vendor: vendor fscrypt integration dependencies

Signed-off-by: Marcel Lauhoff <marcel.lauhoff@suse.com>
This commit is contained in:
Marcel Lauhoff
2022-06-23 13:58:36 +02:00
committed by mergify[bot]
parent cfea8d7562
commit f8faffac89
44 changed files with 8910 additions and 1 deletions

326
vendor/github.com/google/fscrypt/keyring/fs_keyring.go generated vendored Normal file
View File

@ -0,0 +1,326 @@
/*
* fs_keyring.go - Add/remove encryption policy keys to/from filesystem
*
* Copyright 2019 Google LLC
* Author: Eric Biggers (ebiggers@google.com)
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package keyring
/*
#include <string.h>
*/
import "C"
import (
"encoding/hex"
"log"
"os"
"os/user"
"sync"
"unsafe"
"github.com/pkg/errors"
"golang.org/x/sys/unix"
"github.com/google/fscrypt/crypto"
"github.com/google/fscrypt/filesystem"
"github.com/google/fscrypt/security"
"github.com/google/fscrypt/util"
)
var (
fsKeyringSupported bool
fsKeyringSupportedKnown bool
fsKeyringSupportedLock sync.Mutex
)
func checkForFsKeyringSupport(mount *filesystem.Mount) bool {
dir, err := os.Open(mount.Path)
if err != nil {
log.Printf("Unexpected error opening %q. Assuming filesystem keyring is unsupported.",
mount.Path)
return false
}
defer dir.Close()
// FS_IOC_ADD_ENCRYPTION_KEY with a NULL argument will fail with ENOTTY
// if the ioctl isn't supported. Otherwise it should fail with EFAULT.
//
// Note that there's no need to check for FS_IOC_REMOVE_ENCRYPTION_KEY
// support separately, since it's guaranteed to be available if
// FS_IOC_ADD_ENCRYPTION_KEY is. There's also no need to check for
// support on every filesystem separately, since either the kernel
// supports the ioctls on all fscrypt-capable filesystems or it doesn't.
_, _, errno := unix.Syscall(unix.SYS_IOCTL, dir.Fd(), unix.FS_IOC_ADD_ENCRYPTION_KEY, 0)
if errno == unix.ENOTTY {
log.Printf("Kernel doesn't support filesystem keyring. Falling back to user keyring.")
return false
}
if errno == unix.EFAULT {
log.Printf("Detected support for filesystem keyring")
} else {
// EFAULT is expected, but as long as we didn't get ENOTTY the
// ioctl should be available.
log.Printf("Unexpected error from FS_IOC_ADD_ENCRYPTION_KEY(%q, NULL): %v", mount.Path, errno)
}
return true
}
// IsFsKeyringSupported returns true if the kernel supports the ioctls to
// add/remove fscrypt keys directly to/from the filesystem. For support to be
// detected, the given Mount must be for a filesystem that supports fscrypt.
func IsFsKeyringSupported(mount *filesystem.Mount) bool {
fsKeyringSupportedLock.Lock()
defer fsKeyringSupportedLock.Unlock()
if !fsKeyringSupportedKnown {
fsKeyringSupported = checkForFsKeyringSupport(mount)
fsKeyringSupportedKnown = true
}
return fsKeyringSupported
}
// buildKeySpecifier converts the key descriptor string to an FscryptKeySpecifier.
func buildKeySpecifier(spec *unix.FscryptKeySpecifier, descriptor string) error {
descriptorBytes, err := hex.DecodeString(descriptor)
if err != nil {
return errors.Errorf("key descriptor %q is invalid", descriptor)
}
switch len(descriptorBytes) {
case unix.FSCRYPT_KEY_DESCRIPTOR_SIZE:
spec.Type = unix.FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR
case unix.FSCRYPT_KEY_IDENTIFIER_SIZE:
spec.Type = unix.FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER
default:
return errors.Errorf("key descriptor %q has unknown length", descriptor)
}
copy(spec.U[:], descriptorBytes)
return nil
}
type savedPrivs struct {
ruid, euid, suid int
}
// dropPrivsIfNeeded drops privileges (UIDs only) to the given user if we're
// working with a v2 policy key, and if the user is different from the user the
// process is currently running as.
//
// This is needed to change the effective UID so that FS_IOC_ADD_ENCRYPTION_KEY
// and FS_IOC_REMOVE_ENCRYPTION_KEY will add/remove a claim to the key for the
// intended user, and so that FS_IOC_GET_ENCRYPTION_KEY_STATUS will return the
// correct status flags for the user.
func dropPrivsIfNeeded(user *user.User, spec *unix.FscryptKeySpecifier) (*savedPrivs, error) {
if spec.Type == unix.FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR {
// v1 policy keys don't have any concept of user claims.
return nil, nil
}
targetUID := util.AtoiOrPanic(user.Uid)
ruid, euid, suid := security.GetUids()
if euid == targetUID {
return nil, nil
}
if err := security.SetUids(targetUID, targetUID, euid); err != nil {
return nil, err
}
return &savedPrivs{ruid, euid, suid}, nil
}
// restorePrivs restores root privileges if needed.
func restorePrivs(privs *savedPrivs) error {
if privs != nil {
return security.SetUids(privs.ruid, privs.euid, privs.suid)
}
return nil
}
// validateKeyDescriptor validates that the correct key descriptor was provided.
// This isn't really necessary; this is just an extra sanity check.
func validateKeyDescriptor(spec *unix.FscryptKeySpecifier, descriptor string) (string, error) {
if spec.Type != unix.FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER {
// v1 policy key: the descriptor is chosen arbitrarily by
// userspace, so there's nothing to validate.
return descriptor, nil
}
// v2 policy key. The descriptor ("identifier" in the kernel UAPI) is
// calculated as a cryptographic hash of the key itself. The kernel
// ignores the provided value, and calculates and returns it itself. So
// verify that the returned value is as expected. If it's not, the key
// doesn't actually match the encryption policy we thought it was for.
actual := hex.EncodeToString(spec.U[:unix.FSCRYPT_KEY_IDENTIFIER_SIZE])
if descriptor == actual {
return descriptor, nil
}
return actual,
errors.Errorf("provided and actual key descriptors differ (%q != %q)",
descriptor, actual)
}
// fsAddEncryptionKey adds the specified encryption key to the specified filesystem.
func fsAddEncryptionKey(key *crypto.Key, descriptor string,
mount *filesystem.Mount, user *user.User) error {
dir, err := os.Open(mount.Path)
if err != nil {
return err
}
defer dir.Close()
argKey, err := crypto.NewBlankKey(int(unsafe.Sizeof(unix.FscryptAddKeyArg{})) + key.Len())
if err != nil {
return err
}
defer argKey.Wipe()
arg := (*unix.FscryptAddKeyArg)(argKey.UnsafePtr())
if err = buildKeySpecifier(&arg.Key_spec, descriptor); err != nil {
return err
}
raw := unsafe.Pointer(uintptr(argKey.UnsafePtr()) + unsafe.Sizeof(*arg))
arg.Raw_size = uint32(key.Len())
C.memcpy(raw, key.UnsafePtr(), C.size_t(key.Len()))
savedPrivs, err := dropPrivsIfNeeded(user, &arg.Key_spec)
if err != nil {
return err
}
_, _, errno := unix.Syscall(unix.SYS_IOCTL, dir.Fd(),
unix.FS_IOC_ADD_ENCRYPTION_KEY, uintptr(argKey.UnsafePtr()))
restorePrivs(savedPrivs)
log.Printf("FS_IOC_ADD_ENCRYPTION_KEY(%q, %s, <raw>) = %v", mount.Path, descriptor, errno)
if errno != 0 {
return errors.Wrapf(errno,
"error adding key with descriptor %s to filesystem %s",
descriptor, mount.Path)
}
if descriptor, err = validateKeyDescriptor(&arg.Key_spec, descriptor); err != nil {
fsRemoveEncryptionKey(descriptor, mount, user)
return err
}
return nil
}
// fsRemoveEncryptionKey removes the specified encryption key from the specified
// filesystem.
func fsRemoveEncryptionKey(descriptor string, mount *filesystem.Mount,
user *user.User) error {
dir, err := os.Open(mount.Path)
if err != nil {
return err
}
defer dir.Close()
var arg unix.FscryptRemoveKeyArg
if err = buildKeySpecifier(&arg.Key_spec, descriptor); err != nil {
return err
}
ioc := uintptr(unix.FS_IOC_REMOVE_ENCRYPTION_KEY)
iocName := "FS_IOC_REMOVE_ENCRYPTION_KEY"
var savedPrivs *savedPrivs
if user == nil {
ioc = unix.FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
iocName = "FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS"
} else {
savedPrivs, err = dropPrivsIfNeeded(user, &arg.Key_spec)
if err != nil {
return err
}
}
_, _, errno := unix.Syscall(unix.SYS_IOCTL, dir.Fd(), ioc, uintptr(unsafe.Pointer(&arg)))
restorePrivs(savedPrivs)
log.Printf("%s(%q, %s) = %v, removal_status_flags=0x%x",
iocName, mount.Path, descriptor, errno, arg.Removal_status_flags)
switch errno {
case 0:
switch {
case arg.Removal_status_flags&unix.FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS != 0:
return ErrKeyAddedByOtherUsers
case arg.Removal_status_flags&unix.FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY != 0:
return ErrKeyFilesOpen
}
return nil
case unix.ENOKEY:
// ENOKEY means either the key is completely missing or that the
// current user doesn't have a claim to it. Distinguish between
// these two cases by getting the key status.
if user != nil {
status, _ := fsGetEncryptionKeyStatus(descriptor, mount, user)
if status == KeyPresentButOnlyOtherUsers {
return ErrKeyAddedByOtherUsers
}
}
return ErrKeyNotPresent
default:
return errors.Wrapf(errno,
"error removing key with descriptor %s from filesystem %s",
descriptor, mount.Path)
}
}
// fsGetEncryptionKeyStatus gets the status of the specified encryption key on
// the specified filesystem.
func fsGetEncryptionKeyStatus(descriptor string, mount *filesystem.Mount,
user *user.User) (KeyStatus, error) {
dir, err := os.Open(mount.Path)
if err != nil {
return KeyStatusUnknown, err
}
defer dir.Close()
var arg unix.FscryptGetKeyStatusArg
err = buildKeySpecifier(&arg.Key_spec, descriptor)
if err != nil {
return KeyStatusUnknown, err
}
savedPrivs, err := dropPrivsIfNeeded(user, &arg.Key_spec)
if err != nil {
return KeyStatusUnknown, err
}
_, _, errno := unix.Syscall(unix.SYS_IOCTL, dir.Fd(),
unix.FS_IOC_GET_ENCRYPTION_KEY_STATUS, uintptr(unsafe.Pointer(&arg)))
restorePrivs(savedPrivs)
log.Printf("FS_IOC_GET_ENCRYPTION_KEY_STATUS(%q, %s) = %v, status=%d, status_flags=0x%x",
mount.Path, descriptor, errno, arg.Status, arg.Status_flags)
if errno != 0 {
return KeyStatusUnknown,
errors.Wrapf(errno,
"error getting status of key with descriptor %s on filesystem %s",
descriptor, mount.Path)
}
switch arg.Status {
case unix.FSCRYPT_KEY_STATUS_ABSENT:
return KeyAbsent, nil
case unix.FSCRYPT_KEY_STATUS_PRESENT:
if arg.Key_spec.Type != unix.FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
(arg.Status_flags&unix.FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF) == 0 {
return KeyPresentButOnlyOtherUsers, nil
}
return KeyPresent, nil
case unix.FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED:
return KeyAbsentButFilesBusy, nil
default:
return KeyStatusUnknown,
errors.Errorf("unknown key status (%d) for key with descriptor %s on filesystem %s",
arg.Status, descriptor, mount.Path)
}
}

175
vendor/github.com/google/fscrypt/keyring/keyring.go generated vendored Normal file
View File

@ -0,0 +1,175 @@
/*
* keyring.go - Add/remove encryption policy keys to/from kernel
*
* Copyright 2019 Google LLC
* Author: Eric Biggers (ebiggers@google.com)
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
// Package keyring manages adding, removing, and getting the status of
// encryption policy keys to/from the kernel. Most public functions are in
// keyring.go, and they delegate to either user_keyring.go or fs_keyring.go,
// depending on whether a user keyring or a filesystem keyring is being used.
//
// v2 encryption policies always use the filesystem keyring.
// v1 policies use the user keyring by default, but can be configured to use the
// filesystem keyring instead (requires root and kernel v5.4+).
package keyring
import (
"encoding/hex"
"os/user"
"strconv"
"github.com/pkg/errors"
"golang.org/x/sys/unix"
"github.com/google/fscrypt/crypto"
"github.com/google/fscrypt/filesystem"
"github.com/google/fscrypt/metadata"
"github.com/google/fscrypt/util"
)
// Keyring error values
var (
ErrKeyAddedByOtherUsers = errors.New("other users have added the key too")
ErrKeyFilesOpen = errors.New("some files using the key are still open")
ErrKeyNotPresent = errors.New("key not present or already removed")
ErrV2PoliciesUnsupported = errors.New("kernel is too old to support v2 encryption policies")
)
// Options are the options which specify *which* keyring the key should be
// added/removed/gotten to, and how.
type Options struct {
// Mount is the filesystem to which the key should be
// added/removed/gotten.
Mount *filesystem.Mount
// User is the user for whom the key should be added/removed/gotten.
User *user.User
// UseFsKeyringForV1Policies is true if keys for v1 encryption policies
// should be put in the filesystem's keyring (if supported) rather than
// in the user's keyring. Note that this makes AddEncryptionKey and
// RemoveEncryptionKey require root privileges.
UseFsKeyringForV1Policies bool
}
func shouldUseFsKeyring(descriptor string, options *Options) (bool, error) {
// For v1 encryption policy keys, use the filesystem keyring if
// use_fs_keyring_for_v1_policies is set in /etc/fscrypt.conf and the
// kernel supports it.
if len(descriptor) == hex.EncodedLen(unix.FSCRYPT_KEY_DESCRIPTOR_SIZE) {
return options.UseFsKeyringForV1Policies && IsFsKeyringSupported(options.Mount), nil
}
// For v2 encryption policy keys, always use the filesystem keyring; the
// kernel doesn't support any other way.
if !IsFsKeyringSupported(options.Mount) {
return true, ErrV2PoliciesUnsupported
}
return true, nil
}
// buildKeyDescription builds the description for an fscrypt key of type
// "logon". For ext4 and f2fs, it uses the legacy filesystem-specific prefixes
// for compatibility with kernels before v4.8 and v4.6 respectively. For other
// filesystems it uses the generic prefix "fscrypt".
func buildKeyDescription(options *Options, descriptor string) string {
switch options.Mount.FilesystemType {
case "ext4", "f2fs":
return options.Mount.FilesystemType + ":" + descriptor
default:
return unix.FSCRYPT_KEY_DESC_PREFIX + descriptor
}
}
// AddEncryptionKey adds an encryption policy key to a kernel keyring. It uses
// either the filesystem keyring for the target Mount or the user keyring for
// the target User.
func AddEncryptionKey(key *crypto.Key, descriptor string, options *Options) error {
if err := util.CheckValidLength(metadata.PolicyKeyLen, key.Len()); err != nil {
return errors.Wrap(err, "policy key")
}
useFsKeyring, err := shouldUseFsKeyring(descriptor, options)
if err != nil {
return err
}
if useFsKeyring {
return fsAddEncryptionKey(key, descriptor, options.Mount, options.User)
}
return userAddKey(key, buildKeyDescription(options, descriptor), options.User)
}
// RemoveEncryptionKey removes an encryption policy key from a kernel keyring.
// It uses either the filesystem keyring for the target Mount or the user
// keyring for the target User.
func RemoveEncryptionKey(descriptor string, options *Options, allUsers bool) error {
useFsKeyring, err := shouldUseFsKeyring(descriptor, options)
if err != nil {
return err
}
if useFsKeyring {
user := options.User
if allUsers {
user = nil
}
return fsRemoveEncryptionKey(descriptor, options.Mount, user)
}
return userRemoveKey(buildKeyDescription(options, descriptor), options.User)
}
// KeyStatus is an enum that represents the status of a key in a kernel keyring.
type KeyStatus int
// The possible values of KeyStatus.
const (
KeyStatusUnknown = 0 + iota
KeyAbsent
KeyAbsentButFilesBusy
KeyPresent
KeyPresentButOnlyOtherUsers
)
func (status KeyStatus) String() string {
switch status {
case KeyStatusUnknown:
return "Unknown"
case KeyAbsent:
return "Absent"
case KeyAbsentButFilesBusy:
return "AbsentButFilesBusy"
case KeyPresent:
return "Present"
case KeyPresentButOnlyOtherUsers:
return "PresentButOnlyOtherUsers"
default:
return strconv.Itoa(int(status))
}
}
// GetEncryptionKeyStatus gets the status of an encryption policy key in a
// kernel keyring. It uses either the filesystem keyring for the target Mount
// or the user keyring for the target User.
func GetEncryptionKeyStatus(descriptor string, options *Options) (KeyStatus, error) {
useFsKeyring, err := shouldUseFsKeyring(descriptor, options)
if err != nil {
return KeyStatusUnknown, err
}
if useFsKeyring {
return fsGetEncryptionKeyStatus(descriptor, options.Mount, options.User)
}
_, _, err = userFindKey(buildKeyDescription(options, descriptor), options.User)
if err != nil {
return KeyAbsent, nil
}
return KeyPresent, nil
}

View File

@ -0,0 +1,251 @@
/*
* user_keyring.go - Add/remove encryption policy keys to/from user keyrings.
* This is the deprecated mechanism; see fs_keyring.go for the new mechanism.
*
* Copyright 2017 Google Inc.
* Author: Joe Richey (joerichey@google.com)
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package keyring
import (
"os/user"
"runtime"
"unsafe"
"github.com/pkg/errors"
"golang.org/x/sys/unix"
"fmt"
"log"
"github.com/google/fscrypt/crypto"
"github.com/google/fscrypt/security"
"github.com/google/fscrypt/util"
)
// ErrAccessUserKeyring indicates that a user's keyring cannot be
// accessed.
type ErrAccessUserKeyring struct {
TargetUser *user.User
UnderlyingError error
}
func (err *ErrAccessUserKeyring) Error() string {
return fmt.Sprintf("could not access user keyring for %q: %s",
err.TargetUser.Username, err.UnderlyingError)
}
// ErrSessionUserKeyring indicates that a user's keyring is not linked
// into the session keyring.
type ErrSessionUserKeyring struct {
TargetUser *user.User
}
func (err *ErrSessionUserKeyring) Error() string {
return fmt.Sprintf("user keyring for %q is not linked into the session keyring",
err.TargetUser.Username)
}
// KeyType is always logon as required by filesystem encryption.
const KeyType = "logon"
// userAddKey puts the provided policy key into the user keyring for the
// specified user with the provided description, and type logon.
func userAddKey(key *crypto.Key, description string, targetUser *user.User) error {
runtime.LockOSThread() // ensure target user keyring remains possessed in thread keyring
defer runtime.UnlockOSThread()
// Create our payload (containing an FscryptKey)
payload, err := crypto.NewBlankKey(int(unsafe.Sizeof(unix.FscryptKey{})))
if err != nil {
return err
}
defer payload.Wipe()
// Cast the payload to an FscryptKey so we can initialize the fields.
fscryptKey := (*unix.FscryptKey)(payload.UnsafePtr())
// Mode is ignored by the kernel
fscryptKey.Mode = 0
fscryptKey.Size = uint32(key.Len())
copy(fscryptKey.Raw[:], key.Data())
keyringID, err := UserKeyringID(targetUser, true)
if err != nil {
return err
}
keyID, err := unix.AddKey(KeyType, description, payload.Data(), keyringID)
log.Printf("KeyctlAddKey(%s, %s, <data>, %d) = %d, %v",
KeyType, description, keyringID, keyID, err)
if err != nil {
return errors.Wrapf(err,
"error adding key with description %s to user keyring for %q",
description, targetUser.Username)
}
return nil
}
// userRemoveKey tries to remove a policy key from the user keyring with the
// provided description. An error is returned if the key does not exist.
func userRemoveKey(description string, targetUser *user.User) error {
runtime.LockOSThread() // ensure target user keyring remains possessed in thread keyring
defer runtime.UnlockOSThread()
keyID, keyringID, err := userFindKey(description, targetUser)
if err != nil {
return ErrKeyNotPresent
}
_, err = unix.KeyctlInt(unix.KEYCTL_UNLINK, keyID, keyringID, 0, 0)
log.Printf("KeyctlUnlink(%d, %d) = %v", keyID, keyringID, err)
if err != nil {
return errors.Wrapf(err,
"error removing key with description %s from user keyring for %q",
description, targetUser.Username)
}
return nil
}
// userFindKey tries to locate a key with the provided description in the user
// keyring for the target user. The key ID and keyring ID are returned if we can
// find the key. An error is returned if the key does not exist.
func userFindKey(description string, targetUser *user.User) (int, int, error) {
runtime.LockOSThread() // ensure target user keyring remains possessed in thread keyring
defer runtime.UnlockOSThread()
keyringID, err := UserKeyringID(targetUser, false)
if err != nil {
return 0, 0, err
}
keyID, err := unix.KeyctlSearch(keyringID, KeyType, description, 0)
log.Printf("KeyctlSearch(%d, %s, %s) = %d, %v", keyringID, KeyType, description, keyID, err)
if err != nil {
return 0, 0, errors.Wrapf(err,
"error searching for key %s in user keyring for %q",
description, targetUser.Username)
}
return keyID, keyringID, err
}
// UserKeyringID returns the key id of the target user's user keyring. We also
// ensure that the keyring will be accessible by linking it into the thread
// keyring and linking it into the root user keyring (permissions allowing). If
// checkSession is true, an error is returned if a normal user requests their
// user keyring, but it is not in the current session keyring.
func UserKeyringID(targetUser *user.User, checkSession bool) (int, error) {
runtime.LockOSThread() // ensure target user keyring remains possessed in thread keyring
defer runtime.UnlockOSThread()
uid := util.AtoiOrPanic(targetUser.Uid)
targetKeyring, err := userKeyringIDLookup(uid)
if err != nil {
return 0, &ErrAccessUserKeyring{targetUser, err}
}
if !util.IsUserRoot() {
// Make sure the returned keyring will be accessible by checking
// that it is in the session keyring.
if checkSession && !isUserKeyringInSession(uid) {
return 0, &ErrSessionUserKeyring{targetUser}
}
return targetKeyring, nil
}
// Make sure the returned keyring will be accessible by linking it into
// the root user's user keyring (which will not be garbage collected).
rootKeyring, err := userKeyringIDLookup(0)
if err != nil {
return 0, errors.Wrapf(err, "error looking up root's user keyring")
}
if rootKeyring != targetKeyring {
if err = keyringLink(targetKeyring, rootKeyring); err != nil {
return 0, errors.Wrapf(err,
"error linking user keyring for %q into root's user keyring",
targetUser.Username)
}
}
return targetKeyring, nil
}
func userKeyringIDLookup(uid int) (keyringID int, err error) {
// Our goals here are to:
// - Find the user keyring (for the provided uid)
// - Link it into the current thread keyring (so we can use it)
// - Make no permanent changes to the process privileges
// Complicating this are the facts that:
// - The value of KEY_SPEC_USER_KEYRING is determined by the ruid
// - Keyring linking permissions use the euid
// So we have to change both the ruid and euid to make this work,
// setting the suid to 0 so that we can later switch back.
ruid, euid, suid := security.GetUids()
if ruid != uid || euid != uid {
if err = security.SetUids(uid, uid, 0); err != nil {
return
}
defer func() {
resetErr := security.SetUids(ruid, euid, suid)
if resetErr != nil {
err = resetErr
}
}()
}
// We get the value of KEY_SPEC_USER_KEYRING. Note that this will also
// trigger the creation of the uid keyring if it does not yet exist.
keyringID, err = unix.KeyctlGetKeyringID(unix.KEY_SPEC_USER_KEYRING, true)
log.Printf("keyringID(_uid.%d) = %d, %v", uid, keyringID, err)
if err != nil {
return 0, err
}
// We still want to use this keyring after our privileges are reset. So
// we link it into the thread keyring, preventing a loss of access.
//
// We must be under LockOSThread() for this to work reliably. Note that
// we can't just use the process keyring, since it doesn't work reliably
// in Go programs, due to the Go runtime creating threads before the
// program starts and has a chance to create the process keyring.
if err = keyringLink(keyringID, unix.KEY_SPEC_THREAD_KEYRING); err != nil {
return 0, err
}
return keyringID, nil
}
// isUserKeyringInSession tells us if the user's uid keyring is in the current
// session keyring.
func isUserKeyringInSession(uid int) bool {
// We cannot use unix.KEY_SPEC_SESSION_KEYRING directly as that might
// create a session keyring if one does not exist.
sessionKeyring, err := unix.KeyctlGetKeyringID(unix.KEY_SPEC_SESSION_KEYRING, false)
log.Printf("keyringID(session) = %d, %v", sessionKeyring, err)
if err != nil {
return false
}
description := fmt.Sprintf("_uid.%d", uid)
id, err := unix.KeyctlSearch(sessionKeyring, "keyring", description, 0)
log.Printf("KeyctlSearch(%d, keyring, %s) = %d, %v", sessionKeyring, description, id, err)
return err == nil
}
func keyringLink(keyID int, keyringID int) error {
_, err := unix.KeyctlInt(unix.KEYCTL_LINK, keyID, keyringID, 0, 0)
log.Printf("KeyctlLink(%d, %d) = %v", keyID, keyringID, err)
return err
}