# Extensions CEL extensions are a related set of constants, functions, macros, or other features which may not be covered by the core CEL spec. ## Bindings Returns a cel.EnvOption to configure support for local variable bindings in expressions. ### Cel.Bind Binds a simple identifier to an initialization expression which may be used in a subsequenct result expression. Bindings may also be nested within each other. cel.bind(, , ) Examples: cel.bind(a, 'hello', cel.bind(b, 'world', a + b + b + a)) // "helloworldworldhello" // Avoid a list allocation within the exists comprehension. cel.bind(valid_values, [a, b, c], [d, e, f].exists(elem, elem in valid_values)) Local bindings are not guaranteed to be evaluated before use. ## Encoders Encoding utilies for marshalling data into standardized representations. ### Base64.Decode Decodes base64-encoded string to bytes. This function will return an error if the string input is not base64-encoded. base64.decode() -> Examples: base64.decode('aGVsbG8=') // return b'hello' base64.decode('aGVsbG8') // error ### Base64.Encode Encodes bytes to a base64-encoded string. base64.encode() -> Example: base64.encode(b'hello') // return 'aGVsbG8=' ## Math Math helper macros and functions. Note, all macros use the 'math' namespace; however, at the time of macro expansion the namespace looks just like any other identifier. If you are currently using a variable named 'math', the macro will likely work just as intended; however, there is some chance for collision. ### Math.Greatest Returns the greatest valued number present in the arguments to the macro. Greatest is a variable argument count macro which must take at least one argument. Simple numeric and list literals are supported as valid argument types; however, other literals will be flagged as errors during macro expansion. If the argument expression does not resolve to a numeric or list(numeric) type during type-checking, or during runtime then an error will be produced. If a list argument is empty, this too will produce an error. math.greatest(, ...) -> Examples: math.greatest(1) // 1 math.greatest(1u, 2u) // 2u math.greatest(-42.0, -21.5, -100.0) // -21.5 math.greatest([-42.0, -21.5, -100.0]) // -21.5 math.greatest(numbers) // numbers must be list(numeric) math.greatest() // parse error math.greatest('string') // parse error math.greatest(a, b) // check-time error if a or b is non-numeric math.greatest(dyn('string')) // runtime error ### Math.Least Returns the least valued number present in the arguments to the macro. Least is a variable argument count macro which must take at least one argument. Simple numeric and list literals are supported as valid argument types; however, other literals will be flagged as errors during macro expansion. If the argument expression does not resolve to a numeric or list(numeric) type during type-checking, or during runtime then an error will be produced. If a list argument is empty, this too will produce an error. math.least(, ...) -> Examples: math.least(1) // 1 math.least(1u, 2u) // 1u math.least(-42.0, -21.5, -100.0) // -100.0 math.least([-42.0, -21.5, -100.0]) // -100.0 math.least(numbers) // numbers must be list(numeric) math.least() // parse error math.least('string') // parse error math.least(a, b) // check-time error if a or b is non-numeric math.least(dyn('string')) // runtime error ### Math.BitOr Introduced at version: 1 Performs a bitwise-OR operation over two int or uint values. math.bitOr(, ) -> math.bitOr(, ) -> Examples: math.bitOr(1u, 2u) // returns 3u math.bitOr(-2, -4) // returns -2 ### Math.BitAnd Introduced at version: 1 Performs a bitwise-AND operation over two int or uint values. math.bitAnd(, ) -> math.bitAnd(, ) -> Examples: math.bitAnd(3u, 2u) // return 2u math.bitAnd(3, 5) // returns 3 math.bitAnd(-3, -5) // returns -7 ### Math.BitXor Introduced at version: 1 math.bitXor(, ) -> math.bitXor(, ) -> Performs a bitwise-XOR operation over two int or uint values. Examples: math.bitXor(3u, 5u) // returns 6u math.bitXor(1, 3) // returns 2 ### Math.BitNot Introduced at version: 1 Function which accepts a single int or uint and performs a bitwise-NOT ones-complement of the given binary value. math.bitNot() -> math.bitNot() -> Examples math.bitNot(1) // returns -1 math.bitNot(-1) // return 0 math.bitNot(0u) // returns 18446744073709551615u ### Math.BitShiftLeft Introduced at version: 1 Perform a left shift of bits on the first parameter, by the amount of bits specified in the second parameter. The first parameter is either a uint or an int. The second parameter must be an int. When the second parameter is 64 or greater, 0 will be always be returned since the number of bits shifted is greater than or equal to the total bit length of the number being shifted. Negative valued bit shifts will result in a runtime error. math.bitShiftLeft(, ) -> math.bitShiftLeft(, ) -> Examples math.bitShiftLeft(1, 2) // returns 4 math.bitShiftLeft(-1, 2) // returns -4 math.bitShiftLeft(1u, 2) // return 4u math.bitShiftLeft(1u, 200) // returns 0u ### Math.BitShiftRight Introduced at version: 1 Perform a right shift of bits on the first parameter, by the amount of bits specified in the second parameter. The first parameter is either a uint or an int. The second parameter must be an int. When the second parameter is 64 or greater, 0 will always be returned since the number of bits shifted is greater than or equal to the total bit length of the number being shifted. Negative valued bit shifts will result in a runtime error. The sign bit extension will not be preserved for this operation: vacant bits on the left are filled with 0. math.bitShiftRight(, ) -> math.bitShiftRight(, ) -> Examples math.bitShiftRight(1024, 2) // returns 256 math.bitShiftRight(1024u, 2) // returns 256u math.bitShiftRight(1024u, 64) // returns 0u ### Math.Ceil Introduced at version: 1 Compute the ceiling of a double value. math.ceil() -> Examples: math.ceil(1.2) // returns 2.0 math.ceil(-1.2) // returns -1.0 ### Math.Floor Introduced at version: 1 Compute the floor of a double value. math.floor() -> Examples: math.floor(1.2) // returns 1.0 math.floor(-1.2) // returns -2.0 ### Math.Round Introduced at version: 1 Rounds the double value to the nearest whole number with ties rounding away from zero, e.g. 1.5 -> 2.0, -1.5 -> -2.0. math.round() -> Examples: math.round(1.2) // returns 1.0 math.round(1.5) // returns 2.0 math.round(-1.5) // returns -2.0 ### Math.Trunc Introduced at version: 1 Truncates the fractional portion of the double value. math.trunc() -> Examples: math.trunc(-1.3) // returns -1.0 math.trunc(1.3) // returns 1.0 ### Math.Abs Introduced at version: 1 Returns the absolute value of the numeric type provided as input. If the value is NaN, the output is NaN. If the input is int64 min, the function will result in an overflow error. math.abs() -> math.abs() -> math.abs() -> Examples: math.abs(-1) // returns 1 math.abs(1) // returns 1 math.abs(-9223372036854775808) // overlflow error ### Math.Sign Introduced at version: 1 Returns the sign of the numeric type, either -1, 0, 1 as an int, double, or uint depending on the overload. For floating point values, if NaN is provided as input, the output is also NaN. The implementation does not differentiate between positive and negative zero. math.sign() -> math.sign() -> math.sign() -> Examples: math.sign(-42) // returns -1 math.sign(0) // returns 0 math.sign(42) // returns 1 ### Math.IsInf Introduced at version: 1 Returns true if the input double value is -Inf or +Inf. math.isInf() -> Examples: math.isInf(1.0/0.0) // returns true math.isInf(1.2) // returns false ### Math.IsNaN Introduced at version: 1 Returns true if the input double value is NaN, false otherwise. math.isNaN() -> Examples: math.isNaN(0.0/0.0) // returns true math.isNaN(1.2) // returns false ### Math.IsFinite Introduced at version: 1 Returns true if the value is a finite number. Equivalent in behavior to: !math.isNaN(double) && !math.isInf(double) math.isFinite() -> Examples: math.isFinite(0.0/0.0) // returns false math.isFinite(1.2) // returns true ## Protos Protos configure extended macros and functions for proto manipulation. Note, all macros use the 'proto' namespace; however, at the time of macro expansion the namespace looks just like any other identifier. If you are currently using a variable named 'proto', the macro will likely work just as you intend; however, there is some chance for collision. ### Protos.GetExt Macro which generates a select expression that retrieves an extension field from the input proto2 syntax message. If the field is not set, the default value forthe extension field is returned according to safe-traversal semantics. proto.getExt(, ) -> Example: proto.getExt(msg, google.expr.proto2.test.int32_ext) // returns int value ### Protos.HasExt Macro which generates a test-only select expression that determines whether an extension field is set on a proto2 syntax message. proto.hasExt(, ) -> Example: proto.hasExt(msg, google.expr.proto2.test.int32_ext) // returns true || false ## Lists Extended functions for list manipulation. As a general note, all indices are zero-based. ### Distinct **Introduced in version 2** Returns the distinct elements of a list. .distinct() -> Examples: [1, 2, 2, 3, 3, 3].distinct() // return [1, 2, 3] ["b", "b", "c", "a", "c"].distinct() // return ["b", "c", "a"] [1, "b", 2, "b"].distinct() // return [1, "b", 2] ### Flatten **Introduced in version 1** Flattens a list recursively. If an optional depth is provided, the list is flattened to a the specificied level. A negative depth value will result in an error. .flatten() -> .flatten(, ) -> Examples: [1,[2,3],[4]].flatten() // return [1, 2, 3, 4] [1,[2,[3,4]]].flatten() // return [1, 2, [3, 4]] [1,2,[],[],[3,4]].flatten() // return [1, 2, 3, 4] [1,[2,[3,[4]]]].flatten(2) // return [1, 2, 3, [4]] [1,[2,[3,[4]]]].flatten(-1) // error ### Range **Introduced in version 2** Returns a list of integers from 0 to n-1. lists.range() -> Examples: lists.range(5) -> [0, 1, 2, 3, 4] ### Reverse **Introduced in version 2** Returns the elements of a list in reverse order. .reverse() -> Examples: [5, 3, 1, 2].reverse() // return [2, 1, 3, 5] ### Slice Returns a new sub-list using the indexes provided. .slice(, ) -> Examples: [1,2,3,4].slice(1, 3) // return [2, 3] [1,2,3,4].slice(2, 4) // return [3, 4] ### Sort **Introduced in version 2** Sorts a list with comparable elements. If the element type is not comparable or the element types are not the same, the function will produce an error. .sort() -> T in {int, uint, double, bool, duration, timestamp, string, bytes} Examples: [3, 2, 1].sort() // return [1, 2, 3] ["b", "c", "a"].sort() // return ["a", "b", "c"] [1, "b"].sort() // error [[1, 2, 3]].sort() // error ### SortBy **Introduced in version 2** Sorts a list by a key value, i.e., the order is determined by the result of an expression applied to each element of the list. .sortBy(, ) -> keyExpr returns a value in {int, uint, double, bool, duration, timestamp, string, bytes} Examples: [ Player { name: "foo", score: 0 }, Player { name: "bar", score: -10 }, Player { name: "baz", score: 1000 }, ].sortBy(e, e.score).map(e, e.name) == ["bar", "foo", "baz"] ## Sets Sets provides set relationship tests. There is no set type within CEL, and while one may be introduced in the future, there are cases where a `list` type is known to behave like a set. For such cases, this library provides some basic functionality for determining set containment, equivalence, and intersection. ### Sets.Contains Returns whether the first list argument contains all elements in the second list argument. The list may contain elements of any type and standard CEL equality is used to determine whether a value exists in both lists. If the second list is empty, the result will always return true. sets.contains(list(T), list(T)) -> bool Examples: sets.contains([], []) // true sets.contains([], [1]) // false sets.contains([1, 2, 3, 4], [2, 3]) // true sets.contains([1, 2.0, 3u], [1.0, 2u, 3]) // true ### Sets.Equivalent Returns whether the first and second list are set equivalent. Lists are set equivalent if for every item in the first list, there is an element in the second which is equal. The lists may not be of the same size as they do not guarantee the elements within them are unique, so size does not factor into the computation. sets.equivalent(list(T), list(T)) -> bool Examples: sets.equivalent([], []) // true sets.equivalent([1], [1, 1]) // true sets.equivalent([1], [1u, 1.0]) // true sets.equivalent([1, 2, 3], [3u, 2.0, 1]) // true ### Sets.Intersects Returns whether the first list has at least one element whose value is equal to an element in the second list. If either list is empty, the result will be false. sets.intersects(list(T), list(T)) -> bool Examples: sets.intersects([1], []) // false sets.intersects([1], [1, 2]) // true sets.intersects([[1], [2, 3]], [[1, 2], [2, 3.0]]) // true ## Strings Extended functions for string manipulation. As a general note, all indices are zero-based. ### CharAt Returns the character at the given position. If the position is negative, or greater than the length of the string, the function will produce an error: .charAt() -> Examples: 'hello'.charAt(4) // return 'o' 'hello'.charAt(5) // return '' 'hello'.charAt(-1) // error ### IndexOf Returns the integer index of the first occurrence of the search string. If the search string is not found the function returns -1. The function also accepts an optional position from which to begin the substring search. If the substring is the empty string, the index where the search starts is returned (zero or custom). .indexOf() -> .indexOf(, ) -> Examples: 'hello mellow'.indexOf('') // returns 0 'hello mellow'.indexOf('ello') // returns 1 'hello mellow'.indexOf('jello') // returns -1 'hello mellow'.indexOf('', 2) // returns 2 'hello mellow'.indexOf('ello', 2) // returns 7 'hello mellow'.indexOf('ello', 20) // returns -1 'hello mellow'.indexOf('ello', -1) // error ### Join Returns a new string where the elements of string list are concatenated. The function also accepts an optional separator which is placed between elements in the resulting string. >.join() -> >.join() -> Examples: ['hello', 'mellow'].join() // returns 'hellomellow' ['hello', 'mellow'].join(' ') // returns 'hello mellow' [].join() // returns '' [].join('/') // returns '' ### LastIndexOf Returns the integer index of the last occurrence of the search string. If the search string is not found the function returns -1. The function also accepts an optional position which represents the last index to be considered as the beginning of the substring match. If the substring is the empty string, the index where the search starts is returned (string length or custom). .lastIndexOf() -> .lastIndexOf(, ) -> Examples: 'hello mellow'.lastIndexOf('') // returns 12 'hello mellow'.lastIndexOf('ello') // returns 7 'hello mellow'.lastIndexOf('jello') // returns -1 'hello mellow'.lastIndexOf('ello', 6) // returns 1 'hello mellow'.lastIndexOf('ello', 20) // returns -1 'hello mellow'.lastIndexOf('ello', -1) // error ### LowerAscii Returns a new string where all ASCII characters are lower-cased. This function does not perform Unicode case-mapping for characters outside the ASCII range. .lowerAscii() -> Examples: 'TacoCat'.lowerAscii() // returns 'tacocat' 'TacoCÆt Xii'.lowerAscii() // returns 'tacocÆt xii' ### Quote **Introduced in version 1** Takes the given string and makes it safe to print (without any formatting due to escape sequences). If any invalid UTF-8 characters are encountered, they are replaced with \uFFFD. strings.quote() Examples: strings.quote('single-quote with "double quote"') // returns '"single-quote with \"double quote\""' strings.quote("two escape sequences \a\n") // returns '"two escape sequences \\a\\n"' ### Replace Returns a new string based on the target, which replaces the occurrences of a search string with a replacement string if present. The function accepts an optional limit on the number of substring replacements to be made. When the replacement limit is 0, the result is the original string. When the limit is a negative number, the function behaves the same as replace all. .replace(, ) -> .replace(, , ) -> Examples: 'hello hello'.replace('he', 'we') // returns 'wello wello' 'hello hello'.replace('he', 'we', -1) // returns 'wello wello' 'hello hello'.replace('he', 'we', 1) // returns 'wello hello' 'hello hello'.replace('he', 'we', 0) // returns 'hello hello' ### Split Returns a list of strings split from the input by the given separator. The function accepts an optional argument specifying a limit on the number of substrings produced by the split. When the split limit is 0, the result is an empty list. When the limit is 1, the result is the target string to split. When the limit is a negative number, the function behaves the same as split all. .split() -> > .split(, ) -> > Examples: 'hello hello hello'.split(' ') // returns ['hello', 'hello', 'hello'] 'hello hello hello'.split(' ', 0) // returns [] 'hello hello hello'.split(' ', 1) // returns ['hello hello hello'] 'hello hello hello'.split(' ', 2) // returns ['hello', 'hello hello'] 'hello hello hello'.split(' ', -1) // returns ['hello', 'hello', 'hello'] ### Substring Returns the substring given a numeric range corresponding to character positions. Optionally may omit the trailing range for a substring from a given character position until the end of a string. Character offsets are 0-based with an inclusive start range and exclusive end range. It is an error to specify an end range that is lower than the start range, or for either the start or end index to be negative or exceed the string length. .substring() -> .substring(, ) -> Examples: 'tacocat'.substring(4) // returns 'cat' 'tacocat'.substring(0, 4) // returns 'taco' 'tacocat'.substring(-1) // error 'tacocat'.substring(2, 1) // error ### Trim Returns a new string which removes the leading and trailing whitespace in the target string. The trim function uses the Unicode definition of whitespace which does not include the zero-width spaces. See: https://en.wikipedia.org/wiki/Whitespace_character#Unicode .trim() -> Examples: ' \ttrim\n '.trim() // returns 'trim' ### UpperAscii Returns a new string where all ASCII characters are upper-cased. This function does not perform Unicode case-mapping for characters outside the ASCII range. .upperAscii() -> Examples: 'TacoCat'.upperAscii() // returns 'TACOCAT' 'TacoCÆt Xii'.upperAscii() // returns 'TACOCÆT XII' ### Reverse Returns a new string whose characters are the same as the target string, only formatted in reverse order. This function relies on converting strings to rune arrays in order to reverse. It can be located in Version 3 of strings. .reverse() -> Examples: 'gums'.reverse() // returns 'smug' 'John Smith'.reverse() // returns 'htimS nhoJ' ## TwoVarComprehensions TwoVarComprehensions introduces support for two-variable comprehensions. The two-variable form of comprehensions looks similar to the one-variable counterparts. Where possible, the same macro names were used and additional macro signatures added. The notable distinction for two-variable comprehensions is the introduction of `transformList`, `transformMap`, and `transformMapEntry` support for list and map types rather than the more traditional `map` and `filter` macros. ### All Comprehension which tests whether all elements in the list or map satisfy a given predicate. The `all` macro evaluates in a manner consistent with logical AND and will short-circuit when encountering a `false` value. .all(indexVar, valueVar, ) -> bool .all(keyVar, valueVar, ) -> bool Examples: [1, 2, 3].all(i, j, i < j) // returns true {'hello': 'world', 'taco': 'taco'}.all(k, v, k != v) // returns false // Combines two-variable comprehension with single variable {'h': ['hello', 'hi'], 'j': ['joke', 'jog']} .all(k, vals, vals.all(v, v.startsWith(k))) // returns true ### Exists Comprehension which tests whether any element in a list or map exists which satisfies a given predicate. The `exists` macro evaluates in a manner consistent with logical OR and will short-circuit when encountering a `true` value. .exists(indexVar, valueVar, ) -> bool .exists(keyVar, valueVar, ) -> bool Examples: {'greeting': 'hello', 'farewell': 'goodbye'} .exists(k, v, k.startsWith('good') || v.endsWith('bye')) // returns true [1, 2, 4, 8, 16].exists(i, v, v == 1024 && i == 10) // returns false ### ExistsOne Comprehension which tests whether exactly one element in a list or map exists which satisfies a given predicate expression. This comprehension does not short-circuit in keeping with the one-variable exists one macro semantics. .existsOne(indexVar, valueVar, ) .existsOne(keyVar, valueVar, ) This macro may also be used with the `exists_one` function name, for compatibility with the one-variable macro of the same name. Examples: [1, 2, 1, 3, 1, 4].existsOne(i, v, i == 1 || v == 1) // returns false [1, 1, 2, 2, 3, 3].existsOne(i, v, i == 2 && v == 2) // returns true {'i': 0, 'j': 1, 'k': 2}.existsOne(i, v, i == 'l' || v == 1) // returns true ### TransformList Comprehension which converts a map or a list into a list value. The output expression of the comprehension determines the contents of the output list. Elements in the list may optionally be filtered according to a predicate expression, where elements that satisfy the predicate are transformed. .transformList(indexVar, valueVar, ) .transformList(indexVar, valueVar, , ) .transformList(keyVar, valueVar, ) .transformList(keyVar, valueVar, , ) Examples: [1, 2, 3].transformList(indexVar, valueVar, (indexVar * valueVar) + valueVar) // returns [1, 4, 9] [1, 2, 3].transformList(indexVar, valueVar, indexVar % 2 == 0 (indexVar * valueVar) + valueVar) // returns [1, 9] {'greeting': 'hello', 'farewell': 'goodbye'} .transformList(k, _, k) // returns ['greeting', 'farewell'] {'greeting': 'hello', 'farewell': 'goodbye'} .transformList(_, v, v) // returns ['hello', 'goodbye'] ### TransformMap Comprehension which converts a map or a list into a map value. The output expression of the comprehension determines the value of the output map entry; however, the key remains fixed. Elements in the map may optionally be filtered according to a predicate expression, where elements that satisfy the predicate are transformed. .transformMap(indexVar, valueVar, ) .transformMap(indexVar, valueVar, , ) .transformMap(keyVar, valueVar, ) .transformMap(keyVar, valueVar, , ) Examples: [1, 2, 3].transformMap(indexVar, valueVar, (indexVar * valueVar) + valueVar) // returns {0: 1, 1: 4, 2: 9} [1, 2, 3].transformMap(indexVar, valueVar, indexVar % 2 == 0 (indexVar * valueVar) + valueVar) // returns {0: 1, 2: 9} {'greeting': 'hello'}.transformMap(k, v, v + '!') // returns {'greeting': 'hello!'} ### TransformMapEntry Comprehension which converts a map or a list into a map value; however, this transform expects the entry expression be a map literal. If the transform produces an entry which duplicates a key in the target map, the comprehension will error. Note, that key equality is determined using CEL equality which asserts that numeric values which are equal, even if they don't have the same type will cause a key collision. Elements in the map may optionally be filtered according to a predicate expression, where elements that satisfy the predicate are transformed. .transformMap(indexVar, valueVar, ) .transformMap(indexVar, valueVar, , ) .transformMap(keyVar, valueVar, ) .transformMap(keyVar, valueVar, , ) Examples: // returns {'hello': 'greeting'} {'greeting': 'hello'}.transformMapEntry(keyVar, valueVar, {valueVar: keyVar}) // reverse lookup, require all values in list be unique [1, 2, 3].transformMapEntry(indexVar, valueVar, {valueVar: indexVar}) {'greeting': 'aloha', 'farewell': 'aloha'} .transformMapEntry(keyVar, valueVar, {valueVar: keyVar}) // error, duplicate key