rebase: update kubernetes to 1.28.0 in main

updating kubernetes to 1.28.0
in the main repo.

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
This commit is contained in:
Madhu Rajanna
2023-08-17 07:15:28 +02:00
committed by mergify[bot]
parent b2fdc269c3
commit ff3e84ad67
706 changed files with 45252 additions and 16346 deletions

223
vendor/golang.org/x/exp/slices/slices.go generated vendored Normal file
View File

@ -0,0 +1,223 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package slices defines various functions useful with slices of any type.
// Unless otherwise specified, these functions all apply to the elements
// of a slice at index 0 <= i < len(s).
//
// Note that the less function in IsSortedFunc, SortFunc, SortStableFunc requires a
// strict weak ordering (https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings),
// or the sorting may fail to sort correctly. A common case is when sorting slices of
// floating-point numbers containing NaN values.
package slices
import "golang.org/x/exp/constraints"
// Equal reports whether two slices are equal: the same length and all
// elements equal. If the lengths are different, Equal returns false.
// Otherwise, the elements are compared in increasing index order, and the
// comparison stops at the first unequal pair.
// Floating point NaNs are not considered equal.
func Equal[E comparable](s1, s2 []E) bool {
if len(s1) != len(s2) {
return false
}
for i := range s1 {
if s1[i] != s2[i] {
return false
}
}
return true
}
// EqualFunc reports whether two slices are equal using a comparison
// function on each pair of elements. If the lengths are different,
// EqualFunc returns false. Otherwise, the elements are compared in
// increasing index order, and the comparison stops at the first index
// for which eq returns false.
func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if !eq(v1, v2) {
return false
}
}
return true
}
// Compare compares the elements of s1 and s2.
// The elements are compared sequentially, starting at index 0,
// until one element is not equal to the other.
// The result of comparing the first non-matching elements is returned.
// If both slices are equal until one of them ends, the shorter slice is
// considered less than the longer one.
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
// Comparisons involving floating point NaNs are ignored.
func Compare[E constraints.Ordered](s1, s2 []E) int {
s2len := len(s2)
for i, v1 := range s1 {
if i >= s2len {
return +1
}
v2 := s2[i]
switch {
case v1 < v2:
return -1
case v1 > v2:
return +1
}
}
if len(s1) < s2len {
return -1
}
return 0
}
// CompareFunc is like Compare but uses a comparison function
// on each pair of elements. The elements are compared in increasing
// index order, and the comparisons stop after the first time cmp
// returns non-zero.
// The result is the first non-zero result of cmp; if cmp always
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
// and +1 if len(s1) > len(s2).
func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
s2len := len(s2)
for i, v1 := range s1 {
if i >= s2len {
return +1
}
v2 := s2[i]
if c := cmp(v1, v2); c != 0 {
return c
}
}
if len(s1) < s2len {
return -1
}
return 0
}
// Index returns the index of the first occurrence of v in s,
// or -1 if not present.
func Index[E comparable](s []E, v E) int {
for i, vs := range s {
if v == vs {
return i
}
}
return -1
}
// IndexFunc returns the first index i satisfying f(s[i]),
// or -1 if none do.
func IndexFunc[E any](s []E, f func(E) bool) int {
for i, v := range s {
if f(v) {
return i
}
}
return -1
}
// Contains reports whether v is present in s.
func Contains[E comparable](s []E, v E) bool {
return Index(s, v) >= 0
}
// Insert inserts the values v... into s at index i,
// returning the modified slice.
// In the returned slice r, r[i] == v[0].
// Insert panics if i is out of range.
// This function is O(len(s) + len(v)).
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
tot := len(s) + len(v)
if tot <= cap(s) {
s2 := s[:tot]
copy(s2[i+len(v):], s[i:])
copy(s2[i:], v)
return s2
}
s2 := make(S, tot)
copy(s2, s[:i])
copy(s2[i:], v)
copy(s2[i+len(v):], s[i:])
return s2
}
// Delete removes the elements s[i:j] from s, returning the modified slice.
// Delete panics if s[i:j] is not a valid slice of s.
// Delete modifies the contents of the slice s; it does not create a new slice.
// Delete is O(len(s)-j), so if many items must be deleted, it is better to
// make a single call deleting them all together than to delete one at a time.
// Delete might not modify the elements s[len(s)-(j-i):len(s)]. If those
// elements contain pointers you might consider zeroing those elements so that
// objects they reference can be garbage collected.
func Delete[S ~[]E, E any](s S, i, j int) S {
_ = s[i:j] // bounds check
return append(s[:i], s[j:]...)
}
// Clone returns a copy of the slice.
// The elements are copied using assignment, so this is a shallow clone.
func Clone[S ~[]E, E any](s S) S {
// Preserve nil in case it matters.
if s == nil {
return nil
}
return append(S([]E{}), s...)
}
// Compact replaces consecutive runs of equal elements with a single copy.
// This is like the uniq command found on Unix.
// Compact modifies the contents of the slice s; it does not create a new slice.
func Compact[S ~[]E, E comparable](s S) S {
if len(s) == 0 {
return s
}
i := 1
last := s[0]
for _, v := range s[1:] {
if v != last {
s[i] = v
i++
last = v
}
}
return s[:i]
}
// CompactFunc is like Compact but uses a comparison function.
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
if len(s) == 0 {
return s
}
i := 1
last := s[0]
for _, v := range s[1:] {
if !eq(v, last) {
s[i] = v
i++
last = v
}
}
return s[:i]
}
// Grow increases the slice's capacity, if necessary, to guarantee space for
// another n elements. After Grow(n), at least n elements can be appended
// to the slice without another allocation. Grow may modify elements of the
// slice between the length and the capacity. If n is negative or too large to
// allocate the memory, Grow panics.
func Grow[S ~[]E, E any](s S, n int) S {
return append(s, make(S, n)...)[:len(s)]
}
// Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
func Clip[S ~[]E, E any](s S) S {
return s[:len(s):len(s)]
}

127
vendor/golang.org/x/exp/slices/sort.go generated vendored Normal file
View File

@ -0,0 +1,127 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package slices
import (
"math/bits"
"golang.org/x/exp/constraints"
)
// Sort sorts a slice of any ordered type in ascending order.
// Sort may fail to sort correctly when sorting slices of floating-point
// numbers containing Not-a-number (NaN) values.
// Use slices.SortFunc(x, func(a, b float64) bool {return a < b || (math.IsNaN(a) && !math.IsNaN(b))})
// instead if the input may contain NaNs.
func Sort[E constraints.Ordered](x []E) {
n := len(x)
pdqsortOrdered(x, 0, n, bits.Len(uint(n)))
}
// SortFunc sorts the slice x in ascending order as determined by the less function.
// This sort is not guaranteed to be stable.
//
// SortFunc requires that less is a strict weak ordering.
// See https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings.
func SortFunc[E any](x []E, less func(a, b E) bool) {
n := len(x)
pdqsortLessFunc(x, 0, n, bits.Len(uint(n)), less)
}
// SortStable sorts the slice x while keeping the original order of equal
// elements, using less to compare elements.
func SortStableFunc[E any](x []E, less func(a, b E) bool) {
stableLessFunc(x, len(x), less)
}
// IsSorted reports whether x is sorted in ascending order.
func IsSorted[E constraints.Ordered](x []E) bool {
for i := len(x) - 1; i > 0; i-- {
if x[i] < x[i-1] {
return false
}
}
return true
}
// IsSortedFunc reports whether x is sorted in ascending order, with less as the
// comparison function.
func IsSortedFunc[E any](x []E, less func(a, b E) bool) bool {
for i := len(x) - 1; i > 0; i-- {
if less(x[i], x[i-1]) {
return false
}
}
return true
}
// BinarySearch searches for target in a sorted slice and returns the position
// where target is found, or the position where target would appear in the
// sort order; it also returns a bool saying whether the target is really found
// in the slice. The slice must be sorted in increasing order.
func BinarySearch[E constraints.Ordered](x []E, target E) (int, bool) {
// search returns the leftmost position where f returns true, or len(x) if f
// returns false for all x. This is the insertion position for target in x,
// and could point to an element that's either == target or not.
pos := search(len(x), func(i int) bool { return x[i] >= target })
if pos >= len(x) || x[pos] != target {
return pos, false
} else {
return pos, true
}
}
// BinarySearchFunc works like BinarySearch, but uses a custom comparison
// function. The slice must be sorted in increasing order, where "increasing" is
// defined by cmp. cmp(a, b) is expected to return an integer comparing the two
// parameters: 0 if a == b, a negative number if a < b and a positive number if
// a > b.
func BinarySearchFunc[E any](x []E, target E, cmp func(E, E) int) (int, bool) {
pos := search(len(x), func(i int) bool { return cmp(x[i], target) >= 0 })
if pos >= len(x) || cmp(x[pos], target) != 0 {
return pos, false
} else {
return pos, true
}
}
func search(n int, f func(int) bool) int {
// Define f(-1) == false and f(n) == true.
// Invariant: f(i-1) == false, f(j) == true.
i, j := 0, n
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
// i ≤ h < j
if !f(h) {
i = h + 1 // preserves f(i-1) == false
} else {
j = h // preserves f(j) == true
}
}
// i == j, f(i-1) == false, and f(j) (= f(i)) == true => answer is i.
return i
}
type sortedHint int // hint for pdqsort when choosing the pivot
const (
unknownHint sortedHint = iota
increasingHint
decreasingHint
)
// xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
type xorshift uint64
func (r *xorshift) Next() uint64 {
*r ^= *r << 13
*r ^= *r >> 17
*r ^= *r << 5
return uint64(*r)
}
func nextPowerOfTwo(length int) uint {
return 1 << bits.Len(uint(length))
}

479
vendor/golang.org/x/exp/slices/zsortfunc.go generated vendored Normal file
View File

@ -0,0 +1,479 @@
// Code generated by gen_sort_variants.go; DO NOT EDIT.
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package slices
// insertionSortLessFunc sorts data[a:b] using insertion sort.
func insertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
for i := a + 1; i < b; i++ {
for j := i; j > a && less(data[j], data[j-1]); j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
// siftDownLessFunc implements the heap property on data[lo:hi].
// first is an offset into the array where the root of the heap lies.
func siftDownLessFunc[E any](data []E, lo, hi, first int, less func(a, b E) bool) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && less(data[first+child], data[first+child+1]) {
child++
}
if !less(data[first+root], data[first+child]) {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
root = child
}
}
func heapSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDownLessFunc(data, i, hi, first, less)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data[first], data[first+i] = data[first+i], data[first]
siftDownLessFunc(data, lo, i, first, less)
}
}
// pdqsortLessFunc sorts data[a:b].
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
// C++ implementation: https://github.com/orlp/pdqsort
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
func pdqsortLessFunc[E any](data []E, a, b, limit int, less func(a, b E) bool) {
const maxInsertion = 12
var (
wasBalanced = true // whether the last partitioning was reasonably balanced
wasPartitioned = true // whether the slice was already partitioned
)
for {
length := b - a
if length <= maxInsertion {
insertionSortLessFunc(data, a, b, less)
return
}
// Fall back to heapsort if too many bad choices were made.
if limit == 0 {
heapSortLessFunc(data, a, b, less)
return
}
// If the last partitioning was imbalanced, we need to breaking patterns.
if !wasBalanced {
breakPatternsLessFunc(data, a, b, less)
limit--
}
pivot, hint := choosePivotLessFunc(data, a, b, less)
if hint == decreasingHint {
reverseRangeLessFunc(data, a, b, less)
// The chosen pivot was pivot-a elements after the start of the array.
// After reversing it is pivot-a elements before the end of the array.
// The idea came from Rust's implementation.
pivot = (b - 1) - (pivot - a)
hint = increasingHint
}
// The slice is likely already sorted.
if wasBalanced && wasPartitioned && hint == increasingHint {
if partialInsertionSortLessFunc(data, a, b, less) {
return
}
}
// Probably the slice contains many duplicate elements, partition the slice into
// elements equal to and elements greater than the pivot.
if a > 0 && !less(data[a-1], data[pivot]) {
mid := partitionEqualLessFunc(data, a, b, pivot, less)
a = mid
continue
}
mid, alreadyPartitioned := partitionLessFunc(data, a, b, pivot, less)
wasPartitioned = alreadyPartitioned
leftLen, rightLen := mid-a, b-mid
balanceThreshold := length / 8
if leftLen < rightLen {
wasBalanced = leftLen >= balanceThreshold
pdqsortLessFunc(data, a, mid, limit, less)
a = mid + 1
} else {
wasBalanced = rightLen >= balanceThreshold
pdqsortLessFunc(data, mid+1, b, limit, less)
b = mid
}
}
}
// partitionLessFunc does one quicksort partition.
// Let p = data[pivot]
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
// On return, data[newpivot] = p
func partitionLessFunc[E any](data []E, a, b, pivot int, less func(a, b E) bool) (newpivot int, alreadyPartitioned bool) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for i <= j && less(data[i], data[a]) {
i++
}
for i <= j && !less(data[j], data[a]) {
j--
}
if i > j {
data[j], data[a] = data[a], data[j]
return j, true
}
data[i], data[j] = data[j], data[i]
i++
j--
for {
for i <= j && less(data[i], data[a]) {
i++
}
for i <= j && !less(data[j], data[a]) {
j--
}
if i > j {
break
}
data[i], data[j] = data[j], data[i]
i++
j--
}
data[j], data[a] = data[a], data[j]
return j, false
}
// partitionEqualLessFunc partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
func partitionEqualLessFunc[E any](data []E, a, b, pivot int, less func(a, b E) bool) (newpivot int) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for {
for i <= j && !less(data[a], data[i]) {
i++
}
for i <= j && less(data[a], data[j]) {
j--
}
if i > j {
break
}
data[i], data[j] = data[j], data[i]
i++
j--
}
return i
}
// partialInsertionSortLessFunc partially sorts a slice, returns true if the slice is sorted at the end.
func partialInsertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) bool {
const (
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
shortestShifting = 50 // don't shift any elements on short arrays
)
i := a + 1
for j := 0; j < maxSteps; j++ {
for i < b && !less(data[i], data[i-1]) {
i++
}
if i == b {
return true
}
if b-a < shortestShifting {
return false
}
data[i], data[i-1] = data[i-1], data[i]
// Shift the smaller one to the left.
if i-a >= 2 {
for j := i - 1; j >= 1; j-- {
if !less(data[j], data[j-1]) {
break
}
data[j], data[j-1] = data[j-1], data[j]
}
}
// Shift the greater one to the right.
if b-i >= 2 {
for j := i + 1; j < b; j++ {
if !less(data[j], data[j-1]) {
break
}
data[j], data[j-1] = data[j-1], data[j]
}
}
}
return false
}
// breakPatternsLessFunc scatters some elements around in an attempt to break some patterns
// that might cause imbalanced partitions in quicksort.
func breakPatternsLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
length := b - a
if length >= 8 {
random := xorshift(length)
modulus := nextPowerOfTwo(length)
for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
other := int(uint(random.Next()) & (modulus - 1))
if other >= length {
other -= length
}
data[idx], data[a+other] = data[a+other], data[idx]
}
}
}
// choosePivotLessFunc chooses a pivot in data[a:b].
//
// [0,8): chooses a static pivot.
// [8,shortestNinther): uses the simple median-of-three method.
// [shortestNinther,∞): uses the Tukey ninther method.
func choosePivotLessFunc[E any](data []E, a, b int, less func(a, b E) bool) (pivot int, hint sortedHint) {
const (
shortestNinther = 50
maxSwaps = 4 * 3
)
l := b - a
var (
swaps int
i = a + l/4*1
j = a + l/4*2
k = a + l/4*3
)
if l >= 8 {
if l >= shortestNinther {
// Tukey ninther method, the idea came from Rust's implementation.
i = medianAdjacentLessFunc(data, i, &swaps, less)
j = medianAdjacentLessFunc(data, j, &swaps, less)
k = medianAdjacentLessFunc(data, k, &swaps, less)
}
// Find the median among i, j, k and stores it into j.
j = medianLessFunc(data, i, j, k, &swaps, less)
}
switch swaps {
case 0:
return j, increasingHint
case maxSwaps:
return j, decreasingHint
default:
return j, unknownHint
}
}
// order2LessFunc returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
func order2LessFunc[E any](data []E, a, b int, swaps *int, less func(a, b E) bool) (int, int) {
if less(data[b], data[a]) {
*swaps++
return b, a
}
return a, b
}
// medianLessFunc returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
func medianLessFunc[E any](data []E, a, b, c int, swaps *int, less func(a, b E) bool) int {
a, b = order2LessFunc(data, a, b, swaps, less)
b, c = order2LessFunc(data, b, c, swaps, less)
a, b = order2LessFunc(data, a, b, swaps, less)
return b
}
// medianAdjacentLessFunc finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
func medianAdjacentLessFunc[E any](data []E, a int, swaps *int, less func(a, b E) bool) int {
return medianLessFunc(data, a-1, a, a+1, swaps, less)
}
func reverseRangeLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
i := a
j := b - 1
for i < j {
data[i], data[j] = data[j], data[i]
i++
j--
}
}
func swapRangeLessFunc[E any](data []E, a, b, n int, less func(a, b E) bool) {
for i := 0; i < n; i++ {
data[a+i], data[b+i] = data[b+i], data[a+i]
}
}
func stableLessFunc[E any](data []E, n int, less func(a, b E) bool) {
blockSize := 20 // must be > 0
a, b := 0, blockSize
for b <= n {
insertionSortLessFunc(data, a, b, less)
a = b
b += blockSize
}
insertionSortLessFunc(data, a, n, less)
for blockSize < n {
a, b = 0, 2*blockSize
for b <= n {
symMergeLessFunc(data, a, a+blockSize, b, less)
a = b
b += 2 * blockSize
}
if m := a + blockSize; m < n {
symMergeLessFunc(data, a, m, n, less)
}
blockSize *= 2
}
}
// symMergeLessFunc merges the two sorted subsequences data[a:m] and data[m:b] using
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
// Computer Science, pages 714-723. Springer, 2004.
//
// Let M = m-a and N = b-n. Wolog M < N.
// The recursion depth is bound by ceil(log(N+M)).
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
//
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
// in the paper carries through for Swap operations, especially as the block
// swapping rotate uses only O(M+N) Swaps.
//
// symMerge assumes non-degenerate arguments: a < m && m < b.
// Having the caller check this condition eliminates many leaf recursion calls,
// which improves performance.
func symMergeLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[a] into data[m:b]
// if data[a:m] only contains one element.
if m-a == 1 {
// Use binary search to find the lowest index i
// such that data[i] >= data[a] for m <= i < b.
// Exit the search loop with i == b in case no such index exists.
i := m
j := b
for i < j {
h := int(uint(i+j) >> 1)
if less(data[h], data[a]) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[a] reaches the position before i.
for k := a; k < i-1; k++ {
data[k], data[k+1] = data[k+1], data[k]
}
return
}
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[m] into data[a:m]
// if data[m:b] only contains one element.
if b-m == 1 {
// Use binary search to find the lowest index i
// such that data[i] > data[m] for a <= i < m.
// Exit the search loop with i == m in case no such index exists.
i := a
j := m
for i < j {
h := int(uint(i+j) >> 1)
if !less(data[m], data[h]) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[m] reaches the position i.
for k := m; k > i; k-- {
data[k], data[k-1] = data[k-1], data[k]
}
return
}
mid := int(uint(a+b) >> 1)
n := mid + m
var start, r int
if m > mid {
start = n - b
r = mid
} else {
start = a
r = m
}
p := n - 1
for start < r {
c := int(uint(start+r) >> 1)
if !less(data[p-c], data[c]) {
start = c + 1
} else {
r = c
}
}
end := n - start
if start < m && m < end {
rotateLessFunc(data, start, m, end, less)
}
if a < start && start < mid {
symMergeLessFunc(data, a, start, mid, less)
}
if mid < end && end < b {
symMergeLessFunc(data, mid, end, b, less)
}
}
// rotateLessFunc rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
// Data of the form 'x u v y' is changed to 'x v u y'.
// rotate performs at most b-a many calls to data.Swap,
// and it assumes non-degenerate arguments: a < m && m < b.
func rotateLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
i := m - a
j := b - m
for i != j {
if i > j {
swapRangeLessFunc(data, m-i, m, j, less)
i -= j
} else {
swapRangeLessFunc(data, m-i, m+j-i, i, less)
j -= i
}
}
// i == j
swapRangeLessFunc(data, m-i, m, i, less)
}

481
vendor/golang.org/x/exp/slices/zsortordered.go generated vendored Normal file
View File

@ -0,0 +1,481 @@
// Code generated by gen_sort_variants.go; DO NOT EDIT.
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package slices
import "golang.org/x/exp/constraints"
// insertionSortOrdered sorts data[a:b] using insertion sort.
func insertionSortOrdered[E constraints.Ordered](data []E, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && (data[j] < data[j-1]); j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
// siftDownOrdered implements the heap property on data[lo:hi].
// first is an offset into the array where the root of the heap lies.
func siftDownOrdered[E constraints.Ordered](data []E, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && (data[first+child] < data[first+child+1]) {
child++
}
if !(data[first+root] < data[first+child]) {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
root = child
}
}
func heapSortOrdered[E constraints.Ordered](data []E, a, b int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDownOrdered(data, i, hi, first)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data[first], data[first+i] = data[first+i], data[first]
siftDownOrdered(data, lo, i, first)
}
}
// pdqsortOrdered sorts data[a:b].
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
// C++ implementation: https://github.com/orlp/pdqsort
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
func pdqsortOrdered[E constraints.Ordered](data []E, a, b, limit int) {
const maxInsertion = 12
var (
wasBalanced = true // whether the last partitioning was reasonably balanced
wasPartitioned = true // whether the slice was already partitioned
)
for {
length := b - a
if length <= maxInsertion {
insertionSortOrdered(data, a, b)
return
}
// Fall back to heapsort if too many bad choices were made.
if limit == 0 {
heapSortOrdered(data, a, b)
return
}
// If the last partitioning was imbalanced, we need to breaking patterns.
if !wasBalanced {
breakPatternsOrdered(data, a, b)
limit--
}
pivot, hint := choosePivotOrdered(data, a, b)
if hint == decreasingHint {
reverseRangeOrdered(data, a, b)
// The chosen pivot was pivot-a elements after the start of the array.
// After reversing it is pivot-a elements before the end of the array.
// The idea came from Rust's implementation.
pivot = (b - 1) - (pivot - a)
hint = increasingHint
}
// The slice is likely already sorted.
if wasBalanced && wasPartitioned && hint == increasingHint {
if partialInsertionSortOrdered(data, a, b) {
return
}
}
// Probably the slice contains many duplicate elements, partition the slice into
// elements equal to and elements greater than the pivot.
if a > 0 && !(data[a-1] < data[pivot]) {
mid := partitionEqualOrdered(data, a, b, pivot)
a = mid
continue
}
mid, alreadyPartitioned := partitionOrdered(data, a, b, pivot)
wasPartitioned = alreadyPartitioned
leftLen, rightLen := mid-a, b-mid
balanceThreshold := length / 8
if leftLen < rightLen {
wasBalanced = leftLen >= balanceThreshold
pdqsortOrdered(data, a, mid, limit)
a = mid + 1
} else {
wasBalanced = rightLen >= balanceThreshold
pdqsortOrdered(data, mid+1, b, limit)
b = mid
}
}
}
// partitionOrdered does one quicksort partition.
// Let p = data[pivot]
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
// On return, data[newpivot] = p
func partitionOrdered[E constraints.Ordered](data []E, a, b, pivot int) (newpivot int, alreadyPartitioned bool) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for i <= j && (data[i] < data[a]) {
i++
}
for i <= j && !(data[j] < data[a]) {
j--
}
if i > j {
data[j], data[a] = data[a], data[j]
return j, true
}
data[i], data[j] = data[j], data[i]
i++
j--
for {
for i <= j && (data[i] < data[a]) {
i++
}
for i <= j && !(data[j] < data[a]) {
j--
}
if i > j {
break
}
data[i], data[j] = data[j], data[i]
i++
j--
}
data[j], data[a] = data[a], data[j]
return j, false
}
// partitionEqualOrdered partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
func partitionEqualOrdered[E constraints.Ordered](data []E, a, b, pivot int) (newpivot int) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for {
for i <= j && !(data[a] < data[i]) {
i++
}
for i <= j && (data[a] < data[j]) {
j--
}
if i > j {
break
}
data[i], data[j] = data[j], data[i]
i++
j--
}
return i
}
// partialInsertionSortOrdered partially sorts a slice, returns true if the slice is sorted at the end.
func partialInsertionSortOrdered[E constraints.Ordered](data []E, a, b int) bool {
const (
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
shortestShifting = 50 // don't shift any elements on short arrays
)
i := a + 1
for j := 0; j < maxSteps; j++ {
for i < b && !(data[i] < data[i-1]) {
i++
}
if i == b {
return true
}
if b-a < shortestShifting {
return false
}
data[i], data[i-1] = data[i-1], data[i]
// Shift the smaller one to the left.
if i-a >= 2 {
for j := i - 1; j >= 1; j-- {
if !(data[j] < data[j-1]) {
break
}
data[j], data[j-1] = data[j-1], data[j]
}
}
// Shift the greater one to the right.
if b-i >= 2 {
for j := i + 1; j < b; j++ {
if !(data[j] < data[j-1]) {
break
}
data[j], data[j-1] = data[j-1], data[j]
}
}
}
return false
}
// breakPatternsOrdered scatters some elements around in an attempt to break some patterns
// that might cause imbalanced partitions in quicksort.
func breakPatternsOrdered[E constraints.Ordered](data []E, a, b int) {
length := b - a
if length >= 8 {
random := xorshift(length)
modulus := nextPowerOfTwo(length)
for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
other := int(uint(random.Next()) & (modulus - 1))
if other >= length {
other -= length
}
data[idx], data[a+other] = data[a+other], data[idx]
}
}
}
// choosePivotOrdered chooses a pivot in data[a:b].
//
// [0,8): chooses a static pivot.
// [8,shortestNinther): uses the simple median-of-three method.
// [shortestNinther,∞): uses the Tukey ninther method.
func choosePivotOrdered[E constraints.Ordered](data []E, a, b int) (pivot int, hint sortedHint) {
const (
shortestNinther = 50
maxSwaps = 4 * 3
)
l := b - a
var (
swaps int
i = a + l/4*1
j = a + l/4*2
k = a + l/4*3
)
if l >= 8 {
if l >= shortestNinther {
// Tukey ninther method, the idea came from Rust's implementation.
i = medianAdjacentOrdered(data, i, &swaps)
j = medianAdjacentOrdered(data, j, &swaps)
k = medianAdjacentOrdered(data, k, &swaps)
}
// Find the median among i, j, k and stores it into j.
j = medianOrdered(data, i, j, k, &swaps)
}
switch swaps {
case 0:
return j, increasingHint
case maxSwaps:
return j, decreasingHint
default:
return j, unknownHint
}
}
// order2Ordered returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
func order2Ordered[E constraints.Ordered](data []E, a, b int, swaps *int) (int, int) {
if data[b] < data[a] {
*swaps++
return b, a
}
return a, b
}
// medianOrdered returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
func medianOrdered[E constraints.Ordered](data []E, a, b, c int, swaps *int) int {
a, b = order2Ordered(data, a, b, swaps)
b, c = order2Ordered(data, b, c, swaps)
a, b = order2Ordered(data, a, b, swaps)
return b
}
// medianAdjacentOrdered finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
func medianAdjacentOrdered[E constraints.Ordered](data []E, a int, swaps *int) int {
return medianOrdered(data, a-1, a, a+1, swaps)
}
func reverseRangeOrdered[E constraints.Ordered](data []E, a, b int) {
i := a
j := b - 1
for i < j {
data[i], data[j] = data[j], data[i]
i++
j--
}
}
func swapRangeOrdered[E constraints.Ordered](data []E, a, b, n int) {
for i := 0; i < n; i++ {
data[a+i], data[b+i] = data[b+i], data[a+i]
}
}
func stableOrdered[E constraints.Ordered](data []E, n int) {
blockSize := 20 // must be > 0
a, b := 0, blockSize
for b <= n {
insertionSortOrdered(data, a, b)
a = b
b += blockSize
}
insertionSortOrdered(data, a, n)
for blockSize < n {
a, b = 0, 2*blockSize
for b <= n {
symMergeOrdered(data, a, a+blockSize, b)
a = b
b += 2 * blockSize
}
if m := a + blockSize; m < n {
symMergeOrdered(data, a, m, n)
}
blockSize *= 2
}
}
// symMergeOrdered merges the two sorted subsequences data[a:m] and data[m:b] using
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
// Computer Science, pages 714-723. Springer, 2004.
//
// Let M = m-a and N = b-n. Wolog M < N.
// The recursion depth is bound by ceil(log(N+M)).
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
//
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
// in the paper carries through for Swap operations, especially as the block
// swapping rotate uses only O(M+N) Swaps.
//
// symMerge assumes non-degenerate arguments: a < m && m < b.
// Having the caller check this condition eliminates many leaf recursion calls,
// which improves performance.
func symMergeOrdered[E constraints.Ordered](data []E, a, m, b int) {
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[a] into data[m:b]
// if data[a:m] only contains one element.
if m-a == 1 {
// Use binary search to find the lowest index i
// such that data[i] >= data[a] for m <= i < b.
// Exit the search loop with i == b in case no such index exists.
i := m
j := b
for i < j {
h := int(uint(i+j) >> 1)
if data[h] < data[a] {
i = h + 1
} else {
j = h
}
}
// Swap values until data[a] reaches the position before i.
for k := a; k < i-1; k++ {
data[k], data[k+1] = data[k+1], data[k]
}
return
}
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[m] into data[a:m]
// if data[m:b] only contains one element.
if b-m == 1 {
// Use binary search to find the lowest index i
// such that data[i] > data[m] for a <= i < m.
// Exit the search loop with i == m in case no such index exists.
i := a
j := m
for i < j {
h := int(uint(i+j) >> 1)
if !(data[m] < data[h]) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[m] reaches the position i.
for k := m; k > i; k-- {
data[k], data[k-1] = data[k-1], data[k]
}
return
}
mid := int(uint(a+b) >> 1)
n := mid + m
var start, r int
if m > mid {
start = n - b
r = mid
} else {
start = a
r = m
}
p := n - 1
for start < r {
c := int(uint(start+r) >> 1)
if !(data[p-c] < data[c]) {
start = c + 1
} else {
r = c
}
}
end := n - start
if start < m && m < end {
rotateOrdered(data, start, m, end)
}
if a < start && start < mid {
symMergeOrdered(data, a, start, mid)
}
if mid < end && end < b {
symMergeOrdered(data, mid, end, b)
}
}
// rotateOrdered rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
// Data of the form 'x u v y' is changed to 'x v u y'.
// rotate performs at most b-a many calls to data.Swap,
// and it assumes non-degenerate arguments: a < m && m < b.
func rotateOrdered[E constraints.Ordered](data []E, a, m, b int) {
i := m - a
j := b - m
for i != j {
if i > j {
swapRangeOrdered(data, m-i, m, j)
i -= j
} else {
swapRangeOrdered(data, m-i, m+j-i, i)
j -= i
}
}
// i == j
swapRangeOrdered(data, m-i, m, i)
}