = [":go_default_library"],
deps = ["//pkg/apis/core:go_default_library"],
)

View File

@ -0,0 +1,56 @@
licenses(["notice"])
load("@io_bazel_rules_go//go:def.bzl", "go_library")
go_library(
name = "go_default_library",
srcs = [
"api.go",
"assignments.go",
"builtins.go",
"call.go",
"check.go",
"conversions.go",
"decl.go",
"errors.go",
"eval.go",
"expr.go",
"exprstring.go",
"initorder.go",
"labels.go",
"lookup.go",
"methodset.go",
"object.go",
"objset.go",
"operand.go",
"ordering.go",
"package.go",
"predicates.go",
"resolver.go",
"return.go",
"scope.go",
"selection.go",
"sizes.go",
"stmt.go",
"type.go",
"typestring.go",
"typexpr.go",
"universe.go",
],
importpath = "k8s.io/kubernetes/third_party/forked/golang/go/types",
visibility = ["//visibility:public"],
)
filegroup(
name = "package-srcs",
srcs = glob(["**"]),
tags = ["automanaged"],
visibility = ["//visibility:private"],
)
filegroup(
name = "all-srcs",
srcs = [":package-srcs"],
tags = ["automanaged"],
visibility = ["//visibility:public"],
)

View File

@ -0,0 +1,7 @@
This is go/types forked from go@236abdb46b (just after 1.10) and cherry-picked
1006f703ffc, which fixes https://github.com/golang/go/issues/23712.
It can be removed when all builders are >= go1.11.
Do *not* update this to newer code if https://github.com/golang/go/issues/23914
has not been fixed!

View File

@ -0,0 +1,376 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package types declares the data types and implements
// the algorithms for type-checking of Go packages. Use
// Config.Check to invoke the type checker for a package.
// Alternatively, create a new type checker with NewChecker
// and invoke it incrementally by calling Checker.Files.
//
// Type-checking consists of several interdependent phases:
//
// Name resolution maps each identifier (ast.Ident) in the program to the
// language object (Object) it denotes.
// Use Info.{Defs,Uses,Implicits} for the results of name resolution.
//
// Constant folding computes the exact constant value (constant.Value)
// for every expression (ast.Expr) that is a compile-time constant.
// Use Info.Types[expr].Value for the results of constant folding.
//
// Type inference computes the type (Type) of every expression (ast.Expr)
// and checks for compliance with the language specification.
// Use Info.Types[expr].Type for the results of type inference.
//
// For a tutorial, see https://golang.org/s/types-tutorial.
//
package types
import (
"bytes"
"fmt"
"go/ast"
"go/constant"
"go/token"
)
// An Error describes a type-checking error; it implements the error interface.
// A "soft" error is an error that still permits a valid interpretation of a
// package (such as "unused variable"); "hard" errors may lead to unpredictable
// behavior if ignored.
type Error struct {
Fset *token.FileSet // file set for interpretation of Pos
Pos token.Pos // error position
Msg string // error message
Soft bool // if set, error is "soft"
}
// Error returns an error string formatted as follows:
// filename:line:column: message
func (err Error) Error() string {
return fmt.Sprintf("%s: %s", err.Fset.Position(err.Pos), err.Msg)
}
// An Importer resolves import paths to Packages.
//
// CAUTION: This interface does not support the import of locally
// vendored packages. See https://golang.org/s/go15vendor.
// If possible, external implementations should implement ImporterFrom.
type Importer interface {
// Import returns the imported package for the given import path.
// The semantics is like for ImporterFrom.ImportFrom except that
// dir and mode are ignored (since they are not present).
Import(path string) (*Package, error)
}
// ImportMode is reserved for future use.
type ImportMode int
// An ImporterFrom resolves import paths to packages; it
// supports vendoring per https://golang.org/s/go15vendor.
// Use go/importer to obtain an ImporterFrom implementation.
type ImporterFrom interface {
// Importer is present for backward-compatibility. Calling
// Import(path) is the same as calling ImportFrom(path, "", 0);
// i.e., locally vendored packages may not be found.
// The types package does not call Import if an ImporterFrom
// is present.
Importer
// ImportFrom returns the imported package for the given import
// path when imported by a package file located in dir.
// If the import failed, besides returning an error, ImportFrom
// is encouraged to cache and return a package anyway, if one
// was created. This will reduce package inconsistencies and
// follow-on type checker errors due to the missing package.
// The mode value must be 0; it is reserved for future use.
// Two calls to ImportFrom with the same path and dir must
// return the same package.
ImportFrom(path, dir string, mode ImportMode) (*Package, error)
}
// A Config specifies the configuration for type checking.
// The zero value for Config is a ready-to-use default configuration.
type Config struct {
// If IgnoreFuncBodies is set, function bodies are not
// type-checked.
IgnoreFuncBodies bool
// If FakeImportC is set, `import "C"` (for packages requiring Cgo)
// declares an empty "C" package and errors are omitted for qualified
// identifiers referring to package C (which won't find an object).
// This feature is intended for the standard library cmd/api tool.
//
// Caution: Effects may be unpredictable due to follow-on errors.
// Do not use casually!
FakeImportC bool
// If Error != nil, it is called with each error found
// during type checking; err has dynamic type Error.
// Secondary errors (for instance, to enumerate all types
// involved in an invalid recursive type declaration) have
// error strings that start with a '\t' character.
// If Error == nil, type-checking stops with the first
// error found.
Error func(err error)
// An importer is used to import packages referred to from
// import declarations.
// If the installed importer implements ImporterFrom, the type
// checker calls ImportFrom instead of Import.
// The type checker reports an error if an importer is needed
// but none was installed.
Importer Importer
// If Sizes != nil, it provides the sizing functions for package unsafe.
// Otherwise SizesFor("gc", "amd64") is used instead.
Sizes Sizes
// If DisableUnusedImportCheck is set, packages are not checked
// for unused imports.
DisableUnusedImportCheck bool
}
// Info holds result type information for a type-checked package.
// Only the information for which a map is provided is collected.
// If the package has type errors, the collected information may
// be incomplete.
type Info struct {
// Types maps expressions to their types, and for constant
// expressions, also their values. Invalid expressions are
// omitted.
//
// For (possibly parenthesized) identifiers denoting built-in
// functions, the recorded signatures are call-site specific:
// if the call result is not a constant, the recorded type is
// an argument-specific signature. Otherwise, the recorded type
// is invalid.
//
// The Types map does not record the type of every identifier,
// only those that appear where an arbitrary expression is
// permitted. For instance, the identifier f in a selector
// expression x.f is found only in the Selections map, the
// identifier z in a variable declaration 'var z int' is found
// only in the Defs map, and identifiers denoting packages in
// qualified identifiers are collected in the Uses map.
Types map[ast.Expr]TypeAndValue
// Defs maps identifiers to the objects they define (including
// package names, dots "." of dot-imports, and blank "_" identifiers).
// For identifiers that do not denote objects (e.g., the package name
// in package clauses, or symbolic variables t in t := x.(type) of
// type switch headers), the corresponding objects are nil.
//
// For an anonymous field, Defs returns the field *Var it defines.
//
// Invariant: Defs[id] == nil || Defs[id].Pos() == id.Pos()
Defs map[*ast.Ident]Object
// Uses maps identifiers to the objects they denote.
//
// For an anonymous field, Uses returns the *TypeName it denotes.
//
// Invariant: Uses[id].Pos() != id.Pos()
Uses map[*ast.Ident]Object
// Implicits maps nodes to their implicitly declared objects, if any.
// The following node and object types may appear:
//
// node declared object
//
// *ast.ImportSpec *PkgName for imports without renames
// *ast.CaseClause type-specific *Var for each type switch case clause (incl. default)
// *ast.Field anonymous parameter *Var
//
Implicits map[ast.Node]Object
// Selections maps selector expressions (excluding qualified identifiers)
// to their corresponding selections.
Selections map[*ast.SelectorExpr]*Selection
// Scopes maps ast.Nodes to the scopes they define. Package scopes are not
// associated with a specific node but with all files belonging to a package.
// Thus, the package scope can be found in the type-checked Package object.
// Scopes nest, with the Universe scope being the outermost scope, enclosing
// the package scope, which contains (one or more) files scopes, which enclose
// function scopes which in turn enclose statement and function literal scopes.
// Note that even though package-level functions are declared in the package
// scope, the function scopes are embedded in the file scope of the file
// containing the function declaration.
//
// The following node types may appear in Scopes:
//
// *ast.File
// *ast.FuncType
// *ast.BlockStmt
// *ast.IfStmt
// *ast.SwitchStmt
// *ast.TypeSwitchStmt
// *ast.CaseClause
// *ast.CommClause
// *ast.ForStmt
// *ast.RangeStmt
//
Scopes map[ast.Node]*Scope
// InitOrder is the list of package-level initializers in the order in which
// they must be executed. Initializers referring to variables related by an
// initialization dependency appear in topological order, the others appear
// in source order. Variables without an initialization expression do not
// appear in this list.
InitOrder []*Initializer
}
// TypeOf returns the type of expression e, or nil if not found.
// Precondition: the Types, Uses and Defs maps are populated.
//
func (info *Info) TypeOf(e ast.Expr) Type {
if t, ok := info.Types[e]; ok {
return t.Type
}
if id, _ := e.(*ast.Ident); id != nil {
if obj := info.ObjectOf(id); obj != nil {
return obj.Type()
}
}
return nil
}
// ObjectOf returns the object denoted by the specified id,
// or nil if not found.
//
// If id is an anonymous struct field, ObjectOf returns the field (*Var)
// it uses, not the type (*TypeName) it defines.
//
// Precondition: the Uses and Defs maps are populated.
//
func (info *Info) ObjectOf(id *ast.Ident) Object {
if obj := info.Defs[id]; obj != nil {
return obj
}
return info.Uses[id]
}
// TypeAndValue reports the type and value (for constants)
// of the corresponding expression.
type TypeAndValue struct {
mode operandMode
Type Type
Value constant.Value
}
// TODO(gri) Consider eliminating the IsVoid predicate. Instead, report
// "void" values as regular values but with the empty tuple type.
// IsVoid reports whether the corresponding expression
// is a function call without results.
func (tv TypeAndValue) IsVoid() bool {
return tv.mode == novalue
}
// IsType reports whether the corresponding expression specifies a type.
func (tv TypeAndValue) IsType() bool {
return tv.mode == typexpr
}
// IsBuiltin reports whether the corresponding expression denotes
// a (possibly parenthesized) built-in function.
func (tv TypeAndValue) IsBuiltin() bool {
return tv.mode == builtin
}
// IsValue reports whether the corresponding expression is a value.
// Builtins are not considered values. Constant values have a non-
// nil Value.
func (tv TypeAndValue) IsValue() bool {
switch tv.mode {
case constant_, variable, mapindex, value, commaok:
return true
}
return false
}
// IsNil reports whether the corresponding expression denotes the
// predeclared value nil.
func (tv TypeAndValue) IsNil() bool {
return tv.mode == value && tv.Type == Typ[UntypedNil]
}
// Addressable reports whether the corresponding expression
// is addressable (https://golang.org/ref/spec#Address_operators).
func (tv TypeAndValue) Addressable() bool {
return tv.mode == variable
}
// Assignable reports whether the corresponding expression
// is assignable to (provided a value of the right type).
func (tv TypeAndValue) Assignable() bool {
return tv.mode == variable || tv.mode == mapindex
}
// HasOk reports whether the corresponding expression may be
// used on the lhs of a comma-ok assignment.
func (tv TypeAndValue) HasOk() bool {
return tv.mode == commaok || tv.mode == mapindex
}
// An Initializer describes a package-level variable, or a list of variables in case
// of a multi-valued initialization expression, and the corresponding initialization
// expression.
type Initializer struct {
Lhs []*Var // var Lhs = Rhs
Rhs ast.Expr
}
func (init *Initializer) String() string {
var buf bytes.Buffer
for i, lhs := range init.Lhs {
if i > 0 {
buf.WriteString(", ")
}
buf.WriteString(lhs.Name())
}
buf.WriteString(" = ")
WriteExpr(&buf, init.Rhs)
return buf.String()
}
// Check type-checks a package and returns the resulting package object and
// the first error if any. Additionally, if info != nil, Check populates each
// of the non-nil maps in the Info struct.
//
// The package is marked as complete if no errors occurred, otherwise it is
// incomplete. See Config.Error for controlling behavior in the presence of
// errors.
//
// The package is specified by a list of *ast.Files and corresponding
// file set, and the package path the package is identified with.
// The clean path must not be empty or dot (".").
func (conf *Config) Check(path string, fset *token.FileSet, files []*ast.File, info *Info) (*Package, error) {
pkg := NewPackage(path, "")
return pkg, NewChecker(conf, fset, pkg, info).Files(files)
}
// AssertableTo reports whether a value of type V can be asserted to have type T.
func AssertableTo(V *Interface, T Type) bool {
m, _ := assertableTo(V, T)
return m == nil
}
// AssignableTo reports whether a value of type V is assignable to a variable of type T.
func AssignableTo(V, T Type) bool {
x := operand{mode: value, typ: V}
return x.assignableTo(nil, T, nil) // config not needed for non-constant x
}
// ConvertibleTo reports whether a value of type V is convertible to a value of type T.
func ConvertibleTo(V, T Type) bool {
x := operand{mode: value, typ: V}
return x.convertibleTo(nil, T) // config not needed for non-constant x
}
// Implements reports whether type V implements interface T.
func Implements(V Type, T *Interface) bool {
f, _ := MissingMethod(V, T, true)
return f == nil
}

View File

@ -0,0 +1,335 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements initialization and assignment checks.
package types
import (
"go/ast"
"go/token"
)
// assignment reports whether x can be assigned to a variable of type T,
// if necessary by attempting to convert untyped values to the appropriate
// type. context describes the context in which the assignment takes place.
// Use T == nil to indicate assignment to an untyped blank identifier.
// x.mode is set to invalid if the assignment failed.
func (check *Checker) assignment(x *operand, T Type, context string) {
check.singleValue(x)
switch x.mode {
case invalid:
return // error reported before
case constant_, variable, mapindex, value, commaok:
// ok
default:
unreachable()
}
if isUntyped(x.typ) {
target := T
// spec: "If an untyped constant is assigned to a variable of interface
// type or the blank identifier, the constant is first converted to type
// bool, rune, int, float64, complex128 or string respectively, depending
// on whether the value is a boolean, rune, integer, floating-point, complex,
// or string constant."
if T == nil || IsInterface(T) {
if T == nil && x.typ == Typ[UntypedNil] {
check.errorf(x.pos(), "use of untyped nil in %s", context)
x.mode = invalid
return
}
target = Default(x.typ)
}
check.convertUntyped(x, target)
if x.mode == invalid {
return
}
}
// x.typ is typed
// spec: "If a left-hand side is the blank identifier, any typed or
// non-constant value except for the predeclared identifier nil may
// be assigned to it."
if T == nil {
return
}
if reason := ""; !x.assignableTo(check.conf, T, &reason) {
if reason != "" {
check.errorf(x.pos(), "cannot use %s as %s value in %s: %s", x, T, context, reason)
} else {
check.errorf(x.pos(), "cannot use %s as %s value in %s", x, T, context)
}
x.mode = invalid
}
}
func (check *Checker) initConst(lhs *Const, x *operand) {
if x.mode == invalid || x.typ == Typ[Invalid] || lhs.typ == Typ[Invalid] {
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return
}
// rhs must be a constant
if x.mode != constant_ {
check.errorf(x.pos(), "%s is not constant", x)
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return
}
assert(isConstType(x.typ))
// If the lhs doesn't have a type yet, use the type of x.
if lhs.typ == nil {
lhs.typ = x.typ
}
check.assignment(x, lhs.typ, "constant declaration")
if x.mode == invalid {
return
}
lhs.val = x.val
}
func (check *Checker) initVar(lhs *Var, x *operand, context string) Type {
if x.mode == invalid || x.typ == Typ[Invalid] || lhs.typ == Typ[Invalid] {
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return nil
}
// If the lhs doesn't have a type yet, use the type of x.
if lhs.typ == nil {
typ := x.typ
if isUntyped(typ) {
// convert untyped types to default types
if typ == Typ[UntypedNil] {
check.errorf(x.pos(), "use of untyped nil in %s", context)
lhs.typ = Typ[Invalid]
return nil
}
typ = Default(typ)
}
lhs.typ = typ
}
check.assignment(x, lhs.typ, context)
if x.mode == invalid {
return nil
}
return x.typ
}
func (check *Checker) assignVar(lhs ast.Expr, x *operand) Type {
if x.mode == invalid || x.typ == Typ[Invalid] {
return nil
}
// Determine if the lhs is a (possibly parenthesized) identifier.
ident, _ := unparen(lhs).(*ast.Ident)
// Don't evaluate lhs if it is the blank identifier.
if ident != nil && ident.Name == "_" {
check.recordDef(ident, nil)
check.assignment(x, nil, "assignment to _ identifier")
if x.mode == invalid {
return nil
}
return x.typ
}
// If the lhs is an identifier denoting a variable v, this assignment
// is not a 'use' of v. Remember current value of v.used and restore
// after evaluating the lhs via check.expr.
var v *Var
var v_used bool
if ident != nil {
if _, obj := check.scope.LookupParent(ident.Name, token.NoPos); obj != nil {
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg {
v = w
v_used = v.used
}
}
}
var z operand
check.expr(&z, lhs)
if v != nil {
v.used = v_used // restore v.used
}
if z.mode == invalid || z.typ == Typ[Invalid] {
return nil
}
// spec: "Each left-hand side operand must be addressable, a map index
// expression, or the blank identifier. Operands may be parenthesized."
switch z.mode {
case invalid:
return nil
case variable, mapindex:
// ok
default:
if sel, ok := z.expr.(*ast.SelectorExpr); ok {
var op operand
check.expr(&op, sel.X)
if op.mode == mapindex {
check.errorf(z.pos(), "cannot assign to struct field %s in map", ExprString(z.expr))
return nil
}
}
check.errorf(z.pos(), "cannot assign to %s", &z)
return nil
}
check.assignment(x, z.typ, "assignment")
if x.mode == invalid {
return nil
}
return x.typ
}
// If returnPos is valid, initVars is called to type-check the assignment of
// return expressions, and returnPos is the position of the return statement.
func (check *Checker) initVars(lhs []*Var, rhs []ast.Expr, returnPos token.Pos) {
l := len(lhs)
get, r, commaOk := unpack(func(x *operand, i int) { check.multiExpr(x, rhs[i]) }, len(rhs), l == 2 && !returnPos.IsValid())
if get == nil || l != r {
// invalidate lhs and use rhs
for _, obj := range lhs {
if obj.typ == nil {
obj.typ = Typ[Invalid]
}
}
if get == nil {
return // error reported by unpack
}
check.useGetter(get, r)
if returnPos.IsValid() {
check.errorf(returnPos, "wrong number of return values (want %d, got %d)", l, r)
return
}
check.errorf(rhs[0].Pos(), "cannot initialize %d variables with %d values", l, r)
return
}
context := "assignment"
if returnPos.IsValid() {
context = "return statement"
}
var x operand
if commaOk {
var a [2]Type
for i := range a {
get(&x, i)
a[i] = check.initVar(lhs[i], &x, context)
}
check.recordCommaOkTypes(rhs[0], a)
return
}
for i, lhs := range lhs {
get(&x, i)
check.initVar(lhs, &x, context)
}
}
func (check *Checker) assignVars(lhs, rhs []ast.Expr) {
l := len(lhs)
get, r, commaOk := unpack(func(x *operand, i int) { check.multiExpr(x, rhs[i]) }, len(rhs), l == 2)
if get == nil {
check.useLHS(lhs...)
return // error reported by unpack
}
if l != r {
check.useGetter(get, r)
check.errorf(rhs[0].Pos(), "cannot assign %d values to %d variables", r, l)
return
}
var x operand
if commaOk {
var a [2]Type
for i := range a {
get(&x, i)
a[i] = check.assignVar(lhs[i], &x)
}
check.recordCommaOkTypes(rhs[0], a)
return
}
for i, lhs := range lhs {
get(&x, i)
check.assignVar(lhs, &x)
}
}
func (check *Checker) shortVarDecl(pos token.Pos, lhs, rhs []ast.Expr) {
scope := check.scope
// collect lhs variables
var newVars []*Var
var lhsVars = make([]*Var, len(lhs))
for i, lhs := range lhs {
var obj *Var
if ident, _ := lhs.(*ast.Ident); ident != nil {
// Use the correct obj if the ident is redeclared. The
// variable's scope starts after the declaration; so we
// must use Scope.Lookup here and call Scope.Insert
// (via check.declare) later.
name := ident.Name
if alt := scope.Lookup(name); alt != nil {
// redeclared object must be a variable
if alt, _ := alt.(*Var); alt != nil {
obj = alt
} else {
check.errorf(lhs.Pos(), "cannot assign to %s", lhs)
}
check.recordUse(ident, alt)
} else {
// declare new variable, possibly a blank (_) variable
obj = NewVar(ident.Pos(), check.pkg, name, nil)
if name != "_" {
newVars = append(newVars, obj)
}
check.recordDef(ident, obj)
}
} else {
check.errorf(lhs.Pos(), "cannot declare %s", lhs)
}
if obj == nil {
obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
}
lhsVars[i] = obj
}
check.initVars(lhsVars, rhs, token.NoPos)
// declare new variables
if len(newVars) > 0 {
// spec: "The scope of a constant or variable identifier declared inside
// a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl
// for short variable declarations) and ends at the end of the innermost
// containing block."
scopePos := rhs[len(rhs)-1].End()
for _, obj := range newVars {
check.declare(scope, nil, obj, scopePos) // recordObject already called
}
} else {
check.softErrorf(pos, "no new variables on left side of :=")
}
}

View File

@ -0,0 +1,670 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of builtin function calls.
package types
import (
"go/ast"
"go/constant"
"go/token"
)
// builtin type-checks a call to the built-in specified by id and
// returns true if the call is valid, with *x holding the result;
// but x.expr is not set. If the call is invalid, the result is
// false, and *x is undefined.
//
func (check *Checker) builtin(x *operand, call *ast.CallExpr, id builtinId) (_ bool) {
// append is the only built-in that permits the use of ... for the last argument
bin := predeclaredFuncs[id]
if call.Ellipsis.IsValid() && id != _Append {
check.invalidOp(call.Ellipsis, "invalid use of ... with built-in %s", bin.name)
check.use(call.Args...)
return
}
// For len(x) and cap(x) we need to know if x contains any function calls or
// receive operations. Save/restore current setting and set hasCallOrRecv to
// false for the evaluation of x so that we can check it afterwards.
// Note: We must do this _before_ calling unpack because unpack evaluates the
// first argument before we even call arg(x, 0)!
if id == _Len || id == _Cap {
defer func(b bool) {
check.hasCallOrRecv = b
}(check.hasCallOrRecv)
check.hasCallOrRecv = false
}
// determine actual arguments
var arg getter
nargs := len(call.Args)
switch id {
default:
// make argument getter
arg, nargs, _ = unpack(func(x *operand, i int) { check.multiExpr(x, call.Args[i]) }, nargs, false)
if arg == nil {
return
}
// evaluate first argument, if present
if nargs > 0 {
arg(x, 0)
if x.mode == invalid {
return
}
}
case _Make, _New, _Offsetof, _Trace:
// arguments require special handling
}
// check argument count
{
msg := ""
if nargs < bin.nargs {
msg = "not enough"
} else if !bin.variadic && nargs > bin.nargs {
msg = "too many"
}
if msg != "" {
check.invalidOp(call.Rparen, "%s arguments for %s (expected %d, found %d)", msg, call, bin.nargs, nargs)
return
}
}
switch id {
case _Append:
// append(s S, x ...T) S, where T is the element type of S
// spec: "The variadic function append appends zero or more values x to s of type
// S, which must be a slice type, and returns the resulting slice, also of type S.
// The values x are passed to a parameter of type ...T where T is the element type
// of S and the respective parameter passing rules apply."
S := x.typ
var T Type
if s, _ := S.Underlying().(*Slice); s != nil {
T = s.elem
} else {
check.invalidArg(x.pos(), "%s is not a slice", x)
return
}
// remember arguments that have been evaluated already
alist := []operand{*x}
// spec: "As a special case, append also accepts a first argument assignable
// to type []byte with a second argument of string type followed by ... .
// This form appends the bytes of the string.
if nargs == 2 && call.Ellipsis.IsValid() && x.assignableTo(check.conf, NewSlice(universeByte), nil) {
arg(x, 1)
if x.mode == invalid {
return
}
if isString(x.typ) {
if check.Types != nil {
sig := makeSig(S, S, x.typ)
sig.variadic = true
check.recordBuiltinType(call.Fun, sig)
}
x.mode = value
x.typ = S
break
}
alist = append(alist, *x)
// fallthrough
}
// check general case by creating custom signature
sig := makeSig(S, S, NewSlice(T)) // []T required for variadic signature
sig.variadic = true
check.arguments(x, call, sig, func(x *operand, i int) {
// only evaluate arguments that have not been evaluated before
if i < len(alist) {
*x = alist[i]
return
}
arg(x, i)
}, nargs)
// ok to continue even if check.arguments reported errors
x.mode = value
x.typ = S
if check.Types != nil {
check.recordBuiltinType(call.Fun, sig)
}
case _Cap, _Len:
// cap(x)
// len(x)
mode := invalid
var typ Type
var val constant.Value
switch typ = implicitArrayDeref(x.typ.Underlying()); t := typ.(type) {
case *Basic:
if isString(t) && id == _Len {
if x.mode == constant_ {
mode = constant_
val = constant.MakeInt64(int64(len(constant.StringVal(x.val))))
} else {
mode = value
}
}
case *Array:
mode = value
// spec: "The expressions len(s) and cap(s) are constants
// if the type of s is an array or pointer to an array and
// the expression s does not contain channel receives or
// function calls; in this case s is not evaluated."
if !check.hasCallOrRecv {
mode = constant_
if t.len >= 0 {
val = constant.MakeInt64(t.len)
} else {
val = constant.MakeUnknown()
}
}
case *Slice, *Chan:
mode = value
case *Map:
if id == _Len {
mode = value
}
}
if mode == invalid {
check.invalidArg(x.pos(), "%s for %s", x, bin.name)
return
}
x.mode = mode
x.typ = Typ[Int]
x.val = val
if check.Types != nil && mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(x.typ, typ))
}
case _Close:
// close(c)
c, _ := x.typ.Underlying().(*Chan)
if c == nil {
check.invalidArg(x.pos(), "%s is not a channel", x)
return
}
if c.dir == RecvOnly {
check.invalidArg(x.pos(), "%s must not be a receive-only channel", x)
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, c))
}
case _Complex:
// complex(x, y floatT) complexT
var y operand
arg(&y, 1)
if y.mode == invalid {
return
}
// convert or check untyped arguments
d := 0
if isUntyped(x.typ) {
d |= 1
}
if isUntyped(y.typ) {
d |= 2
}
switch d {
case 0:
// x and y are typed => nothing to do
case 1:
// only x is untyped => convert to type of y
check.convertUntyped(x, y.typ)
case 2:
// only y is untyped => convert to type of x
check.convertUntyped(&y, x.typ)
case 3:
// x and y are untyped =>
// 1) if both are constants, convert them to untyped
// floating-point numbers if possible,
// 2) if one of them is not constant (possible because
// it contains a shift that is yet untyped), convert
// both of them to float64 since they must have the
// same type to succeed (this will result in an error
// because shifts of floats are not permitted)
if x.mode == constant_ && y.mode == constant_ {
toFloat := func(x *operand) {
if isNumeric(x.typ) && constant.Sign(constant.Imag(x.val)) == 0 {
x.typ = Typ[UntypedFloat]
}
}
toFloat(x)
toFloat(&y)
} else {
check.convertUntyped(x, Typ[Float64])
check.convertUntyped(&y, Typ[Float64])
// x and y should be invalid now, but be conservative
// and check below
}
}
if x.mode == invalid || y.mode == invalid {
return
}
// both argument types must be identical
if !Identical(x.typ, y.typ) {
check.invalidArg(x.pos(), "mismatched types %s and %s", x.typ, y.typ)
return
}
// the argument types must be of floating-point type
if !isFloat(x.typ) {
check.invalidArg(x.pos(), "arguments have type %s, expected floating-point", x.typ)
return
}
// if both arguments are constants, the result is a constant
if x.mode == constant_ && y.mode == constant_ {
x.val = constant.BinaryOp(constant.ToFloat(x.val), token.ADD, constant.MakeImag(constant.ToFloat(y.val)))
} else {
x.mode = value
}
// determine result type
var res BasicKind
switch x.typ.Underlying().(*Basic).kind {
case Float32:
res = Complex64
case Float64:
res = Complex128
case UntypedFloat:
res = UntypedComplex
default:
unreachable()
}
resTyp := Typ[res]
if check.Types != nil && x.mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ, x.typ))
}
x.typ = resTyp
case _Copy:
// copy(x, y []T) int
var dst Type
if t, _ := x.typ.Underlying().(*Slice); t != nil {
dst = t.elem
}
var y operand
arg(&y, 1)
if y.mode == invalid {
return
}
var src Type
switch t := y.typ.Underlying().(type) {
case *Basic:
if isString(y.typ) {
src = universeByte
}
case *Slice:
src = t.elem
}
if dst == nil || src == nil {
check.invalidArg(x.pos(), "copy expects slice arguments; found %s and %s", x, &y)
return
}
if !Identical(dst, src) {
check.invalidArg(x.pos(), "arguments to copy %s and %s have different element types %s and %s", x, &y, dst, src)
return
}
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(Typ[Int], x.typ, y.typ))
}
x.mode = value
x.typ = Typ[Int]
case _Delete:
// delete(m, k)
m, _ := x.typ.Underlying().(*Map)
if m == nil {
check.invalidArg(x.pos(), "%s is not a map", x)
return
}
arg(x, 1) // k
if x.mode == invalid {
return
}
if !x.assignableTo(check.conf, m.key, nil) {
check.invalidArg(x.pos(), "%s is not assignable to %s", x, m.key)
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, m, m.key))
}
case _Imag, _Real:
// imag(complexT) floatT
// real(complexT) floatT
// convert or check untyped argument
if isUntyped(x.typ) {
if x.mode == constant_ {
// an untyped constant number can alway be considered
// as a complex constant
if isNumeric(x.typ) {
x.typ = Typ[UntypedComplex]
}
} else {
// an untyped non-constant argument may appear if
// it contains a (yet untyped non-constant) shift
// expression: convert it to complex128 which will
// result in an error (shift of complex value)
check.convertUntyped(x, Typ[Complex128])
// x should be invalid now, but be conservative and check
if x.mode == invalid {
return
}
}
}
// the argument must be of complex type
if !isComplex(x.typ) {
check.invalidArg(x.pos(), "argument has type %s, expected complex type", x.typ)
return
}
// if the argument is a constant, the result is a constant
if x.mode == constant_ {
if id == _Real {
x.val = constant.Real(x.val)
} else {
x.val = constant.Imag(x.val)
}
} else {
x.mode = value
}
// determine result type
var res BasicKind
switch x.typ.Underlying().(*Basic).kind {
case Complex64:
res = Float32
case Complex128:
res = Float64
case UntypedComplex:
res = UntypedFloat
default:
unreachable()
}
resTyp := Typ[res]
if check.Types != nil && x.mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ))
}
x.typ = resTyp
case _Make:
// make(T, n)
// make(T, n, m)
// (no argument evaluated yet)
arg0 := call.Args[0]
T := check.typ(arg0)
if T == Typ[Invalid] {
return
}
var min int // minimum number of arguments
switch T.Underlying().(type) {
case *Slice:
min = 2
case *Map, *Chan:
min = 1
default:
check.invalidArg(arg0.Pos(), "cannot make %s; type must be slice, map, or channel", arg0)
return
}
if nargs < min || min+1 < nargs {
check.errorf(call.Pos(), "%v expects %d or %d arguments; found %d", call, min, min+1, nargs)
return
}
var sizes []int64 // constant integer arguments, if any
for _, arg := range call.Args[1:] {
if s, ok := check.index(arg, -1); ok && s >= 0 {
sizes = append(sizes, s)
}
}
if len(sizes) == 2 && sizes[0] > sizes[1] {
check.invalidArg(call.Args[1].Pos(), "length and capacity swapped")
// safe to continue
}
x.mode = value
x.typ = T
if check.Types != nil {
params := [...]Type{T, Typ[Int], Typ[Int]}
check.recordBuiltinType(call.Fun, makeSig(x.typ, params[:1+len(sizes)]...))
}
case _New:
// new(T)
// (no argument evaluated yet)
T := check.typ(call.Args[0])
if T == Typ[Invalid] {
return
}
x.mode = value
x.typ = &Pointer{base: T}
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(x.typ, T))
}
case _Panic:
// panic(x)
check.assignment(x, &emptyInterface, "argument to panic")
if x.mode == invalid {
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, &emptyInterface))
}
case _Print, _Println:
// print(x, y, ...)
// println(x, y, ...)
var params []Type
if nargs > 0 {
params = make([]Type, nargs)
for i := 0; i < nargs; i++ {
if i > 0 {
arg(x, i) // first argument already evaluated
}
check.assignment(x, nil, "argument to "+predeclaredFuncs[id].name)
if x.mode == invalid {
// TODO(gri) "use" all arguments?
return
}
params[i] = x.typ
}
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, params...))
}
case _Recover:
// recover() interface{}
x.mode = value
x.typ = &emptyInterface
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(x.typ))
}
case _Alignof:
// unsafe.Alignof(x T) uintptr
check.assignment(x, nil, "argument to unsafe.Alignof")
if x.mode == invalid {
return
}
x.mode = constant_
x.val = constant.MakeInt64(check.conf.alignof(x.typ))
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Offsetof:
// unsafe.Offsetof(x T) uintptr, where x must be a selector
// (no argument evaluated yet)
arg0 := call.Args[0]
selx, _ := unparen(arg0).(*ast.SelectorExpr)
if selx == nil {
check.invalidArg(arg0.Pos(), "%s is not a selector expression", arg0)
check.use(arg0)
return
}
check.expr(x, selx.X)
if x.mode == invalid {
return
}
base := derefStructPtr(x.typ)
sel := selx.Sel.Name
obj, index, indirect := LookupFieldOrMethod(base, false, check.pkg, sel)
switch obj.(type) {
case nil:
check.invalidArg(x.pos(), "%s has no single field %s", base, sel)
return
case *Func:
// TODO(gri) Using derefStructPtr may result in methods being found
// that don't actually exist. An error either way, but the error
// message is confusing. See: https://play.golang.org/p/al75v23kUy ,
// but go/types reports: "invalid argument: x.m is a method value".
check.invalidArg(arg0.Pos(), "%s is a method value", arg0)
return
}
if indirect {
check.invalidArg(x.pos(), "field %s is embedded via a pointer in %s", sel, base)
return
}
// TODO(gri) Should we pass x.typ instead of base (and indirect report if derefStructPtr indirected)?
check.recordSelection(selx, FieldVal, base, obj, index, false)
offs := check.conf.offsetof(base, index)
x.mode = constant_
x.val = constant.MakeInt64(offs)
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Sizeof:
// unsafe.Sizeof(x T) uintptr
check.assignment(x, nil, "argument to unsafe.Sizeof")
if x.mode == invalid {
return
}
x.mode = constant_
x.val = constant.MakeInt64(check.conf.sizeof(x.typ))
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Assert:
// assert(pred) causes a typechecker error if pred is false.
// The result of assert is the value of pred if there is no error.
// Note: assert is only available in self-test mode.
if x.mode != constant_ || !isBoolean(x.typ) {
check.invalidArg(x.pos(), "%s is not a boolean constant", x)
return
}
if x.val.Kind() != constant.Bool {
check.errorf(x.pos(), "internal error: value of %s should be a boolean constant", x)
return
}
if !constant.BoolVal(x.val) {
check.errorf(call.Pos(), "%v failed", call)
// compile-time assertion failure - safe to continue
}
// result is constant - no need to record signature
case _Trace:
// trace(x, y, z, ...) dumps the positions, expressions, and
// values of its arguments. The result of trace is the value
// of the first argument.
// Note: trace is only available in self-test mode.
// (no argument evaluated yet)
if nargs == 0 {
check.dump("%s: trace() without arguments", call.Pos())
x.mode = novalue
break
}
var t operand
x1 := x
for _, arg := range call.Args {
check.rawExpr(x1, arg, nil) // permit trace for types, e.g.: new(trace(T))
check.dump("%s: %s", x1.pos(), x1)
x1 = &t // use incoming x only for first argument
}
// trace is only available in test mode - no need to record signature
default:
unreachable()
}
return true
}
// makeSig makes a signature for the given argument and result types.
// Default types are used for untyped arguments, and res may be nil.
func makeSig(res Type, args ...Type) *Signature {
list := make([]*Var, len(args))
for i, param := range args {
list[i] = NewVar(token.NoPos, nil, "", Default(param))
}
params := NewTuple(list...)
var result *Tuple
if res != nil {
assert(!isUntyped(res))
result = NewTuple(NewVar(token.NoPos, nil, "", res))
}
return &Signature{params: params, results: result}
}
// implicitArrayDeref returns A if typ is of the form *A and A is an array;
// otherwise it returns typ.
//
func implicitArrayDeref(typ Type) Type {
if p, ok := typ.(*Pointer); ok {
if a, ok := p.base.Underlying().(*Array); ok {
return a
}
}
return typ
}
// unparen returns e with any enclosing parentheses stripped.
func unparen(e ast.Expr) ast.Expr {
for {
p, ok := e.(*ast.ParenExpr)
if !ok {
return e
}
e = p.X
}
}

View File

@ -0,0 +1,478 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of call and selector expressions.
package types
import (
"go/ast"
"go/token"
)
func (check *Checker) call(x *operand, e *ast.CallExpr) exprKind {
check.exprOrType(x, e.Fun)
switch x.mode {
case invalid:
check.use(e.Args...)
x.mode = invalid
x.expr = e
return statement
case typexpr:
// conversion
T := x.typ
x.mode = invalid
switch n := len(e.Args); n {
case 0:
check.errorf(e.Rparen, "missing argument in conversion to %s", T)
case 1:
check.expr(x, e.Args[0])
if x.mode != invalid {
check.conversion(x, T)
}
default:
check.errorf(e.Args[n-1].Pos(), "too many arguments in conversion to %s", T)
}
x.expr = e
return conversion
case builtin:
id := x.id
if !check.builtin(x, e, id) {
x.mode = invalid
}
x.expr = e
// a non-constant result implies a function call
if x.mode != invalid && x.mode != constant_ {
check.hasCallOrRecv = true
}
return predeclaredFuncs[id].kind
default:
// function/method call
sig, _ := x.typ.Underlying().(*Signature)
if sig == nil {
check.invalidOp(x.pos(), "cannot call non-function %s", x)
x.mode = invalid
x.expr = e
return statement
}
arg, n, _ := unpack(func(x *operand, i int) { check.multiExpr(x, e.Args[i]) }, len(e.Args), false)
if arg != nil {
check.arguments(x, e, sig, arg, n)
} else {
x.mode = invalid
}
// determine result
switch sig.results.Len() {
case 0:
x.mode = novalue
case 1:
x.mode = value
x.typ = sig.results.vars[0].typ // unpack tuple
default:
x.mode = value
x.typ = sig.results
}
x.expr = e
check.hasCallOrRecv = true
return statement
}
}
// use type-checks each argument.
// Useful to make sure expressions are evaluated
// (and variables are "used") in the presence of other errors.
// The arguments may be nil.
func (check *Checker) use(arg ...ast.Expr) {
var x operand
for _, e := range arg {
// The nil check below is necessary since certain AST fields
// may legally be nil (e.g., the ast.SliceExpr.High field).
if e != nil {
check.rawExpr(&x, e, nil)
}
}
}
// useLHS is like use, but doesn't "use" top-level identifiers.
// It should be called instead of use if the arguments are
// expressions on the lhs of an assignment.
// The arguments must not be nil.
func (check *Checker) useLHS(arg ...ast.Expr) {
var x operand
for _, e := range arg {
// If the lhs is an identifier denoting a variable v, this assignment
// is not a 'use' of v. Remember current value of v.used and restore
// after evaluating the lhs via check.rawExpr.
var v *Var
var v_used bool
if ident, _ := unparen(e).(*ast.Ident); ident != nil {
// never type-check the blank name on the lhs
if ident.Name == "_" {
continue
}
if _, obj := check.scope.LookupParent(ident.Name, token.NoPos); obj != nil {
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg {
v = w
v_used = v.used
}
}
}
check.rawExpr(&x, e, nil)
if v != nil {
v.used = v_used // restore v.used
}
}
}
// useGetter is like use, but takes a getter instead of a list of expressions.
// It should be called instead of use if a getter is present to avoid repeated
// evaluation of the first argument (since the getter was likely obtained via
// unpack, which may have evaluated the first argument already).
func (check *Checker) useGetter(get getter, n int) {
var x operand
for i := 0; i < n; i++ {
get(&x, i)
}
}
// A getter sets x as the i'th operand, where 0 <= i < n and n is the total
// number of operands (context-specific, and maintained elsewhere). A getter
// type-checks the i'th operand; the details of the actual check are getter-
// specific.
type getter func(x *operand, i int)
// unpack takes a getter get and a number of operands n. If n == 1, unpack
// calls the incoming getter for the first operand. If that operand is
// invalid, unpack returns (nil, 0, false). Otherwise, if that operand is a
// function call, or a comma-ok expression and allowCommaOk is set, the result
// is a new getter and operand count providing access to the function results,
// or comma-ok values, respectively. The third result value reports if it
// is indeed the comma-ok case. In all other cases, the incoming getter and
// operand count are returned unchanged, and the third result value is false.
//
// In other words, if there's exactly one operand that - after type-checking
// by calling get - stands for multiple operands, the resulting getter provides
// access to those operands instead.
//
// If the returned getter is called at most once for a given operand index i
// (including i == 0), that operand is guaranteed to cause only one call of
// the incoming getter with that i.
//
func unpack(get getter, n int, allowCommaOk bool) (getter, int, bool) {
if n != 1 {
// zero or multiple values
return get, n, false
}
// possibly result of an n-valued function call or comma,ok value
var x0 operand
get(&x0, 0)
if x0.mode == invalid {
return nil, 0, false
}
if t, ok := x0.typ.(*Tuple); ok {
// result of an n-valued function call
return func(x *operand, i int) {
x.mode = value
x.expr = x0.expr
x.typ = t.At(i).typ
}, t.Len(), false
}
if x0.mode == mapindex || x0.mode == commaok {
// comma-ok value
if allowCommaOk {
a := [2]Type{x0.typ, Typ[UntypedBool]}
return func(x *operand, i int) {
x.mode = value
x.expr = x0.expr
x.typ = a[i]
}, 2, true
}
x0.mode = value
}
// single value
return func(x *operand, i int) {
if i != 0 {
unreachable()
}
*x = x0
}, 1, false
}
// arguments checks argument passing for the call with the given signature.
// The arg function provides the operand for the i'th argument.
func (check *Checker) arguments(x *operand, call *ast.CallExpr, sig *Signature, arg getter, n int) {
if call.Ellipsis.IsValid() {
// last argument is of the form x...
if !sig.variadic {
check.errorf(call.Ellipsis, "cannot use ... in call to non-variadic %s", call.Fun)
check.useGetter(arg, n)
return
}
if len(call.Args) == 1 && n > 1 {
// f()... is not permitted if f() is multi-valued
check.errorf(call.Ellipsis, "cannot use ... with %d-valued %s", n, call.Args[0])
check.useGetter(arg, n)
return
}
}
// evaluate arguments
for i := 0; i < n; i++ {
arg(x, i)
if x.mode != invalid {
var ellipsis token.Pos
if i == n-1 && call.Ellipsis.IsValid() {
ellipsis = call.Ellipsis
}
check.argument(call.Fun, sig, i, x, ellipsis)
}
}
// check argument count
if sig.variadic {
// a variadic function accepts an "empty"
// last argument: count one extra
n++
}
if n < sig.params.Len() {
check.errorf(call.Rparen, "too few arguments in call to %s", call.Fun)
// ok to continue
}
}
// argument checks passing of argument x to the i'th parameter of the given signature.
// If ellipsis is valid, the argument is followed by ... at that position in the call.
func (check *Checker) argument(fun ast.Expr, sig *Signature, i int, x *operand, ellipsis token.Pos) {
check.singleValue(x)
if x.mode == invalid {
return
}
n := sig.params.Len()
// determine parameter type
var typ Type
switch {
case i < n:
typ = sig.params.vars[i].typ
case sig.variadic:
typ = sig.params.vars[n-1].typ
if debug {
if _, ok := typ.(*Slice); !ok {
check.dump("%s: expected unnamed slice type, got %s", sig.params.vars[n-1].Pos(), typ)
}
}
default:
check.errorf(x.pos(), "too many arguments")
return
}
if ellipsis.IsValid() {
// argument is of the form x... and x is single-valued
if i != n-1 {
check.errorf(ellipsis, "can only use ... with matching parameter")
return
}
if _, ok := x.typ.Underlying().(*Slice); !ok && x.typ != Typ[UntypedNil] { // see issue #18268
check.errorf(x.pos(), "cannot use %s as parameter of type %s", x, typ)
return
}
} else if sig.variadic && i >= n-1 {
// use the variadic parameter slice's element type
typ = typ.(*Slice).elem
}
check.assignment(x, typ, check.sprintf("argument to %s", fun))
}
func (check *Checker) selector(x *operand, e *ast.SelectorExpr) {
// these must be declared before the "goto Error" statements
var (
obj Object
index []int
indirect bool
)
sel := e.Sel.Name
// If the identifier refers to a package, handle everything here
// so we don't need a "package" mode for operands: package names
// can only appear in qualified identifiers which are mapped to
// selector expressions.
if ident, ok := e.X.(*ast.Ident); ok {
_, obj := check.scope.LookupParent(ident.Name, check.pos)
if pname, _ := obj.(*PkgName); pname != nil {
assert(pname.pkg == check.pkg)
check.recordUse(ident, pname)
pname.used = true
pkg := pname.imported
exp := pkg.scope.Lookup(sel)
if exp == nil {
if !pkg.fake {
check.errorf(e.Pos(), "%s not declared by package %s", sel, pkg.name)
}
goto Error
}
if !exp.Exported() {
check.errorf(e.Pos(), "%s not exported by package %s", sel, pkg.name)
// ok to continue
}
check.recordUse(e.Sel, exp)
// Simplified version of the code for *ast.Idents:
// - imported objects are always fully initialized
switch exp := exp.(type) {
case *Const:
assert(exp.Val() != nil)
x.mode = constant_
x.typ = exp.typ
x.val = exp.val
case *TypeName:
x.mode = typexpr
x.typ = exp.typ
case *Var:
x.mode = variable
x.typ = exp.typ
case *Func:
x.mode = value
x.typ = exp.typ
case *Builtin:
x.mode = builtin
x.typ = exp.typ
x.id = exp.id
default:
check.dump("unexpected object %v", exp)
unreachable()
}
x.expr = e
return
}
}
check.exprOrType(x, e.X)
if x.mode == invalid {
goto Error
}
obj, index, indirect = LookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, sel)
if obj == nil {
switch {
case index != nil:
// TODO(gri) should provide actual type where the conflict happens
check.invalidOp(e.Pos(), "ambiguous selector %s", sel)
case indirect:
check.invalidOp(e.Pos(), "%s is not in method set of %s", sel, x.typ)
default:
check.invalidOp(e.Pos(), "%s has no field or method %s", x, sel)
}
goto Error
}
if x.mode == typexpr {
// method expression
m, _ := obj.(*Func)
if m == nil {
check.invalidOp(e.Pos(), "%s has no method %s", x, sel)
goto Error
}
check.recordSelection(e, MethodExpr, x.typ, m, index, indirect)
// the receiver type becomes the type of the first function
// argument of the method expression's function type
var params []*Var
sig := m.typ.(*Signature)
if sig.params != nil {
params = sig.params.vars
}
x.mode = value
x.typ = &Signature{
params: NewTuple(append([]*Var{NewVar(token.NoPos, check.pkg, "", x.typ)}, params...)...),
results: sig.results,
variadic: sig.variadic,
}
check.addDeclDep(m)
} else {
// regular selector
switch obj := obj.(type) {
case *Var:
check.recordSelection(e, FieldVal, x.typ, obj, index, indirect)
if x.mode == variable || indirect {
x.mode = variable
} else {
x.mode = value
}
x.typ = obj.typ
case *Func:
// TODO(gri) If we needed to take into account the receiver's
// addressability, should we report the type &(x.typ) instead?
check.recordSelection(e, MethodVal, x.typ, obj, index, indirect)
if debug {
// Verify that LookupFieldOrMethod and MethodSet.Lookup agree.
typ := x.typ
if x.mode == variable {
// If typ is not an (unnamed) pointer or an interface,
// use *typ instead, because the method set of *typ
// includes the methods of typ.
// Variables are addressable, so we can always take their
// address.
if _, ok := typ.(*Pointer); !ok && !IsInterface(typ) {
typ = &Pointer{base: typ}
}
}
// If we created a synthetic pointer type above, we will throw
// away the method set computed here after use.
// TODO(gri) Method set computation should probably always compute
// both, the value and the pointer receiver method set and represent
// them in a single structure.
// TODO(gri) Consider also using a method set cache for the lifetime
// of checker once we rely on MethodSet lookup instead of individual
// lookup.
mset := NewMethodSet(typ)
if m := mset.Lookup(check.pkg, sel); m == nil || m.obj != obj {
check.dump("%s: (%s).%v -> %s", e.Pos(), typ, obj.name, m)
check.dump("%s\n", mset)
panic("method sets and lookup don't agree")
}
}
x.mode = value
// remove receiver
sig := *obj.typ.(*Signature)
sig.recv = nil
x.typ = &sig
check.addDeclDep(obj)
default:
unreachable()
}
}
// everything went well
x.expr = e
return
Error:
x.mode = invalid
x.expr = e
}

View File

@ -0,0 +1,371 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements the Check function, which drives type-checking.
package types
import (
"go/ast"
"go/constant"
"go/token"
)
// debugging/development support
const (
debug = false // leave on during development
trace = false // turn on for detailed type resolution traces
)
// If Strict is set, the type-checker enforces additional
// rules not specified by the Go 1 spec, but which will
// catch guaranteed run-time errors if the respective
// code is executed. In other words, programs passing in
// Strict mode are Go 1 compliant, but not all Go 1 programs
// will pass in Strict mode. The additional rules are:
//
// - A type assertion x.(T) where T is an interface type
// is invalid if any (statically known) method that exists
// for both x and T have different signatures.
//
const strict = false
// exprInfo stores information about an untyped expression.
type exprInfo struct {
isLhs bool // expression is lhs operand of a shift with delayed type-check
mode operandMode
typ *Basic
val constant.Value // constant value; or nil (if not a constant)
}
// funcInfo stores the information required for type-checking a function.
type funcInfo struct {
name string // for debugging/tracing only
decl *declInfo // for cycle detection
sig *Signature
body *ast.BlockStmt
}
// A context represents the context within which an object is type-checked.
type context struct {
decl *declInfo // package-level declaration whose init expression/function body is checked
scope *Scope // top-most scope for lookups
iota constant.Value // value of iota in a constant declaration; nil otherwise
sig *Signature // function signature if inside a function; nil otherwise
hasLabel bool // set if a function makes use of labels (only ~1% of functions); unused outside functions
hasCallOrRecv bool // set if an expression contains a function call or channel receive operation
}
// An importKey identifies an imported package by import path and source directory
// (directory containing the file containing the import). In practice, the directory
// may always be the same, or may not matter. Given an (import path, directory), an
// importer must always return the same package (but given two different import paths,
// an importer may still return the same package by mapping them to the same package
// paths).
type importKey struct {
path, dir string
}
// A Checker maintains the state of the type checker.
// It must be created with NewChecker.
type Checker struct {
// package information
// (initialized by NewChecker, valid for the life-time of checker)
conf *Config
fset *token.FileSet
pkg *Package
*Info
objMap map[Object]*declInfo // maps package-level object to declaration info
impMap map[importKey]*Package // maps (import path, source directory) to (complete or fake) package
// information collected during type-checking of a set of package files
// (initialized by Files, valid only for the duration of check.Files;
// maps and lists are allocated on demand)
files []*ast.File // package files
unusedDotImports map[*Scope]map[*Package]token.Pos // positions of unused dot-imported packages for each file scope
firstErr error // first error encountered
methods map[string][]*Func // maps type names to associated methods
untyped map[ast.Expr]exprInfo // map of expressions without final type
funcs []funcInfo // list of functions to type-check
delayed []func() // delayed checks requiring fully setup types
// context within which the current object is type-checked
// (valid only for the duration of type-checking a specific object)
context
pos token.Pos // if valid, identifiers are looked up as if at position pos (used by Eval)
// debugging
indent int // indentation for tracing
}
// addUnusedImport adds the position of a dot-imported package
// pkg to the map of dot imports for the given file scope.
func (check *Checker) addUnusedDotImport(scope *Scope, pkg *Package, pos token.Pos) {
mm := check.unusedDotImports
if mm == nil {
mm = make(map[*Scope]map[*Package]token.Pos)
check.unusedDotImports = mm
}
m := mm[scope]
if m == nil {
m = make(map[*Package]token.Pos)
mm[scope] = m
}
m[pkg] = pos
}
// addDeclDep adds the dependency edge (check.decl -> to) if check.decl exists
func (check *Checker) addDeclDep(to Object) {
from := check.decl
if from == nil {
return // not in a package-level init expression
}
if _, found := check.objMap[to]; !found {
return // to is not a package-level object
}
from.addDep(to)
}
func (check *Checker) assocMethod(tname string, meth *Func) {
m := check.methods
if m == nil {
m = make(map[string][]*Func)
check.methods = m
}
m[tname] = append(m[tname], meth)
}
func (check *Checker) rememberUntyped(e ast.Expr, lhs bool, mode operandMode, typ *Basic, val constant.Value) {
m := check.untyped
if m == nil {
m = make(map[ast.Expr]exprInfo)
check.untyped = m
}
m[e] = exprInfo{lhs, mode, typ, val}
}
func (check *Checker) later(name string, decl *declInfo, sig *Signature, body *ast.BlockStmt) {
check.funcs = append(check.funcs, funcInfo{name, decl, sig, body})
}
func (check *Checker) delay(f func()) {
check.delayed = append(check.delayed, f)
}
// NewChecker returns a new Checker instance for a given package.
// Package files may be added incrementally via checker.Files.
func NewChecker(conf *Config, fset *token.FileSet, pkg *Package, info *Info) *Checker {
// make sure we have a configuration
if conf == nil {
conf = new(Config)
}
// make sure we have an info struct
if info == nil {
info = new(Info)
}
return &Checker{
conf: conf,
fset: fset,
pkg: pkg,
Info: info,
objMap: make(map[Object]*declInfo),
impMap: make(map[importKey]*Package),
}
}
// initFiles initializes the files-specific portion of checker.
// The provided files must all belong to the same package.
func (check *Checker) initFiles(files []*ast.File) {
// start with a clean slate (check.Files may be called multiple times)
check.files = nil
check.unusedDotImports = nil
check.firstErr = nil
check.methods = nil
check.untyped = nil
check.funcs = nil
check.delayed = nil
// determine package name and collect valid files
pkg := check.pkg
for _, file := range files {
switch name := file.Name.Name; pkg.name {
case "":
if name != "_" {
pkg.name = name
} else {
check.errorf(file.Name.Pos(), "invalid package name _")
}
fallthrough
case name:
check.files = append(check.files, file)
default:
check.errorf(file.Package, "package %s; expected %s", name, pkg.name)
// ignore this file
}
}
}
// A bailout panic is used for early termination.
type bailout struct{}
func (check *Checker) handleBailout(err *error) {
switch p := recover().(type) {
case nil, bailout:
// normal return or early exit
*err = check.firstErr
default:
// re-panic
panic(p)
}
}
// Files checks the provided files as part of the checker's package.
func (check *Checker) Files(files []*ast.File) error { return check.checkFiles(files) }
func (check *Checker) checkFiles(files []*ast.File) (err error) {
defer check.handleBailout(&err)
check.initFiles(files)
check.collectObjects()
check.packageObjects(check.resolveOrder())
check.functionBodies()
check.initOrder()
if !check.conf.DisableUnusedImportCheck {
check.unusedImports()
}
// perform delayed checks
for _, f := range check.delayed {
f()
}
check.recordUntyped()
check.pkg.complete = true
return
}
func (check *Checker) recordUntyped() {
if !debug && check.Types == nil {
return // nothing to do
}
for x, info := range check.untyped {
if debug && isTyped(info.typ) {
check.dump("%s: %s (type %s) is typed", x.Pos(), x, info.typ)
unreachable()
}
check.recordTypeAndValue(x, info.mode, info.typ, info.val)
}
}
func (check *Checker) recordTypeAndValue(x ast.Expr, mode operandMode, typ Type, val constant.Value) {
assert(x != nil)
assert(typ != nil)
if mode == invalid {
return // omit
}
assert(typ != nil)
if mode == constant_ {
assert(val != nil)
assert(typ == Typ[Invalid] || isConstType(typ))
}
if m := check.Types; m != nil {
m[x] = TypeAndValue{mode, typ, val}
}
}
func (check *Checker) recordBuiltinType(f ast.Expr, sig *Signature) {
// f must be a (possibly parenthesized) identifier denoting a built-in
// (built-ins in package unsafe always produce a constant result and
// we don't record their signatures, so we don't see qualified idents
// here): record the signature for f and possible children.
for {
check.recordTypeAndValue(f, builtin, sig, nil)
switch p := f.(type) {
case *ast.Ident:
return // we're done
case *ast.ParenExpr:
f = p.X
default:
unreachable()
}
}
}
func (check *Checker) recordCommaOkTypes(x ast.Expr, a [2]Type) {
assert(x != nil)
if a[0] == nil || a[1] == nil {
return
}
assert(isTyped(a[0]) && isTyped(a[1]) && isBoolean(a[1]))
if m := check.Types; m != nil {
for {
tv := m[x]
assert(tv.Type != nil) // should have been recorded already
pos := x.Pos()
tv.Type = NewTuple(
NewVar(pos, check.pkg, "", a[0]),
NewVar(pos, check.pkg, "", a[1]),
)
m[x] = tv
// if x is a parenthesized expression (p.X), update p.X
p, _ := x.(*ast.ParenExpr)
if p == nil {
break
}
x = p.X
}
}
}
func (check *Checker) recordDef(id *ast.Ident, obj Object) {
assert(id != nil)
if m := check.Defs; m != nil {
m[id] = obj
}
}
func (check *Checker) recordUse(id *ast.Ident, obj Object) {
assert(id != nil)
assert(obj != nil)
if m := check.Uses; m != nil {
m[id] = obj
}
}
func (check *Checker) recordImplicit(node ast.Node, obj Object) {
assert(node != nil)
assert(obj != nil)
if m := check.Implicits; m != nil {
m[node] = obj
}
}
func (check *Checker) recordSelection(x *ast.SelectorExpr, kind SelectionKind, recv Type, obj Object, index []int, indirect bool) {
assert(obj != nil && (recv == nil || len(index) > 0))
check.recordUse(x.Sel, obj)
if m := check.Selections; m != nil {
m[x] = &Selection{kind, recv, obj, index, indirect}
}
}
func (check *Checker) recordScope(node ast.Node, scope *Scope) {
assert(node != nil)
assert(scope != nil)
if m := check.Scopes; m != nil {
m[node] = scope
}
}

View File

@ -0,0 +1,160 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of conversions.
package types
import "go/constant"
// Conversion type-checks the conversion T(x).
// The result is in x.
func (check *Checker) conversion(x *operand, T Type) {
constArg := x.mode == constant_
var ok bool
switch {
case constArg && isConstType(T):
// constant conversion
switch t := T.Underlying().(*Basic); {
case representableConst(x.val, check.conf, t, &x.val):
ok = true
case isInteger(x.typ) && isString(t):
codepoint := int64(-1)
if i, ok := constant.Int64Val(x.val); ok {
codepoint = i
}
// If codepoint < 0 the absolute value is too large (or unknown) for
// conversion. This is the same as converting any other out-of-range
// value - let string(codepoint) do the work.
x.val = constant.MakeString(string(codepoint))
ok = true
}
case x.convertibleTo(check.conf, T):
// non-constant conversion
x.mode = value
ok = true
}
if !ok {
check.errorf(x.pos(), "cannot convert %s to %s", x, T)
x.mode = invalid
return
}
// The conversion argument types are final. For untyped values the
// conversion provides the type, per the spec: "A constant may be
// given a type explicitly by a constant declaration or conversion,...".
if isUntyped(x.typ) {
final := T
// - For conversions to interfaces, use the argument's default type.
// - For conversions of untyped constants to non-constant types, also
// use the default type (e.g., []byte("foo") should report string
// not []byte as type for the constant "foo").
// - Keep untyped nil for untyped nil arguments.
// - For integer to string conversions, keep the argument type.
// (See also the TODO below.)
if IsInterface(T) || constArg && !isConstType(T) {
final = Default(x.typ)
} else if isInteger(x.typ) && isString(T) {
final = x.typ
}
check.updateExprType(x.expr, final, true)
}
x.typ = T
}
// TODO(gri) convertibleTo checks if T(x) is valid. It assumes that the type
// of x is fully known, but that's not the case for say string(1<<s + 1.0):
// Here, the type of 1<<s + 1.0 will be UntypedFloat which will lead to the
// (correct!) refusal of the conversion. But the reported error is essentially
// "cannot convert untyped float value to string", yet the correct error (per
// the spec) is that we cannot shift a floating-point value: 1 in 1<<s should
// be converted to UntypedFloat because of the addition of 1.0. Fixing this
// is tricky because we'd have to run updateExprType on the argument first.
// (Issue #21982.)
func (x *operand) convertibleTo(conf *Config, T Type) bool {
// "x is assignable to T"
if x.assignableTo(conf, T, nil) {
return true
}
// "x's type and T have identical underlying types if tags are ignored"
V := x.typ
Vu := V.Underlying()
Tu := T.Underlying()
if IdenticalIgnoreTags(Vu, Tu) {
return true
}
// "x's type and T are unnamed pointer types and their pointer base types
// have identical underlying types if tags are ignored"
if V, ok := V.(*Pointer); ok {
if T, ok := T.(*Pointer); ok {
if IdenticalIgnoreTags(V.base.Underlying(), T.base.Underlying()) {
return true
}
}
}
// "x's type and T are both integer or floating point types"
if (isInteger(V) || isFloat(V)) && (isInteger(T) || isFloat(T)) {
return true
}
// "x's type and T are both complex types"
if isComplex(V) && isComplex(T) {
return true
}
// "x is an integer or a slice of bytes or runes and T is a string type"
if (isInteger(V) || isBytesOrRunes(Vu)) && isString(T) {
return true
}
// "x is a string and T is a slice of bytes or runes"
if isString(V) && isBytesOrRunes(Tu) {
return true
}
// package unsafe:
// "any pointer or value of underlying type uintptr can be converted into a unsafe.Pointer"
if (isPointer(Vu) || isUintptr(Vu)) && isUnsafePointer(T) {
return true
}
// "and vice versa"
if isUnsafePointer(V) && (isPointer(Tu) || isUintptr(Tu)) {
return true
}
return false
}
func isUintptr(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.kind == Uintptr
}
func isUnsafePointer(typ Type) bool {
// TODO(gri): Is this (typ.Underlying() instead of just typ) correct?
// The spec does not say so, but gc claims it is. See also
// issue 6326.
t, ok := typ.Underlying().(*Basic)
return ok && t.kind == UnsafePointer
}
func isPointer(typ Type) bool {
_, ok := typ.Underlying().(*Pointer)
return ok
}
func isBytesOrRunes(typ Type) bool {
if s, ok := typ.(*Slice); ok {
t, ok := s.elem.Underlying().(*Basic)
return ok && (t.kind == Byte || t.kind == Rune)
}
return false
}

View File

@ -0,0 +1,467 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"go/ast"
"go/constant"
"go/token"
)
func (check *Checker) reportAltDecl(obj Object) {
if pos := obj.Pos(); pos.IsValid() {
// We use "other" rather than "previous" here because
// the first declaration seen may not be textually
// earlier in the source.
check.errorf(pos, "\tother declaration of %s", obj.Name()) // secondary error, \t indented
}
}
func (check *Checker) declare(scope *Scope, id *ast.Ident, obj Object, pos token.Pos) {
// spec: "The blank identifier, represented by the underscore
// character _, may be used in a declaration like any other
// identifier but the declaration does not introduce a new
// binding."
if obj.Name() != "_" {
if alt := scope.Insert(obj); alt != nil {
check.errorf(obj.Pos(), "%s redeclared in this block", obj.Name())
check.reportAltDecl(alt)
return
}
obj.setScopePos(pos)
}
if id != nil {
check.recordDef(id, obj)
}
}
// objDecl type-checks the declaration of obj in its respective (file) context.
// See check.typ for the details on def and path.
func (check *Checker) objDecl(obj Object, def *Named, path []*TypeName) {
if obj.Type() != nil {
return // already checked - nothing to do
}
if trace {
check.trace(obj.Pos(), "-- declaring %s", obj.Name())
check.indent++
defer func() {
check.indent--
check.trace(obj.Pos(), "=> %s", obj)
}()
}
d := check.objMap[obj]
if d == nil {
check.dump("%s: %s should have been declared", obj.Pos(), obj.Name())
unreachable()
}
// save/restore current context and setup object context
defer func(ctxt context) {
check.context = ctxt
}(check.context)
check.context = context{
scope: d.file,
}
// Const and var declarations must not have initialization
// cycles. We track them by remembering the current declaration
// in check.decl. Initialization expressions depending on other
// consts, vars, or functions, add dependencies to the current
// check.decl.
switch obj := obj.(type) {
case *Const:
check.decl = d // new package-level const decl
check.constDecl(obj, d.typ, d.init)
case *Var:
check.decl = d // new package-level var decl
check.varDecl(obj, d.lhs, d.typ, d.init)
case *TypeName:
// invalid recursive types are detected via path
check.typeDecl(obj, d.typ, def, path, d.alias)
case *Func:
// functions may be recursive - no need to track dependencies
check.funcDecl(obj, d)
default:
unreachable()
}
}
func (check *Checker) constDecl(obj *Const, typ, init ast.Expr) {
assert(obj.typ == nil)
if obj.visited {
obj.typ = Typ[Invalid]
return
}
obj.visited = true
// use the correct value of iota
assert(check.iota == nil)
check.iota = obj.val
defer func() { check.iota = nil }()
// provide valid constant value under all circumstances
obj.val = constant.MakeUnknown()
// determine type, if any
if typ != nil {
t := check.typ(typ)
if !isConstType(t) {
// don't report an error if the type is an invalid C (defined) type
// (issue #22090)
if t.Underlying() != Typ[Invalid] {
check.errorf(typ.Pos(), "invalid constant type %s", t)
}
obj.typ = Typ[Invalid]
return
}
obj.typ = t
}
// check initialization
var x operand
if init != nil {
check.expr(&x, init)
}
check.initConst(obj, &x)
}
func (check *Checker) varDecl(obj *Var, lhs []*Var, typ, init ast.Expr) {
assert(obj.typ == nil)
if obj.visited {
obj.typ = Typ[Invalid]
return
}
obj.visited = true
// var declarations cannot use iota
assert(check.iota == nil)
// determine type, if any
if typ != nil {
obj.typ = check.typ(typ)
// We cannot spread the type to all lhs variables if there
// are more than one since that would mark them as checked
// (see Checker.objDecl) and the assignment of init exprs,
// if any, would not be checked.
//
// TODO(gri) If we have no init expr, we should distribute
// a given type otherwise we need to re-evalate the type
// expr for each lhs variable, leading to duplicate work.
}
// check initialization
if init == nil {
if typ == nil {
// error reported before by arityMatch
obj.typ = Typ[Invalid]
}
return
}
if lhs == nil || len(lhs) == 1 {
assert(lhs == nil || lhs[0] == obj)
var x operand
check.expr(&x, init)
check.initVar(obj, &x, "variable declaration")
return
}
if debug {
// obj must be one of lhs
found := false
for _, lhs := range lhs {
if obj == lhs {
found = true
break
}
}
if !found {
panic("inconsistent lhs")
}
}
// We have multiple variables on the lhs and one init expr.
// Make sure all variables have been given the same type if
// one was specified, otherwise they assume the type of the
// init expression values (was issue #15755).
if typ != nil {
for _, lhs := range lhs {
lhs.typ = obj.typ
}
}
check.initVars(lhs, []ast.Expr{init}, token.NoPos)
}
// underlying returns the underlying type of typ; possibly by following
// forward chains of named types. Such chains only exist while named types
// are incomplete.
func underlying(typ Type) Type {
for {
n, _ := typ.(*Named)
if n == nil {
break
}
typ = n.underlying
}
return typ
}
func (n *Named) setUnderlying(typ Type) {
if n != nil {
n.underlying = typ
}
}
func (check *Checker) typeDecl(obj *TypeName, typ ast.Expr, def *Named, path []*TypeName, alias bool) {
assert(obj.typ == nil)
// type declarations cannot use iota
assert(check.iota == nil)
if alias {
obj.typ = Typ[Invalid]
obj.typ = check.typExpr(typ, nil, append(path, obj))
} else {
named := &Named{obj: obj}
def.setUnderlying(named)
obj.typ = named // make sure recursive type declarations terminate
// determine underlying type of named
check.typExpr(typ, named, append(path, obj))
// The underlying type of named may be itself a named type that is
// incomplete:
//
// type (
// A B
// B *C
// C A
// )
//
// The type of C is the (named) type of A which is incomplete,
// and which has as its underlying type the named type B.
// Determine the (final, unnamed) underlying type by resolving
// any forward chain (they always end in an unnamed type).
named.underlying = underlying(named.underlying)
}
// check and add associated methods
// TODO(gri) It's easy to create pathological cases where the
// current approach is incorrect: In general we need to know
// and add all methods _before_ type-checking the type.
// See https://play.golang.org/p/WMpE0q2wK8
check.addMethodDecls(obj)
}
func (check *Checker) addMethodDecls(obj *TypeName) {
// get associated methods
methods := check.methods[obj.name]
if len(methods) == 0 {
return // no methods
}
delete(check.methods, obj.name)
// use an objset to check for name conflicts
var mset objset
// spec: "If the base type is a struct type, the non-blank method
// and field names must be distinct."
base, _ := obj.typ.(*Named) // nil if receiver base type is type alias
if base != nil {
if t, _ := base.underlying.(*Struct); t != nil {
for _, fld := range t.fields {
if fld.name != "_" {
assert(mset.insert(fld) == nil)
}
}
}
// Checker.Files may be called multiple times; additional package files
// may add methods to already type-checked types. Add pre-existing methods
// so that we can detect redeclarations.
for _, m := range base.methods {
assert(m.name != "_")
assert(mset.insert(m) == nil)
}
}
// type-check methods
for _, m := range methods {
// spec: "For a base type, the non-blank names of methods bound
// to it must be unique."
if m.name != "_" {
if alt := mset.insert(m); alt != nil {
switch alt.(type) {
case *Var:
check.errorf(m.pos, "field and method with the same name %s", m.name)
case *Func:
check.errorf(m.pos, "method %s already declared for %s", m.name, obj)
default:
unreachable()
}
check.reportAltDecl(alt)
continue
}
}
// type-check
check.objDecl(m, nil, nil)
// methods with blank _ names cannot be found - don't keep them
if base != nil && m.name != "_" {
base.methods = append(base.methods, m)
}
}
}
func (check *Checker) funcDecl(obj *Func, decl *declInfo) {
assert(obj.typ == nil)
// func declarations cannot use iota
assert(check.iota == nil)
sig := new(Signature)
obj.typ = sig // guard against cycles
fdecl := decl.fdecl
check.funcType(sig, fdecl.Recv, fdecl.Type)
if sig.recv == nil && obj.name == "init" && (sig.params.Len() > 0 || sig.results.Len() > 0) {
check.errorf(fdecl.Pos(), "func init must have no arguments and no return values")
// ok to continue
}
// function body must be type-checked after global declarations
// (functions implemented elsewhere have no body)
if !check.conf.IgnoreFuncBodies && fdecl.Body != nil {
check.later(obj.name, decl, sig, fdecl.Body)
}
}
func (check *Checker) declStmt(decl ast.Decl) {
pkg := check.pkg
switch d := decl.(type) {
case *ast.BadDecl:
// ignore
case *ast.GenDecl:
var last *ast.ValueSpec // last ValueSpec with type or init exprs seen
for iota, spec := range d.Specs {
switch s := spec.(type) {
case *ast.ValueSpec:
switch d.Tok {
case token.CONST:
// determine which init exprs to use
switch {
case s.Type != nil || len(s.Values) > 0:
last = s
case last == nil:
last = new(ast.ValueSpec) // make sure last exists
}
// declare all constants
lhs := make([]*Const, len(s.Names))
for i, name := range s.Names {
obj := NewConst(name.Pos(), pkg, name.Name, nil, constant.MakeInt64(int64(iota)))
lhs[i] = obj
var init ast.Expr
if i < len(last.Values) {
init = last.Values[i]
}
check.constDecl(obj, last.Type, init)
}
check.arityMatch(s, last)
// spec: "The scope of a constant or variable identifier declared
// inside a function begins at the end of the ConstSpec or VarSpec
// (ShortVarDecl for short variable declarations) and ends at the
// end of the innermost containing block."
scopePos := s.End()
for i, name := range s.Names {
check.declare(check.scope, name, lhs[i], scopePos)
}
case token.VAR:
lhs0 := make([]*Var, len(s.Names))
for i, name := range s.Names {
lhs0[i] = NewVar(name.Pos(), pkg, name.Name, nil)
}
// initialize all variables
for i, obj := range lhs0 {
var lhs []*Var
var init ast.Expr
switch len(s.Values) {
case len(s.Names):
// lhs and rhs match
init = s.Values[i]
case 1:
// rhs is expected to be a multi-valued expression
lhs = lhs0
init = s.Values[0]
default:
if i < len(s.Values) {
init = s.Values[i]
}
}
check.varDecl(obj, lhs, s.Type, init)
if len(s.Values) == 1 {
// If we have a single lhs variable we are done either way.
// If we have a single rhs expression, it must be a multi-
// valued expression, in which case handling the first lhs
// variable will cause all lhs variables to have a type
// assigned, and we are done as well.
if debug {
for _, obj := range lhs0 {
assert(obj.typ != nil)
}
}
break
}
}
check.arityMatch(s, nil)
// declare all variables
// (only at this point are the variable scopes (parents) set)
scopePos := s.End() // see constant declarations
for i, name := range s.Names {
// see constant declarations
check.declare(check.scope, name, lhs0[i], scopePos)
}
default:
check.invalidAST(s.Pos(), "invalid token %s", d.Tok)
}
case *ast.TypeSpec:
obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Name, nil)
// spec: "The scope of a type identifier declared inside a function
// begins at the identifier in the TypeSpec and ends at the end of
// the innermost containing block."
scopePos := s.Name.Pos()
check.declare(check.scope, s.Name, obj, scopePos)
check.typeDecl(obj, s.Type, nil, nil, s.Assign.IsValid())
default:
check.invalidAST(s.Pos(), "const, type, or var declaration expected")
}
}
default:
check.invalidAST(d.Pos(), "unknown ast.Decl node %T", d)
}
}

View File

@ -0,0 +1,103 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements various error reporters.
package types
import (
"fmt"
"go/ast"
"go/token"
"strings"
)
func assert(p bool) {
if !p {
panic("assertion failed")
}
}
func unreachable() {
panic("unreachable")
}
func (check *Checker) qualifier(pkg *Package) string {
if pkg != check.pkg {
return pkg.path
}
return ""
}
func (check *Checker) sprintf(format string, args ...interface{}) string {
for i, arg := range args {
switch a := arg.(type) {
case nil:
arg = "<nil>"
case operand:
panic("internal error: should always pass *operand")
case *operand:
arg = operandString(a, check.qualifier)
case token.Pos:
arg = check.fset.Position(a).String()
case ast.Expr:
arg = ExprString(a)
case Object:
arg = ObjectString(a, check.qualifier)
case Type:
arg = TypeString(a, check.qualifier)
}
args[i] = arg
}
return fmt.Sprintf(format, args...)
}
func (check *Checker) trace(pos token.Pos, format string, args ...interface{}) {
fmt.Printf("%s:\t%s%s\n",
check.fset.Position(pos),
strings.Repeat(". ", check.indent),
check.sprintf(format, args...),
)
}
// dump is only needed for debugging
func (check *Checker) dump(format string, args ...interface{}) {
fmt.Println(check.sprintf(format, args...))
}
func (check *Checker) err(pos token.Pos, msg string, soft bool) {
err := Error{check.fset, pos, msg, soft}
if check.firstErr == nil {
check.firstErr = err
}
f := check.conf.Error
if f == nil {
panic(bailout{}) // report only first error
}
f(err)
}
func (check *Checker) error(pos token.Pos, msg string) {
check.err(pos, msg, false)
}
func (check *Checker) errorf(pos token.Pos, format string, args ...interface{}) {
check.err(pos, check.sprintf(format, args...), false)
}
func (check *Checker) softErrorf(pos token.Pos, format string, args ...interface{}) {
check.err(pos, check.sprintf(format, args...), true)
}
func (check *Checker) invalidAST(pos token.Pos, format string, args ...interface{}) {
check.errorf(pos, "invalid AST: "+format, args...)
}
func (check *Checker) invalidArg(pos token.Pos, format string, args ...interface{}) {
check.errorf(pos, "invalid argument: "+format, args...)
}
func (check *Checker) invalidOp(pos token.Pos, format string, args ...interface{}) {
check.errorf(pos, "invalid operation: "+format, args...)
}

View File

@ -0,0 +1,83 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"fmt"
"go/parser"
"go/token"
)
// Eval returns the type and, if constant, the value for the
// expression expr, evaluated at position pos of package pkg,
// which must have been derived from type-checking an AST with
// complete position information relative to the provided file
// set.
//
// If the expression contains function literals, their bodies
// are ignored (i.e., the bodies are not type-checked).
//
// If pkg == nil, the Universe scope is used and the provided
// position pos is ignored. If pkg != nil, and pos is invalid,
// the package scope is used. Otherwise, pos must belong to the
// package.
//
// An error is returned if pos is not within the package or
// if the node cannot be evaluated.
//
// Note: Eval should not be used instead of running Check to compute
// types and values, but in addition to Check. Eval will re-evaluate
// its argument each time, and it also does not know about the context
// in which an expression is used (e.g., an assignment). Thus, top-
// level untyped constants will return an untyped type rather then the
// respective context-specific type.
//
func Eval(fset *token.FileSet, pkg *Package, pos token.Pos, expr string) (TypeAndValue, error) {
// determine scope
var scope *Scope
if pkg == nil {
scope = Universe
pos = token.NoPos
} else if !pos.IsValid() {
scope = pkg.scope
} else {
// The package scope extent (position information) may be
// incorrect (files spread across a wide range of fset
// positions) - ignore it and just consider its children
// (file scopes).
for _, fscope := range pkg.scope.children {
if scope = fscope.Innermost(pos); scope != nil {
break
}
}
if scope == nil || debug {
s := scope
for s != nil && s != pkg.scope {
s = s.parent
}
// s == nil || s == pkg.scope
if s == nil {
return TypeAndValue{}, fmt.Errorf("no position %s found in package %s", fset.Position(pos), pkg.name)
}
}
}
// parse expressions
node, err := parser.ParseExprFrom(fset, "eval", expr, 0)
if err != nil {
return TypeAndValue{}, err
}
// initialize checker
check := NewChecker(nil, fset, pkg, nil)
check.scope = scope
check.pos = pos
defer check.handleBailout(&err)
// evaluate node
var x operand
check.rawExpr(&x, node, nil)
return TypeAndValue{x.mode, x.typ, x.val}, err
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,224 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements printing of expressions.
package types
import (
"bytes"
"go/ast"
)
// ExprString returns the (possibly shortened) string representation for x.
// Shortened representations are suitable for user interfaces but may not
// necessarily follow Go syntax.
func ExprString(x ast.Expr) string {
var buf bytes.Buffer
WriteExpr(&buf, x)
return buf.String()
}
// WriteExpr writes the (possibly shortened) string representation for x to buf.
// Shortened representations are suitable for user interfaces but may not
// necessarily follow Go syntax.
func WriteExpr(buf *bytes.Buffer, x ast.Expr) {
// The AST preserves source-level parentheses so there is
// no need to introduce them here to correct for different
// operator precedences. (This assumes that the AST was
// generated by a Go parser.)
switch x := x.(type) {
default:
buf.WriteString("(bad expr)") // nil, ast.BadExpr, ast.KeyValueExpr
case *ast.Ident:
buf.WriteString(x.Name)
case *ast.Ellipsis:
buf.WriteString("...")
if x.Elt != nil {
WriteExpr(buf, x.Elt)
}
case *ast.BasicLit:
buf.WriteString(x.Value)
case *ast.FuncLit:
buf.WriteByte('(')
WriteExpr(buf, x.Type)
buf.WriteString(" literal)") // shortened
case *ast.CompositeLit:
buf.WriteByte('(')
WriteExpr(buf, x.Type)
buf.WriteString(" literal)") // shortened
case *ast.ParenExpr:
buf.WriteByte('(')
WriteExpr(buf, x.X)
buf.WriteByte(')')
case *ast.SelectorExpr:
WriteExpr(buf, x.X)
buf.WriteByte('.')
buf.WriteString(x.Sel.Name)
case *ast.IndexExpr:
WriteExpr(buf, x.X)
buf.WriteByte('[')
WriteExpr(buf, x.Index)
buf.WriteByte(']')
case *ast.SliceExpr:
WriteExpr(buf, x.X)
buf.WriteByte('[')
if x.Low != nil {
WriteExpr(buf, x.Low)
}
buf.WriteByte(':')
if x.High != nil {
WriteExpr(buf, x.High)
}
if x.Slice3 {
buf.WriteByte(':')
if x.Max != nil {
WriteExpr(buf, x.Max)
}
}
buf.WriteByte(']')
case *ast.TypeAssertExpr:
WriteExpr(buf, x.X)
buf.WriteString(".(")
WriteExpr(buf, x.Type)
buf.WriteByte(')')
case *ast.CallExpr:
WriteExpr(buf, x.Fun)
buf.WriteByte('(')
for i, arg := range x.Args {
if i > 0 {
buf.WriteString(", ")
}
WriteExpr(buf, arg)
}
if x.Ellipsis.IsValid() {
buf.WriteString("...")
}
buf.WriteByte(')')
case *ast.StarExpr:
buf.WriteByte('*')
WriteExpr(buf, x.X)
case *ast.UnaryExpr:
buf.WriteString(x.Op.String())
WriteExpr(buf, x.X)
case *ast.BinaryExpr:
WriteExpr(buf, x.X)
buf.WriteByte(' ')
buf.WriteString(x.Op.String())
buf.WriteByte(' ')
WriteExpr(buf, x.Y)
case *ast.ArrayType:
buf.WriteByte('[')
if x.Len != nil {
WriteExpr(buf, x.Len)
}
buf.WriteByte(']')
WriteExpr(buf, x.Elt)
case *ast.StructType:
buf.WriteString("struct{")
writeFieldList(buf, x.Fields, "; ", false)
buf.WriteByte('}')
case *ast.FuncType:
buf.WriteString("func")
writeSigExpr(buf, x)
case *ast.InterfaceType:
buf.WriteString("interface{")
writeFieldList(buf, x.Methods, "; ", true)
buf.WriteByte('}')
case *ast.MapType:
buf.WriteString("map[")
WriteExpr(buf, x.Key)
buf.WriteByte(']')
WriteExpr(buf, x.Value)
case *ast.ChanType:
var s string
switch x.Dir {
case ast.SEND:
s = "chan<- "
case ast.RECV:
s = "<-chan "
default:
s = "chan "
}
buf.WriteString(s)
WriteExpr(buf, x.Value)
}
}
func writeSigExpr(buf *bytes.Buffer, sig *ast.FuncType) {
buf.WriteByte('(')
writeFieldList(buf, sig.Params, ", ", false)
buf.WriteByte(')')
res := sig.Results
n := res.NumFields()
if n == 0 {
// no result
return
}
buf.WriteByte(' ')
if n == 1 && len(res.List[0].Names) == 0 {
// single unnamed result
WriteExpr(buf, res.List[0].Type)
return
}
// multiple or named result(s)
buf.WriteByte('(')
writeFieldList(buf, res, ", ", false)
buf.WriteByte(')')
}
func writeFieldList(buf *bytes.Buffer, fields *ast.FieldList, sep string, iface bool) {
for i, f := range fields.List {
if i > 0 {
buf.WriteString(sep)
}
// field list names
for i, name := range f.Names {
if i > 0 {
buf.WriteString(", ")
}
buf.WriteString(name.Name)
}
// types of interface methods consist of signatures only
if sig, _ := f.Type.(*ast.FuncType); sig != nil && iface {
writeSigExpr(buf, sig)
continue
}
// named fields are separated with a blank from the field type
if len(f.Names) > 0 {
buf.WriteByte(' ')
}
WriteExpr(buf, f.Type)
// ignore tag
}
}

View File

@ -0,0 +1,332 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// Build this command explicitly: go build gotype.go
/*
The gotype command, like the front-end of a Go compiler, parses and
type-checks a single Go package. Errors are reported if the analysis
fails; otherwise gotype is quiet (unless -v is set).
Without a list of paths, gotype reads from standard input, which
must provide a single Go source file defining a complete package.
With a single directory argument, gotype checks the Go files in
that directory, comprising a single package. Use -t to include the
(in-package) _test.go files. Use -x to type check only external
test files.
Otherwise, each path must be the filename of a Go file belonging
to the same package.
Imports are processed by importing directly from the source of
imported packages (default), or by importing from compiled and
installed packages (by setting -c to the respective compiler).
The -c flag must be set to a compiler ("gc", "gccgo") when type-
checking packages containing imports with relative import paths
(import "./mypkg") because the source importer cannot know which
files to include for such packages.
Usage:
gotype [flags] [path...]
The flags are:
-t
include local test files in a directory (ignored if -x is provided)
-x
consider only external test files in a directory
-e
report all errors (not just the first 10)
-v
verbose mode
-c
compiler used for installed packages (gc, gccgo, or source); default: source
Flags controlling additional output:
-ast
print AST (forces -seq)
-trace
print parse trace (forces -seq)
-comments
parse comments (ignored unless -ast or -trace is provided)
Examples:
To check the files a.go, b.go, and c.go:
gotype a.go b.go c.go
To check an entire package including (in-package) tests in the directory dir and print the processed files:
gotype -t -v dir
To check the external test package (if any) in the current directory, based on installed packages compiled with
cmd/compile:
gotype -c=gc -x .
To verify the output of a pipe:
echo "package foo" | gotype
*/
package main
import (
"flag"
"fmt"
"go/ast"
"go/build"
"go/importer"
"go/parser"
"go/scanner"
"go/token"
"go/types"
"io/ioutil"
"os"
"path/filepath"
"sync"
"time"
)
var (
// main operation modes
testFiles = flag.Bool("t", false, "include in-package test files in a directory")
xtestFiles = flag.Bool("x", false, "consider only external test files in a directory")
allErrors = flag.Bool("e", false, "report all errors, not just the first 10")
verbose = flag.Bool("v", false, "verbose mode")
compiler = flag.String("c", "source", "compiler used for installed packages (gc, gccgo, or source)")
// additional output control
printAST = flag.Bool("ast", false, "print AST (forces -seq)")
printTrace = flag.Bool("trace", false, "print parse trace (forces -seq)")
parseComments = flag.Bool("comments", false, "parse comments (ignored unless -ast or -trace is provided)")
)
var (
fset = token.NewFileSet()
errorCount = 0
sequential = false
parserMode parser.Mode
)
func initParserMode() {
if *allErrors {
parserMode |= parser.AllErrors
}
if *printAST {
sequential = true
}
if *printTrace {
parserMode |= parser.Trace
sequential = true
}
if *parseComments && (*printAST || *printTrace) {
parserMode |= parser.ParseComments
}
}
const usageString = `usage: gotype [flags] [path ...]
The gotype command, like the front-end of a Go compiler, parses and
type-checks a single Go package. Errors are reported if the analysis
fails; otherwise gotype is quiet (unless -v is set).
Without a list of paths, gotype reads from standard input, which
must provide a single Go source file defining a complete package.
With a single directory argument, gotype checks the Go files in
that directory, comprising a single package. Use -t to include the
(in-package) _test.go files. Use -x to type check only external
test files.
Otherwise, each path must be the filename of a Go file belonging
to the same package.
Imports are processed by importing directly from the source of
imported packages (default), or by importing from compiled and
installed packages (by setting -c to the respective compiler).
The -c flag must be set to a compiler ("gc", "gccgo") when type-
checking packages containing imports with relative import paths
(import "./mypkg") because the source importer cannot know which
files to include for such packages.
`
func usage() {
fmt.Fprintln(os.Stderr, usageString)
flag.PrintDefaults()
os.Exit(2)
}
func report(err error) {
scanner.PrintError(os.Stderr, err)
if list, ok := err.(scanner.ErrorList); ok {
errorCount += len(list)
return
}
errorCount++
}
// parse may be called concurrently
func parse(filename string, src interface{}) (*ast.File, error) {
if *verbose {
fmt.Println(filename)
}
file, err := parser.ParseFile(fset, filename, src, parserMode) // ok to access fset concurrently
if *printAST {
ast.Print(fset, file)
}
return file, err
}
func parseStdin() (*ast.File, error) {
src, err := ioutil.ReadAll(os.Stdin)
if err != nil {
return nil, err
}
return parse("<standard input>", src)
}
func parseFiles(dir string, filenames []string) ([]*ast.File, error) {
files := make([]*ast.File, len(filenames))
errors := make([]error, len(filenames))
var wg sync.WaitGroup
for i, filename := range filenames {
wg.Add(1)
go func(i int, filepath string) {
defer wg.Done()
files[i], errors[i] = parse(filepath, nil)
}(i, filepath.Join(dir, filename))
if sequential {
wg.Wait()
}
}
wg.Wait()
// if there are errors, return the first one for deterministic results
for _, err := range errors {
if err != nil {
return nil, err
}
}
return files, nil
}
func parseDir(dir string) ([]*ast.File, error) {
ctxt := build.Default
pkginfo, err := ctxt.ImportDir(dir, 0)
if _, nogo := err.(*build.NoGoError); err != nil && !nogo {
return nil, err
}
if *xtestFiles {
return parseFiles(dir, pkginfo.XTestGoFiles)
}
filenames := append(pkginfo.GoFiles, pkginfo.CgoFiles...)
if *testFiles {
filenames = append(filenames, pkginfo.TestGoFiles...)
}
return parseFiles(dir, filenames)
}
func getPkgFiles(args []string) ([]*ast.File, error) {
if len(args) == 0 {
// stdin
file, err := parseStdin()
if err != nil {
return nil, err
}
return []*ast.File{file}, nil
}
if len(args) == 1 {
// possibly a directory
path := args[0]
info, err := os.Stat(path)
if err != nil {
return nil, err
}
if info.IsDir() {
return parseDir(path)
}
}
// list of files
return parseFiles("", args)
}
func checkPkgFiles(files []*ast.File) {
type bailout struct{}
// if checkPkgFiles is called multiple times, set up conf only once
conf := types.Config{
FakeImportC: true,
Error: func(err error) {
if !*allErrors && errorCount >= 10 {
panic(bailout{})
}
report(err)
},
Importer: importer.For(*compiler, nil),
Sizes: types.SizesFor(build.Default.Compiler, build.Default.GOARCH),
}
defer func() {
switch p := recover().(type) {
case nil, bailout:
// normal return or early exit
default:
// re-panic
panic(p)
}
}()
const path = "pkg" // any non-empty string will do for now
conf.Check(path, fset, files, nil)
}
func printStats(d time.Duration) {
fileCount := 0
lineCount := 0
fset.Iterate(func(f *token.File) bool {
fileCount++
lineCount += f.LineCount()
return true
})
fmt.Printf(
"%s (%d files, %d lines, %d lines/s)\n",
d, fileCount, lineCount, int64(float64(lineCount)/d.Seconds()),
)
}
func main() {
flag.Usage = usage
flag.Parse()
initParserMode()
start := time.Now()
files, err := getPkgFiles(flag.Args())
if err != nil {
report(err)
os.Exit(2)
}
checkPkgFiles(files)
if errorCount > 0 {
os.Exit(2)
}
if *verbose {
printStats(time.Since(start))
}
}

View File

@ -0,0 +1,297 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"container/heap"
"fmt"
)
// initOrder computes the Info.InitOrder for package variables.
func (check *Checker) initOrder() {
// An InitOrder may already have been computed if a package is
// built from several calls to (*Checker).Files. Clear it.
check.Info.InitOrder = check.Info.InitOrder[:0]
// Compute the object dependency graph and initialize
// a priority queue with the list of graph nodes.
pq := nodeQueue(dependencyGraph(check.objMap))
heap.Init(&pq)
const debug = false
if debug {
fmt.Printf("Computing initialization order for %s\n\n", check.pkg)
fmt.Println("Object dependency graph:")
for obj, d := range check.objMap {
// only print objects that may appear in the dependency graph
if obj, _ := obj.(dependency); obj != nil {
if len(d.deps) > 0 {
fmt.Printf("\t%s depends on\n", obj.Name())
for dep := range d.deps {
fmt.Printf("\t\t%s\n", dep.Name())
}
} else {
fmt.Printf("\t%s has no dependencies\n", obj.Name())
}
}
}
fmt.Println()
fmt.Println("Transposed object dependency graph (functions eliminated):")
for _, n := range pq {
fmt.Printf("\t%s depends on %d nodes\n", n.obj.Name(), n.ndeps)
for p := range n.pred {
fmt.Printf("\t\t%s is dependent\n", p.obj.Name())
}
}
fmt.Println()
fmt.Println("Processing nodes:")
}
// Determine initialization order by removing the highest priority node
// (the one with the fewest dependencies) and its edges from the graph,
// repeatedly, until there are no nodes left.
// In a valid Go program, those nodes always have zero dependencies (after
// removing all incoming dependencies), otherwise there are initialization
// cycles.
emitted := make(map[*declInfo]bool)
for len(pq) > 0 {
// get the next node
n := heap.Pop(&pq).(*graphNode)
if debug {
fmt.Printf("\t%s (src pos %d) depends on %d nodes now\n",
n.obj.Name(), n.obj.order(), n.ndeps)
}
// if n still depends on other nodes, we have a cycle
if n.ndeps > 0 {
cycle := findPath(check.objMap, n.obj, n.obj, make(objSet))
// If n.obj is not part of the cycle (e.g., n.obj->b->c->d->c),
// cycle will be nil. Don't report anything in that case since
// the cycle is reported when the algorithm gets to an object
// in the cycle.
// Furthermore, once an object in the cycle is encountered,
// the cycle will be broken (dependency count will be reduced
// below), and so the remaining nodes in the cycle don't trigger
// another error (unless they are part of multiple cycles).
if cycle != nil {
check.reportCycle(cycle)
}
// Ok to continue, but the variable initialization order
// will be incorrect at this point since it assumes no
// cycle errors.
}
// reduce dependency count of all dependent nodes
// and update priority queue
for p := range n.pred {
p.ndeps--
heap.Fix(&pq, p.index)
}
// record the init order for variables with initializers only
v, _ := n.obj.(*Var)
info := check.objMap[v]
if v == nil || !info.hasInitializer() {
continue
}
// n:1 variable declarations such as: a, b = f()
// introduce a node for each lhs variable (here: a, b);
// but they all have the same initializer - emit only
// one, for the first variable seen
if emitted[info] {
continue // initializer already emitted, if any
}
emitted[info] = true
infoLhs := info.lhs // possibly nil (see declInfo.lhs field comment)
if infoLhs == nil {
infoLhs = []*Var{v}
}
init := &Initializer{infoLhs, info.init}
check.Info.InitOrder = append(check.Info.InitOrder, init)
}
if debug {
fmt.Println()
fmt.Println("Initialization order:")
for _, init := range check.Info.InitOrder {
fmt.Printf("\t%s\n", init)
}
fmt.Println()
}
}
// findPath returns the (reversed) list of objects []Object{to, ... from}
// such that there is a path of object dependencies from 'from' to 'to'.
// If there is no such path, the result is nil.
func findPath(objMap map[Object]*declInfo, from, to Object, visited objSet) []Object {
if visited[from] {
return nil // node already seen
}
visited[from] = true
for d := range objMap[from].deps {
if d == to {
return []Object{d}
}
if P := findPath(objMap, d, to, visited); P != nil {
return append(P, d)
}
}
return nil
}
// reportCycle reports an error for the given cycle.
func (check *Checker) reportCycle(cycle []Object) {
obj := cycle[0]
check.errorf(obj.Pos(), "initialization cycle for %s", obj.Name())
// subtle loop: print cycle[i] for i = 0, n-1, n-2, ... 1 for len(cycle) = n
for i := len(cycle) - 1; i >= 0; i-- {
check.errorf(obj.Pos(), "\t%s refers to", obj.Name()) // secondary error, \t indented
obj = cycle[i]
}
// print cycle[0] again to close the cycle
check.errorf(obj.Pos(), "\t%s", obj.Name())
}
// ----------------------------------------------------------------------------
// Object dependency graph
// A dependency is an object that may be a dependency in an initialization
// expression. Only constants, variables, and functions can be dependencies.
// Constants are here because constant expression cycles are reported during
// initialization order computation.
type dependency interface {
Object
isDependency()
}
// A graphNode represents a node in the object dependency graph.
// Each node p in n.pred represents an edge p->n, and each node
// s in n.succ represents an edge n->s; with a->b indicating that
// a depends on b.
type graphNode struct {
obj dependency // object represented by this node
pred, succ nodeSet // consumers and dependencies of this node (lazily initialized)
index int // node index in graph slice/priority queue
ndeps int // number of outstanding dependencies before this object can be initialized
}
type nodeSet map[*graphNode]bool
func (s *nodeSet) add(p *graphNode) {
if *s == nil {
*s = make(nodeSet)
}
(*s)[p] = true
}
// dependencyGraph computes the object dependency graph from the given objMap,
// with any function nodes removed. The resulting graph contains only constants
// and variables.
func dependencyGraph(objMap map[Object]*declInfo) []*graphNode {
// M is the dependency (Object) -> graphNode mapping
M := make(map[dependency]*graphNode)
for obj := range objMap {
// only consider nodes that may be an initialization dependency
if obj, _ := obj.(dependency); obj != nil {
M[obj] = &graphNode{obj: obj}
}
}
// compute edges for graph M
// (We need to include all nodes, even isolated ones, because they still need
// to be scheduled for initialization in correct order relative to other nodes.)
for obj, n := range M {
// for each dependency obj -> d (= deps[i]), create graph edges n->s and s->n
for d := range objMap[obj].deps {
// only consider nodes that may be an initialization dependency
if d, _ := d.(dependency); d != nil {
d := M[d]
n.succ.add(d)
d.pred.add(n)
}
}
}
// remove function nodes and collect remaining graph nodes in G
// (Mutually recursive functions may introduce cycles among themselves
// which are permitted. Yet such cycles may incorrectly inflate the dependency
// count for variables which in turn may not get scheduled for initialization
// in correct order.)
var G []*graphNode
for obj, n := range M {
if _, ok := obj.(*Func); ok {
// connect each predecessor p of n with each successor s
// and drop the function node (don't collect it in G)
for p := range n.pred {
// ignore self-cycles
if p != n {
// Each successor s of n becomes a successor of p, and
// each predecessor p of n becomes a predecessor of s.
for s := range n.succ {
// ignore self-cycles
if s != n {
p.succ.add(s)
s.pred.add(p)
delete(s.pred, n) // remove edge to n
}
}
delete(p.succ, n) // remove edge to n
}
}
} else {
// collect non-function nodes
G = append(G, n)
}
}
// fill in index and ndeps fields
for i, n := range G {
n.index = i
n.ndeps = len(n.succ)
}
return G
}
// ----------------------------------------------------------------------------
// Priority queue
// nodeQueue implements the container/heap interface;
// a nodeQueue may be used as a priority queue.
type nodeQueue []*graphNode
func (a nodeQueue) Len() int { return len(a) }
func (a nodeQueue) Swap(i, j int) {
x, y := a[i], a[j]
a[i], a[j] = y, x
x.index, y.index = j, i
}
func (a nodeQueue) Less(i, j int) bool {
x, y := a[i], a[j]
// nodes are prioritized by number of incoming dependencies (1st key)
// and source order (2nd key)
return x.ndeps < y.ndeps || x.ndeps == y.ndeps && x.obj.order() < y.obj.order()
}
func (a *nodeQueue) Push(x interface{}) {
panic("unreachable")
}
func (a *nodeQueue) Pop() interface{} {
n := len(*a)
x := (*a)[n-1]
x.index = -1 // for safety
*a = (*a)[:n-1]
return x
}

View File

@ -0,0 +1,268 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"go/ast"
"go/token"
)
// labels checks correct label use in body.
func (check *Checker) labels(body *ast.BlockStmt) {
// set of all labels in this body
all := NewScope(nil, body.Pos(), body.End(), "label")
fwdJumps := check.blockBranches(all, nil, nil, body.List)
// If there are any forward jumps left, no label was found for
// the corresponding goto statements. Either those labels were
// never defined, or they are inside blocks and not reachable
// for the respective gotos.
for _, jmp := range fwdJumps {
var msg string
name := jmp.Label.Name
if alt := all.Lookup(name); alt != nil {
msg = "goto %s jumps into block"
alt.(*Label).used = true // avoid another error
} else {
msg = "label %s not declared"
}
check.errorf(jmp.Label.Pos(), msg, name)
}
// spec: "It is illegal to define a label that is never used."
for _, obj := range all.elems {
if lbl := obj.(*Label); !lbl.used {
check.softErrorf(lbl.pos, "label %s declared but not used", lbl.name)
}
}
}
// A block tracks label declarations in a block and its enclosing blocks.
type block struct {
parent *block // enclosing block
lstmt *ast.LabeledStmt // labeled statement to which this block belongs, or nil
labels map[string]*ast.LabeledStmt // allocated lazily
}
// insert records a new label declaration for the current block.
// The label must not have been declared before in any block.
func (b *block) insert(s *ast.LabeledStmt) {
name := s.Label.Name
if debug {
assert(b.gotoTarget(name) == nil)
}
labels := b.labels
if labels == nil {
labels = make(map[string]*ast.LabeledStmt)
b.labels = labels
}
labels[name] = s
}
// gotoTarget returns the labeled statement in the current
// or an enclosing block with the given label name, or nil.
func (b *block) gotoTarget(name string) *ast.LabeledStmt {
for s := b; s != nil; s = s.parent {
if t := s.labels[name]; t != nil {
return t
}
}
return nil
}
// enclosingTarget returns the innermost enclosing labeled
// statement with the given label name, or nil.
func (b *block) enclosingTarget(name string) *ast.LabeledStmt {
for s := b; s != nil; s = s.parent {
if t := s.lstmt; t != nil && t.Label.Name == name {
return t
}
}
return nil
}
// blockBranches processes a block's statement list and returns the set of outgoing forward jumps.
// all is the scope of all declared labels, parent the set of labels declared in the immediately
// enclosing block, and lstmt is the labeled statement this block is associated with (or nil).
func (check *Checker) blockBranches(all *Scope, parent *block, lstmt *ast.LabeledStmt, list []ast.Stmt) []*ast.BranchStmt {
b := &block{parent: parent, lstmt: lstmt}
var (
varDeclPos token.Pos
fwdJumps, badJumps []*ast.BranchStmt
)
// All forward jumps jumping over a variable declaration are possibly
// invalid (they may still jump out of the block and be ok).
// recordVarDecl records them for the given position.
recordVarDecl := func(pos token.Pos) {
varDeclPos = pos
badJumps = append(badJumps[:0], fwdJumps...) // copy fwdJumps to badJumps
}
jumpsOverVarDecl := func(jmp *ast.BranchStmt) bool {
if varDeclPos.IsValid() {
for _, bad := range badJumps {
if jmp == bad {
return true
}
}
}
return false
}
blockBranches := func(lstmt *ast.LabeledStmt, list []ast.Stmt) {
// Unresolved forward jumps inside the nested block
// become forward jumps in the current block.
fwdJumps = append(fwdJumps, check.blockBranches(all, b, lstmt, list)...)
}
var stmtBranches func(ast.Stmt)
stmtBranches = func(s ast.Stmt) {
switch s := s.(type) {
case *ast.DeclStmt:
if d, _ := s.Decl.(*ast.GenDecl); d != nil && d.Tok == token.VAR {
recordVarDecl(d.Pos())
}
case *ast.LabeledStmt:
// declare non-blank label
if name := s.Label.Name; name != "_" {
lbl := NewLabel(s.Label.Pos(), check.pkg, name)
if alt := all.Insert(lbl); alt != nil {
check.softErrorf(lbl.pos, "label %s already declared", name)
check.reportAltDecl(alt)
// ok to continue
} else {
b.insert(s)
check.recordDef(s.Label, lbl)
}
// resolve matching forward jumps and remove them from fwdJumps
i := 0
for _, jmp := range fwdJumps {
if jmp.Label.Name == name {
// match
lbl.used = true
check.recordUse(jmp.Label, lbl)
if jumpsOverVarDecl(jmp) {
check.softErrorf(
jmp.Label.Pos(),
"goto %s jumps over variable declaration at line %d",
name,
check.fset.Position(varDeclPos).Line,
)
// ok to continue
}
} else {
// no match - record new forward jump
fwdJumps[i] = jmp
i++
}
}
fwdJumps = fwdJumps[:i]
lstmt = s
}
stmtBranches(s.Stmt)
case *ast.BranchStmt:
if s.Label == nil {
return // checked in 1st pass (check.stmt)
}
// determine and validate target
name := s.Label.Name
switch s.Tok {
case token.BREAK:
// spec: "If there is a label, it must be that of an enclosing
// "for", "switch", or "select" statement, and that is the one
// whose execution terminates."
valid := false
if t := b.enclosingTarget(name); t != nil {
switch t.Stmt.(type) {
case *ast.SwitchStmt, *ast.TypeSwitchStmt, *ast.SelectStmt, *ast.ForStmt, *ast.RangeStmt:
valid = true
}
}
if !valid {
check.errorf(s.Label.Pos(), "invalid break label %s", name)
return
}
case token.CONTINUE:
// spec: "If there is a label, it must be that of an enclosing
// "for" statement, and that is the one whose execution advances."
valid := false
if t := b.enclosingTarget(name); t != nil {
switch t.Stmt.(type) {
case *ast.ForStmt, *ast.RangeStmt:
valid = true
}
}
if !valid {
check.errorf(s.Label.Pos(), "invalid continue label %s", name)
return
}
case token.GOTO:
if b.gotoTarget(name) == nil {
// label may be declared later - add branch to forward jumps
fwdJumps = append(fwdJumps, s)
return
}
default:
check.invalidAST(s.Pos(), "branch statement: %s %s", s.Tok, name)
return
}
// record label use
obj := all.Lookup(name)
obj.(*Label).used = true
check.recordUse(s.Label, obj)
case *ast.AssignStmt:
if s.Tok == token.DEFINE {
recordVarDecl(s.Pos())
}
case *ast.BlockStmt:
blockBranches(lstmt, s.List)
case *ast.IfStmt:
stmtBranches(s.Body)
if s.Else != nil {
stmtBranches(s.Else)
}
case *ast.CaseClause:
blockBranches(nil, s.Body)
case *ast.SwitchStmt:
stmtBranches(s.Body)
case *ast.TypeSwitchStmt:
stmtBranches(s.Body)
case *ast.CommClause:
blockBranches(nil, s.Body)
case *ast.SelectStmt:
stmtBranches(s.Body)
case *ast.ForStmt:
stmtBranches(s.Body)
case *ast.RangeStmt:
stmtBranches(s.Body)
}
}
for _, s := range list {
stmtBranches(s)
}
return fwdJumps
}

View File

@ -0,0 +1,354 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements various field and method lookup functions.
package types
// LookupFieldOrMethod looks up a field or method with given package and name
// in T and returns the corresponding *Var or *Func, an index sequence, and a
// bool indicating if there were any pointer indirections on the path to the
// field or method. If addressable is set, T is the type of an addressable
// variable (only matters for method lookups).
//
// The last index entry is the field or method index in the (possibly embedded)
// type where the entry was found, either:
//
// 1) the list of declared methods of a named type; or
// 2) the list of all methods (method set) of an interface type; or
// 3) the list of fields of a struct type.
//
// The earlier index entries are the indices of the anonymous struct fields
// traversed to get to the found entry, starting at depth 0.
//
// If no entry is found, a nil object is returned. In this case, the returned
// index and indirect values have the following meaning:
//
// - If index != nil, the index sequence points to an ambiguous entry
// (the same name appeared more than once at the same embedding level).
//
// - If indirect is set, a method with a pointer receiver type was found
// but there was no pointer on the path from the actual receiver type to
// the method's formal receiver base type, nor was the receiver addressable.
//
func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
// Methods cannot be associated to a named pointer type
// (spec: "The type denoted by T is called the receiver base type;
// it must not be a pointer or interface type and it must be declared
// in the same package as the method.").
// Thus, if we have a named pointer type, proceed with the underlying
// pointer type but discard the result if it is a method since we would
// not have found it for T (see also issue 8590).
if t, _ := T.(*Named); t != nil {
if p, _ := t.underlying.(*Pointer); p != nil {
obj, index, indirect = lookupFieldOrMethod(p, false, pkg, name)
if _, ok := obj.(*Func); ok {
return nil, nil, false
}
return
}
}
return lookupFieldOrMethod(T, addressable, pkg, name)
}
// TODO(gri) The named type consolidation and seen maps below must be
// indexed by unique keys for a given type. Verify that named
// types always have only one representation (even when imported
// indirectly via different packages.)
func lookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
// WARNING: The code in this function is extremely subtle - do not modify casually!
// This function and NewMethodSet should be kept in sync.
if name == "_" {
return // blank fields/methods are never found
}
typ, isPtr := deref(T)
// *typ where typ is an interface has no methods.
if isPtr && IsInterface(typ) {
return
}
// Start with typ as single entry at shallowest depth.
current := []embeddedType{{typ, nil, isPtr, false}}
// Named types that we have seen already, allocated lazily.
// Used to avoid endless searches in case of recursive types.
// Since only Named types can be used for recursive types, we
// only need to track those.
// (If we ever allow type aliases to construct recursive types,
// we must use type identity rather than pointer equality for
// the map key comparison, as we do in consolidateMultiples.)
var seen map[*Named]bool
// search current depth
for len(current) > 0 {
var next []embeddedType // embedded types found at current depth
// look for (pkg, name) in all types at current depth
for _, e := range current {
typ := e.typ
// If we have a named type, we may have associated methods.
// Look for those first.
if named, _ := typ.(*Named); named != nil {
if seen[named] {
// We have seen this type before, at a more shallow depth
// (note that multiples of this type at the current depth
// were consolidated before). The type at that depth shadows
// this same type at the current depth, so we can ignore
// this one.
continue
}
if seen == nil {
seen = make(map[*Named]bool)
}
seen[named] = true
// look for a matching attached method
if i, m := lookupMethod(named.methods, pkg, name); m != nil {
// potential match
assert(m.typ != nil)
index = concat(e.index, i)
if obj != nil || e.multiples {
return nil, index, false // collision
}
obj = m
indirect = e.indirect
continue // we can't have a matching field or interface method
}
// continue with underlying type
typ = named.underlying
}
switch t := typ.(type) {
case *Struct:
// look for a matching field and collect embedded types
for i, f := range t.fields {
if f.sameId(pkg, name) {
assert(f.typ != nil)
index = concat(e.index, i)
if obj != nil || e.multiples {
return nil, index, false // collision
}
obj = f
indirect = e.indirect
continue // we can't have a matching interface method
}
// Collect embedded struct fields for searching the next
// lower depth, but only if we have not seen a match yet
// (if we have a match it is either the desired field or
// we have a name collision on the same depth; in either
// case we don't need to look further).
// Embedded fields are always of the form T or *T where
// T is a type name. If e.typ appeared multiple times at
// this depth, f.typ appears multiple times at the next
// depth.
if obj == nil && f.anonymous {
typ, isPtr := deref(f.typ)
// TODO(gri) optimization: ignore types that can't
// have fields or methods (only Named, Struct, and
// Interface types need to be considered).
next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
}
}
case *Interface:
// look for a matching method
// TODO(gri) t.allMethods is sorted - use binary search
if i, m := lookupMethod(t.allMethods, pkg, name); m != nil {
assert(m.typ != nil)
index = concat(e.index, i)
if obj != nil || e.multiples {
return nil, index, false // collision
}
obj = m
indirect = e.indirect
}
}
}
if obj != nil {
// found a potential match
// spec: "A method call x.m() is valid if the method set of (the type of) x
// contains m and the argument list can be assigned to the parameter
// list of m. If x is addressable and &x's method set contains m, x.m()
// is shorthand for (&x).m()".
if f, _ := obj.(*Func); f != nil && ptrRecv(f) && !indirect && !addressable {
return nil, nil, true // pointer/addressable receiver required
}
return
}
current = consolidateMultiples(next)
}
return nil, nil, false // not found
}
// embeddedType represents an embedded type
type embeddedType struct {
typ Type
index []int // embedded field indices, starting with index at depth 0
indirect bool // if set, there was a pointer indirection on the path to this field
multiples bool // if set, typ appears multiple times at this depth
}
// consolidateMultiples collects multiple list entries with the same type
// into a single entry marked as containing multiples. The result is the
// consolidated list.
func consolidateMultiples(list []embeddedType) []embeddedType {
if len(list) <= 1 {
return list // at most one entry - nothing to do
}
n := 0 // number of entries w/ unique type
prev := make(map[Type]int) // index at which type was previously seen
for _, e := range list {
if i, found := lookupType(prev, e.typ); found {
list[i].multiples = true
// ignore this entry
} else {
prev[e.typ] = n
list[n] = e
n++
}
}
return list[:n]
}
func lookupType(m map[Type]int, typ Type) (int, bool) {
// fast path: maybe the types are equal
if i, found := m[typ]; found {
return i, true
}
for t, i := range m {
if Identical(t, typ) {
return i, true
}
}
return 0, false
}
// MissingMethod returns (nil, false) if V implements T, otherwise it
// returns a missing method required by T and whether it is missing or
// just has the wrong type.
//
// For non-interface types V, or if static is set, V implements T if all
// methods of T are present in V. Otherwise (V is an interface and static
// is not set), MissingMethod only checks that methods of T which are also
// present in V have matching types (e.g., for a type assertion x.(T) where
// x is of interface type V).
//
func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) {
// fast path for common case
if T.Empty() {
return
}
// TODO(gri) Consider using method sets here. Might be more efficient.
if ityp, _ := V.Underlying().(*Interface); ityp != nil {
// TODO(gri) allMethods is sorted - can do this more efficiently
for _, m := range T.allMethods {
_, obj := lookupMethod(ityp.allMethods, m.pkg, m.name)
switch {
case obj == nil:
if static {
return m, false
}
case !Identical(obj.Type(), m.typ):
return m, true
}
}
return
}
// A concrete type implements T if it implements all methods of T.
for _, m := range T.allMethods {
obj, _, _ := lookupFieldOrMethod(V, false, m.pkg, m.name)
f, _ := obj.(*Func)
if f == nil {
return m, false
}
if !Identical(f.typ, m.typ) {
return m, true
}
}
return
}
// assertableTo reports whether a value of type V can be asserted to have type T.
// It returns (nil, false) as affirmative answer. Otherwise it returns a missing
// method required by V and whether it is missing or just has the wrong type.
func assertableTo(V *Interface, T Type) (method *Func, wrongType bool) {
// no static check is required if T is an interface
// spec: "If T is an interface type, x.(T) asserts that the
// dynamic type of x implements the interface T."
if _, ok := T.Underlying().(*Interface); ok && !strict {
return
}
return MissingMethod(T, V, false)
}
// deref dereferences typ if it is a *Pointer and returns its base and true.
// Otherwise it returns (typ, false).
func deref(typ Type) (Type, bool) {
if p, _ := typ.(*Pointer); p != nil {
return p.base, true
}
return typ, false
}
// derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
// (named or unnamed) struct and returns its base. Otherwise it returns typ.
func derefStructPtr(typ Type) Type {
if p, _ := typ.Underlying().(*Pointer); p != nil {
if _, ok := p.base.Underlying().(*Struct); ok {
return p.base
}
}
return typ
}
// concat returns the result of concatenating list and i.
// The result does not share its underlying array with list.
func concat(list []int, i int) []int {
var t []int
t = append(t, list...)
return append(t, i)
}
// fieldIndex returns the index for the field with matching package and name, or a value < 0.
func fieldIndex(fields []*Var, pkg *Package, name string) int {
if name != "_" {
for i, f := range fields {
if f.sameId(pkg, name) {
return i
}
}
}
return -1
}
// lookupMethod returns the index of and method with matching package and name, or (-1, nil).
func lookupMethod(methods []*Func, pkg *Package, name string) (int, *Func) {
if name != "_" {
for i, m := range methods {
if m.sameId(pkg, name) {
return i, m
}
}
}
return -1, nil
}

View File

@ -0,0 +1,262 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements method sets.
package types
import (
"bytes"
"fmt"
"sort"
)
// A MethodSet is an ordered set of concrete or abstract (interface) methods;
// a method is a MethodVal selection, and they are ordered by ascending m.Obj().Id().
// The zero value for a MethodSet is a ready-to-use empty method set.
type MethodSet struct {
list []*Selection
}
func (s *MethodSet) String() string {
if s.Len() == 0 {
return "MethodSet {}"
}
var buf bytes.Buffer
fmt.Fprintln(&buf, "MethodSet {")
for _, f := range s.list {
fmt.Fprintf(&buf, "\t%s\n", f)
}
fmt.Fprintln(&buf, "}")
return buf.String()
}
// Len returns the number of methods in s.
func (s *MethodSet) Len() int { return len(s.list) }
// At returns the i'th method in s for 0 <= i < s.Len().
func (s *MethodSet) At(i int) *Selection { return s.list[i] }
// Lookup returns the method with matching package and name, or nil if not found.
func (s *MethodSet) Lookup(pkg *Package, name string) *Selection {
if s.Len() == 0 {
return nil
}
key := Id(pkg, name)
i := sort.Search(len(s.list), func(i int) bool {
m := s.list[i]
return m.obj.Id() >= key
})
if i < len(s.list) {
m := s.list[i]
if m.obj.Id() == key {
return m
}
}
return nil
}
// Shared empty method set.
var emptyMethodSet MethodSet
// NewMethodSet returns the method set for the given type T.
// It always returns a non-nil method set, even if it is empty.
func NewMethodSet(T Type) *MethodSet {
// WARNING: The code in this function is extremely subtle - do not modify casually!
// This function and lookupFieldOrMethod should be kept in sync.
// method set up to the current depth, allocated lazily
var base methodSet
typ, isPtr := deref(T)
// *typ where typ is an interface has no methods.
if isPtr && IsInterface(typ) {
return &emptyMethodSet
}
// Start with typ as single entry at shallowest depth.
current := []embeddedType{{typ, nil, isPtr, false}}
// Named types that we have seen already, allocated lazily.
// Used to avoid endless searches in case of recursive types.
// Since only Named types can be used for recursive types, we
// only need to track those.
// (If we ever allow type aliases to construct recursive types,
// we must use type identity rather than pointer equality for
// the map key comparison, as we do in consolidateMultiples.)
var seen map[*Named]bool
// collect methods at current depth
for len(current) > 0 {
var next []embeddedType // embedded types found at current depth
// field and method sets at current depth, allocated lazily
var fset fieldSet
var mset methodSet
for _, e := range current {
typ := e.typ
// If we have a named type, we may have associated methods.
// Look for those first.
if named, _ := typ.(*Named); named != nil {
if seen[named] {
// We have seen this type before, at a more shallow depth
// (note that multiples of this type at the current depth
// were consolidated before). The type at that depth shadows
// this same type at the current depth, so we can ignore
// this one.
continue
}
if seen == nil {
seen = make(map[*Named]bool)
}
seen[named] = true
mset = mset.add(named.methods, e.index, e.indirect, e.multiples)
// continue with underlying type
typ = named.underlying
}
switch t := typ.(type) {
case *Struct:
for i, f := range t.fields {
fset = fset.add(f, e.multiples)
// Embedded fields are always of the form T or *T where
// T is a type name. If typ appeared multiple times at
// this depth, f.Type appears multiple times at the next
// depth.
if f.anonymous {
typ, isPtr := deref(f.typ)
// TODO(gri) optimization: ignore types that can't
// have fields or methods (only Named, Struct, and
// Interface types need to be considered).
next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
}
}
case *Interface:
mset = mset.add(t.allMethods, e.index, true, e.multiples)
}
}
// Add methods and collisions at this depth to base if no entries with matching
// names exist already.
for k, m := range mset {
if _, found := base[k]; !found {
// Fields collide with methods of the same name at this depth.
if _, found := fset[k]; found {
m = nil // collision
}
if base == nil {
base = make(methodSet)
}
base[k] = m
}
}
// Multiple fields with matching names collide at this depth and shadow all
// entries further down; add them as collisions to base if no entries with
// matching names exist already.
for k, f := range fset {
if f == nil {
if _, found := base[k]; !found {
if base == nil {
base = make(methodSet)
}
base[k] = nil // collision
}
}
}
current = consolidateMultiples(next)
}
if len(base) == 0 {
return &emptyMethodSet
}
// collect methods
var list []*Selection
for _, m := range base {
if m != nil {
m.recv = T
list = append(list, m)
}
}
// sort by unique name
sort.Slice(list, func(i, j int) bool {
return list[i].obj.Id() < list[j].obj.Id()
})
return &MethodSet{list}
}
// A fieldSet is a set of fields and name collisions.
// A collision indicates that multiple fields with the
// same unique id appeared.
type fieldSet map[string]*Var // a nil entry indicates a name collision
// Add adds field f to the field set s.
// If multiples is set, f appears multiple times
// and is treated as a collision.
func (s fieldSet) add(f *Var, multiples bool) fieldSet {
if s == nil {
s = make(fieldSet)
}
key := f.Id()
// if f is not in the set, add it
if !multiples {
if _, found := s[key]; !found {
s[key] = f
return s
}
}
s[key] = nil // collision
return s
}
// A methodSet is a set of methods and name collisions.
// A collision indicates that multiple methods with the
// same unique id appeared.
type methodSet map[string]*Selection // a nil entry indicates a name collision
// Add adds all functions in list to the method set s.
// If multiples is set, every function in list appears multiple times
// and is treated as a collision.
func (s methodSet) add(list []*Func, index []int, indirect bool, multiples bool) methodSet {
if len(list) == 0 {
return s
}
if s == nil {
s = make(methodSet)
}
for i, f := range list {
key := f.Id()
// if f is not in the set, add it
if !multiples {
// TODO(gri) A found method may not be added because it's not in the method set
// (!indirect && ptrRecv(f)). A 2nd method on the same level may be in the method
// set and may not collide with the first one, thus leading to a false positive.
// Is that possible? Investigate.
if _, found := s[key]; !found && (indirect || !ptrRecv(f)) {
s[key] = &Selection{MethodVal, nil, f, concat(index, i), indirect}
continue
}
}
s[key] = nil // collision
}
return s
}
// ptrRecv reports whether the receiver is of the form *T.
// The receiver must exist.
func ptrRecv(f *Func) bool {
_, isPtr := deref(f.typ.(*Signature).recv.typ)
return isPtr
}

View File

@ -0,0 +1,424 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"bytes"
"fmt"
"go/ast"
"go/constant"
"go/token"
)
// An Object describes a named language entity such as a package,
// constant, type, variable, function (incl. methods), or label.
// All objects implement the Object interface.
//
type Object interface {
Parent() *Scope // scope in which this object is declared; nil for methods and struct fields
Pos() token.Pos // position of object identifier in declaration
Pkg() *Package // package to which this object belongs; nil for labels and objects in the Universe scope
Name() string // package local object name
Type() Type // object type
Exported() bool // reports whether the name starts with a capital letter
Id() string // object name if exported, qualified name if not exported (see func Id)
// String returns a human-readable string of the object.
String() string
// order reflects a package-level object's source order: if object
// a is before object b in the source, then a.order() < b.order().
// order returns a value > 0 for package-level objects; it returns
// 0 for all other objects (including objects in file scopes).
order() uint32
// setOrder sets the order number of the object. It must be > 0.
setOrder(uint32)
// setParent sets the parent scope of the object.
setParent(*Scope)
// sameId reports whether obj.Id() and Id(pkg, name) are the same.
sameId(pkg *Package, name string) bool
// scopePos returns the start position of the scope of this Object
scopePos() token.Pos
// setScopePos sets the start position of the scope for this Object.
setScopePos(pos token.Pos)
}
// Id returns name if it is exported, otherwise it
// returns the name qualified with the package path.
func Id(pkg *Package, name string) string {
if ast.IsExported(name) {
return name
}
// unexported names need the package path for differentiation
// (if there's no package, make sure we don't start with '.'
// as that may change the order of methods between a setup
// inside a package and outside a package - which breaks some
// tests)
path := "_"
// pkg is nil for objects in Universe scope and possibly types
// introduced via Eval (see also comment in object.sameId)
if pkg != nil && pkg.path != "" {
path = pkg.path
}
return path + "." + name
}
// An object implements the common parts of an Object.
type object struct {
parent *Scope
pos token.Pos
pkg *Package
name string
typ Type
order_ uint32
scopePos_ token.Pos
}
func (obj *object) Parent() *Scope { return obj.parent }
func (obj *object) Pos() token.Pos { return obj.pos }
func (obj *object) Pkg() *Package { return obj.pkg }
func (obj *object) Name() string { return obj.name }
func (obj *object) Type() Type { return obj.typ }
func (obj *object) Exported() bool { return ast.IsExported(obj.name) }
func (obj *object) Id() string { return Id(obj.pkg, obj.name) }
func (obj *object) String() string { panic("abstract") }
func (obj *object) order() uint32 { return obj.order_ }
func (obj *object) scopePos() token.Pos { return obj.scopePos_ }
func (obj *object) setParent(parent *Scope) { obj.parent = parent }
func (obj *object) setOrder(order uint32) { assert(order > 0); obj.order_ = order }
func (obj *object) setScopePos(pos token.Pos) { obj.scopePos_ = pos }
func (obj *object) sameId(pkg *Package, name string) bool {
// spec:
// "Two identifiers are different if they are spelled differently,
// or if they appear in different packages and are not exported.
// Otherwise, they are the same."
if name != obj.name {
return false
}
// obj.Name == name
if obj.Exported() {
return true
}
// not exported, so packages must be the same (pkg == nil for
// fields in Universe scope; this can only happen for types
// introduced via Eval)
if pkg == nil || obj.pkg == nil {
return pkg == obj.pkg
}
// pkg != nil && obj.pkg != nil
return pkg.path == obj.pkg.path
}
// A PkgName represents an imported Go package.
// PkgNames don't have a type.
type PkgName struct {
object
imported *Package
used bool // set if the package was used
}
// NewPkgName returns a new PkgName object representing an imported package.
// The remaining arguments set the attributes found with all Objects.
func NewPkgName(pos token.Pos, pkg *Package, name string, imported *Package) *PkgName {
return &PkgName{object{nil, pos, pkg, name, Typ[Invalid], 0, token.NoPos}, imported, false}
}
// Imported returns the package that was imported.
// It is distinct from Pkg(), which is the package containing the import statement.
func (obj *PkgName) Imported() *Package { return obj.imported }
// A Const represents a declared constant.
type Const struct {
object
val constant.Value
visited bool // for initialization cycle detection
}
// NewConst returns a new constant with value val.
// The remaining arguments set the attributes found with all Objects.
func NewConst(pos token.Pos, pkg *Package, name string, typ Type, val constant.Value) *Const {
return &Const{object{nil, pos, pkg, name, typ, 0, token.NoPos}, val, false}
}
func (obj *Const) Val() constant.Value { return obj.val }
func (*Const) isDependency() {} // a constant may be a dependency of an initialization expression
// A TypeName represents a name for a (named or alias) type.
type TypeName struct {
object
}
// NewTypeName returns a new type name denoting the given typ.
// The remaining arguments set the attributes found with all Objects.
//
// The typ argument may be a defined (Named) type or an alias type.
// It may also be nil such that the returned TypeName can be used as
// argument for NewNamed, which will set the TypeName's type as a side-
// effect.
func NewTypeName(pos token.Pos, pkg *Package, name string, typ Type) *TypeName {
return &TypeName{object{nil, pos, pkg, name, typ, 0, token.NoPos}}
}
// IsAlias reports whether obj is an alias name for a type.
func (obj *TypeName) IsAlias() bool {
switch t := obj.typ.(type) {
case nil:
return false
case *Basic:
// unsafe.Pointer is not an alias.
if obj.pkg == Unsafe {
return false
}
// Any user-defined type name for a basic type is an alias for a
// basic type (because basic types are pre-declared in the Universe
// scope, outside any package scope), and so is any type name with
// a different name than the name of the basic type it refers to.
// Additionally, we need to look for "byte" and "rune" because they
// are aliases but have the same names (for better error messages).
return obj.pkg != nil || t.name != obj.name || t == universeByte || t == universeRune
case *Named:
return obj != t.obj
default:
return true
}
}
// A Variable represents a declared variable (including function parameters and results, and struct fields).
type Var struct {
object
anonymous bool // if set, the variable is an anonymous struct field, and name is the type name
visited bool // for initialization cycle detection
isField bool // var is struct field
used bool // set if the variable was used
}
// NewVar returns a new variable.
// The arguments set the attributes found with all Objects.
func NewVar(pos token.Pos, pkg *Package, name string, typ Type) *Var {
return &Var{object: object{nil, pos, pkg, name, typ, 0, token.NoPos}}
}
// NewParam returns a new variable representing a function parameter.
func NewParam(pos token.Pos, pkg *Package, name string, typ Type) *Var {
return &Var{object: object{nil, pos, pkg, name, typ, 0, token.NoPos}, used: true} // parameters are always 'used'
}
// NewField returns a new variable representing a struct field.
// For anonymous (embedded) fields, the name is the unqualified
// type name under which the field is accessible.
func NewField(pos token.Pos, pkg *Package, name string, typ Type, anonymous bool) *Var {
return &Var{object: object{nil, pos, pkg, name, typ, 0, token.NoPos}, anonymous: anonymous, isField: true}
}
// Anonymous reports whether the variable is an anonymous field.
func (obj *Var) Anonymous() bool { return obj.anonymous }
// IsField reports whether the variable is a struct field.
func (obj *Var) IsField() bool { return obj.isField }
func (*Var) isDependency() {} // a variable may be a dependency of an initialization expression
// A Func represents a declared function, concrete method, or abstract
// (interface) method. Its Type() is always a *Signature.
// An abstract method may belong to many interfaces due to embedding.
type Func struct {
object
}
// NewFunc returns a new function with the given signature, representing
// the function's type.
func NewFunc(pos token.Pos, pkg *Package, name string, sig *Signature) *Func {
// don't store a nil signature
var typ Type
if sig != nil {
typ = sig
}
return &Func{object{nil, pos, pkg, name, typ, 0, token.NoPos}}
}
// FullName returns the package- or receiver-type-qualified name of
// function or method obj.
func (obj *Func) FullName() string {
var buf bytes.Buffer
writeFuncName(&buf, obj, nil)
return buf.String()
}
// Scope returns the scope of the function's body block.
func (obj *Func) Scope() *Scope { return obj.typ.(*Signature).scope }
func (*Func) isDependency() {} // a function may be a dependency of an initialization expression
// A Label represents a declared label.
// Labels don't have a type.
type Label struct {
object
used bool // set if the label was used
}
// NewLabel returns a new label.
func NewLabel(pos token.Pos, pkg *Package, name string) *Label {
return &Label{object{pos: pos, pkg: pkg, name: name, typ: Typ[Invalid]}, false}
}
// A Builtin represents a built-in function.
// Builtins don't have a valid type.
type Builtin struct {
object
id builtinId
}
func newBuiltin(id builtinId) *Builtin {
return &Builtin{object{name: predeclaredFuncs[id].name, typ: Typ[Invalid]}, id}
}
// Nil represents the predeclared value nil.
type Nil struct {
object
}
func writeObject(buf *bytes.Buffer, obj Object, qf Qualifier) {
var tname *TypeName
typ := obj.Type()
switch obj := obj.(type) {
case *PkgName:
fmt.Fprintf(buf, "package %s", obj.Name())
if path := obj.imported.path; path != "" && path != obj.name {
fmt.Fprintf(buf, " (%q)", path)
}
return
case *Const:
buf.WriteString("const")
case *TypeName:
tname = obj
buf.WriteString("type")
case *Var:
if obj.isField {
buf.WriteString("field")
} else {
buf.WriteString("var")
}
case *Func:
buf.WriteString("func ")
writeFuncName(buf, obj, qf)
if typ != nil {
WriteSignature(buf, typ.(*Signature), qf)
}
return
case *Label:
buf.WriteString("label")
typ = nil
case *Builtin:
buf.WriteString("builtin")
typ = nil
case *Nil:
buf.WriteString("nil")
return
default:
panic(fmt.Sprintf("writeObject(%T)", obj))
}
buf.WriteByte(' ')
// For package-level objects, qualify the name.
if obj.Pkg() != nil && obj.Pkg().scope.Lookup(obj.Name()) == obj {
writePackage(buf, obj.Pkg(), qf)
}
buf.WriteString(obj.Name())
if typ == nil {
return
}
if tname != nil {
// We have a type object: Don't print anything more for
// basic types since there's no more information (names
// are the same; see also comment in TypeName.IsAlias).
if _, ok := typ.(*Basic); ok {
return
}
if tname.IsAlias() {
buf.WriteString(" =")
} else {
typ = typ.Underlying()
}
}
buf.WriteByte(' ')
WriteType(buf, typ, qf)
}
func writePackage(buf *bytes.Buffer, pkg *Package, qf Qualifier) {
if pkg == nil {
return
}
var s string
if qf != nil {
s = qf(pkg)
} else {
s = pkg.Path()
}
if s != "" {
buf.WriteString(s)
buf.WriteByte('.')
}
}
// ObjectString returns the string form of obj.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func ObjectString(obj Object, qf Qualifier) string {
var buf bytes.Buffer
writeObject(&buf, obj, qf)
return buf.String()
}
func (obj *PkgName) String() string { return ObjectString(obj, nil) }
func (obj *Const) String() string { return ObjectString(obj, nil) }
func (obj *TypeName) String() string { return ObjectString(obj, nil) }
func (obj *Var) String() string { return ObjectString(obj, nil) }
func (obj *Func) String() string { return ObjectString(obj, nil) }
func (obj *Label) String() string { return ObjectString(obj, nil) }
func (obj *Builtin) String() string { return ObjectString(obj, nil) }
func (obj *Nil) String() string { return ObjectString(obj, nil) }
func writeFuncName(buf *bytes.Buffer, f *Func, qf Qualifier) {
if f.typ != nil {
sig := f.typ.(*Signature)
if recv := sig.Recv(); recv != nil {
buf.WriteByte('(')
if _, ok := recv.Type().(*Interface); ok {
// gcimporter creates abstract methods of
// named interfaces using the interface type
// (not the named type) as the receiver.
// Don't print it in full.
buf.WriteString("interface")
} else {
WriteType(buf, recv.Type(), qf)
}
buf.WriteByte(')')
buf.WriteByte('.')
} else if f.pkg != nil {
writePackage(buf, f.pkg, qf)
}
}
buf.WriteString(f.name)
}

View File

@ -0,0 +1,31 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements objsets.
//
// An objset is similar to a Scope but objset elements
// are identified by their unique id, instead of their
// object name.
package types
// An objset is a set of objects identified by their unique id.
// The zero value for objset is a ready-to-use empty objset.
type objset map[string]Object // initialized lazily
// insert attempts to insert an object obj into objset s.
// If s already contains an alternative object alt with
// the same name, insert leaves s unchanged and returns alt.
// Otherwise it inserts obj and returns nil.
func (s *objset) insert(obj Object) Object {
id := obj.Id()
if alt := (*s)[id]; alt != nil {
return alt
}
if *s == nil {
*s = make(map[string]Object)
}
(*s)[id] = obj
return nil
}

View File

@ -0,0 +1,275 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file defines operands and associated operations.
package types
import (
"bytes"
"go/ast"
"go/constant"
"go/token"
)
// An operandMode specifies the (addressing) mode of an operand.
type operandMode byte
const (
invalid operandMode = iota // operand is invalid
novalue // operand represents no value (result of a function call w/o result)
builtin // operand is a built-in function
typexpr // operand is a type
constant_ // operand is a constant; the operand's typ is a Basic type
variable // operand is an addressable variable
mapindex // operand is a map index expression (acts like a variable on lhs, commaok on rhs of an assignment)
value // operand is a computed value
commaok // like value, but operand may be used in a comma,ok expression
)
var operandModeString = [...]string{
invalid: "invalid operand",
novalue: "no value",
builtin: "built-in",
typexpr: "type",
constant_: "constant",
variable: "variable",
mapindex: "map index expression",
value: "value",
commaok: "comma, ok expression",
}
// An operand represents an intermediate value during type checking.
// Operands have an (addressing) mode, the expression evaluating to
// the operand, the operand's type, a value for constants, and an id
// for built-in functions.
// The zero value of operand is a ready to use invalid operand.
//
type operand struct {
mode operandMode
expr ast.Expr
typ Type
val constant.Value
id builtinId
}
// pos returns the position of the expression corresponding to x.
// If x is invalid the position is token.NoPos.
//
func (x *operand) pos() token.Pos {
// x.expr may not be set if x is invalid
if x.expr == nil {
return token.NoPos
}
return x.expr.Pos()
}
// Operand string formats
// (not all "untyped" cases can appear due to the type system,
// but they fall out naturally here)
//
// mode format
//
// invalid <expr> ( <mode> )
// novalue <expr> ( <mode> )
// builtin <expr> ( <mode> )
// typexpr <expr> ( <mode> )
//
// constant <expr> (<untyped kind> <mode> )
// constant <expr> ( <mode> of type <typ>)
// constant <expr> (<untyped kind> <mode> <val> )
// constant <expr> ( <mode> <val> of type <typ>)
//
// variable <expr> (<untyped kind> <mode> )
// variable <expr> ( <mode> of type <typ>)
//
// mapindex <expr> (<untyped kind> <mode> )
// mapindex <expr> ( <mode> of type <typ>)
//
// value <expr> (<untyped kind> <mode> )
// value <expr> ( <mode> of type <typ>)
//
// commaok <expr> (<untyped kind> <mode> )
// commaok <expr> ( <mode> of type <typ>)
//
func operandString(x *operand, qf Qualifier) string {
var buf bytes.Buffer
var expr string
if x.expr != nil {
expr = ExprString(x.expr)
} else {
switch x.mode {
case builtin:
expr = predeclaredFuncs[x.id].name
case typexpr:
expr = TypeString(x.typ, qf)
case constant_:
expr = x.val.String()
}
}
// <expr> (
if expr != "" {
buf.WriteString(expr)
buf.WriteString(" (")
}
// <untyped kind>
hasType := false
switch x.mode {
case invalid, novalue, builtin, typexpr:
// no type
default:
// should have a type, but be cautious (don't crash during printing)
if x.typ != nil {
if isUntyped(x.typ) {
buf.WriteString(x.typ.(*Basic).name)
buf.WriteByte(' ')
break
}
hasType = true
}
}
// <mode>
buf.WriteString(operandModeString[x.mode])
// <val>
if x.mode == constant_ {
if s := x.val.String(); s != expr {
buf.WriteByte(' ')
buf.WriteString(s)
}
}
// <typ>
if hasType {
if x.typ != Typ[Invalid] {
buf.WriteString(" of type ")
WriteType(&buf, x.typ, qf)
} else {
buf.WriteString(" with invalid type")
}
}
// )
if expr != "" {
buf.WriteByte(')')
}
return buf.String()
}
func (x *operand) String() string {
return operandString(x, nil)
}
// setConst sets x to the untyped constant for literal lit.
func (x *operand) setConst(tok token.Token, lit string) {
var kind BasicKind
switch tok {
case token.INT:
kind = UntypedInt
case token.FLOAT:
kind = UntypedFloat
case token.IMAG:
kind = UntypedComplex
case token.CHAR:
kind = UntypedRune
case token.STRING:
kind = UntypedString
default:
unreachable()
}
x.mode = constant_
x.typ = Typ[kind]
x.val = constant.MakeFromLiteral(lit, tok, 0)
}
// isNil reports whether x is the nil value.
func (x *operand) isNil() bool {
return x.mode == value && x.typ == Typ[UntypedNil]
}
// TODO(gri) The functions operand.assignableTo, checker.convertUntyped,
// checker.representable, and checker.assignment are
// overlapping in functionality. Need to simplify and clean up.
// assignableTo reports whether x is assignable to a variable of type T.
// If the result is false and a non-nil reason is provided, it may be set
// to a more detailed explanation of the failure (result != "").
func (x *operand) assignableTo(conf *Config, T Type, reason *string) bool {
if x.mode == invalid || T == Typ[Invalid] {
return true // avoid spurious errors
}
V := x.typ
// x's type is identical to T
if Identical(V, T) {
return true
}
Vu := V.Underlying()
Tu := T.Underlying()
// x is an untyped value representable by a value of type T
// TODO(gri) This is borrowing from checker.convertUntyped and
// checker.representable. Need to clean up.
if isUntyped(Vu) {
switch t := Tu.(type) {
case *Basic:
if x.isNil() && t.kind == UnsafePointer {
return true
}
if x.mode == constant_ {
return representableConst(x.val, conf, t, nil)
}
// The result of a comparison is an untyped boolean,
// but may not be a constant.
if Vb, _ := Vu.(*Basic); Vb != nil {
return Vb.kind == UntypedBool && isBoolean(Tu)
}
case *Interface:
return x.isNil() || t.Empty()
case *Pointer, *Signature, *Slice, *Map, *Chan:
return x.isNil()
}
}
// Vu is typed
// x's type V and T have identical underlying types
// and at least one of V or T is not a named type
if Identical(Vu, Tu) && (!isNamed(V) || !isNamed(T)) {
return true
}
// T is an interface type and x implements T
if Ti, ok := Tu.(*Interface); ok {
if m, wrongType := MissingMethod(x.typ, Ti, true); m != nil /* Implements(x.typ, Ti) */ {
if reason != nil {
if wrongType {
*reason = "wrong type for method " + m.Name()
} else {
*reason = "missing method " + m.Name()
}
}
return false
}
return true
}
// x is a bidirectional channel value, T is a channel
// type, x's type V and T have identical element types,
// and at least one of V or T is not a named type
if Vc, ok := Vu.(*Chan); ok && Vc.dir == SendRecv {
if Tc, ok := Tu.(*Chan); ok && Identical(Vc.elem, Tc.elem) {
return !isNamed(V) || !isNamed(T)
}
}
return false
}

View File

@ -0,0 +1,123 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements resolveOrder.
package types
import (
"go/ast"
"sort"
)
// resolveOrder computes the order in which package-level objects
// must be type-checked.
//
// Interface types appear first in the list, sorted topologically
// by dependencies on embedded interfaces that are also declared
// in this package, followed by all other objects sorted in source
// order.
//
// TODO(gri) Consider sorting all types by dependencies here, and
// in the process check _and_ report type cycles. This may simplify
// the full type-checking phase.
//
func (check *Checker) resolveOrder() []Object {
var ifaces, others []Object
// collect interface types with their dependencies, and all other objects
for obj := range check.objMap {
if ityp := check.interfaceFor(obj); ityp != nil {
ifaces = append(ifaces, obj)
// determine dependencies on embedded interfaces
for _, f := range ityp.Methods.List {
if len(f.Names) == 0 {
// Embedded interface: The type must be a (possibly
// qualified) identifier denoting another interface.
// Imported interfaces are already fully resolved,
// so we can ignore qualified identifiers.
if ident, _ := f.Type.(*ast.Ident); ident != nil {
embedded := check.pkg.scope.Lookup(ident.Name)
if check.interfaceFor(embedded) != nil {
check.objMap[obj].addDep(embedded)
}
}
}
}
} else {
others = append(others, obj)
}
}
// final object order
var order []Object
// sort interface types topologically by dependencies,
// and in source order if there are no dependencies
sort.Sort(inSourceOrder(ifaces))
visited := make(objSet)
for _, obj := range ifaces {
check.appendInPostOrder(&order, obj, visited)
}
// sort everything else in source order
sort.Sort(inSourceOrder(others))
return append(order, others...)
}
// interfaceFor returns the AST interface denoted by obj, or nil.
func (check *Checker) interfaceFor(obj Object) *ast.InterfaceType {
tname, _ := obj.(*TypeName)
if tname == nil {
return nil // not a type
}
d := check.objMap[obj]
if d == nil {
check.dump("%s: %s should have been declared", obj.Pos(), obj.Name())
unreachable()
}
if d.typ == nil {
return nil // invalid AST - ignore (will be handled later)
}
ityp, _ := d.typ.(*ast.InterfaceType)
return ityp
}
func (check *Checker) appendInPostOrder(order *[]Object, obj Object, visited objSet) {
if visited[obj] {
// We've already seen this object; either because it's
// already added to order, or because we have a cycle.
// In both cases we stop. Cycle errors are reported
// when type-checking types.
return
}
visited[obj] = true
d := check.objMap[obj]
for _, obj := range orderedSetObjects(d.deps) {
check.appendInPostOrder(order, obj, visited)
}
*order = append(*order, obj)
}
func orderedSetObjects(set objSet) []Object {
list := make([]Object, len(set))
i := 0
for obj := range set {
// we don't care about the map element value
list[i] = obj
i++
}
sort.Sort(inSourceOrder(list))
return list
}
// inSourceOrder implements the sort.Sort interface.
type inSourceOrder []Object
func (a inSourceOrder) Len() int { return len(a) }
func (a inSourceOrder) Less(i, j int) bool { return a[i].order() < a[j].order() }
func (a inSourceOrder) Swap(i, j int) { a[i], a[j] = a[j], a[i] }

View File

@ -0,0 +1,64 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"fmt"
"go/token"
)
// A Package describes a Go package.
type Package struct {
path string
name string
scope *Scope
complete bool
imports []*Package
fake bool // scope lookup errors are silently dropped if package is fake (internal use only)
}
// NewPackage returns a new Package for the given package path and name.
// The package is not complete and contains no explicit imports.
func NewPackage(path, name string) *Package {
scope := NewScope(Universe, token.NoPos, token.NoPos, fmt.Sprintf("package %q", path))
return &Package{path: path, name: name, scope: scope}
}
// Path returns the package path.
func (pkg *Package) Path() string { return pkg.path }
// Name returns the package name.
func (pkg *Package) Name() string { return pkg.name }
// SetName sets the package name.
func (pkg *Package) SetName(name string) { pkg.name = name }
// Scope returns the (complete or incomplete) package scope
// holding the objects declared at package level (TypeNames,
// Consts, Vars, and Funcs).
func (pkg *Package) Scope() *Scope { return pkg.scope }
// A package is complete if its scope contains (at least) all
// exported objects; otherwise it is incomplete.
func (pkg *Package) Complete() bool { return pkg.complete }
// MarkComplete marks a package as complete.
func (pkg *Package) MarkComplete() { pkg.complete = true }
// Imports returns the list of packages directly imported by
// pkg; the list is in source order.
//
// If pkg was loaded from export data, Imports includes packages that
// provide package-level objects referenced by pkg. This may be more or
// less than the set of packages directly imported by pkg's source code.
func (pkg *Package) Imports() []*Package { return pkg.imports }
// SetImports sets the list of explicitly imported packages to list.
// It is the caller's responsibility to make sure list elements are unique.
func (pkg *Package) SetImports(list []*Package) { pkg.imports = list }
func (pkg *Package) String() string {
return fmt.Sprintf("package %s (%q)", pkg.name, pkg.path)
}

View File

@ -0,0 +1,320 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements commonly used type predicates.
package types
import "sort"
func isNamed(typ Type) bool {
if _, ok := typ.(*Basic); ok {
return ok
}
_, ok := typ.(*Named)
return ok
}
func isBoolean(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsBoolean != 0
}
func isInteger(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsInteger != 0
}
func isUnsigned(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsUnsigned != 0
}
func isFloat(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsFloat != 0
}
func isComplex(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsComplex != 0
}
func isNumeric(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsNumeric != 0
}
func isString(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsString != 0
}
func isTyped(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return !ok || t.info&IsUntyped == 0
}
func isUntyped(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsUntyped != 0
}
func isOrdered(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsOrdered != 0
}
func isConstType(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsConstType != 0
}
// IsInterface reports whether typ is an interface type.
func IsInterface(typ Type) bool {
_, ok := typ.Underlying().(*Interface)
return ok
}
// Comparable reports whether values of type T are comparable.
func Comparable(T Type) bool {
switch t := T.Underlying().(type) {
case *Basic:
// assume invalid types to be comparable
// to avoid follow-up errors
return t.kind != UntypedNil
case *Pointer, *Interface, *Chan:
return true
case *Struct:
for _, f := range t.fields {
if !Comparable(f.typ) {
return false
}
}
return true
case *Array:
return Comparable(t.elem)
}
return false
}
// hasNil reports whether a type includes the nil value.
func hasNil(typ Type) bool {
switch t := typ.Underlying().(type) {
case *Basic:
return t.kind == UnsafePointer
case *Slice, *Pointer, *Signature, *Interface, *Map, *Chan:
return true
}
return false
}
// Identical reports whether x and y are identical types.
// Receivers of Signature types are ignored.
func Identical(x, y Type) bool {
return identical(x, y, true, nil)
}
// IdenticalIgnoreTags reports whether x and y are identical types if tags are ignored.
// Receivers of Signature types are ignored.
func IdenticalIgnoreTags(x, y Type) bool {
return identical(x, y, false, nil)
}
// An ifacePair is a node in a stack of interface type pairs compared for identity.
type ifacePair struct {
x, y *Interface
prev *ifacePair
}
func (p *ifacePair) identical(q *ifacePair) bool {
return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x
}
func identical(x, y Type, cmpTags bool, p *ifacePair) bool {
if x == y {
return true
}
switch x := x.(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above. See also comment in TypeName.IsAlias.
if y, ok := y.(*Basic); ok {
return x.kind == y.kind
}
case *Array:
// Two array types are identical if they have identical element types
// and the same array length.
if y, ok := y.(*Array); ok {
// If one or both array lengths are unknown (< 0) due to some error,
// assume they are the same to avoid spurious follow-on errors.
return (x.len < 0 || y.len < 0 || x.len == y.len) && identical(x.elem, y.elem, cmpTags, p)
}
case *Slice:
// Two slice types are identical if they have identical element types.
if y, ok := y.(*Slice); ok {
return identical(x.elem, y.elem, cmpTags, p)
}
case *Struct:
// Two struct types are identical if they have the same sequence of fields,
// and if corresponding fields have the same names, and identical types,
// and identical tags. Two anonymous fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*Struct); ok {
if x.NumFields() == y.NumFields() {
for i, f := range x.fields {
g := y.fields[i]
if f.anonymous != g.anonymous ||
cmpTags && x.Tag(i) != y.Tag(i) ||
!f.sameId(g.pkg, g.name) ||
!identical(f.typ, g.typ, cmpTags, p) {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types are identical if they have identical base types.
if y, ok := y.(*Pointer); ok {
return identical(x.base, y.base, cmpTags, p)
}
case *Tuple:
// Two tuples types are identical if they have the same number of elements
// and corresponding elements have identical types.
if y, ok := y.(*Tuple); ok {
if x.Len() == y.Len() {
if x != nil {
for i, v := range x.vars {
w := y.vars[i]
if !identical(v.typ, w.typ, cmpTags, p) {
return false
}
}
}
return true
}
}
case *Signature:
// Two function types are identical if they have the same number of parameters
// and result values, corresponding parameter and result types are identical,
// and either both functions are variadic or neither is. Parameter and result
// names are not required to match.
if y, ok := y.(*Signature); ok {
return x.variadic == y.variadic &&
identical(x.params, y.params, cmpTags, p) &&
identical(x.results, y.results, cmpTags, p)
}
case *Interface:
// Two interface types are identical if they have the same set of methods with
// the same names and identical function types. Lower-case method names from
// different packages are always different. The order of the methods is irrelevant.
if y, ok := y.(*Interface); ok {
a := x.allMethods
b := y.allMethods
if len(a) == len(b) {
// Interface types are the only types where cycles can occur
// that are not "terminated" via named types; and such cycles
// can only be created via method parameter types that are
// anonymous interfaces (directly or indirectly) embedding
// the current interface. Example:
//
// type T interface {
// m() interface{T}
// }
//
// If two such (differently named) interfaces are compared,
// endless recursion occurs if the cycle is not detected.
//
// If x and y were compared before, they must be equal
// (if they were not, the recursion would have stopped);
// search the ifacePair stack for the same pair.
//
// This is a quadratic algorithm, but in practice these stacks
// are extremely short (bounded by the nesting depth of interface
// type declarations that recur via parameter types, an extremely
// rare occurrence). An alternative implementation might use a
// "visited" map, but that is probably less efficient overall.
q := &ifacePair{x, y, p}
for p != nil {
if p.identical(q) {
return true // same pair was compared before
}
p = p.prev
}
if debug {
assert(sort.IsSorted(byUniqueMethodName(a)))
assert(sort.IsSorted(byUniqueMethodName(b)))
}
for i, f := range a {
g := b[i]
if f.Id() != g.Id() || !identical(f.typ, g.typ, cmpTags, q) {
return false
}
}
return true
}
}
case *Map:
// Two map types are identical if they have identical key and value types.
if y, ok := y.(*Map); ok {
return identical(x.key, y.key, cmpTags, p) && identical(x.elem, y.elem, cmpTags, p)
}
case *Chan:
// Two channel types are identical if they have identical value types
// and the same direction.
if y, ok := y.(*Chan); ok {
return x.dir == y.dir && identical(x.elem, y.elem, cmpTags, p)
}
case *Named:
// Two named types are identical if their type names originate
// in the same type declaration.
if y, ok := y.(*Named); ok {
return x.obj == y.obj
}
case nil:
default:
unreachable()
}
return false
}
// Default returns the default "typed" type for an "untyped" type;
// it returns the incoming type for all other types. The default type
// for untyped nil is untyped nil.
//
func Default(typ Type) Type {
if t, ok := typ.(*Basic); ok {
switch t.kind {
case UntypedBool:
return Typ[Bool]
case UntypedInt:
return Typ[Int]
case UntypedRune:
return universeRune // use 'rune' name
case UntypedFloat:
return Typ[Float64]
case UntypedComplex:
return Typ[Complex128]
case UntypedString:
return Typ[String]
}
}
return typ
}

View File

@ -0,0 +1,542 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"strconv"
"strings"
"unicode"
)
// A declInfo describes a package-level const, type, var, or func declaration.
type declInfo struct {
file *Scope // scope of file containing this declaration
lhs []*Var // lhs of n:1 variable declarations, or nil
typ ast.Expr // type, or nil
init ast.Expr // init/orig expression, or nil
fdecl *ast.FuncDecl // func declaration, or nil
alias bool // type alias declaration
// The deps field tracks initialization expression dependencies.
// As a special (overloaded) case, it also tracks dependencies of
// interface types on embedded interfaces (see ordering.go).
deps objSet // lazily initialized
}
// An objSet is simply a set of objects.
type objSet map[Object]bool
// hasInitializer reports whether the declared object has an initialization
// expression or function body.
func (d *declInfo) hasInitializer() bool {
return d.init != nil || d.fdecl != nil && d.fdecl.Body != nil
}
// addDep adds obj to the set of objects d's init expression depends on.
func (d *declInfo) addDep(obj Object) {
m := d.deps
if m == nil {
m = make(objSet)
d.deps = m
}
m[obj] = true
}
// arityMatch checks that the lhs and rhs of a const or var decl
// have the appropriate number of names and init exprs. For const
// decls, init is the value spec providing the init exprs; for
// var decls, init is nil (the init exprs are in s in this case).
func (check *Checker) arityMatch(s, init *ast.ValueSpec) {
l := len(s.Names)
r := len(s.Values)
if init != nil {
r = len(init.Values)
}
switch {
case init == nil && r == 0:
// var decl w/o init expr
if s.Type == nil {
check.errorf(s.Pos(), "missing type or init expr")
}
case l < r:
if l < len(s.Values) {
// init exprs from s
n := s.Values[l]
check.errorf(n.Pos(), "extra init expr %s", n)
// TODO(gri) avoid declared but not used error here
} else {
// init exprs "inherited"
check.errorf(s.Pos(), "extra init expr at %s", check.fset.Position(init.Pos()))
// TODO(gri) avoid declared but not used error here
}
case l > r && (init != nil || r != 1):
n := s.Names[r]
check.errorf(n.Pos(), "missing init expr for %s", n)
}
}
func validatedImportPath(path string) (string, error) {
s, err := strconv.Unquote(path)
if err != nil {
return "", err
}
if s == "" {
return "", fmt.Errorf("empty string")
}
const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD"
for _, r := range s {
if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) {
return s, fmt.Errorf("invalid character %#U", r)
}
}
return s, nil
}
// declarePkgObj declares obj in the package scope, records its ident -> obj mapping,
// and updates check.objMap. The object must not be a function or method.
func (check *Checker) declarePkgObj(ident *ast.Ident, obj Object, d *declInfo) {
assert(ident.Name == obj.Name())
// spec: "A package-scope or file-scope identifier with name init
// may only be declared to be a function with this (func()) signature."
if ident.Name == "init" {
check.errorf(ident.Pos(), "cannot declare init - must be func")
return
}
// spec: "The main package must have package name main and declare
// a function main that takes no arguments and returns no value."
if ident.Name == "main" && check.pkg.name == "main" {
check.errorf(ident.Pos(), "cannot declare main - must be func")
return
}
check.declare(check.pkg.scope, ident, obj, token.NoPos)
check.objMap[obj] = d
obj.setOrder(uint32(len(check.objMap)))
}
// filename returns a filename suitable for debugging output.
func (check *Checker) filename(fileNo int) string {
file := check.files[fileNo]
if pos := file.Pos(); pos.IsValid() {
return check.fset.File(pos).Name()
}
return fmt.Sprintf("file[%d]", fileNo)
}
func (check *Checker) importPackage(pos token.Pos, path, dir string) *Package {
// If we already have a package for the given (path, dir)
// pair, use it instead of doing a full import.
// Checker.impMap only caches packages that are marked Complete
// or fake (dummy packages for failed imports). Incomplete but
// non-fake packages do require an import to complete them.
key := importKey{path, dir}
imp := check.impMap[key]
if imp != nil {
return imp
}
// no package yet => import it
if path == "C" && check.conf.FakeImportC {
imp = NewPackage("C", "C")
imp.fake = true
} else {
// ordinary import
var err error
if importer := check.conf.Importer; importer == nil {
err = fmt.Errorf("Config.Importer not installed")
} else if importerFrom, ok := importer.(ImporterFrom); ok {
imp, err = importerFrom.ImportFrom(path, dir, 0)
if imp == nil && err == nil {
err = fmt.Errorf("Config.Importer.ImportFrom(%s, %s, 0) returned nil but no error", path, dir)
}
} else {
imp, err = importer.Import(path)
if imp == nil && err == nil {
err = fmt.Errorf("Config.Importer.Import(%s) returned nil but no error", path)
}
}
// make sure we have a valid package name
// (errors here can only happen through manipulation of packages after creation)
if err == nil && imp != nil && (imp.name == "_" || imp.name == "") {
err = fmt.Errorf("invalid package name: %q", imp.name)
imp = nil // create fake package below
}
if err != nil {
check.errorf(pos, "could not import %s (%s)", path, err)
if imp == nil {
// create a new fake package
// come up with a sensible package name (heuristic)
name := path
if i := len(name); i > 0 && name[i-1] == '/' {
name = name[:i-1]
}
if i := strings.LastIndex(name, "/"); i >= 0 {
name = name[i+1:]
}
imp = NewPackage(path, name)
}
// continue to use the package as best as we can
imp.fake = true // avoid follow-up lookup failures
}
}
// package should be complete or marked fake, but be cautious
if imp.complete || imp.fake {
check.impMap[key] = imp
return imp
}
// something went wrong (importer may have returned incomplete package without error)
return nil
}
// collectObjects collects all file and package objects and inserts them
// into their respective scopes. It also performs imports and associates
// methods with receiver base type names.
func (check *Checker) collectObjects() {
pkg := check.pkg
// pkgImports is the set of packages already imported by any package file seen
// so far. Used to avoid duplicate entries in pkg.imports. Allocate and populate
// it (pkg.imports may not be empty if we are checking test files incrementally).
// Note that pkgImports is keyed by package (and thus package path), not by an
// importKey value. Two different importKey values may map to the same package
// which is why we cannot use the check.impMap here.
var pkgImports = make(map[*Package]bool)
for _, imp := range pkg.imports {
pkgImports[imp] = true
}
for fileNo, file := range check.files {
// The package identifier denotes the current package,
// but there is no corresponding package object.
check.recordDef(file.Name, nil)
// Use the actual source file extent rather than *ast.File extent since the
// latter doesn't include comments which appear at the start or end of the file.
// Be conservative and use the *ast.File extent if we don't have a *token.File.
pos, end := file.Pos(), file.End()
if f := check.fset.File(file.Pos()); f != nil {
pos, end = token.Pos(f.Base()), token.Pos(f.Base()+f.Size())
}
fileScope := NewScope(check.pkg.scope, pos, end, check.filename(fileNo))
check.recordScope(file, fileScope)
// determine file directory, necessary to resolve imports
// FileName may be "" (typically for tests) in which case
// we get "." as the directory which is what we would want.
fileDir := dir(check.fset.Position(file.Name.Pos()).Filename)
for _, decl := range file.Decls {
switch d := decl.(type) {
case *ast.BadDecl:
// ignore
case *ast.GenDecl:
var last *ast.ValueSpec // last ValueSpec with type or init exprs seen
for iota, spec := range d.Specs {
switch s := spec.(type) {
case *ast.ImportSpec:
// import package
path, err := validatedImportPath(s.Path.Value)
if err != nil {
check.errorf(s.Path.Pos(), "invalid import path (%s)", err)
continue
}
imp := check.importPackage(s.Path.Pos(), path, fileDir)
if imp == nil {
continue
}
// add package to list of explicit imports
// (this functionality is provided as a convenience
// for clients; it is not needed for type-checking)
if !pkgImports[imp] {
pkgImports[imp] = true
pkg.imports = append(pkg.imports, imp)
}
// local name overrides imported package name
name := imp.name
if s.Name != nil {
name = s.Name.Name
if path == "C" {
// match cmd/compile (not prescribed by spec)
check.errorf(s.Name.Pos(), `cannot rename import "C"`)
continue
}
if name == "init" {
check.errorf(s.Name.Pos(), "cannot declare init - must be func")
continue
}
}
obj := NewPkgName(s.Pos(), pkg, name, imp)
if s.Name != nil {
// in a dot-import, the dot represents the package
check.recordDef(s.Name, obj)
} else {
check.recordImplicit(s, obj)
}
if path == "C" {
// match cmd/compile (not prescribed by spec)
obj.used = true
}
// add import to file scope
if name == "." {
// merge imported scope with file scope
for _, obj := range imp.scope.elems {
// A package scope may contain non-exported objects,
// do not import them!
if obj.Exported() {
// TODO(gri) When we import a package, we create
// a new local package object. We should do the
// same for each dot-imported object. That way
// they can have correct position information.
// (We must not modify their existing position
// information because the same package - found
// via Config.Packages - may be dot-imported in
// another package!)
check.declare(fileScope, nil, obj, token.NoPos)
}
}
// add position to set of dot-import positions for this file
// (this is only needed for "imported but not used" errors)
check.addUnusedDotImport(fileScope, imp, s.Pos())
} else {
// declare imported package object in file scope
check.declare(fileScope, nil, obj, token.NoPos)
}
case *ast.ValueSpec:
switch d.Tok {
case token.CONST:
// determine which initialization expressions to use
switch {
case s.Type != nil || len(s.Values) > 0:
last = s
case last == nil:
last = new(ast.ValueSpec) // make sure last exists
}
// declare all constants
for i, name := range s.Names {
obj := NewConst(name.Pos(), pkg, name.Name, nil, constant.MakeInt64(int64(iota)))
var init ast.Expr
if i < len(last.Values) {
init = last.Values[i]
}
d := &declInfo{file: fileScope, typ: last.Type, init: init}
check.declarePkgObj(name, obj, d)
}
check.arityMatch(s, last)
case token.VAR:
lhs := make([]*Var, len(s.Names))
// If there's exactly one rhs initializer, use
// the same declInfo d1 for all lhs variables
// so that each lhs variable depends on the same
// rhs initializer (n:1 var declaration).
var d1 *declInfo
if len(s.Values) == 1 {
// The lhs elements are only set up after the for loop below,
// but that's ok because declareVar only collects the declInfo
// for a later phase.
d1 = &declInfo{file: fileScope, lhs: lhs, typ: s.Type, init: s.Values[0]}
}
// declare all variables
for i, name := range s.Names {
obj := NewVar(name.Pos(), pkg, name.Name, nil)
lhs[i] = obj
d := d1
if d == nil {
// individual assignments
var init ast.Expr
if i < len(s.Values) {
init = s.Values[i]
}
d = &declInfo{file: fileScope, typ: s.Type, init: init}
}
check.declarePkgObj(name, obj, d)
}
check.arityMatch(s, nil)
default:
check.invalidAST(s.Pos(), "invalid token %s", d.Tok)
}
case *ast.TypeSpec:
obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Name, nil)
check.declarePkgObj(s.Name, obj, &declInfo{file: fileScope, typ: s.Type, alias: s.Assign.IsValid()})
default:
check.invalidAST(s.Pos(), "unknown ast.Spec node %T", s)
}
}
case *ast.FuncDecl:
name := d.Name.Name
obj := NewFunc(d.Name.Pos(), pkg, name, nil)
if d.Recv == nil {
// regular function
if name == "init" {
// don't declare init functions in the package scope - they are invisible
obj.parent = pkg.scope
check.recordDef(d.Name, obj)
// init functions must have a body
if d.Body == nil {
check.softErrorf(obj.pos, "missing function body")
}
} else {
check.declare(pkg.scope, d.Name, obj, token.NoPos)
}
} else {
// method
check.recordDef(d.Name, obj)
// Associate method with receiver base type name, if possible.
// Ignore methods that have an invalid receiver, or a blank _
// receiver name. They will be type-checked later, with regular
// functions.
if list := d.Recv.List; len(list) > 0 {
typ := unparen(list[0].Type)
if ptr, _ := typ.(*ast.StarExpr); ptr != nil {
typ = unparen(ptr.X)
}
if base, _ := typ.(*ast.Ident); base != nil && base.Name != "_" {
check.assocMethod(base.Name, obj)
}
}
}
info := &declInfo{file: fileScope, fdecl: d}
check.objMap[obj] = info
obj.setOrder(uint32(len(check.objMap)))
default:
check.invalidAST(d.Pos(), "unknown ast.Decl node %T", d)
}
}
}
// verify that objects in package and file scopes have different names
for _, scope := range check.pkg.scope.children /* file scopes */ {
for _, obj := range scope.elems {
if alt := pkg.scope.Lookup(obj.Name()); alt != nil {
if pkg, ok := obj.(*PkgName); ok {
check.errorf(alt.Pos(), "%s already declared through import of %s", alt.Name(), pkg.Imported())
check.reportAltDecl(pkg)
} else {
check.errorf(alt.Pos(), "%s already declared through dot-import of %s", alt.Name(), obj.Pkg())
// TODO(gri) dot-imported objects don't have a position; reportAltDecl won't print anything
check.reportAltDecl(obj)
}
}
}
}
}
// packageObjects typechecks all package objects in objList, but not function bodies.
func (check *Checker) packageObjects(objList []Object) {
// add new methods to already type-checked types (from a prior Checker.Files call)
for _, obj := range objList {
if obj, _ := obj.(*TypeName); obj != nil && obj.typ != nil {
check.addMethodDecls(obj)
}
}
// pre-allocate space for type declaration paths so that the underlying array is reused
typePath := make([]*TypeName, 0, 8)
for _, obj := range objList {
check.objDecl(obj, nil, typePath)
}
// At this point we may have a non-empty check.methods map; this means that not all
// entries were deleted at the end of typeDecl because the respective receiver base
// types were not found. In that case, an error was reported when declaring those
// methods. We can now safely discard this map.
check.methods = nil
}
// functionBodies typechecks all function bodies.
func (check *Checker) functionBodies() {
for _, f := range check.funcs {
check.funcBody(f.decl, f.name, f.sig, f.body)
}
}
// unusedImports checks for unused imports.
func (check *Checker) unusedImports() {
// if function bodies are not checked, packages' uses are likely missing - don't check
if check.conf.IgnoreFuncBodies {
return
}
// spec: "It is illegal (...) to directly import a package without referring to
// any of its exported identifiers. To import a package solely for its side-effects
// (initialization), use the blank identifier as explicit package name."
// check use of regular imported packages
for _, scope := range check.pkg.scope.children /* file scopes */ {
for _, obj := range scope.elems {
if obj, ok := obj.(*PkgName); ok {
// Unused "blank imports" are automatically ignored
// since _ identifiers are not entered into scopes.
if !obj.used {
path := obj.imported.path
base := pkgName(path)
if obj.name == base {
check.softErrorf(obj.pos, "%q imported but not used", path)
} else {
check.softErrorf(obj.pos, "%q imported but not used as %s", path, obj.name)
}
}
}
}
}
// check use of dot-imported packages
for _, unusedDotImports := range check.unusedDotImports {
for pkg, pos := range unusedDotImports {
check.softErrorf(pos, "%q imported but not used", pkg.path)
}
}
}
// pkgName returns the package name (last element) of an import path.
func pkgName(path string) string {
if i := strings.LastIndex(path, "/"); i >= 0 {
path = path[i+1:]
}
return path
}
// dir makes a good-faith attempt to return the directory
// portion of path. If path is empty, the result is ".".
// (Per the go/build package dependency tests, we cannot import
// path/filepath and simply use filepath.Dir.)
func dir(path string) string {
if i := strings.LastIndexAny(path, `/\`); i > 0 {
return path[:i]
}
// i <= 0
return "."
}

View File

@ -0,0 +1,190 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements isTerminating.
package types
import (
"go/ast"
"go/token"
)
// isTerminating reports if s is a terminating statement.
// If s is labeled, label is the label name; otherwise s
// is "".
func (check *Checker) isTerminating(s ast.Stmt, label string) bool {
switch s := s.(type) {
default:
unreachable()
case *ast.BadStmt, *ast.DeclStmt, *ast.EmptyStmt, *ast.SendStmt,
*ast.IncDecStmt, *ast.AssignStmt, *ast.GoStmt, *ast.DeferStmt,
*ast.RangeStmt:
// no chance
case *ast.LabeledStmt:
return check.isTerminating(s.Stmt, s.Label.Name)
case *ast.ExprStmt:
// the predeclared (possibly parenthesized) panic() function is terminating
if call, _ := unparen(s.X).(*ast.CallExpr); call != nil {
if id, _ := call.Fun.(*ast.Ident); id != nil {
if _, obj := check.scope.LookupParent(id.Name, token.NoPos); obj != nil {
if b, _ := obj.(*Builtin); b != nil && b.id == _Panic {
return true
}
}
}
}
case *ast.ReturnStmt:
return true
case *ast.BranchStmt:
if s.Tok == token.GOTO || s.Tok == token.FALLTHROUGH {
return true
}
case *ast.BlockStmt:
return check.isTerminatingList(s.List, "")
case *ast.IfStmt:
if s.Else != nil &&
check.isTerminating(s.Body, "") &&
check.isTerminating(s.Else, "") {
return true
}
case *ast.SwitchStmt:
return check.isTerminatingSwitch(s.Body, label)
case *ast.TypeSwitchStmt:
return check.isTerminatingSwitch(s.Body, label)
case *ast.SelectStmt:
for _, s := range s.Body.List {
cc := s.(*ast.CommClause)
if !check.isTerminatingList(cc.Body, "") || hasBreakList(cc.Body, label, true) {
return false
}
}
return true
case *ast.ForStmt:
if s.Cond == nil && !hasBreak(s.Body, label, true) {
return true
}
}
return false
}
func (check *Checker) isTerminatingList(list []ast.Stmt, label string) bool {
// trailing empty statements are permitted - skip them
for i := len(list) - 1; i >= 0; i-- {
if _, ok := list[i].(*ast.EmptyStmt); !ok {
return check.isTerminating(list[i], label)
}
}
return false // all statements are empty
}
func (check *Checker) isTerminatingSwitch(body *ast.BlockStmt, label string) bool {
hasDefault := false
for _, s := range body.List {
cc := s.(*ast.CaseClause)
if cc.List == nil {
hasDefault = true
}
if !check.isTerminatingList(cc.Body, "") || hasBreakList(cc.Body, label, true) {
return false
}
}
return hasDefault
}
// TODO(gri) For nested breakable statements, the current implementation of hasBreak
// will traverse the same subtree repeatedly, once for each label. Replace
// with a single-pass label/break matching phase.
// hasBreak reports if s is or contains a break statement
// referring to the label-ed statement or implicit-ly the
// closest outer breakable statement.
func hasBreak(s ast.Stmt, label string, implicit bool) bool {
switch s := s.(type) {
default:
unreachable()
case *ast.BadStmt, *ast.DeclStmt, *ast.EmptyStmt, *ast.ExprStmt,
*ast.SendStmt, *ast.IncDecStmt, *ast.AssignStmt, *ast.GoStmt,
*ast.DeferStmt, *ast.ReturnStmt:
// no chance
case *ast.LabeledStmt:
return hasBreak(s.Stmt, label, implicit)
case *ast.BranchStmt:
if s.Tok == token.BREAK {
if s.Label == nil {
return implicit
}
if s.Label.Name == label {
return true
}
}
case *ast.BlockStmt:
return hasBreakList(s.List, label, implicit)
case *ast.IfStmt:
if hasBreak(s.Body, label, implicit) ||
s.Else != nil && hasBreak(s.Else, label, implicit) {
return true
}
case *ast.CaseClause:
return hasBreakList(s.Body, label, implicit)
case *ast.SwitchStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
case *ast.TypeSwitchStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
case *ast.CommClause:
return hasBreakList(s.Body, label, implicit)
case *ast.SelectStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
case *ast.ForStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
case *ast.RangeStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
}
return false
}
func hasBreakList(list []ast.Stmt, label string, implicit bool) bool {
for _, s := range list {
if hasBreak(s, label, implicit) {
return true
}
}
return false
}

View File

@ -0,0 +1,191 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements Scopes.
package types
import (
"bytes"
"fmt"
"go/token"
"io"
"sort"
"strings"
)
// TODO(gri) Provide scopes with a name or other mechanism so that
// objects can use that information for better printing.
// A Scope maintains a set of objects and links to its containing
// (parent) and contained (children) scopes. Objects may be inserted
// and looked up by name. The zero value for Scope is a ready-to-use
// empty scope.
type Scope struct {
parent *Scope
children []*Scope
elems map[string]Object // lazily allocated
pos, end token.Pos // scope extent; may be invalid
comment string // for debugging only
isFunc bool // set if this is a function scope (internal use only)
}
// NewScope returns a new, empty scope contained in the given parent
// scope, if any. The comment is for debugging only.
func NewScope(parent *Scope, pos, end token.Pos, comment string) *Scope {
s := &Scope{parent, nil, nil, pos, end, comment, false}
// don't add children to Universe scope!
if parent != nil && parent != Universe {
parent.children = append(parent.children, s)
}
return s
}
// Parent returns the scope's containing (parent) scope.
func (s *Scope) Parent() *Scope { return s.parent }
// Len() returns the number of scope elements.
func (s *Scope) Len() int { return len(s.elems) }
// Names returns the scope's element names in sorted order.
func (s *Scope) Names() []string {
names := make([]string, len(s.elems))
i := 0
for name := range s.elems {
names[i] = name
i++
}
sort.Strings(names)
return names
}
// NumChildren() returns the number of scopes nested in s.
func (s *Scope) NumChildren() int { return len(s.children) }
// Child returns the i'th child scope for 0 <= i < NumChildren().
func (s *Scope) Child(i int) *Scope { return s.children[i] }
// Lookup returns the object in scope s with the given name if such an
// object exists; otherwise the result is nil.
func (s *Scope) Lookup(name string) Object {
return s.elems[name]
}
// LookupParent follows the parent chain of scopes starting with s until
// it finds a scope where Lookup(name) returns a non-nil object, and then
// returns that scope and object. If a valid position pos is provided,
// only objects that were declared at or before pos are considered.
// If no such scope and object exists, the result is (nil, nil).
//
// Note that obj.Parent() may be different from the returned scope if the
// object was inserted into the scope and already had a parent at that
// time (see Insert, below). This can only happen for dot-imported objects
// whose scope is the scope of the package that exported them.
func (s *Scope) LookupParent(name string, pos token.Pos) (*Scope, Object) {
for ; s != nil; s = s.parent {
if obj := s.elems[name]; obj != nil && (!pos.IsValid() || obj.scopePos() <= pos) {
return s, obj
}
}
return nil, nil
}
// Insert attempts to insert an object obj into scope s.
// If s already contains an alternative object alt with
// the same name, Insert leaves s unchanged and returns alt.
// Otherwise it inserts obj, sets the object's parent scope
// if not already set, and returns nil.
func (s *Scope) Insert(obj Object) Object {
name := obj.Name()
if alt := s.elems[name]; alt != nil {
return alt
}
if s.elems == nil {
s.elems = make(map[string]Object)
}
s.elems[name] = obj
if obj.Parent() == nil {
obj.setParent(s)
}
return nil
}
// Pos and End describe the scope's source code extent [pos, end).
// The results are guaranteed to be valid only if the type-checked
// AST has complete position information. The extent is undefined
// for Universe and package scopes.
func (s *Scope) Pos() token.Pos { return s.pos }
func (s *Scope) End() token.Pos { return s.end }
// Contains returns true if pos is within the scope's extent.
// The result is guaranteed to be valid only if the type-checked
// AST has complete position information.
func (s *Scope) Contains(pos token.Pos) bool {
return s.pos <= pos && pos < s.end
}
// Innermost returns the innermost (child) scope containing
// pos. If pos is not within any scope, the result is nil.
// The result is also nil for the Universe scope.
// The result is guaranteed to be valid only if the type-checked
// AST has complete position information.
func (s *Scope) Innermost(pos token.Pos) *Scope {
// Package scopes do not have extents since they may be
// discontiguous, so iterate over the package's files.
if s.parent == Universe {
for _, s := range s.children {
if inner := s.Innermost(pos); inner != nil {
return inner
}
}
}
if s.Contains(pos) {
for _, s := range s.children {
if s.Contains(pos) {
return s.Innermost(pos)
}
}
return s
}
return nil
}
// WriteTo writes a string representation of the scope to w,
// with the scope elements sorted by name.
// The level of indentation is controlled by n >= 0, with
// n == 0 for no indentation.
// If recurse is set, it also writes nested (children) scopes.
func (s *Scope) WriteTo(w io.Writer, n int, recurse bool) {
const ind = ". "
indn := strings.Repeat(ind, n)
fmt.Fprintf(w, "%s%s scope %p {", indn, s.comment, s)
if len(s.elems) == 0 {
fmt.Fprintf(w, "}\n")
return
}
fmt.Fprintln(w)
indn1 := indn + ind
for _, name := range s.Names() {
fmt.Fprintf(w, "%s%s\n", indn1, s.elems[name])
}
if recurse {
for _, s := range s.children {
fmt.Fprintln(w)
s.WriteTo(w, n+1, recurse)
}
}
fmt.Fprintf(w, "%s}", indn)
}
// String returns a string representation of the scope, for debugging.
func (s *Scope) String() string {
var buf bytes.Buffer
s.WriteTo(&buf, 0, false)
return buf.String()
}

View File

@ -0,0 +1,143 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements Selections.
package types
import (
"bytes"
"fmt"
)
// SelectionKind describes the kind of a selector expression x.f
// (excluding qualified identifiers).
type SelectionKind int
const (
FieldVal SelectionKind = iota // x.f is a struct field selector
MethodVal // x.f is a method selector
MethodExpr // x.f is a method expression
)
// A Selection describes a selector expression x.f.
// For the declarations:
//
// type T struct{ x int; E }
// type E struct{}
// func (e E) m() {}
// var p *T
//
// the following relations exist:
//
// Selector Kind Recv Obj Type Index Indirect
//
// p.x FieldVal T x int {0} true
// p.m MethodVal *T m func (e *T) m() {1, 0} true
// T.m MethodExpr T m func m(_ T) {1, 0} false
//
type Selection struct {
kind SelectionKind
recv Type // type of x
obj Object // object denoted by x.f
index []int // path from x to x.f
indirect bool // set if there was any pointer indirection on the path
}
// Kind returns the selection kind.
func (s *Selection) Kind() SelectionKind { return s.kind }
// Recv returns the type of x in x.f.
func (s *Selection) Recv() Type { return s.recv }
// Obj returns the object denoted by x.f; a *Var for
// a field selection, and a *Func in all other cases.
func (s *Selection) Obj() Object { return s.obj }
// Type returns the type of x.f, which may be different from the type of f.
// See Selection for more information.
func (s *Selection) Type() Type {
switch s.kind {
case MethodVal:
// The type of x.f is a method with its receiver type set
// to the type of x.
sig := *s.obj.(*Func).typ.(*Signature)
recv := *sig.recv
recv.typ = s.recv
sig.recv = &recv
return &sig
case MethodExpr:
// The type of x.f is a function (without receiver)
// and an additional first argument with the same type as x.
// TODO(gri) Similar code is already in call.go - factor!
// TODO(gri) Compute this eagerly to avoid allocations.
sig := *s.obj.(*Func).typ.(*Signature)
arg0 := *sig.recv
sig.recv = nil
arg0.typ = s.recv
var params []*Var
if sig.params != nil {
params = sig.params.vars
}
sig.params = NewTuple(append([]*Var{&arg0}, params...)...)
return &sig
}
// In all other cases, the type of x.f is the type of x.
return s.obj.Type()
}
// Index describes the path from x to f in x.f.
// The last index entry is the field or method index of the type declaring f;
// either:
//
// 1) the list of declared methods of a named type; or
// 2) the list of methods of an interface type; or
// 3) the list of fields of a struct type.
//
// The earlier index entries are the indices of the embedded fields implicitly
// traversed to get from (the type of) x to f, starting at embedding depth 0.
func (s *Selection) Index() []int { return s.index }
// Indirect reports whether any pointer indirection was required to get from
// x to f in x.f.
func (s *Selection) Indirect() bool { return s.indirect }
func (s *Selection) String() string { return SelectionString(s, nil) }
// SelectionString returns the string form of s.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
//
// Examples:
// "field (T) f int"
// "method (T) f(X) Y"
// "method expr (T) f(X) Y"
//
func SelectionString(s *Selection, qf Qualifier) string {
var k string
switch s.kind {
case FieldVal:
k = "field "
case MethodVal:
k = "method "
case MethodExpr:
k = "method expr "
default:
unreachable()
}
var buf bytes.Buffer
buf.WriteString(k)
buf.WriteByte('(')
WriteType(&buf, s.Recv(), qf)
fmt.Fprintf(&buf, ") %s", s.obj.Name())
if T := s.Type(); s.kind == FieldVal {
buf.WriteByte(' ')
WriteType(&buf, T, qf)
} else {
WriteSignature(&buf, T.(*Signature), qf)
}
return buf.String()
}

View File

@ -0,0 +1,254 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements Sizes.
package types
// Sizes defines the sizing functions for package unsafe.
type Sizes interface {
// Alignof returns the alignment of a variable of type T.
// Alignof must implement the alignment guarantees required by the spec.
Alignof(T Type) int64
// Offsetsof returns the offsets of the given struct fields, in bytes.
// Offsetsof must implement the offset guarantees required by the spec.
Offsetsof(fields []*Var) []int64
// Sizeof returns the size of a variable of type T.
// Sizeof must implement the size guarantees required by the spec.
Sizeof(T Type) int64
}
// StdSizes is a convenience type for creating commonly used Sizes.
// It makes the following simplifying assumptions:
//
// - The size of explicitly sized basic types (int16, etc.) is the
// specified size.
// - The size of strings and interfaces is 2*WordSize.
// - The size of slices is 3*WordSize.
// - The size of an array of n elements corresponds to the size of
// a struct of n consecutive fields of the array's element type.
// - The size of a struct is the offset of the last field plus that
// field's size. As with all element types, if the struct is used
// in an array its size must first be aligned to a multiple of the
// struct's alignment.
// - All other types have size WordSize.
// - Arrays and structs are aligned per spec definition; all other
// types are naturally aligned with a maximum alignment MaxAlign.
//
// *StdSizes implements Sizes.
//
type StdSizes struct {
WordSize int64 // word size in bytes - must be >= 4 (32bits)
MaxAlign int64 // maximum alignment in bytes - must be >= 1
}
func (s *StdSizes) Alignof(T Type) int64 {
// For arrays and structs, alignment is defined in terms
// of alignment of the elements and fields, respectively.
switch t := T.Underlying().(type) {
case *Array:
// spec: "For a variable x of array type: unsafe.Alignof(x)
// is the same as unsafe.Alignof(x[0]), but at least 1."
return s.Alignof(t.elem)
case *Struct:
// spec: "For a variable x of struct type: unsafe.Alignof(x)
// is the largest of the values unsafe.Alignof(x.f) for each
// field f of x, but at least 1."
max := int64(1)
for _, f := range t.fields {
if a := s.Alignof(f.typ); a > max {
max = a
}
}
return max
case *Slice, *Interface:
// Multiword data structures are effectively structs
// in which each element has size WordSize.
return s.WordSize
case *Basic:
// Strings are like slices and interfaces.
if t.Info()&IsString != 0 {
return s.WordSize
}
}
a := s.Sizeof(T) // may be 0
// spec: "For a variable x of any type: unsafe.Alignof(x) is at least 1."
if a < 1 {
return 1
}
// complex{64,128} are aligned like [2]float{32,64}.
if isComplex(T) {
a /= 2
}
if a > s.MaxAlign {
return s.MaxAlign
}
return a
}
func (s *StdSizes) Offsetsof(fields []*Var) []int64 {
offsets := make([]int64, len(fields))
var o int64
for i, f := range fields {
a := s.Alignof(f.typ)
o = align(o, a)
offsets[i] = o
o += s.Sizeof(f.typ)
}
return offsets
}
var basicSizes = [...]byte{
Bool: 1,
Int8: 1,
Int16: 2,
Int32: 4,
Int64: 8,
Uint8: 1,
Uint16: 2,
Uint32: 4,
Uint64: 8,
Float32: 4,
Float64: 8,
Complex64: 8,
Complex128: 16,
}
func (s *StdSizes) Sizeof(T Type) int64 {
switch t := T.Underlying().(type) {
case *Basic:
assert(isTyped(T))
k := t.kind
if int(k) < len(basicSizes) {
if s := basicSizes[k]; s > 0 {
return int64(s)
}
}
if k == String {
return s.WordSize * 2
}
case *Array:
n := t.len
if n <= 0 {
return 0
}
// n > 0
a := s.Alignof(t.elem)
z := s.Sizeof(t.elem)
return align(z, a)*(n-1) + z
case *Slice:
return s.WordSize * 3
case *Struct:
n := t.NumFields()
if n == 0 {
return 0
}
offsets := s.Offsetsof(t.fields)
return offsets[n-1] + s.Sizeof(t.fields[n-1].typ)
case *Interface:
return s.WordSize * 2
}
return s.WordSize // catch-all
}
// common architecture word sizes and alignments
var gcArchSizes = map[string]*StdSizes{
"386": {4, 4},
"arm": {4, 4},
"arm64": {8, 8},
"amd64": {8, 8},
"amd64p32": {4, 8},
"mips": {4, 4},
"mipsle": {4, 4},
"mips64": {8, 8},
"mips64le": {8, 8},
"ppc64": {8, 8},
"ppc64le": {8, 8},
"s390x": {8, 8},
// When adding more architectures here,
// update the doc string of SizesFor below.
}
// SizesFor returns the Sizes used by a compiler for an architecture.
// The result is nil if a compiler/architecture pair is not known.
//
// Supported architectures for compiler "gc":
// "386", "arm", "arm64", "amd64", "amd64p32", "mips", "mipsle",
// "mips64", "mips64le", "ppc64", "ppc64le", "s390x".
func SizesFor(compiler, arch string) Sizes {
if compiler != "gc" {
return nil
}
s, ok := gcArchSizes[arch]
if !ok {
return nil
}
return s
}
// stdSizes is used if Config.Sizes == nil.
var stdSizes = SizesFor("gc", "amd64")
func (conf *Config) alignof(T Type) int64 {
if s := conf.Sizes; s != nil {
if a := s.Alignof(T); a >= 1 {
return a
}
panic("Config.Sizes.Alignof returned an alignment < 1")
}
return stdSizes.Alignof(T)
}
func (conf *Config) offsetsof(T *Struct) []int64 {
var offsets []int64
if T.NumFields() > 0 {
// compute offsets on demand
if s := conf.Sizes; s != nil {
offsets = s.Offsetsof(T.fields)
// sanity checks
if len(offsets) != T.NumFields() {
panic("Config.Sizes.Offsetsof returned the wrong number of offsets")
}
for _, o := range offsets {
if o < 0 {
panic("Config.Sizes.Offsetsof returned an offset < 0")
}
}
} else {
offsets = stdSizes.Offsetsof(T.fields)
}
}
return offsets
}
// offsetof returns the offset of the field specified via
// the index sequence relative to typ. All embedded fields
// must be structs (rather than pointer to structs).
func (conf *Config) offsetof(typ Type, index []int) int64 {
var o int64
for _, i := range index {
s := typ.Underlying().(*Struct)
o += conf.offsetsof(s)[i]
typ = s.fields[i].typ
}
return o
}
func (conf *Config) sizeof(T Type) int64 {
if s := conf.Sizes; s != nil {
if z := s.Sizeof(T); z >= 0 {
return z
}
panic("Config.Sizes.Sizeof returned a size < 0")
}
return stdSizes.Sizeof(T)
}
// align returns the smallest y >= x such that y % a == 0.
func align(x, a int64) int64 {
y := x + a - 1
return y - y%a
}

View File

@ -0,0 +1,870 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of statements.
package types
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"sort"
)
func (check *Checker) funcBody(decl *declInfo, name string, sig *Signature, body *ast.BlockStmt) {
if trace {
if name == "" {
name = "<function literal>"
}
fmt.Printf("--- %s: %s {\n", name, sig)
defer fmt.Println("--- <end>")
}
// set function scope extent
sig.scope.pos = body.Pos()
sig.scope.end = body.End()
// save/restore current context and setup function context
// (and use 0 indentation at function start)
defer func(ctxt context, indent int) {
check.context = ctxt
check.indent = indent
}(check.context, check.indent)
check.context = context{
decl: decl,
scope: sig.scope,
sig: sig,
}
check.indent = 0
check.stmtList(0, body.List)
if check.hasLabel {
check.labels(body)
}
if sig.results.Len() > 0 && !check.isTerminating(body, "") {
check.error(body.Rbrace, "missing return")
}
// spec: "Implementation restriction: A compiler may make it illegal to
// declare a variable inside a function body if the variable is never used."
// (One could check each scope after use, but that distributes this check
// over several places because CloseScope is not always called explicitly.)
check.usage(sig.scope)
}
func (check *Checker) usage(scope *Scope) {
var unused []*Var
for _, elem := range scope.elems {
if v, _ := elem.(*Var); v != nil && !v.used {
unused = append(unused, v)
}
}
sort.Slice(unused, func(i, j int) bool {
return unused[i].pos < unused[j].pos
})
for _, v := range unused {
check.softErrorf(v.pos, "%s declared but not used", v.name)
}
for _, scope := range scope.children {
// Don't go inside closure scopes a second time;
// they are handled explicitly by funcBody.
if !scope.isFunc {
check.usage(scope)
}
}
}
// stmtContext is a bitset describing which
// control-flow statements are permissible,
// and provides additional context information
// for better error messages.
type stmtContext uint
const (
// permissible control-flow statements
breakOk stmtContext = 1 << iota
continueOk
fallthroughOk
// additional context information
finalSwitchCase
)
func (check *Checker) simpleStmt(s ast.Stmt) {
if s != nil {
check.stmt(0, s)
}
}
func trimTrailingEmptyStmts(list []ast.Stmt) []ast.Stmt {
for i := len(list); i > 0; i-- {
if _, ok := list[i-1].(*ast.EmptyStmt); !ok {
return list[:i]
}
}
return nil
}
func (check *Checker) stmtList(ctxt stmtContext, list []ast.Stmt) {
ok := ctxt&fallthroughOk != 0
inner := ctxt &^ fallthroughOk
list = trimTrailingEmptyStmts(list) // trailing empty statements are "invisible" to fallthrough analysis
for i, s := range list {
inner := inner
if ok && i+1 == len(list) {
inner |= fallthroughOk
}
check.stmt(inner, s)
}
}
func (check *Checker) multipleDefaults(list []ast.Stmt) {
var first ast.Stmt
for _, s := range list {
var d ast.Stmt
switch c := s.(type) {
case *ast.CaseClause:
if len(c.List) == 0 {
d = s
}
case *ast.CommClause:
if c.Comm == nil {
d = s
}
default:
check.invalidAST(s.Pos(), "case/communication clause expected")
}
if d != nil {
if first != nil {
check.errorf(d.Pos(), "multiple defaults (first at %s)", check.fset.Position(first.Pos()))
} else {
first = d
}
}
}
}
func (check *Checker) openScope(s ast.Stmt, comment string) {
scope := NewScope(check.scope, s.Pos(), s.End(), comment)
check.recordScope(s, scope)
check.scope = scope
}
func (check *Checker) closeScope() {
check.scope = check.scope.Parent()
}
func assignOp(op token.Token) token.Token {
// token_test.go verifies the token ordering this function relies on
if token.ADD_ASSIGN <= op && op <= token.AND_NOT_ASSIGN {
return op + (token.ADD - token.ADD_ASSIGN)
}
return token.ILLEGAL
}
func (check *Checker) suspendedCall(keyword string, call *ast.CallExpr) {
var x operand
var msg string
switch check.rawExpr(&x, call, nil) {
case conversion:
msg = "requires function call, not conversion"
case expression:
msg = "discards result of"
case statement:
return
default:
unreachable()
}
check.errorf(x.pos(), "%s %s %s", keyword, msg, &x)
}
// goVal returns the Go value for val, or nil.
func goVal(val constant.Value) interface{} {
// val should exist, but be conservative and check
if val == nil {
return nil
}
// Match implementation restriction of other compilers.
// gc only checks duplicates for integer, floating-point
// and string values, so only create Go values for these
// types.
switch val.Kind() {
case constant.Int:
if x, ok := constant.Int64Val(val); ok {
return x
}
if x, ok := constant.Uint64Val(val); ok {
return x
}
case constant.Float:
if x, ok := constant.Float64Val(val); ok {
return x
}
case constant.String:
return constant.StringVal(val)
}
return nil
}
// A valueMap maps a case value (of a basic Go type) to a list of positions
// where the same case value appeared, together with the corresponding case
// types.
// Since two case values may have the same "underlying" value but different
// types we need to also check the value's types (e.g., byte(1) vs myByte(1))
// when the switch expression is of interface type.
type (
valueMap map[interface{}][]valueType // underlying Go value -> valueType
valueType struct {
pos token.Pos
typ Type
}
)
func (check *Checker) caseValues(x *operand, values []ast.Expr, seen valueMap) {
L:
for _, e := range values {
var v operand
check.expr(&v, e)
if x.mode == invalid || v.mode == invalid {
continue L
}
check.convertUntyped(&v, x.typ)
if v.mode == invalid {
continue L
}
// Order matters: By comparing v against x, error positions are at the case values.
res := v // keep original v unchanged
check.comparison(&res, x, token.EQL)
if res.mode == invalid {
continue L
}
if v.mode != constant_ {
continue L // we're done
}
// look for duplicate values
if val := goVal(v.val); val != nil {
// look for duplicate types for a given value
// (quadratic algorithm, but these lists tend to be very short)
for _, vt := range seen[val] {
if Identical(v.typ, vt.typ) {
check.errorf(v.pos(), "duplicate case %s in expression switch", &v)
check.error(vt.pos, "\tprevious case") // secondary error, \t indented
continue L
}
}
seen[val] = append(seen[val], valueType{v.pos(), v.typ})
}
}
}
func (check *Checker) caseTypes(x *operand, xtyp *Interface, types []ast.Expr, seen map[Type]token.Pos) (T Type) {
L:
for _, e := range types {
T = check.typOrNil(e)
if T == Typ[Invalid] {
continue L
}
// look for duplicate types
// (quadratic algorithm, but type switches tend to be reasonably small)
for t, pos := range seen {
if T == nil && t == nil || T != nil && t != nil && Identical(T, t) {
// talk about "case" rather than "type" because of nil case
Ts := "nil"
if T != nil {
Ts = T.String()
}
check.errorf(e.Pos(), "duplicate case %s in type switch", Ts)
check.error(pos, "\tprevious case") // secondary error, \t indented
continue L
}
}
seen[T] = e.Pos()
if T != nil {
check.typeAssertion(e.Pos(), x, xtyp, T)
}
}
return
}
// stmt typechecks statement s.
func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) {
// statements cannot use iota in general
// (constant declarations set it explicitly)
assert(check.iota == nil)
// statements must end with the same top scope as they started with
if debug {
defer func(scope *Scope) {
// don't check if code is panicking
if p := recover(); p != nil {
panic(p)
}
assert(scope == check.scope)
}(check.scope)
}
inner := ctxt &^ (fallthroughOk | finalSwitchCase)
switch s := s.(type) {
case *ast.BadStmt, *ast.EmptyStmt:
// ignore
case *ast.DeclStmt:
check.declStmt(s.Decl)
case *ast.LabeledStmt:
check.hasLabel = true
check.stmt(ctxt, s.Stmt)
case *ast.ExprStmt:
// spec: "With the exception of specific built-in functions,
// function and method calls and receive operations can appear
// in statement context. Such statements may be parenthesized."
var x operand
kind := check.rawExpr(&x, s.X, nil)
var msg string
switch x.mode {
default:
if kind == statement {
return
}
msg = "is not used"
case builtin:
msg = "must be called"
case typexpr:
msg = "is not an expression"
}
check.errorf(x.pos(), "%s %s", &x, msg)
case *ast.SendStmt:
var ch, x operand
check.expr(&ch, s.Chan)
check.expr(&x, s.Value)
if ch.mode == invalid || x.mode == invalid {
return
}
tch, ok := ch.typ.Underlying().(*Chan)
if !ok {
check.invalidOp(s.Arrow, "cannot send to non-chan type %s", ch.typ)
return
}
if tch.dir == RecvOnly {
check.invalidOp(s.Arrow, "cannot send to receive-only type %s", tch)
return
}
check.assignment(&x, tch.elem, "send")
case *ast.IncDecStmt:
var op token.Token
switch s.Tok {
case token.INC:
op = token.ADD
case token.DEC:
op = token.SUB
default:
check.invalidAST(s.TokPos, "unknown inc/dec operation %s", s.Tok)
return
}
var x operand
check.expr(&x, s.X)
if x.mode == invalid {
return
}
if !isNumeric(x.typ) {
check.invalidOp(s.X.Pos(), "%s%s (non-numeric type %s)", s.X, s.Tok, x.typ)
return
}
Y := &ast.BasicLit{ValuePos: s.X.Pos(), Kind: token.INT, Value: "1"} // use x's position
check.binary(&x, nil, s.X, Y, op)
if x.mode == invalid {
return
}
check.assignVar(s.X, &x)
case *ast.AssignStmt:
switch s.Tok {
case token.ASSIGN, token.DEFINE:
if len(s.Lhs) == 0 {
check.invalidAST(s.Pos(), "missing lhs in assignment")
return
}
if s.Tok == token.DEFINE {
check.shortVarDecl(s.TokPos, s.Lhs, s.Rhs)
} else {
// regular assignment
check.assignVars(s.Lhs, s.Rhs)
}
default:
// assignment operations
if len(s.Lhs) != 1 || len(s.Rhs) != 1 {
check.errorf(s.TokPos, "assignment operation %s requires single-valued expressions", s.Tok)
return
}
op := assignOp(s.Tok)
if op == token.ILLEGAL {
check.invalidAST(s.TokPos, "unknown assignment operation %s", s.Tok)
return
}
var x operand
check.binary(&x, nil, s.Lhs[0], s.Rhs[0], op)
if x.mode == invalid {
return
}
check.assignVar(s.Lhs[0], &x)
}
case *ast.GoStmt:
check.suspendedCall("go", s.Call)
case *ast.DeferStmt:
check.suspendedCall("defer", s.Call)
case *ast.ReturnStmt:
res := check.sig.results
if res.Len() > 0 {
// function returns results
// (if one, say the first, result parameter is named, all of them are named)
if len(s.Results) == 0 && res.vars[0].name != "" {
// spec: "Implementation restriction: A compiler may disallow an empty expression
// list in a "return" statement if a different entity (constant, type, or variable)
// with the same name as a result parameter is in scope at the place of the return."
for _, obj := range res.vars {
if _, alt := check.scope.LookupParent(obj.name, check.pos); alt != nil && alt != obj {
check.errorf(s.Pos(), "result parameter %s not in scope at return", obj.name)
check.errorf(alt.Pos(), "\tinner declaration of %s", obj)
// ok to continue
}
}
} else {
// return has results or result parameters are unnamed
check.initVars(res.vars, s.Results, s.Return)
}
} else if len(s.Results) > 0 {
check.error(s.Results[0].Pos(), "no result values expected")
check.use(s.Results...)
}
case *ast.BranchStmt:
if s.Label != nil {
check.hasLabel = true
return // checked in 2nd pass (check.labels)
}
switch s.Tok {
case token.BREAK:
if ctxt&breakOk == 0 {
check.error(s.Pos(), "break not in for, switch, or select statement")
}
case token.CONTINUE:
if ctxt&continueOk == 0 {
check.error(s.Pos(), "continue not in for statement")
}
case token.FALLTHROUGH:
if ctxt&fallthroughOk == 0 {
msg := "fallthrough statement out of place"
if ctxt&finalSwitchCase != 0 {
msg = "cannot fallthrough final case in switch"
}
check.error(s.Pos(), msg)
}
default:
check.invalidAST(s.Pos(), "branch statement: %s", s.Tok)
}
case *ast.BlockStmt:
check.openScope(s, "block")
defer check.closeScope()
check.stmtList(inner, s.List)
case *ast.IfStmt:
check.openScope(s, "if")
defer check.closeScope()
check.simpleStmt(s.Init)
var x operand
check.expr(&x, s.Cond)
if x.mode != invalid && !isBoolean(x.typ) {
check.error(s.Cond.Pos(), "non-boolean condition in if statement")
}
check.stmt(inner, s.Body)
// The parser produces a correct AST but if it was modified
// elsewhere the else branch may be invalid. Check again.
switch s.Else.(type) {
case nil, *ast.BadStmt:
// valid or error already reported
case *ast.IfStmt, *ast.BlockStmt:
check.stmt(inner, s.Else)
default:
check.error(s.Else.Pos(), "invalid else branch in if statement")
}
case *ast.SwitchStmt:
inner |= breakOk
check.openScope(s, "switch")
defer check.closeScope()
check.simpleStmt(s.Init)
var x operand
if s.Tag != nil {
check.expr(&x, s.Tag)
// By checking assignment of x to an invisible temporary
// (as a compiler would), we get all the relevant checks.
check.assignment(&x, nil, "switch expression")
} else {
// spec: "A missing switch expression is
// equivalent to the boolean value true."
x.mode = constant_
x.typ = Typ[Bool]
x.val = constant.MakeBool(true)
x.expr = &ast.Ident{NamePos: s.Body.Lbrace, Name: "true"}
}
check.multipleDefaults(s.Body.List)
seen := make(valueMap) // map of seen case values to positions and types
for i, c := range s.Body.List {
clause, _ := c.(*ast.CaseClause)
if clause == nil {
check.invalidAST(c.Pos(), "incorrect expression switch case")
continue
}
check.caseValues(&x, clause.List, seen)
check.openScope(clause, "case")
inner := inner
if i+1 < len(s.Body.List) {
inner |= fallthroughOk
} else {
inner |= finalSwitchCase
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
case *ast.TypeSwitchStmt:
inner |= breakOk
check.openScope(s, "type switch")
defer check.closeScope()
check.simpleStmt(s.Init)
// A type switch guard must be of the form:
//
// TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
//
// The parser is checking syntactic correctness;
// remaining syntactic errors are considered AST errors here.
// TODO(gri) better factoring of error handling (invalid ASTs)
//
var lhs *ast.Ident // lhs identifier or nil
var rhs ast.Expr
switch guard := s.Assign.(type) {
case *ast.ExprStmt:
rhs = guard.X
case *ast.AssignStmt:
if len(guard.Lhs) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs) != 1 {
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
lhs, _ = guard.Lhs[0].(*ast.Ident)
if lhs == nil {
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
if lhs.Name == "_" {
// _ := x.(type) is an invalid short variable declaration
check.softErrorf(lhs.Pos(), "no new variable on left side of :=")
lhs = nil // avoid declared but not used error below
} else {
check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause
}
rhs = guard.Rhs[0]
default:
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
// rhs must be of the form: expr.(type) and expr must be an interface
expr, _ := rhs.(*ast.TypeAssertExpr)
if expr == nil || expr.Type != nil {
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
var x operand
check.expr(&x, expr.X)
if x.mode == invalid {
return
}
xtyp, _ := x.typ.Underlying().(*Interface)
if xtyp == nil {
check.errorf(x.pos(), "%s is not an interface", &x)
return
}
check.multipleDefaults(s.Body.List)
var lhsVars []*Var // list of implicitly declared lhs variables
seen := make(map[Type]token.Pos) // map of seen types to positions
for _, s := range s.Body.List {
clause, _ := s.(*ast.CaseClause)
if clause == nil {
check.invalidAST(s.Pos(), "incorrect type switch case")
continue
}
// Check each type in this type switch case.
T := check.caseTypes(&x, xtyp, clause.List, seen)
check.openScope(clause, "case")
// If lhs exists, declare a corresponding variable in the case-local scope.
if lhs != nil {
// spec: "The TypeSwitchGuard may include a short variable declaration.
// When that form is used, the variable is declared at the beginning of
// the implicit block in each clause. In clauses with a case listing
// exactly one type, the variable has that type; otherwise, the variable
// has the type of the expression in the TypeSwitchGuard."
if len(clause.List) != 1 || T == nil {
T = x.typ
}
obj := NewVar(lhs.Pos(), check.pkg, lhs.Name, T)
scopePos := clause.Pos() + token.Pos(len("default")) // for default clause (len(List) == 0)
if n := len(clause.List); n > 0 {
scopePos = clause.List[n-1].End()
}
check.declare(check.scope, nil, obj, scopePos)
check.recordImplicit(clause, obj)
// For the "declared but not used" error, all lhs variables act as
// one; i.e., if any one of them is 'used', all of them are 'used'.
// Collect them for later analysis.
lhsVars = append(lhsVars, obj)
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
// If lhs exists, we must have at least one lhs variable that was used.
if lhs != nil {
var used bool
for _, v := range lhsVars {
if v.used {
used = true
}
v.used = true // avoid usage error when checking entire function
}
if !used {
check.softErrorf(lhs.Pos(), "%s declared but not used", lhs.Name)
}
}
case *ast.SelectStmt:
inner |= breakOk
check.multipleDefaults(s.Body.List)
for _, s := range s.Body.List {
clause, _ := s.(*ast.CommClause)
if clause == nil {
continue // error reported before
}
// clause.Comm must be a SendStmt, RecvStmt, or default case
valid := false
var rhs ast.Expr // rhs of RecvStmt, or nil
switch s := clause.Comm.(type) {
case nil, *ast.SendStmt:
valid = true
case *ast.AssignStmt:
if len(s.Rhs) == 1 {
rhs = s.Rhs[0]
}
case *ast.ExprStmt:
rhs = s.X
}
// if present, rhs must be a receive operation
if rhs != nil {
if x, _ := unparen(rhs).(*ast.UnaryExpr); x != nil && x.Op == token.ARROW {
valid = true
}
}
if !valid {
check.error(clause.Comm.Pos(), "select case must be send or receive (possibly with assignment)")
continue
}
check.openScope(s, "case")
if clause.Comm != nil {
check.stmt(inner, clause.Comm)
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
case *ast.ForStmt:
inner |= breakOk | continueOk
check.openScope(s, "for")
defer check.closeScope()
check.simpleStmt(s.Init)
if s.Cond != nil {
var x operand
check.expr(&x, s.Cond)
if x.mode != invalid && !isBoolean(x.typ) {
check.error(s.Cond.Pos(), "non-boolean condition in for statement")
}
}
check.simpleStmt(s.Post)
// spec: "The init statement may be a short variable
// declaration, but the post statement must not."
if s, _ := s.Post.(*ast.AssignStmt); s != nil && s.Tok == token.DEFINE {
check.softErrorf(s.Pos(), "cannot declare in post statement")
// Don't call useLHS here because we want to use the lhs in
// this erroneous statement so that we don't get errors about
// these lhs variables being declared but not used.
check.use(s.Lhs...) // avoid follow-up errors
}
check.stmt(inner, s.Body)
case *ast.RangeStmt:
inner |= breakOk | continueOk
check.openScope(s, "for")
defer check.closeScope()
// check expression to iterate over
var x operand
check.expr(&x, s.X)
// determine key/value types
var key, val Type
if x.mode != invalid {
switch typ := x.typ.Underlying().(type) {
case *Basic:
if isString(typ) {
key = Typ[Int]
val = universeRune // use 'rune' name
}
case *Array:
key = Typ[Int]
val = typ.elem
case *Slice:
key = Typ[Int]
val = typ.elem
case *Pointer:
if typ, _ := typ.base.Underlying().(*Array); typ != nil {
key = Typ[Int]
val = typ.elem
}
case *Map:
key = typ.key
val = typ.elem
case *Chan:
key = typ.elem
val = Typ[Invalid]
if typ.dir == SendOnly {
check.errorf(x.pos(), "cannot range over send-only channel %s", &x)
// ok to continue
}
if s.Value != nil {
check.errorf(s.Value.Pos(), "iteration over %s permits only one iteration variable", &x)
// ok to continue
}
}
}
if key == nil {
check.errorf(x.pos(), "cannot range over %s", &x)
// ok to continue
}
// check assignment to/declaration of iteration variables
// (irregular assignment, cannot easily map to existing assignment checks)
// lhs expressions and initialization value (rhs) types
lhs := [2]ast.Expr{s.Key, s.Value}
rhs := [2]Type{key, val} // key, val may be nil
if s.Tok == token.DEFINE {
// short variable declaration; variable scope starts after the range clause
// (the for loop opens a new scope, so variables on the lhs never redeclare
// previously declared variables)
var vars []*Var
for i, lhs := range lhs {
if lhs == nil {
continue
}
// determine lhs variable
var obj *Var
if ident, _ := lhs.(*ast.Ident); ident != nil {
// declare new variable
name := ident.Name
obj = NewVar(ident.Pos(), check.pkg, name, nil)
check.recordDef(ident, obj)
// _ variables don't count as new variables
if name != "_" {
vars = append(vars, obj)
}
} else {
check.errorf(lhs.Pos(), "cannot declare %s", lhs)
obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
}
// initialize lhs variable
if typ := rhs[i]; typ != nil {
x.mode = value
x.expr = lhs // we don't have a better rhs expression to use here
x.typ = typ
check.initVar(obj, &x, "range clause")
} else {
obj.typ = Typ[Invalid]
obj.used = true // don't complain about unused variable
}
}
// declare variables
if len(vars) > 0 {
scopePos := s.X.End()
for _, obj := range vars {
// spec: "The scope of a constant or variable identifier declared inside
// a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl
// for short variable declarations) and ends at the end of the innermost
// containing block."
check.declare(check.scope, nil /* recordDef already called */, obj, scopePos)
}
} else {
check.error(s.TokPos, "no new variables on left side of :=")
}
} else {
// ordinary assignment
for i, lhs := range lhs {
if lhs == nil {
continue
}
if typ := rhs[i]; typ != nil {
x.mode = value
x.expr = lhs // we don't have a better rhs expression to use here
x.typ = typ
check.assignVar(lhs, &x)
}
}
}
check.stmt(inner, s.Body)
default:
check.error(s.Pos(), "invalid statement")
}
}

View File

@ -0,0 +1,464 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import "sort"
// A Type represents a type of Go.
// All types implement the Type interface.
type Type interface {
// Underlying returns the underlying type of a type.
Underlying() Type
// String returns a string representation of a type.
String() string
}
// BasicKind describes the kind of basic type.
type BasicKind int
const (
Invalid BasicKind = iota // type is invalid
// predeclared types
Bool
Int
Int8
Int16
Int32
Int64
Uint
Uint8
Uint16
Uint32
Uint64
Uintptr
Float32
Float64
Complex64
Complex128
String
UnsafePointer
// types for untyped values
UntypedBool
UntypedInt
UntypedRune
UntypedFloat
UntypedComplex
UntypedString
UntypedNil
// aliases
Byte = Uint8
Rune = Int32
)
// BasicInfo is a set of flags describing properties of a basic type.
type BasicInfo int
// Properties of basic types.
const (
IsBoolean BasicInfo = 1 << iota
IsInteger
IsUnsigned
IsFloat
IsComplex
IsString
IsUntyped
IsOrdered = IsInteger | IsFloat | IsString
IsNumeric = IsInteger | IsFloat | IsComplex
IsConstType = IsBoolean | IsNumeric | IsString
)
// A Basic represents a basic type.
type Basic struct {
kind BasicKind
info BasicInfo
name string
}
// Kind returns the kind of basic type b.
func (b *Basic) Kind() BasicKind { return b.kind }
// Info returns information about properties of basic type b.
func (b *Basic) Info() BasicInfo { return b.info }
// Name returns the name of basic type b.
func (b *Basic) Name() string { return b.name }
// An Array represents an array type.
type Array struct {
len int64
elem Type
}
// NewArray returns a new array type for the given element type and length.
// A negative length indicates an unknown length.
func NewArray(elem Type, len int64) *Array { return &Array{len, elem} }
// Len returns the length of array a.
// A negative result indicates an unknown length.
func (a *Array) Len() int64 { return a.len }
// Elem returns element type of array a.
func (a *Array) Elem() Type { return a.elem }
// A Slice represents a slice type.
type Slice struct {
elem Type
}
// NewSlice returns a new slice type for the given element type.
func NewSlice(elem Type) *Slice { return &Slice{elem} }
// Elem returns the element type of slice s.
func (s *Slice) Elem() Type { return s.elem }
// A Struct represents a struct type.
type Struct struct {
fields []*Var
tags []string // field tags; nil if there are no tags
}
// NewStruct returns a new struct with the given fields and corresponding field tags.
// If a field with index i has a tag, tags[i] must be that tag, but len(tags) may be
// only as long as required to hold the tag with the largest index i. Consequently,
// if no field has a tag, tags may be nil.
func NewStruct(fields []*Var, tags []string) *Struct {
var fset objset
for _, f := range fields {
if f.name != "_" && fset.insert(f) != nil {
panic("multiple fields with the same name")
}
}
if len(tags) > len(fields) {
panic("more tags than fields")
}
return &Struct{fields: fields, tags: tags}
}
// NumFields returns the number of fields in the struct (including blank and anonymous fields).
func (s *Struct) NumFields() int { return len(s.fields) }
// Field returns the i'th field for 0 <= i < NumFields().
func (s *Struct) Field(i int) *Var { return s.fields[i] }
// Tag returns the i'th field tag for 0 <= i < NumFields().
func (s *Struct) Tag(i int) string {
if i < len(s.tags) {
return s.tags[i]
}
return ""
}
// A Pointer represents a pointer type.
type Pointer struct {
base Type // element type
}
// NewPointer returns a new pointer type for the given element (base) type.
func NewPointer(elem Type) *Pointer { return &Pointer{base: elem} }
// Elem returns the element type for the given pointer p.
func (p *Pointer) Elem() Type { return p.base }
// A Tuple represents an ordered list of variables; a nil *Tuple is a valid (empty) tuple.
// Tuples are used as components of signatures and to represent the type of multiple
// assignments; they are not first class types of Go.
type Tuple struct {
vars []*Var
}
// NewTuple returns a new tuple for the given variables.
func NewTuple(x ...*Var) *Tuple {
if len(x) > 0 {
return &Tuple{x}
}
return nil
}
// Len returns the number variables of tuple t.
func (t *Tuple) Len() int {
if t != nil {
return len(t.vars)
}
return 0
}
// At returns the i'th variable of tuple t.
func (t *Tuple) At(i int) *Var { return t.vars[i] }
// A Signature represents a (non-builtin) function or method type.
// The receiver is ignored when comparing signatures for identity.
type Signature struct {
// We need to keep the scope in Signature (rather than passing it around
// and store it in the Func Object) because when type-checking a function
// literal we call the general type checker which returns a general Type.
// We then unpack the *Signature and use the scope for the literal body.
scope *Scope // function scope, present for package-local signatures
recv *Var // nil if not a method
params *Tuple // (incoming) parameters from left to right; or nil
results *Tuple // (outgoing) results from left to right; or nil
variadic bool // true if the last parameter's type is of the form ...T (or string, for append built-in only)
}
// NewSignature returns a new function type for the given receiver, parameters,
// and results, either of which may be nil. If variadic is set, the function
// is variadic, it must have at least one parameter, and the last parameter
// must be of unnamed slice type.
func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature {
if variadic {
n := params.Len()
if n == 0 {
panic("types.NewSignature: variadic function must have at least one parameter")
}
if _, ok := params.At(n - 1).typ.(*Slice); !ok {
panic("types.NewSignature: variadic parameter must be of unnamed slice type")
}
}
return &Signature{nil, recv, params, results, variadic}
}
// Recv returns the receiver of signature s (if a method), or nil if a
// function. It is ignored when comparing signatures for identity.
//
// For an abstract method, Recv returns the enclosing interface either
// as a *Named or an *Interface. Due to embedding, an interface may
// contain methods whose receiver type is a different interface.
func (s *Signature) Recv() *Var { return s.recv }
// Params returns the parameters of signature s, or nil.
func (s *Signature) Params() *Tuple { return s.params }
// Results returns the results of signature s, or nil.
func (s *Signature) Results() *Tuple { return s.results }
// Variadic reports whether the signature s is variadic.
func (s *Signature) Variadic() bool { return s.variadic }
// An Interface represents an interface type.
type Interface struct {
methods []*Func // ordered list of explicitly declared methods
embeddeds []*Named // ordered list of explicitly embedded types
allMethods []*Func // ordered list of methods declared with or embedded in this interface (TODO(gri): replace with mset)
}
// emptyInterface represents the empty (completed) interface
var emptyInterface = Interface{allMethods: markComplete}
// markComplete is used to mark an empty interface as completely
// set up by setting the allMethods field to a non-nil empty slice.
var markComplete = make([]*Func, 0)
// NewInterface returns a new (incomplete) interface for the given methods and embedded types.
// To compute the method set of the interface, Complete must be called.
func NewInterface(methods []*Func, embeddeds []*Named) *Interface {
typ := new(Interface)
if len(methods) == 0 && len(embeddeds) == 0 {
return typ
}
var mset objset
for _, m := range methods {
if mset.insert(m) != nil {
panic("multiple methods with the same name")
}
// set receiver
// TODO(gri) Ideally, we should use a named type here instead of
// typ, for less verbose printing of interface method signatures.
m.typ.(*Signature).recv = NewVar(m.pos, m.pkg, "", typ)
}
sort.Sort(byUniqueMethodName(methods))
if embeddeds != nil {
sort.Sort(byUniqueTypeName(embeddeds))
}
typ.methods = methods
typ.embeddeds = embeddeds
return typ
}
// NumExplicitMethods returns the number of explicitly declared methods of interface t.
func (t *Interface) NumExplicitMethods() int { return len(t.methods) }
// ExplicitMethod returns the i'th explicitly declared method of interface t for 0 <= i < t.NumExplicitMethods().
// The methods are ordered by their unique Id.
func (t *Interface) ExplicitMethod(i int) *Func { return t.methods[i] }
// NumEmbeddeds returns the number of embedded types in interface t.
func (t *Interface) NumEmbeddeds() int { return len(t.embeddeds) }
// Embedded returns the i'th embedded type of interface t for 0 <= i < t.NumEmbeddeds().
// The types are ordered by the corresponding TypeName's unique Id.
func (t *Interface) Embedded(i int) *Named { return t.embeddeds[i] }
// NumMethods returns the total number of methods of interface t.
func (t *Interface) NumMethods() int { return len(t.allMethods) }
// Method returns the i'th method of interface t for 0 <= i < t.NumMethods().
// The methods are ordered by their unique Id.
func (t *Interface) Method(i int) *Func { return t.allMethods[i] }
// Empty returns true if t is the empty interface.
func (t *Interface) Empty() bool { return len(t.allMethods) == 0 }
// Complete computes the interface's method set. It must be called by users of
// NewInterface after the interface's embedded types are fully defined and
// before using the interface type in any way other than to form other types.
// Complete returns the receiver.
func (t *Interface) Complete() *Interface {
if t.allMethods != nil {
return t
}
var allMethods []*Func
if t.embeddeds == nil {
if t.methods == nil {
allMethods = make([]*Func, 0, 1)
} else {
allMethods = t.methods
}
} else {
allMethods = append(allMethods, t.methods...)
for _, et := range t.embeddeds {
it := et.Underlying().(*Interface)
it.Complete()
for _, tm := range it.allMethods {
// Make a copy of the method and adjust its receiver type.
newm := *tm
newmtyp := *tm.typ.(*Signature)
newm.typ = &newmtyp
newmtyp.recv = NewVar(newm.pos, newm.pkg, "", t)
allMethods = append(allMethods, &newm)
}
}
sort.Sort(byUniqueMethodName(allMethods))
}
t.allMethods = allMethods
return t
}
// A Map represents a map type.
type Map struct {
key, elem Type
}
// NewMap returns a new map for the given key and element types.
func NewMap(key, elem Type) *Map {
return &Map{key, elem}
}
// Key returns the key type of map m.
func (m *Map) Key() Type { return m.key }
// Elem returns the element type of map m.
func (m *Map) Elem() Type { return m.elem }
// A Chan represents a channel type.
type Chan struct {
dir ChanDir
elem Type
}
// A ChanDir value indicates a channel direction.
type ChanDir int
// The direction of a channel is indicated by one of these constants.
const (
SendRecv ChanDir = iota
SendOnly
RecvOnly
)
// NewChan returns a new channel type for the given direction and element type.
func NewChan(dir ChanDir, elem Type) *Chan {
return &Chan{dir, elem}
}
// Dir returns the direction of channel c.
func (c *Chan) Dir() ChanDir { return c.dir }
// Elem returns the element type of channel c.
func (c *Chan) Elem() Type { return c.elem }
// A Named represents a named type.
type Named struct {
obj *TypeName // corresponding declared object
underlying Type // possibly a *Named during setup; never a *Named once set up completely
methods []*Func // methods declared for this type (not the method set of this type)
}
// NewNamed returns a new named type for the given type name, underlying type, and associated methods.
// If the given type name obj doesn't have a type yet, its type is set to the returned named type.
// The underlying type must not be a *Named.
func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named {
if _, ok := underlying.(*Named); ok {
panic("types.NewNamed: underlying type must not be *Named")
}
typ := &Named{obj: obj, underlying: underlying, methods: methods}
if obj.typ == nil {
obj.typ = typ
}
return typ
}
// Obj returns the type name for the named type t.
func (t *Named) Obj() *TypeName { return t.obj }
// NumMethods returns the number of explicit methods whose receiver is named type t.
func (t *Named) NumMethods() int { return len(t.methods) }
// Method returns the i'th method of named type t for 0 <= i < t.NumMethods().
func (t *Named) Method(i int) *Func { return t.methods[i] }
// SetUnderlying sets the underlying type and marks t as complete.
func (t *Named) SetUnderlying(underlying Type) {
if underlying == nil {
panic("types.Named.SetUnderlying: underlying type must not be nil")
}
if _, ok := underlying.(*Named); ok {
panic("types.Named.SetUnderlying: underlying type must not be *Named")
}
t.underlying = underlying
}
// AddMethod adds method m unless it is already in the method list.
func (t *Named) AddMethod(m *Func) {
if i, _ := lookupMethod(t.methods, m.pkg, m.name); i < 0 {
t.methods = append(t.methods, m)
}
}
// Implementations for Type methods.
func (t *Basic) Underlying() Type { return t }
func (t *Array) Underlying() Type { return t }
func (t *Slice) Underlying() Type { return t }
func (t *Struct) Underlying() Type { return t }
func (t *Pointer) Underlying() Type { return t }
func (t *Tuple) Underlying() Type { return t }
func (t *Signature) Underlying() Type { return t }
func (t *Interface) Underlying() Type { return t }
func (t *Map) Underlying() Type { return t }
func (t *Chan) Underlying() Type { return t }
func (t *Named) Underlying() Type { return t.underlying }
func (t *Basic) String() string { return TypeString(t, nil) }
func (t *Array) String() string { return TypeString(t, nil) }
func (t *Slice) String() string { return TypeString(t, nil) }
func (t *Struct) String() string { return TypeString(t, nil) }
func (t *Pointer) String() string { return TypeString(t, nil) }
func (t *Tuple) String() string { return TypeString(t, nil) }
func (t *Signature) String() string { return TypeString(t, nil) }
func (t *Interface) String() string { return TypeString(t, nil) }
func (t *Map) String() string { return TypeString(t, nil) }
func (t *Chan) String() string { return TypeString(t, nil) }
func (t *Named) String() string { return TypeString(t, nil) }

View File

@ -0,0 +1,307 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements printing of types.
package types
import (
"bytes"
"fmt"
)
// A Qualifier controls how named package-level objects are printed in
// calls to TypeString, ObjectString, and SelectionString.
//
// These three formatting routines call the Qualifier for each
// package-level object O, and if the Qualifier returns a non-empty
// string p, the object is printed in the form p.O.
// If it returns an empty string, only the object name O is printed.
//
// Using a nil Qualifier is equivalent to using (*Package).Path: the
// object is qualified by the import path, e.g., "encoding/json.Marshal".
//
type Qualifier func(*Package) string
// RelativeTo(pkg) returns a Qualifier that fully qualifies members of
// all packages other than pkg.
func RelativeTo(pkg *Package) Qualifier {
if pkg == nil {
return nil
}
return func(other *Package) string {
if pkg == other {
return "" // same package; unqualified
}
return other.Path()
}
}
// If gcCompatibilityMode is set, printing of types is modified
// to match the representation of some types in the gc compiler:
//
// - byte and rune lose their alias name and simply stand for
// uint8 and int32 respectively
// - embedded interfaces get flattened (the embedding info is lost,
// and certain recursive interface types cannot be printed anymore)
//
// This makes it easier to compare packages computed with the type-
// checker vs packages imported from gc export data.
//
// Caution: This flag affects all uses of WriteType, globally.
// It is only provided for testing in conjunction with
// gc-generated data.
//
// This flag is exported in the x/tools/go/types package. We don't
// need it at the moment in the std repo and so we don't export it
// anymore. We should eventually try to remove it altogether.
// TODO(gri) remove this
var gcCompatibilityMode bool
// TypeString returns the string representation of typ.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func TypeString(typ Type, qf Qualifier) string {
var buf bytes.Buffer
WriteType(&buf, typ, qf)
return buf.String()
}
// WriteType writes the string representation of typ to buf.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func WriteType(buf *bytes.Buffer, typ Type, qf Qualifier) {
writeType(buf, typ, qf, make([]Type, 0, 8))
}
func writeType(buf *bytes.Buffer, typ Type, qf Qualifier, visited []Type) {
// Theoretically, this is a quadratic lookup algorithm, but in
// practice deeply nested composite types with unnamed component
// types are uncommon. This code is likely more efficient than
// using a map.
for _, t := range visited {
if t == typ {
fmt.Fprintf(buf, "○%T", typ) // cycle to typ
return
}
}
visited = append(visited, typ)
switch t := typ.(type) {
case nil:
buf.WriteString("<nil>")
case *Basic:
if t.kind == UnsafePointer {
buf.WriteString("unsafe.")
}
if gcCompatibilityMode {
// forget the alias names
switch t.kind {
case Byte:
t = Typ[Uint8]
case Rune:
t = Typ[Int32]
}
}
buf.WriteString(t.name)
case *Array:
fmt.Fprintf(buf, "[%d]", t.len)
writeType(buf, t.elem, qf, visited)
case *Slice:
buf.WriteString("[]")
writeType(buf, t.elem, qf, visited)
case *Struct:
buf.WriteString("struct{")
for i, f := range t.fields {
if i > 0 {
buf.WriteString("; ")
}
if !f.anonymous {
buf.WriteString(f.name)
buf.WriteByte(' ')
}
writeType(buf, f.typ, qf, visited)
if tag := t.Tag(i); tag != "" {
fmt.Fprintf(buf, " %q", tag)
}
}
buf.WriteByte('}')
case *Pointer:
buf.WriteByte('*')
writeType(buf, t.base, qf, visited)
case *Tuple:
writeTuple(buf, t, false, qf, visited)
case *Signature:
buf.WriteString("func")
writeSignature(buf, t, qf, visited)
case *Interface:
// We write the source-level methods and embedded types rather
// than the actual method set since resolved method signatures
// may have non-printable cycles if parameters have anonymous
// interface types that (directly or indirectly) embed the
// current interface. For instance, consider the result type
// of m:
//
// type T interface{
// m() interface{ T }
// }
//
buf.WriteString("interface{")
empty := true
if gcCompatibilityMode {
// print flattened interface
// (useful to compare against gc-generated interfaces)
for i, m := range t.allMethods {
if i > 0 {
buf.WriteString("; ")
}
buf.WriteString(m.name)
writeSignature(buf, m.typ.(*Signature), qf, visited)
empty = false
}
} else {
// print explicit interface methods and embedded types
for i, m := range t.methods {
if i > 0 {
buf.WriteString("; ")
}
buf.WriteString(m.name)
writeSignature(buf, m.typ.(*Signature), qf, visited)
empty = false
}
for i, typ := range t.embeddeds {
if i > 0 || len(t.methods) > 0 {
buf.WriteString("; ")
}
writeType(buf, typ, qf, visited)
empty = false
}
}
if t.allMethods == nil || len(t.methods) > len(t.allMethods) {
if !empty {
buf.WriteByte(' ')
}
buf.WriteString("/* incomplete */")
}
buf.WriteByte('}')
case *Map:
buf.WriteString("map[")
writeType(buf, t.key, qf, visited)
buf.WriteByte(']')
writeType(buf, t.elem, qf, visited)
case *Chan:
var s string
var parens bool
switch t.dir {
case SendRecv:
s = "chan "
// chan (<-chan T) requires parentheses
if c, _ := t.elem.(*Chan); c != nil && c.dir == RecvOnly {
parens = true
}
case SendOnly:
s = "chan<- "
case RecvOnly:
s = "<-chan "
default:
panic("unreachable")
}
buf.WriteString(s)
if parens {
buf.WriteByte('(')
}
writeType(buf, t.elem, qf, visited)
if parens {
buf.WriteByte(')')
}
case *Named:
s := "<Named w/o object>"
if obj := t.obj; obj != nil {
if obj.pkg != nil {
writePackage(buf, obj.pkg, qf)
}
// TODO(gri): function-local named types should be displayed
// differently from named types at package level to avoid
// ambiguity.
s = obj.name
}
buf.WriteString(s)
default:
// For externally defined implementations of Type.
buf.WriteString(t.String())
}
}
func writeTuple(buf *bytes.Buffer, tup *Tuple, variadic bool, qf Qualifier, visited []Type) {
buf.WriteByte('(')
if tup != nil {
for i, v := range tup.vars {
if i > 0 {
buf.WriteString(", ")
}
if v.name != "" {
buf.WriteString(v.name)
buf.WriteByte(' ')
}
typ := v.typ
if variadic && i == len(tup.vars)-1 {
if s, ok := typ.(*Slice); ok {
buf.WriteString("...")
typ = s.elem
} else {
// special case:
// append(s, "foo"...) leads to signature func([]byte, string...)
if t, ok := typ.Underlying().(*Basic); !ok || t.kind != String {
panic("internal error: string type expected")
}
writeType(buf, typ, qf, visited)
buf.WriteString("...")
continue
}
}
writeType(buf, typ, qf, visited)
}
}
buf.WriteByte(')')
}
// WriteSignature writes the representation of the signature sig to buf,
// without a leading "func" keyword.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func WriteSignature(buf *bytes.Buffer, sig *Signature, qf Qualifier) {
writeSignature(buf, sig, qf, make([]Type, 0, 8))
}
func writeSignature(buf *bytes.Buffer, sig *Signature, qf Qualifier, visited []Type) {
writeTuple(buf, sig.params, sig.variadic, qf, visited)
n := sig.results.Len()
if n == 0 {
// no result
return
}
buf.WriteByte(' ')
if n == 1 && sig.results.vars[0].name == "" {
// single unnamed result
writeType(buf, sig.results.vars[0].typ, qf, visited)
return
}
// multiple or named result(s)
writeTuple(buf, sig.results, false, qf, visited)
}

View File

@ -0,0 +1,722 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type-checking of identifiers and type expressions.
package types
import (
"go/ast"
"go/constant"
"go/token"
"sort"
"strconv"
)
// ident type-checks identifier e and initializes x with the value or type of e.
// If an error occurred, x.mode is set to invalid.
// For the meaning of def and path, see check.typ, below.
//
func (check *Checker) ident(x *operand, e *ast.Ident, def *Named, path []*TypeName) {
x.mode = invalid
x.expr = e
scope, obj := check.scope.LookupParent(e.Name, check.pos)
if obj == nil {
if e.Name == "_" {
check.errorf(e.Pos(), "cannot use _ as value or type")
} else {
check.errorf(e.Pos(), "undeclared name: %s", e.Name)
}
return
}
check.recordUse(e, obj)
check.objDecl(obj, def, path)
typ := obj.Type()
assert(typ != nil)
// The object may be dot-imported: If so, remove its package from
// the map of unused dot imports for the respective file scope.
// (This code is only needed for dot-imports. Without them,
// we only have to mark variables, see *Var case below).
if pkg := obj.Pkg(); pkg != check.pkg && pkg != nil {
delete(check.unusedDotImports[scope], pkg)
}
switch obj := obj.(type) {
case *PkgName:
check.errorf(e.Pos(), "use of package %s not in selector", obj.name)
return
case *Const:
check.addDeclDep(obj)
if typ == Typ[Invalid] {
return
}
if obj == universeIota {
if check.iota == nil {
check.errorf(e.Pos(), "cannot use iota outside constant declaration")
return
}
x.val = check.iota
} else {
x.val = obj.val
}
assert(x.val != nil)
x.mode = constant_
case *TypeName:
x.mode = typexpr
// check for cycle
// (it's ok to iterate forward because each named type appears at most once in path)
for i, prev := range path {
if prev == obj {
check.errorf(obj.pos, "illegal cycle in declaration of %s", obj.name)
// print cycle
for _, obj := range path[i:] {
check.errorf(obj.Pos(), "\t%s refers to", obj.Name()) // secondary error, \t indented
}
check.errorf(obj.Pos(), "\t%s", obj.Name())
// maintain x.mode == typexpr despite error
typ = Typ[Invalid]
break
}
}
case *Var:
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if obj.pkg == check.pkg {
obj.used = true
}
check.addDeclDep(obj)
if typ == Typ[Invalid] {
return
}
x.mode = variable
case *Func:
check.addDeclDep(obj)
x.mode = value
case *Builtin:
x.id = obj.id
x.mode = builtin
case *Nil:
x.mode = value
default:
unreachable()
}
x.typ = typ
}
// typExpr type-checks the type expression e and returns its type, or Typ[Invalid].
// If def != nil, e is the type specification for the named type def, declared
// in a type declaration, and def.underlying will be set to the type of e before
// any components of e are type-checked. Path contains the path of named types
// referring to this type.
//
func (check *Checker) typExpr(e ast.Expr, def *Named, path []*TypeName) (T Type) {
if trace {
check.trace(e.Pos(), "%s", e)
check.indent++
defer func() {
check.indent--
check.trace(e.Pos(), "=> %s", T)
}()
}
T = check.typExprInternal(e, def, path)
assert(isTyped(T))
check.recordTypeAndValue(e, typexpr, T, nil)
return
}
func (check *Checker) typ(e ast.Expr) Type {
return check.typExpr(e, nil, nil)
}
// funcType type-checks a function or method type.
func (check *Checker) funcType(sig *Signature, recvPar *ast.FieldList, ftyp *ast.FuncType) {
scope := NewScope(check.scope, token.NoPos, token.NoPos, "function")
scope.isFunc = true
check.recordScope(ftyp, scope)
recvList, _ := check.collectParams(scope, recvPar, false)
params, variadic := check.collectParams(scope, ftyp.Params, true)
results, _ := check.collectParams(scope, ftyp.Results, false)
if recvPar != nil {
// recv parameter list present (may be empty)
// spec: "The receiver is specified via an extra parameter section preceding the
// method name. That parameter section must declare a single parameter, the receiver."
var recv *Var
switch len(recvList) {
case 0:
check.error(recvPar.Pos(), "method is missing receiver")
recv = NewParam(0, nil, "", Typ[Invalid]) // ignore recv below
default:
// more than one receiver
check.error(recvList[len(recvList)-1].Pos(), "method must have exactly one receiver")
fallthrough // continue with first receiver
case 1:
recv = recvList[0]
}
// spec: "The receiver type must be of the form T or *T where T is a type name."
// (ignore invalid types - error was reported before)
if t, _ := deref(recv.typ); t != Typ[Invalid] {
var err string
if T, _ := t.(*Named); T != nil {
// spec: "The type denoted by T is called the receiver base type; it must not
// be a pointer or interface type and it must be declared in the same package
// as the method."
if T.obj.pkg != check.pkg {
err = "type not defined in this package"
} else {
// TODO(gri) This is not correct if the underlying type is unknown yet.
switch u := T.underlying.(type) {
case *Basic:
// unsafe.Pointer is treated like a regular pointer
if u.kind == UnsafePointer {
err = "unsafe.Pointer"
}
case *Pointer, *Interface:
err = "pointer or interface type"
}
}
} else {
err = "basic or unnamed type"
}
if err != "" {
check.errorf(recv.pos, "invalid receiver %s (%s)", recv.typ, err)
// ok to continue
}
}
sig.recv = recv
}
sig.scope = scope
sig.params = NewTuple(params...)
sig.results = NewTuple(results...)
sig.variadic = variadic
}
// typExprInternal drives type checking of types.
// Must only be called by typExpr.
//
func (check *Checker) typExprInternal(e ast.Expr, def *Named, path []*TypeName) Type {
switch e := e.(type) {
case *ast.BadExpr:
// ignore - error reported before
case *ast.Ident:
var x operand
check.ident(&x, e, def, path)
switch x.mode {
case typexpr:
typ := x.typ
def.setUnderlying(typ)
return typ
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as type", &x)
default:
check.errorf(x.pos(), "%s is not a type", &x)
}
case *ast.SelectorExpr:
var x operand
check.selector(&x, e)
switch x.mode {
case typexpr:
typ := x.typ
def.setUnderlying(typ)
return typ
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as type", &x)
default:
check.errorf(x.pos(), "%s is not a type", &x)
}
case *ast.ParenExpr:
return check.typExpr(e.X, def, path)
case *ast.ArrayType:
if e.Len != nil {
typ := new(Array)
def.setUnderlying(typ)
typ.len = check.arrayLength(e.Len)
typ.elem = check.typExpr(e.Elt, nil, path)
return typ
} else {
typ := new(Slice)
def.setUnderlying(typ)
typ.elem = check.typ(e.Elt)
return typ
}
case *ast.StructType:
typ := new(Struct)
def.setUnderlying(typ)
check.structType(typ, e, path)
return typ
case *ast.StarExpr:
typ := new(Pointer)
def.setUnderlying(typ)
typ.base = check.typ(e.X)
return typ
case *ast.FuncType:
typ := new(Signature)
def.setUnderlying(typ)
check.funcType(typ, nil, e)
return typ
case *ast.InterfaceType:
typ := new(Interface)
def.setUnderlying(typ)
check.interfaceType(typ, e, def, path)
return typ
case *ast.MapType:
typ := new(Map)
def.setUnderlying(typ)
typ.key = check.typ(e.Key)
typ.elem = check.typ(e.Value)
// spec: "The comparison operators == and != must be fully defined
// for operands of the key type; thus the key type must not be a
// function, map, or slice."
//
// Delay this check because it requires fully setup types;
// it is safe to continue in any case (was issue 6667).
check.delay(func() {
if !Comparable(typ.key) {
check.errorf(e.Key.Pos(), "invalid map key type %s", typ.key)
}
})
return typ
case *ast.ChanType:
typ := new(Chan)
def.setUnderlying(typ)
dir := SendRecv
switch e.Dir {
case ast.SEND | ast.RECV:
// nothing to do
case ast.SEND:
dir = SendOnly
case ast.RECV:
dir = RecvOnly
default:
check.invalidAST(e.Pos(), "unknown channel direction %d", e.Dir)
// ok to continue
}
typ.dir = dir
typ.elem = check.typ(e.Value)
return typ
default:
check.errorf(e.Pos(), "%s is not a type", e)
}
typ := Typ[Invalid]
def.setUnderlying(typ)
return typ
}
// typeOrNil type-checks the type expression (or nil value) e
// and returns the typ of e, or nil.
// If e is neither a type nor nil, typOrNil returns Typ[Invalid].
//
func (check *Checker) typOrNil(e ast.Expr) Type {
var x operand
check.rawExpr(&x, e, nil)
switch x.mode {
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as type", &x)
case typexpr:
return x.typ
case value:
if x.isNil() {
return nil
}
fallthrough
default:
check.errorf(x.pos(), "%s is not a type", &x)
}
return Typ[Invalid]
}
// arrayLength type-checks the array length expression e
// and returns the constant length >= 0, or a value < 0
// to indicate an error (and thus an unknown length).
func (check *Checker) arrayLength(e ast.Expr) int64 {
var x operand
check.expr(&x, e)
if x.mode != constant_ {
if x.mode != invalid {
check.errorf(x.pos(), "array length %s must be constant", &x)
}
return -1
}
if isUntyped(x.typ) || isInteger(x.typ) {
if val := constant.ToInt(x.val); val.Kind() == constant.Int {
if representableConst(val, check.conf, Typ[Int], nil) {
if n, ok := constant.Int64Val(val); ok && n >= 0 {
return n
}
check.errorf(x.pos(), "invalid array length %s", &x)
return -1
}
}
}
check.errorf(x.pos(), "array length %s must be integer", &x)
return -1
}
func (check *Checker) collectParams(scope *Scope, list *ast.FieldList, variadicOk bool) (params []*Var, variadic bool) {
if list == nil {
return
}
var named, anonymous bool
for i, field := range list.List {
ftype := field.Type
if t, _ := ftype.(*ast.Ellipsis); t != nil {
ftype = t.Elt
if variadicOk && i == len(list.List)-1 {
variadic = true
} else {
check.invalidAST(field.Pos(), "... not permitted")
// ignore ... and continue
}
}
typ := check.typ(ftype)
// The parser ensures that f.Tag is nil and we don't
// care if a constructed AST contains a non-nil tag.
if len(field.Names) > 0 {
// named parameter
for _, name := range field.Names {
if name.Name == "" {
check.invalidAST(name.Pos(), "anonymous parameter")
// ok to continue
}
par := NewParam(name.Pos(), check.pkg, name.Name, typ)
check.declare(scope, name, par, scope.pos)
params = append(params, par)
}
named = true
} else {
// anonymous parameter
par := NewParam(ftype.Pos(), check.pkg, "", typ)
check.recordImplicit(field, par)
params = append(params, par)
anonymous = true
}
}
if named && anonymous {
check.invalidAST(list.Pos(), "list contains both named and anonymous parameters")
// ok to continue
}
// For a variadic function, change the last parameter's type from T to []T.
if variadic && len(params) > 0 {
last := params[len(params)-1]
last.typ = &Slice{elem: last.typ}
}
return
}
func (check *Checker) declareInSet(oset *objset, pos token.Pos, obj Object) bool {
if alt := oset.insert(obj); alt != nil {
check.errorf(pos, "%s redeclared", obj.Name())
check.reportAltDecl(alt)
return false
}
return true
}
func (check *Checker) interfaceType(iface *Interface, ityp *ast.InterfaceType, def *Named, path []*TypeName) {
// empty interface: common case
if ityp.Methods == nil {
return
}
// The parser ensures that field tags are nil and we don't
// care if a constructed AST contains non-nil tags.
// use named receiver type if available (for better error messages)
var recvTyp Type = iface
if def != nil {
recvTyp = def
}
// Phase 1: Collect explicitly declared methods, the corresponding
// signature (AST) expressions, and the list of embedded
// type (AST) expressions. Do not resolve signatures or
// embedded types yet to avoid cycles referring to this
// interface.
var (
mset objset
signatures []ast.Expr // list of corresponding method signatures
embedded []ast.Expr // list of embedded types
)
for _, f := range ityp.Methods.List {
if len(f.Names) > 0 {
// The parser ensures that there's only one method
// and we don't care if a constructed AST has more.
name := f.Names[0]
pos := name.Pos()
// spec: "As with all method sets, in an interface type,
// each method must have a unique non-blank name."
if name.Name == "_" {
check.errorf(pos, "invalid method name _")
continue
}
// Don't type-check signature yet - use an
// empty signature now and update it later.
// Since we know the receiver, set it up now
// (required to avoid crash in ptrRecv; see
// e.g. test case for issue 6638).
// TODO(gri) Consider marking methods signatures
// as incomplete, for better error messages. See
// also the T4 and T5 tests in testdata/cycles2.src.
sig := new(Signature)
sig.recv = NewVar(pos, check.pkg, "", recvTyp)
m := NewFunc(pos, check.pkg, name.Name, sig)
if check.declareInSet(&mset, pos, m) {
iface.methods = append(iface.methods, m)
iface.allMethods = append(iface.allMethods, m)
signatures = append(signatures, f.Type)
check.recordDef(name, m)
}
} else {
// embedded type
embedded = append(embedded, f.Type)
}
}
// Phase 2: Resolve embedded interfaces. Because an interface must not
// embed itself (directly or indirectly), each embedded interface
// can be fully resolved without depending on any method of this
// interface (if there is a cycle or another error, the embedded
// type resolves to an invalid type and is ignored).
// In particular, the list of methods for each embedded interface
// must be complete (it cannot depend on this interface), and so
// those methods can be added to the list of all methods of this
// interface.
for _, e := range embedded {
pos := e.Pos()
typ := check.typExpr(e, nil, path)
// Determine underlying embedded (possibly incomplete) type
// by following its forward chain.
named, _ := typ.(*Named)
under := underlying(named)
embed, _ := under.(*Interface)
if embed == nil {
if typ != Typ[Invalid] {
check.errorf(pos, "%s is not an interface", typ)
}
continue
}
iface.embeddeds = append(iface.embeddeds, named)
// collect embedded methods
if embed.allMethods == nil {
check.errorf(pos, "internal error: incomplete embedded interface %s (issue #18395)", named)
}
for _, m := range embed.allMethods {
if check.declareInSet(&mset, pos, m) {
iface.allMethods = append(iface.allMethods, m)
}
}
}
// Phase 3: At this point all methods have been collected for this interface.
// It is now safe to type-check the signatures of all explicitly
// declared methods, even if they refer to this interface via a cycle
// and embed the methods of this interface in a parameter of interface
// type.
for i, m := range iface.methods {
expr := signatures[i]
typ := check.typ(expr)
sig, _ := typ.(*Signature)
if sig == nil {
if typ != Typ[Invalid] {
check.invalidAST(expr.Pos(), "%s is not a method signature", typ)
}
continue // keep method with empty method signature
}
// update signature, but keep recv that was set up before
old := m.typ.(*Signature)
sig.recv = old.recv
*old = *sig // update signature (don't replace it!)
}
// TODO(gri) The list of explicit methods is only sorted for now to
// produce the same Interface as NewInterface. We may be able to
// claim source order in the future. Revisit.
sort.Sort(byUniqueMethodName(iface.methods))
// TODO(gri) The list of embedded types is only sorted for now to
// produce the same Interface as NewInterface. We may be able to
// claim source order in the future. Revisit.
sort.Sort(byUniqueTypeName(iface.embeddeds))
if iface.allMethods == nil {
iface.allMethods = make([]*Func, 0) // mark interface as complete
} else {
sort.Sort(byUniqueMethodName(iface.allMethods))
}
}
// byUniqueTypeName named type lists can be sorted by their unique type names.
type byUniqueTypeName []*Named
func (a byUniqueTypeName) Len() int { return len(a) }
func (a byUniqueTypeName) Less(i, j int) bool { return a[i].obj.Id() < a[j].obj.Id() }
func (a byUniqueTypeName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// byUniqueMethodName method lists can be sorted by their unique method names.
type byUniqueMethodName []*Func
func (a byUniqueMethodName) Len() int { return len(a) }
func (a byUniqueMethodName) Less(i, j int) bool { return a[i].Id() < a[j].Id() }
func (a byUniqueMethodName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (check *Checker) tag(t *ast.BasicLit) string {
if t != nil {
if t.Kind == token.STRING {
if val, err := strconv.Unquote(t.Value); err == nil {
return val
}
}
check.invalidAST(t.Pos(), "incorrect tag syntax: %q", t.Value)
}
return ""
}
func (check *Checker) structType(styp *Struct, e *ast.StructType, path []*TypeName) {
list := e.Fields
if list == nil {
return
}
// struct fields and tags
var fields []*Var
var tags []string
// for double-declaration checks
var fset objset
// current field typ and tag
var typ Type
var tag string
add := func(ident *ast.Ident, anonymous bool, pos token.Pos) {
if tag != "" && tags == nil {
tags = make([]string, len(fields))
}
if tags != nil {
tags = append(tags, tag)
}
name := ident.Name
fld := NewField(pos, check.pkg, name, typ, anonymous)
// spec: "Within a struct, non-blank field names must be unique."
if name == "_" || check.declareInSet(&fset, pos, fld) {
fields = append(fields, fld)
check.recordDef(ident, fld)
}
}
for _, f := range list.List {
typ = check.typExpr(f.Type, nil, path)
tag = check.tag(f.Tag)
if len(f.Names) > 0 {
// named fields
for _, name := range f.Names {
add(name, false, name.Pos())
}
} else {
// anonymous field
// spec: "An embedded type must be specified as a type name T or as a pointer
// to a non-interface type name *T, and T itself may not be a pointer type."
pos := f.Type.Pos()
name := anonymousFieldIdent(f.Type)
if name == nil {
check.invalidAST(pos, "anonymous field type %s has no name", f.Type)
continue
}
t, isPtr := deref(typ)
// Because we have a name, typ must be of the form T or *T, where T is the name
// of a (named or alias) type, and t (= deref(typ)) must be the type of T.
switch t := t.Underlying().(type) {
case *Basic:
if t == Typ[Invalid] {
// error was reported before
continue
}
// unsafe.Pointer is treated like a regular pointer
if t.kind == UnsafePointer {
check.errorf(pos, "anonymous field type cannot be unsafe.Pointer")
continue
}
case *Pointer:
check.errorf(pos, "anonymous field type cannot be a pointer")
continue
case *Interface:
if isPtr {
check.errorf(pos, "anonymous field type cannot be a pointer to an interface")
continue
}
}
add(name, true, pos)
}
}
styp.fields = fields
styp.tags = tags
}
func anonymousFieldIdent(e ast.Expr) *ast.Ident {
switch e := e.(type) {
case *ast.Ident:
return e
case *ast.StarExpr:
// *T is valid, but **T is not
if _, ok := e.X.(*ast.StarExpr); !ok {
return anonymousFieldIdent(e.X)
}
case *ast.SelectorExpr:
return e.Sel
}
return nil // invalid anonymous field
}

View File

@ -0,0 +1,229 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file sets up the universe scope and the unsafe package.
package types
import (
"go/constant"
"go/token"
"strings"
)
var (
Universe *Scope
Unsafe *Package
universeIota *Const
universeByte *Basic // uint8 alias, but has name "byte"
universeRune *Basic // int32 alias, but has name "rune"
)
// Typ contains the predeclared *Basic types indexed by their
// corresponding BasicKind.
//
// The *Basic type for Typ[Byte] will have the name "uint8".
// Use Universe.Lookup("byte").Type() to obtain the specific
// alias basic type named "byte" (and analogous for "rune").
var Typ = []*Basic{
Invalid: {Invalid, 0, "invalid type"},
Bool: {Bool, IsBoolean, "bool"},
Int: {Int, IsInteger, "int"},
Int8: {Int8, IsInteger, "int8"},
Int16: {Int16, IsInteger, "int16"},
Int32: {Int32, IsInteger, "int32"},
Int64: {Int64, IsInteger, "int64"},
Uint: {Uint, IsInteger | IsUnsigned, "uint"},
Uint8: {Uint8, IsInteger | IsUnsigned, "uint8"},
Uint16: {Uint16, IsInteger | IsUnsigned, "uint16"},
Uint32: {Uint32, IsInteger | IsUnsigned, "uint32"},
Uint64: {Uint64, IsInteger | IsUnsigned, "uint64"},
Uintptr: {Uintptr, IsInteger | IsUnsigned, "uintptr"},
Float32: {Float32, IsFloat, "float32"},
Float64: {Float64, IsFloat, "float64"},
Complex64: {Complex64, IsComplex, "complex64"},
Complex128: {Complex128, IsComplex, "complex128"},
String: {String, IsString, "string"},
UnsafePointer: {UnsafePointer, 0, "Pointer"},
UntypedBool: {UntypedBool, IsBoolean | IsUntyped, "untyped bool"},
UntypedInt: {UntypedInt, IsInteger | IsUntyped, "untyped int"},
UntypedRune: {UntypedRune, IsInteger | IsUntyped, "untyped rune"},
UntypedFloat: {UntypedFloat, IsFloat | IsUntyped, "untyped float"},
UntypedComplex: {UntypedComplex, IsComplex | IsUntyped, "untyped complex"},
UntypedString: {UntypedString, IsString | IsUntyped, "untyped string"},
UntypedNil: {UntypedNil, IsUntyped, "untyped nil"},
}
var aliases = [...]*Basic{
{Byte, IsInteger | IsUnsigned, "byte"},
{Rune, IsInteger, "rune"},
}
func defPredeclaredTypes() {
for _, t := range Typ {
def(NewTypeName(token.NoPos, nil, t.name, t))
}
for _, t := range aliases {
def(NewTypeName(token.NoPos, nil, t.name, t))
}
// Error has a nil package in its qualified name since it is in no package
res := NewVar(token.NoPos, nil, "", Typ[String])
sig := &Signature{results: NewTuple(res)}
err := NewFunc(token.NoPos, nil, "Error", sig)
typ := &Named{underlying: NewInterface([]*Func{err}, nil).Complete()}
sig.recv = NewVar(token.NoPos, nil, "", typ)
def(NewTypeName(token.NoPos, nil, "error", typ))
}
var predeclaredConsts = [...]struct {
name string
kind BasicKind
val constant.Value
}{
{"true", UntypedBool, constant.MakeBool(true)},
{"false", UntypedBool, constant.MakeBool(false)},
{"iota", UntypedInt, constant.MakeInt64(0)},
}
func defPredeclaredConsts() {
for _, c := range predeclaredConsts {
def(NewConst(token.NoPos, nil, c.name, Typ[c.kind], c.val))
}
}
func defPredeclaredNil() {
def(&Nil{object{name: "nil", typ: Typ[UntypedNil]}})
}
// A builtinId is the id of a builtin function.
type builtinId int
const (
// universe scope
_Append builtinId = iota
_Cap
_Close
_Complex
_Copy
_Delete
_Imag
_Len
_Make
_New
_Panic
_Print
_Println
_Real
_Recover
// package unsafe
_Alignof
_Offsetof
_Sizeof
// testing support
_Assert
_Trace
)
var predeclaredFuncs = [...]struct {
name string
nargs int
variadic bool
kind exprKind
}{
_Append: {"append", 1, true, expression},
_Cap: {"cap", 1, false, expression},
_Close: {"close", 1, false, statement},
_Complex: {"complex", 2, false, expression},
_Copy: {"copy", 2, false, statement},
_Delete: {"delete", 2, false, statement},
_Imag: {"imag", 1, false, expression},
_Len: {"len", 1, false, expression},
_Make: {"make", 1, true, expression},
_New: {"new", 1, false, expression},
_Panic: {"panic", 1, false, statement},
_Print: {"print", 0, true, statement},
_Println: {"println", 0, true, statement},
_Real: {"real", 1, false, expression},
_Recover: {"recover", 0, false, statement},
_Alignof: {"Alignof", 1, false, expression},
_Offsetof: {"Offsetof", 1, false, expression},
_Sizeof: {"Sizeof", 1, false, expression},
_Assert: {"assert", 1, false, statement},
_Trace: {"trace", 0, true, statement},
}
func defPredeclaredFuncs() {
for i := range predeclaredFuncs {
id := builtinId(i)
if id == _Assert || id == _Trace {
continue // only define these in testing environment
}
def(newBuiltin(id))
}
}
// DefPredeclaredTestFuncs defines the assert and trace built-ins.
// These built-ins are intended for debugging and testing of this
// package only.
func DefPredeclaredTestFuncs() {
if Universe.Lookup("assert") != nil {
return // already defined
}
def(newBuiltin(_Assert))
def(newBuiltin(_Trace))
}
func init() {
Universe = NewScope(nil, token.NoPos, token.NoPos, "universe")
Unsafe = NewPackage("unsafe", "unsafe")
Unsafe.complete = true
defPredeclaredTypes()
defPredeclaredConsts()
defPredeclaredNil()
defPredeclaredFuncs()
universeIota = Universe.Lookup("iota").(*Const)
universeByte = Universe.Lookup("byte").(*TypeName).typ.(*Basic)
universeRune = Universe.Lookup("rune").(*TypeName).typ.(*Basic)
}
// Objects with names containing blanks are internal and not entered into
// a scope. Objects with exported names are inserted in the unsafe package
// scope; other objects are inserted in the universe scope.
//
func def(obj Object) {
name := obj.Name()
if strings.Contains(name, " ") {
return // nothing to do
}
// fix Obj link for named types
if typ, ok := obj.Type().(*Named); ok {
typ.obj = obj.(*TypeName)
}
// exported identifiers go into package unsafe
scope := Universe
if obj.Exported() {
scope = Unsafe.scope
// set Pkg field
switch obj := obj.(type) {
case *TypeName:
obj.pkg = Unsafe
case *Builtin:
obj.pkg = Unsafe
default:
unreachable()
}
}
if scope.Insert(obj) != nil {
panic("internal error: double declaration")
}
}

View File

@ -20,8 +20,7 @@ go_library(
go_test(
name = "go_default_test",
srcs = ["deep_equal_test.go"],
importpath = "k8s.io/kubernetes/third_party/forked/golang/reflect",
library = ":go_default_library",
embed = [":go_default_library"],
)
filegroup(

View File

@ -15,8 +15,7 @@ go_test(
"edgeholder_test.go",
"undirected_test.go",
],
importpath = "k8s.io/kubernetes/third_party/forked/gonum/graph/simple",
library = ":go_default_library",
embed = [":go_default_library"],
deps = ["//third_party/forked/gonum/graph:go_default_library"],
)

View File

@ -1,8 +1,10 @@
reviewers:
- cblecker
- ixdy
- mengqiy
- pwittrock
approvers:
- cblecker
- ixdy
- mengqiy
- pwittrock

View File

@ -32,147 +32,156 @@ juDIR=`pwd`/results
# The name of the suite is calculated based in your script name
suite=""
if LANG=C sed --help 2>&1 | grep -q GNU; then
SED="sed"
elif which gsed &>/dev/null; then
SED="gsed"
else
echo "Failed to find GNU sed as sed or gsed. If you are on Mac: brew install gnu-sed." >&2
exit 1
fi
# A wrapper for the eval method witch allows catching seg-faults and use tee
errfile=/tmp/evErr.$$.log
function eVal() {
(eval "$1")
# stdout and stderr may currently be inverted (see below) so echo may write to stderr
echo $? 2>&1 | tr -d "\n" > $errfile
echo "$?" 2>&1 | tr -d "\n" > "${errfile}"
}
# Method to clean old tests
function juLogClean() {
echo "+++ Removing old junit reports from: $juDIR "
rm -f "$juDIR"/junit-*
echo "+++ Removing old junit reports from: ${juDIR} "
rm -f "${juDIR}"/junit-*
}
# Execute a command and record its results
function juLog() {
suite="";
errfile=/tmp/evErr.$$.log
date=`which gdate || which date`
date=`which gdate 2>/dev/null || which date`
asserts=00; errors=0; total=0; content=""
# parse arguments
ya=""; icase=""
while [ -z "$ya" ]; do
while [[ -z "$ya" ]]; do
case "$1" in
-name=*) name=`echo "$1" | sed -e 's/-name=//'`; shift;;
-class=*) class=`echo "$1" | sed -e 's/-class=//'`; shift;;
-ierror=*) ereg=`echo "$1" | sed -e 's/-ierror=//'`; icase="-i"; shift;;
-error=*) ereg=`echo "$1" | sed -e 's/-error=//'`; shift;;
-output=*) juDIR=`echo "$1" | sed -e 's/-output=//'`; shift;;
-name=*) name=`echo "$1" | ${SED} -e 's/-name=//'`; shift;;
-class=*) class=`echo "$1" | ${SED} -e 's/-class=//'`; shift;;
-ierror=*) ereg=`echo "$1" | ${SED} -e 's/-ierror=//'`; icase="-i"; shift;;
-error=*) ereg=`echo "$1" | ${SED} -e 's/-error=//'`; shift;;
-output=*) juDIR=`echo "$1" | ${SED} -e 's/-output=//'`; shift;;
*) ya=1;;
esac
done
# create output directory
mkdir -p "$juDIR" || exit
mkdir -p "${juDIR}" || exit
# use first arg as name if it was not given
if [ -z "$name" ]; then
name="$asserts-$1"
if [[ -z "${name}" ]]; then
name="${asserts}-$1"
shift
fi
if [[ "$class" = "" ]]; then
if [[ "${class}" = "" ]]; then
class="default"
fi
suite=$class
suite=${class}
# calculate command to eval
[ -z "$1" ] && return
[[ -z "$1" ]] && return
cmd="$1"; shift
while [ -n "$1" ]
while [[ -n "${1:-}" ]]
do
cmd="$cmd \"$1\""
cmd="${cmd} \"$1\""
shift
done
# eval the command sending output to a file
outf=/var/tmp/ju$$.txt
errf=/var/tmp/ju$$-err.txt
>$outf
echo "" | tee -a $outf
echo "+++ Running case: $class.$name " | tee -a $outf
echo "+++ working dir: "`pwd` | tee -a $outf
echo "+++ command: $cmd" | tee -a $outf
ini=`$date +%s.%N`
>${outf}
echo "" | tee -a ${outf}
echo "+++ Running case: ${class}.${name} " | tee -a ${outf}
echo "+++ working dir: "`pwd` | tee -a ${outf}
echo "+++ command: ${cmd}" | tee -a ${outf}
ini=`${date} +%s.%N`
# execute the command, temporarily swapping stderr and stdout so they can be tee'd to separate files,
# then swapping them back again so that the streams are written correctly for the invoking process
( (eVal "$cmd" | tee -a $outf) 3>&1 1>&2 2>&3 | tee $errf) 3>&1 1>&2 2>&3
evErr=`cat $errfile`
rm -f $errfile
end=`$date +%s.%N`
echo "+++ exit code: $evErr" | tee -a $outf
( (eVal "${cmd}" | tee -a ${outf}) 3>&1 1>&2 2>&3 | tee ${errf}) 3>&1 1>&2 2>&3
evErr=`cat ${errfile}`
rm -f ${errfile}
end=`${date} +%s.%N`
echo "+++ exit code: ${evErr}" | tee -a ${outf}
# set the appropriate error, based in the exit code and the regex
[ $evErr != 0 ] && err=1 || err=0
out=`cat $outf | sed -e 's/^\([^+]\)/| \1/g'`
if [ $err = 0 -a -n "$ereg" ]; then
H=`echo "$out" | egrep $icase "$ereg"`
[ -n "$H" ] && err=1
[[ ${evErr} != 0 ]] && err=1 || err=0
out=`cat $outf | ${SED} -e 's/^\([^+]\)/| \1/g'`
if [ ${err} = 0 -a -n "${ereg:-}" ]; then
H=`echo "${out}" | egrep ${icase} "${ereg}"`
[[ -n "${H}" ]] && err=1
fi
[ $err != 0 ] && echo "+++ error: $err" | tee -a $outf
rm -f $outf
[[ ${err} != 0 ]] && echo "+++ error: ${err}" | tee -a ${outf}
rm -f ${outf}
errMsg=`cat $errf`
rm -f $errf
errMsg=`cat ${errf}`
rm -f ${errf}
# calculate vars
asserts=$(($asserts+1))
errors=$(($errors+$err))
time=`echo "$end - $ini" | bc -l`
total=`echo "$total + $time" | bc -l`
time=`echo "${end} - ${ini}" | bc -l`
total=`echo "${total} + ${time}" | bc -l`
# write the junit xml report
## failure tag
[ $err = 0 ] && failure="" || failure="
[[ ${err} = 0 ]] && failure="" || failure="
<failure type=\"ScriptError\" message=\"Script Error\">
<![CDATA[
$errMsg
${errMsg}
]]>
</failure>
"
## testcase tag
content="$content
<testcase assertions=\"1\" name=\"$name\" time=\"$time\" classname=\"$class\">
$failure
content="${content}
<testcase assertions=\"1\" name=\"${name}\" time=\"${time}\" classname=\"${class}\">
${failure}
<system-err>
<![CDATA[
$errMsg
${errMsg}
]]>
</system-err>
</testcase>
"
## testsuite block
if [[ -e "$juDIR/junit_$suite.xml" ]]; then
if [[ -e "${juDIR}/junit_${suite}.xml" ]]; then
# file exists. first update the failures count
failCount=`sed -n "s/.*testsuite.*failures=\"\([0-9]*\)\".*/\1/p" "$juDIR/junit_$suite.xml"`
failCount=`${SED} -n "s/.*testsuite.*failures=\"\([0-9]*\)\".*/\1/p" "${juDIR}/junit_${suite}.xml"`
errors=$(($failCount+$errors))
sed -i "0,/failures=\"$failCount\"/ s/failures=\"$failCount\"/failures=\"$errors\"/" "$juDIR/junit_$suite.xml"
sed -i "0,/errors=\"$failCount\"/ s/errors=\"$failCount\"/errors=\"$errors\"/" "$juDIR/junit_$suite.xml"
${SED} -i "0,/failures=\"${failCount}\"/ s/failures=\"${failCount}\"/failures=\"${errors}\"/" "${juDIR}/junit_${suite}.xml"
${SED} -i "0,/errors=\"${failCount}\"/ s/errors=\"${failCount}\"/errors=\"${errors}\"/" "${juDIR}/junit_${suite}.xml"
# file exists. Need to append to it. If we remove the testsuite end tag, we can just add it in after.
sed -i "s^</testsuite>^^g" $juDIR/junit_$suite.xml ## remove testSuite so we can add it later
sed -i "s^</testsuites>^^g" $juDIR/junit_$suite.xml
${SED} -i "s^</testsuite>^^g" ${juDIR}/junit_${suite}.xml ## remove testSuite so we can add it later
${SED} -i "s^</testsuites>^^g" ${juDIR}/junit_${suite}.xml
cat <<EOF >> "$juDIR/junit_$suite.xml"
$content
${content:-}
</testsuite>
</testsuites>
EOF
else
# no file exists. Adding a new file
cat <<EOF > "$juDIR/junit_$suite.xml"
cat <<EOF > "${juDIR}/junit_${suite}.xml"
<?xml version="1.0" encoding="UTF-8"?>
<testsuites>
<testsuite failures="$errors" assertions="$assertions" name="$suite" tests="1" errors="$errors" time="$total">
$content
<testsuite failures="${errors}" assertions="${assertions:-}" name="${suite}" tests="1" errors="${errors}" time="${total}">
${content:-}
</testsuite>
</testsuites>
EOF
fi
return $err
return ${err}
}