// Copyright 2018 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package parser import ( "fmt" "github.com/google/cel-go/common" "github.com/google/cel-go/common/ast" "github.com/google/cel-go/common/operators" "github.com/google/cel-go/common/types" "github.com/google/cel-go/common/types/ref" ) // NewGlobalMacro creates a Macro for a global function with the specified arg count. func NewGlobalMacro(function string, argCount int, expander MacroExpander) Macro { return ¯o{ function: function, argCount: argCount, expander: expander} } // NewReceiverMacro creates a Macro for a receiver function matching the specified arg count. func NewReceiverMacro(function string, argCount int, expander MacroExpander) Macro { return ¯o{ function: function, argCount: argCount, expander: expander, receiverStyle: true} } // NewGlobalVarArgMacro creates a Macro for a global function with a variable arg count. func NewGlobalVarArgMacro(function string, expander MacroExpander) Macro { return ¯o{ function: function, expander: expander, varArgStyle: true} } // NewReceiverVarArgMacro creates a Macro for a receiver function matching a variable arg count. func NewReceiverVarArgMacro(function string, expander MacroExpander) Macro { return ¯o{ function: function, expander: expander, receiverStyle: true, varArgStyle: true} } // Macro interface for describing the function signature to match and the MacroExpander to apply. // // Note: when a Macro should apply to multiple overloads (based on arg count) of a given function, // a Macro should be created per arg-count. type Macro interface { // Function name to match. Function() string // ArgCount for the function call. // // When the macro is a var-arg style macro, the return value will be zero, but the MacroKey // will contain a `*` where the arg count would have been. ArgCount() int // IsReceiverStyle returns true if the macro matches a receiver style call. IsReceiverStyle() bool // MacroKey returns the macro signatures accepted by this macro. // // Format: `::`. // // When the macros is a var-arg style macro, the `arg-count` value is represented as a `*`. MacroKey() string // Expander returns the MacroExpander to apply when the macro key matches the parsed call // signature. Expander() MacroExpander } // Macro type which declares the function name and arg count expected for the // macro, as well as a macro expansion function. type macro struct { function string receiverStyle bool varArgStyle bool argCount int expander MacroExpander } // Function returns the macro's function name (i.e. the function whose syntax it mimics). func (m *macro) Function() string { return m.function } // ArgCount returns the number of arguments the macro expects. func (m *macro) ArgCount() int { return m.argCount } // IsReceiverStyle returns whether the macro is receiver style. func (m *macro) IsReceiverStyle() bool { return m.receiverStyle } // Expander implements the Macro interface method. func (m *macro) Expander() MacroExpander { return m.expander } // MacroKey implements the Macro interface method. func (m *macro) MacroKey() string { if m.varArgStyle { return makeVarArgMacroKey(m.function, m.receiverStyle) } return makeMacroKey(m.function, m.argCount, m.receiverStyle) } func makeMacroKey(name string, args int, receiverStyle bool) string { return fmt.Sprintf("%s:%d:%v", name, args, receiverStyle) } func makeVarArgMacroKey(name string, receiverStyle bool) string { return fmt.Sprintf("%s:*:%v", name, receiverStyle) } // MacroExpander converts a call and its associated arguments into a new CEL abstract syntax tree. // // If the MacroExpander determines within the implementation that an expansion is not needed it may return // a nil Expr value to indicate a non-match. However, if an expansion is to be performed, but the arguments // are not well-formed, the result of the expansion will be an error. // // The MacroExpander accepts as arguments a MacroExprHelper as well as the arguments used in the function call // and produces as output an Expr ast node. // // Note: when the Macro.IsReceiverStyle() method returns true, the target argument will be nil. type MacroExpander func(eh ExprHelper, target ast.Expr, args []ast.Expr) (ast.Expr, *common.Error) // ExprHelper assists with the creation of Expr values in a manner which is consistent // the internal semantics and id generation behaviors of the parser and checker libraries. type ExprHelper interface { // Copy the input expression with a brand new set of identifiers. Copy(ast.Expr) ast.Expr // Literal creates an Expr value for a scalar literal value. NewLiteral(value ref.Val) ast.Expr // NewList creates a list literal instruction with an optional set of elements. NewList(elems ...ast.Expr) ast.Expr // NewMap creates a CreateStruct instruction for a map where the map is comprised of the // optional set of key, value entries. NewMap(entries ...ast.EntryExpr) ast.Expr // NewMapEntry creates a Map Entry for the key, value pair. NewMapEntry(key ast.Expr, val ast.Expr, optional bool) ast.EntryExpr // NewStruct creates a struct literal expression with an optional set of field initializers. NewStruct(typeName string, fieldInits ...ast.EntryExpr) ast.Expr // NewStructField creates a new struct field initializer from the field name and value. NewStructField(field string, init ast.Expr, optional bool) ast.EntryExpr // NewComprehension creates a new comprehension instruction. // // - iterRange represents the expression that resolves to a list or map where the elements or // keys (respectively) will be iterated over. // - iterVar is the iteration variable name. // - accuVar is the accumulation variable name, typically parser.AccumulatorName. // - accuInit is the initial expression whose value will be set for the accuVar prior to // folding. // - condition is the expression to test to determine whether to continue folding. // - step is the expression to evaluation at the conclusion of a single fold iteration. // - result is the computation to evaluate at the conclusion of the fold. // // The accuVar should not shadow variable names that you would like to reference within the // environment in the step and condition expressions. Presently, the name __result__ is commonly // used by built-in macros but this may change in the future. NewComprehension(iterRange ast.Expr, iterVar string, accuVar string, accuInit ast.Expr, condition ast.Expr, step ast.Expr, result ast.Expr) ast.Expr // NewIdent creates an identifier Expr value. NewIdent(name string) ast.Expr // NewAccuIdent returns an accumulator identifier for use with comprehension results. NewAccuIdent() ast.Expr // NewCall creates a function call Expr value for a global (free) function. NewCall(function string, args ...ast.Expr) ast.Expr // NewMemberCall creates a function call Expr value for a receiver-style function. NewMemberCall(function string, target ast.Expr, args ...ast.Expr) ast.Expr // NewPresenceTest creates a Select TestOnly Expr value for modelling has() semantics. NewPresenceTest(operand ast.Expr, field string) ast.Expr // NewSelect create a field traversal Expr value. NewSelect(operand ast.Expr, field string) ast.Expr // OffsetLocation returns the Location of the expression identifier. OffsetLocation(exprID int64) common.Location // NewError associates an error message with a given expression id. NewError(exprID int64, message string) *common.Error } var ( // HasMacro expands "has(m.f)" which tests the presence of a field, avoiding the need to // specify the field as a string. HasMacro = NewGlobalMacro(operators.Has, 1, MakeHas) // AllMacro expands "range.all(var, predicate)" into a comprehension which ensures that all // elements in the range satisfy the predicate. AllMacro = NewReceiverMacro(operators.All, 2, MakeAll) // ExistsMacro expands "range.exists(var, predicate)" into a comprehension which ensures that // some element in the range satisfies the predicate. ExistsMacro = NewReceiverMacro(operators.Exists, 2, MakeExists) // ExistsOneMacro expands "range.exists_one(var, predicate)", which is true if for exactly one // element in range the predicate holds. ExistsOneMacro = NewReceiverMacro(operators.ExistsOne, 2, MakeExistsOne) // MapMacro expands "range.map(var, function)" into a comprehension which applies the function // to each element in the range to produce a new list. MapMacro = NewReceiverMacro(operators.Map, 2, MakeMap) // MapFilterMacro expands "range.map(var, predicate, function)" into a comprehension which // first filters the elements in the range by the predicate, then applies the transform function // to produce a new list. MapFilterMacro = NewReceiverMacro(operators.Map, 3, MakeMap) // FilterMacro expands "range.filter(var, predicate)" into a comprehension which filters // elements in the range, producing a new list from the elements that satisfy the predicate. FilterMacro = NewReceiverMacro(operators.Filter, 2, MakeFilter) // AllMacros includes the list of all spec-supported macros. AllMacros = []Macro{ HasMacro, AllMacro, ExistsMacro, ExistsOneMacro, MapMacro, MapFilterMacro, FilterMacro, } // NoMacros list. NoMacros = []Macro{} ) // AccumulatorName is the traditional variable name assigned to the fold accumulator variable. const AccumulatorName = "__result__" type quantifierKind int const ( quantifierAll quantifierKind = iota quantifierExists quantifierExistsOne ) // MakeAll expands the input call arguments into a comprehension that returns true if all of the // elements in the range match the predicate expressions: // .all(, ) func MakeAll(eh ExprHelper, target ast.Expr, args []ast.Expr) (ast.Expr, *common.Error) { return makeQuantifier(quantifierAll, eh, target, args) } // MakeExists expands the input call arguments into a comprehension that returns true if any of the // elements in the range match the predicate expressions: // .exists(, ) func MakeExists(eh ExprHelper, target ast.Expr, args []ast.Expr) (ast.Expr, *common.Error) { return makeQuantifier(quantifierExists, eh, target, args) } // MakeExistsOne expands the input call arguments into a comprehension that returns true if exactly // one of the elements in the range match the predicate expressions: // .exists_one(, ) func MakeExistsOne(eh ExprHelper, target ast.Expr, args []ast.Expr) (ast.Expr, *common.Error) { return makeQuantifier(quantifierExistsOne, eh, target, args) } // MakeMap expands the input call arguments into a comprehension that transforms each element in the // input to produce an output list. // // There are two call patterns supported by map: // // .map(, ) // .map(, , ) // // In the second form only iterVar values which return true when provided to the predicate expression // are transformed. func MakeMap(eh ExprHelper, target ast.Expr, args []ast.Expr) (ast.Expr, *common.Error) { v, found := extractIdent(args[0]) if !found { return nil, eh.NewError(args[0].ID(), "argument is not an identifier") } var fn ast.Expr var filter ast.Expr if len(args) == 3 { filter = args[1] fn = args[2] } else { filter = nil fn = args[1] } init := eh.NewList() condition := eh.NewLiteral(types.True) step := eh.NewCall(operators.Add, eh.NewAccuIdent(), eh.NewList(fn)) if filter != nil { step = eh.NewCall(operators.Conditional, filter, step, eh.NewAccuIdent()) } return eh.NewComprehension(target, v, AccumulatorName, init, condition, step, eh.NewAccuIdent()), nil } // MakeFilter expands the input call arguments into a comprehension which produces a list which contains // only elements which match the provided predicate expression: // .filter(, ) func MakeFilter(eh ExprHelper, target ast.Expr, args []ast.Expr) (ast.Expr, *common.Error) { v, found := extractIdent(args[0]) if !found { return nil, eh.NewError(args[0].ID(), "argument is not an identifier") } filter := args[1] init := eh.NewList() condition := eh.NewLiteral(types.True) step := eh.NewCall(operators.Add, eh.NewAccuIdent(), eh.NewList(args[0])) step = eh.NewCall(operators.Conditional, filter, step, eh.NewAccuIdent()) return eh.NewComprehension(target, v, AccumulatorName, init, condition, step, eh.NewAccuIdent()), nil } // MakeHas expands the input call arguments into a presence test, e.g. has(.field) func MakeHas(eh ExprHelper, target ast.Expr, args []ast.Expr) (ast.Expr, *common.Error) { if args[0].Kind() == ast.SelectKind { s := args[0].AsSelect() return eh.NewPresenceTest(s.Operand(), s.FieldName()), nil } return nil, eh.NewError(args[0].ID(), "invalid argument to has() macro") } func makeQuantifier(kind quantifierKind, eh ExprHelper, target ast.Expr, args []ast.Expr) (ast.Expr, *common.Error) { v, found := extractIdent(args[0]) if !found { return nil, eh.NewError(args[0].ID(), "argument must be a simple name") } var init ast.Expr var condition ast.Expr var step ast.Expr var result ast.Expr switch kind { case quantifierAll: init = eh.NewLiteral(types.True) condition = eh.NewCall(operators.NotStrictlyFalse, eh.NewAccuIdent()) step = eh.NewCall(operators.LogicalAnd, eh.NewAccuIdent(), args[1]) result = eh.NewAccuIdent() case quantifierExists: init = eh.NewLiteral(types.False) condition = eh.NewCall( operators.NotStrictlyFalse, eh.NewCall(operators.LogicalNot, eh.NewAccuIdent())) step = eh.NewCall(operators.LogicalOr, eh.NewAccuIdent(), args[1]) result = eh.NewAccuIdent() case quantifierExistsOne: zeroExpr := eh.NewLiteral(types.Int(0)) oneExpr := eh.NewLiteral(types.Int(1)) init = zeroExpr condition = eh.NewLiteral(types.True) step = eh.NewCall(operators.Conditional, args[1], eh.NewCall(operators.Add, eh.NewAccuIdent(), oneExpr), eh.NewAccuIdent()) result = eh.NewCall(operators.Equals, eh.NewAccuIdent(), oneExpr) default: return nil, eh.NewError(args[0].ID(), fmt.Sprintf("unrecognized quantifier '%v'", kind)) } return eh.NewComprehension(target, v, AccumulatorName, init, condition, step, result), nil } func extractIdent(e ast.Expr) (string, bool) { switch e.Kind() { case ast.IdentKind: return e.AsIdent(), true } return "", false }