// Copyright 2010 Petar Maymounkov. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // A Left-Leaning Red-Black (LLRB) implementation of 2-3 balanced binary search trees, // based on the following work: // // http://www.cs.princeton.edu/~rs/talks/LLRB/08Penn.pdf // http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf // http://www.cs.princeton.edu/~rs/talks/LLRB/Java/RedBlackBST.java // // 2-3 trees (and the run-time equivalent 2-3-4 trees) are the de facto standard BST // algoritms found in implementations of Python, Java, and other libraries. The LLRB // implementation of 2-3 trees is a recent improvement on the traditional implementation, // observed and documented by Robert Sedgewick. // package llrb // Tree is a Left-Leaning Red-Black (LLRB) implementation of 2-3 trees type LLRB struct { count int root *Node } type Node struct { Item Left, Right *Node // Pointers to left and right child nodes Black bool // If set, the color of the link (incoming from the parent) is black // In the LLRB, new nodes are always red, hence the zero-value for node } type Item interface { Less(than Item) bool } // func less(x, y Item) bool { if x == pinf { return false } if x == ninf { return true } return x.Less(y) } // Inf returns an Item that is "bigger than" any other item, if sign is positive. // Otherwise it returns an Item that is "smaller than" any other item. func Inf(sign int) Item { if sign == 0 { panic("sign") } if sign > 0 { return pinf } return ninf } var ( ninf = nInf{} pinf = pInf{} ) type nInf struct{} func (nInf) Less(Item) bool { return true } type pInf struct{} func (pInf) Less(Item) bool { return false } // New allocates a new tree func New() *LLRB { return &LLRB{} } // SetRoot sets the root node of the tree. // It is intended to be used by functions that deserialize the tree. func (t *LLRB) SetRoot(r *Node) { t.root = r } // Root returns the root node of the tree. // It is intended to be used by functions that serialize the tree. func (t *LLRB) Root() *Node { return t.root } // Len returns the number of nodes in the tree. func (t *LLRB) Len() int { return t.count } // Has returns true if the tree contains an element whose order is the same as that of key. func (t *LLRB) Has(key Item) bool { return t.Get(key) != nil } // Get retrieves an element from the tree whose order is the same as that of key. func (t *LLRB) Get(key Item) Item { h := t.root for h != nil { switch { case less(key, h.Item): h = h.Left case less(h.Item, key): h = h.Right default: return h.Item } } return nil } // Min returns the minimum element in the tree. func (t *LLRB) Min() Item { h := t.root if h == nil { return nil } for h.Left != nil { h = h.Left } return h.Item } // Max returns the maximum element in the tree. func (t *LLRB) Max() Item { h := t.root if h == nil { return nil } for h.Right != nil { h = h.Right } return h.Item } func (t *LLRB) ReplaceOrInsertBulk(items ...Item) { for _, i := range items { t.ReplaceOrInsert(i) } } func (t *LLRB) InsertNoReplaceBulk(items ...Item) { for _, i := range items { t.InsertNoReplace(i) } } // ReplaceOrInsert inserts item into the tree. If an existing // element has the same order, it is removed from the tree and returned. func (t *LLRB) ReplaceOrInsert(item Item) Item { if item == nil { panic("inserting nil item") } var replaced Item t.root, replaced = t.replaceOrInsert(t.root, item) t.root.Black = true if replaced == nil { t.count++ } return replaced } func (t *LLRB) replaceOrInsert(h *Node, item Item) (*Node, Item) { if h == nil { return newNode(item), nil } h = walkDownRot23(h) var replaced Item if less(item, h.Item) { // BUG h.Left, replaced = t.replaceOrInsert(h.Left, item) } else if less(h.Item, item) { h.Right, replaced = t.replaceOrInsert(h.Right, item) } else { replaced, h.Item = h.Item, item } h = walkUpRot23(h) return h, replaced } // InsertNoReplace inserts item into the tree. If an existing // element has the same order, both elements remain in the tree. func (t *LLRB) InsertNoReplace(item Item) { if item == nil { panic("inserting nil item") } t.root = t.insertNoReplace(t.root, item) t.root.Black = true t.count++ } func (t *LLRB) insertNoReplace(h *Node, item Item) *Node { if h == nil { return newNode(item) } h = walkDownRot23(h) if less(item, h.Item) { h.Left = t.insertNoReplace(h.Left, item) } else { h.Right = t.insertNoReplace(h.Right, item) } return walkUpRot23(h) } // Rotation driver routines for 2-3 algorithm func walkDownRot23(h *Node) *Node { return h } func walkUpRot23(h *Node) *Node { if isRed(h.Right) && !isRed(h.Left) { h = rotateLeft(h) } if isRed(h.Left) && isRed(h.Left.Left) { h = rotateRight(h) } if isRed(h.Left) && isRed(h.Right) { flip(h) } return h } // Rotation driver routines for 2-3-4 algorithm func walkDownRot234(h *Node) *Node { if isRed(h.Left) && isRed(h.Right) { flip(h) } return h } func walkUpRot234(h *Node) *Node { if isRed(h.Right) && !isRed(h.Left) { h = rotateLeft(h) } if isRed(h.Left) && isRed(h.Left.Left) { h = rotateRight(h) } return h } // DeleteMin deletes the minimum element in the tree and returns the // deleted item or nil otherwise. func (t *LLRB) DeleteMin() Item { var deleted Item t.root, deleted = deleteMin(t.root) if t.root != nil { t.root.Black = true } if deleted != nil { t.count-- } return deleted } // deleteMin code for LLRB 2-3 trees func deleteMin(h *Node) (*Node, Item) { if h == nil { return nil, nil } if h.Left == nil { return nil, h.Item } if !isRed(h.Left) && !isRed(h.Left.Left) { h = moveRedLeft(h) } var deleted Item h.Left, deleted = deleteMin(h.Left) return fixUp(h), deleted } // DeleteMax deletes the maximum element in the tree and returns // the deleted item or nil otherwise func (t *LLRB) DeleteMax() Item { var deleted Item t.root, deleted = deleteMax(t.root) if t.root != nil { t.root.Black = true } if deleted != nil { t.count-- } return deleted } func deleteMax(h *Node) (*Node, Item) { if h == nil { return nil, nil } if isRed(h.Left) { h = rotateRight(h) } if h.Right == nil { return nil, h.Item } if !isRed(h.Right) && !isRed(h.Right.Left) { h = moveRedRight(h) } var deleted Item h.Right, deleted = deleteMax(h.Right) return fixUp(h), deleted } // Delete deletes an item from the tree whose key equals key. // The deleted item is return, otherwise nil is returned. func (t *LLRB) Delete(key Item) Item { var deleted Item t.root, deleted = t.delete(t.root, key) if t.root != nil { t.root.Black = true } if deleted != nil { t.count-- } return deleted } func (t *LLRB) delete(h *Node, item Item) (*Node, Item) { var deleted Item if h == nil { return nil, nil } if less(item, h.Item) { if h.Left == nil { // item not present. Nothing to delete return h, nil } if !isRed(h.Left) && !isRed(h.Left.Left) { h = moveRedLeft(h) } h.Left, deleted = t.delete(h.Left, item) } else { if isRed(h.Left) { h = rotateRight(h) } // If @item equals @h.Item and no right children at @h if !less(h.Item, item) && h.Right == nil { return nil, h.Item } // PETAR: Added 'h.Right != nil' below if h.Right != nil && !isRed(h.Right) && !isRed(h.Right.Left) { h = moveRedRight(h) } // If @item equals @h.Item, and (from above) 'h.Right != nil' if !less(h.Item, item) { var subDeleted Item h.Right, subDeleted = deleteMin(h.Right) if subDeleted == nil { panic("logic") } deleted, h.Item = h.Item, subDeleted } else { // Else, @item is bigger than @h.Item h.Right, deleted = t.delete(h.Right, item) } } return fixUp(h), deleted } // Internal node manipulation routines func newNode(item Item) *Node { return &Node{Item: item} } func isRed(h *Node) bool { if h == nil { return false } return !h.Black } func rotateLeft(h *Node) *Node { x := h.Right if x.Black { panic("rotating a black link") } h.Right = x.Left x.Left = h x.Black = h.Black h.Black = false return x } func rotateRight(h *Node) *Node { x := h.Left if x.Black { panic("rotating a black link") } h.Left = x.Right x.Right = h x.Black = h.Black h.Black = false return x } // REQUIRE: Left and Right children must be present func flip(h *Node) { h.Black = !h.Black h.Left.Black = !h.Left.Black h.Right.Black = !h.Right.Black } // REQUIRE: Left and Right children must be present func moveRedLeft(h *Node) *Node { flip(h) if isRed(h.Right.Left) { h.Right = rotateRight(h.Right) h = rotateLeft(h) flip(h) } return h } // REQUIRE: Left and Right children must be present func moveRedRight(h *Node) *Node { flip(h) if isRed(h.Left.Left) { h = rotateRight(h) flip(h) } return h } func fixUp(h *Node) *Node { if isRed(h.Right) { h = rotateLeft(h) } if isRed(h.Left) && isRed(h.Left.Left) { h = rotateRight(h) } if isRed(h.Left) && isRed(h.Right) { flip(h) } return h }