/* Copyright 2014 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package testing import ( "sync" "time" "k8s.io/utils/clock" ) var ( _ = clock.Clock(&FakeClock{}) _ = clock.Clock(&IntervalClock{}) ) // FakeClock implements clock.Clock, but returns an arbitrary time. type FakeClock struct { lock sync.RWMutex time time.Time // waiters are waiting for the fake time to pass their specified time waiters []fakeClockWaiter } type fakeClockWaiter struct { targetTime time.Time stepInterval time.Duration skipIfBlocked bool destChan chan time.Time fired bool } func NewFakeClock(t time.Time) *FakeClock { return &FakeClock{ time: t, } } // Now returns f's time. func (f *FakeClock) Now() time.Time { f.lock.RLock() defer f.lock.RUnlock() return f.time } // Since returns time since the time in f. func (f *FakeClock) Since(ts time.Time) time.Duration { f.lock.RLock() defer f.lock.RUnlock() return f.time.Sub(ts) } // Fake version of time.After(d). func (f *FakeClock) After(d time.Duration) <-chan time.Time { f.lock.Lock() defer f.lock.Unlock() stopTime := f.time.Add(d) ch := make(chan time.Time, 1) // Don't block! f.waiters = append(f.waiters, fakeClockWaiter{ targetTime: stopTime, destChan: ch, }) return ch } // Fake version of time.NewTimer(d). func (f *FakeClock) NewTimer(d time.Duration) clock.Timer { f.lock.Lock() defer f.lock.Unlock() stopTime := f.time.Add(d) ch := make(chan time.Time, 1) // Don't block! timer := &fakeTimer{ fakeClock: f, waiter: fakeClockWaiter{ targetTime: stopTime, destChan: ch, }, } f.waiters = append(f.waiters, timer.waiter) return timer } func (f *FakeClock) Tick(d time.Duration) <-chan time.Time { f.lock.Lock() defer f.lock.Unlock() tickTime := f.time.Add(d) ch := make(chan time.Time, 1) // hold one tick f.waiters = append(f.waiters, fakeClockWaiter{ targetTime: tickTime, stepInterval: d, skipIfBlocked: true, destChan: ch, }) return ch } // Move clock by Duration, notify anyone that's called After, Tick, or NewTimer func (f *FakeClock) Step(d time.Duration) { f.lock.Lock() defer f.lock.Unlock() f.setTimeLocked(f.time.Add(d)) } // Sets the time. func (f *FakeClock) SetTime(t time.Time) { f.lock.Lock() defer f.lock.Unlock() f.setTimeLocked(t) } // Actually changes the time and checks any waiters. f must be write-locked. func (f *FakeClock) setTimeLocked(t time.Time) { f.time = t newWaiters := make([]fakeClockWaiter, 0, len(f.waiters)) for i := range f.waiters { w := &f.waiters[i] if !w.targetTime.After(t) { if w.skipIfBlocked { select { case w.destChan <- t: w.fired = true default: } } else { w.destChan <- t w.fired = true } if w.stepInterval > 0 { for !w.targetTime.After(t) { w.targetTime = w.targetTime.Add(w.stepInterval) } newWaiters = append(newWaiters, *w) } } else { newWaiters = append(newWaiters, f.waiters[i]) } } f.waiters = newWaiters } // Returns true if After has been called on f but not yet satisfied (so you can // write race-free tests). func (f *FakeClock) HasWaiters() bool { f.lock.RLock() defer f.lock.RUnlock() return len(f.waiters) > 0 } func (f *FakeClock) Sleep(d time.Duration) { f.Step(d) } // IntervalClock implements clock.Clock, but each invocation of Now steps the clock forward the specified duration type IntervalClock struct { Time time.Time Duration time.Duration } // Now returns i's time. func (i *IntervalClock) Now() time.Time { i.Time = i.Time.Add(i.Duration) return i.Time } // Since returns time since the time in i. func (i *IntervalClock) Since(ts time.Time) time.Duration { return i.Time.Sub(ts) } // Unimplemented, will panic. // TODO: make interval clock use FakeClock so this can be implemented. func (*IntervalClock) After(d time.Duration) <-chan time.Time { panic("IntervalClock doesn't implement After") } // Unimplemented, will panic. // TODO: make interval clock use FakeClock so this can be implemented. func (*IntervalClock) NewTimer(d time.Duration) clock.Timer { panic("IntervalClock doesn't implement NewTimer") } // Unimplemented, will panic. // TODO: make interval clock use FakeClock so this can be implemented. func (*IntervalClock) Tick(d time.Duration) <-chan time.Time { panic("IntervalClock doesn't implement Tick") } func (*IntervalClock) Sleep(d time.Duration) { panic("IntervalClock doesn't implement Sleep") } var _ = clock.Timer(&fakeTimer{}) // fakeTimer implements clock.Timer based on a FakeClock. type fakeTimer struct { fakeClock *FakeClock waiter fakeClockWaiter } // C returns the channel that notifies when this timer has fired. func (f *fakeTimer) C() <-chan time.Time { return f.waiter.destChan } // Stop stops the timer and returns true if the timer has not yet fired, or false otherwise. func (f *fakeTimer) Stop() bool { f.fakeClock.lock.Lock() defer f.fakeClock.lock.Unlock() newWaiters := make([]fakeClockWaiter, 0, len(f.fakeClock.waiters)) for i := range f.fakeClock.waiters { w := &f.fakeClock.waiters[i] if w != &f.waiter { newWaiters = append(newWaiters, *w) } } f.fakeClock.waiters = newWaiters return !f.waiter.fired } // Reset resets the timer to the fake clock's "now" + d. It returns true if the timer has not yet // fired, or false otherwise. func (f *fakeTimer) Reset(d time.Duration) bool { f.fakeClock.lock.Lock() defer f.fakeClock.lock.Unlock() active := !f.waiter.fired f.waiter.fired = false f.waiter.targetTime = f.fakeClock.time.Add(d) return active }