# Extensions CEL extensions are a related set of constants, functions, macros, or other features which may not be covered by the core CEL spec. ## Bindings Returns a cel.EnvOption to configure support for local variable bindings in expressions. # Cel.Bind Binds a simple identifier to an initialization expression which may be used in a subsequenct result expression. Bindings may also be nested within each other. cel.bind(, , ) Examples: cel.bind(a, 'hello', cel.bind(b, 'world', a + b + b + a)) // "helloworldworldhello" // Avoid a list allocation within the exists comprehension. cel.bind(valid_values, [a, b, c], [d, e, f].exists(elem, elem in valid_values)) Local bindings are not guaranteed to be evaluated before use. ## Encoders Encoding utilies for marshalling data into standardized representations. ### Base64.Decode Decodes base64-encoded string to bytes. This function will return an error if the string input is not base64-encoded. base64.decode() -> Examples: base64.decode('aGVsbG8=') // return b'hello' base64.decode('aGVsbG8') // error ### Base64.Encode Encodes bytes to a base64-encoded string. base64.encode() -> Example: base64.encode(b'hello') // return 'aGVsbG8=' ## Math Math helper macros and functions. Note, all macros use the 'math' namespace; however, at the time of macro expansion the namespace looks just like any other identifier. If you are currently using a variable named 'math', the macro will likely work just as intended; however, there is some chance for collision. ### Math.Greatest Returns the greatest valued number present in the arguments to the macro. Greatest is a variable argument count macro which must take at least one argument. Simple numeric and list literals are supported as valid argument types; however, other literals will be flagged as errors during macro expansion. If the argument expression does not resolve to a numeric or list(numeric) type during type-checking, or during runtime then an error will be produced. If a list argument is empty, this too will produce an error. math.greatest(, ...) -> Examples: math.greatest(1) // 1 math.greatest(1u, 2u) // 2u math.greatest(-42.0, -21.5, -100.0) // -21.5 math.greatest([-42.0, -21.5, -100.0]) // -21.5 math.greatest(numbers) // numbers must be list(numeric) math.greatest() // parse error math.greatest('string') // parse error math.greatest(a, b) // check-time error if a or b is non-numeric math.greatest(dyn('string')) // runtime error ### Math.Least Returns the least valued number present in the arguments to the macro. Least is a variable argument count macro which must take at least one argument. Simple numeric and list literals are supported as valid argument types; however, other literals will be flagged as errors during macro expansion. If the argument expression does not resolve to a numeric or list(numeric) type during type-checking, or during runtime then an error will be produced. If a list argument is empty, this too will produce an error. math.least(, ...) -> Examples: math.least(1) // 1 math.least(1u, 2u) // 1u math.least(-42.0, -21.5, -100.0) // -100.0 math.least([-42.0, -21.5, -100.0]) // -100.0 math.least(numbers) // numbers must be list(numeric) math.least() // parse error math.least('string') // parse error math.least(a, b) // check-time error if a or b is non-numeric math.least(dyn('string')) // runtime error ## Protos Protos configure extended macros and functions for proto manipulation. Note, all macros use the 'proto' namespace; however, at the time of macro expansion the namespace looks just like any other identifier. If you are currently using a variable named 'proto', the macro will likely work just as you intend; however, there is some chance for collision. ### Protos.GetExt Macro which generates a select expression that retrieves an extension field from the input proto2 syntax message. If the field is not set, the default value forthe extension field is returned according to safe-traversal semantics. proto.getExt(, ) -> Example: proto.getExt(msg, google.expr.proto2.test.int32_ext) // returns int value ### Protos.HasExt Macro which generates a test-only select expression that determines whether an extension field is set on a proto2 syntax message. proto.hasExt(, ) -> Example: proto.hasExt(msg, google.expr.proto2.test.int32_ext) // returns true || false ## Lists Extended functions for list manipulation. As a general note, all indices are zero-based. ### Slice Returns a new sub-list using the indexes provided. .slice(, ) -> Examples: [1,2,3,4].slice(1, 3) // return [2, 3] [1,2,3,4].slice(2, 4) // return [3 ,4] ## Sets Sets provides set relationship tests. There is no set type within CEL, and while one may be introduced in the future, there are cases where a `list` type is known to behave like a set. For such cases, this library provides some basic functionality for determining set containment, equivalence, and intersection. ### Sets.Contains Returns whether the first list argument contains all elements in the second list argument. The list may contain elements of any type and standard CEL equality is used to determine whether a value exists in both lists. If the second list is empty, the result will always return true. sets.contains(list(T), list(T)) -> bool Examples: sets.contains([], []) // true sets.contains([], [1]) // false sets.contains([1, 2, 3, 4], [2, 3]) // true sets.contains([1, 2.0, 3u], [1.0, 2u, 3]) // true ### Sets.Equivalent Returns whether the first and second list are set equivalent. Lists are set equivalent if for every item in the first list, there is an element in the second which is equal. The lists may not be of the same size as they do not guarantee the elements within them are unique, so size does not factor into the computation. sets.equivalent(list(T), list(T)) -> bool Examples: sets.equivalent([], []) // true sets.equivalent([1], [1, 1]) // true sets.equivalent([1], [1u, 1.0]) // true sets.equivalent([1, 2, 3], [3u, 2.0, 1]) // true ### Sets.Intersects Returns whether the first list has at least one element whose value is equal to an element in the second list. If either list is empty, the result will be false. sets.intersects(list(T), list(T)) -> bool Examples: sets.intersects([1], []) // false sets.intersects([1], [1, 2]) // true sets.intersects([[1], [2, 3]], [[1, 2], [2, 3.0]]) // true ## Strings Extended functions for string manipulation. As a general note, all indices are zero-based. ### CharAt Returns the character at the given position. If the position is negative, or greater than the length of the string, the function will produce an error: .charAt() -> Examples: 'hello'.charAt(4) // return 'o' 'hello'.charAt(5) // return '' 'hello'.charAt(-1) // error ### IndexOf Returns the integer index of the first occurrence of the search string. If the search string is not found the function returns -1. The function also accepts an optional position from which to begin the substring search. If the substring is the empty string, the index where the search starts is returned (zero or custom). .indexOf() -> .indexOf(, ) -> Examples: 'hello mellow'.indexOf('') // returns 0 'hello mellow'.indexOf('ello') // returns 1 'hello mellow'.indexOf('jello') // returns -1 'hello mellow'.indexOf('', 2) // returns 2 'hello mellow'.indexOf('ello', 2) // returns 7 'hello mellow'.indexOf('ello', 20) // error ### Join Returns a new string where the elements of string list are concatenated. The function also accepts an optional separator which is placed between elements in the resulting string. >.join() -> >.join() -> Examples: ['hello', 'mellow'].join() // returns 'hellomellow' ['hello', 'mellow'].join(' ') // returns 'hello mellow' [].join() // returns '' [].join('/') // returns '' ### LastIndexOf Returns the integer index of the last occurrence of the search string. If the search string is not found the function returns -1. The function also accepts an optional position which represents the last index to be considered as the beginning of the substring match. If the substring is the empty string, the index where the search starts is returned (string length or custom). .lastIndexOf() -> .lastIndexOf(, ) -> Examples: 'hello mellow'.lastIndexOf('') // returns 12 'hello mellow'.lastIndexOf('ello') // returns 7 'hello mellow'.lastIndexOf('jello') // returns -1 'hello mellow'.lastIndexOf('ello', 6) // returns 1 'hello mellow'.lastIndexOf('ello', -1) // error ### LowerAscii Returns a new string where all ASCII characters are lower-cased. This function does not perform Unicode case-mapping for characters outside the ASCII range. .lowerAscii() -> Examples: 'TacoCat'.lowerAscii() // returns 'tacocat' 'TacoCÆt Xii'.lowerAscii() // returns 'tacocÆt xii' ### Quote **Introduced in version 1** Takes the given string and makes it safe to print (without any formatting due to escape sequences). If any invalid UTF-8 characters are encountered, they are replaced with \uFFFD. strings.quote() Examples: strings.quote('single-quote with "double quote"') // returns '"single-quote with \"double quote\""' strings.quote("two escape sequences \a\n") // returns '"two escape sequences \\a\\n"' ### Replace Returns a new string based on the target, which replaces the occurrences of a search string with a replacement string if present. The function accepts an optional limit on the number of substring replacements to be made. When the replacement limit is 0, the result is the original string. When the limit is a negative number, the function behaves the same as replace all. .replace(, ) -> .replace(, , ) -> Examples: 'hello hello'.replace('he', 'we') // returns 'wello wello' 'hello hello'.replace('he', 'we', -1) // returns 'wello wello' 'hello hello'.replace('he', 'we', 1) // returns 'wello hello' 'hello hello'.replace('he', 'we', 0) // returns 'hello hello' ### Split Returns a list of strings split from the input by the given separator. The function accepts an optional argument specifying a limit on the number of substrings produced by the split. When the split limit is 0, the result is an empty list. When the limit is 1, the result is the target string to split. When the limit is a negative number, the function behaves the same as split all. .split() -> > .split(, ) -> > Examples: 'hello hello hello'.split(' ') // returns ['hello', 'hello', 'hello'] 'hello hello hello'.split(' ', 0) // returns [] 'hello hello hello'.split(' ', 1) // returns ['hello hello hello'] 'hello hello hello'.split(' ', 2) // returns ['hello', 'hello hello'] 'hello hello hello'.split(' ', -1) // returns ['hello', 'hello', 'hello'] ### Substring Returns the substring given a numeric range corresponding to character positions. Optionally may omit the trailing range for a substring from a given character position until the end of a string. Character offsets are 0-based with an inclusive start range and exclusive end range. It is an error to specify an end range that is lower than the start range, or for either the start or end index to be negative or exceed the string length. .substring() -> .substring(, ) -> Examples: 'tacocat'.substring(4) // returns 'cat' 'tacocat'.substring(0, 4) // returns 'taco' 'tacocat'.substring(-1) // error 'tacocat'.substring(2, 1) // error ### Trim Returns a new string which removes the leading and trailing whitespace in the target string. The trim function uses the Unicode definition of whitespace which does not include the zero-width spaces. See: https://en.wikipedia.org/wiki/Whitespace_character#Unicode .trim() -> Examples: ' \ttrim\n '.trim() // returns 'trim' ### UpperAscii Returns a new string where all ASCII characters are upper-cased. This function does not perform Unicode case-mapping for characters outside the ASCII range. .upperAscii() -> Examples: 'TacoCat'.upperAscii() // returns 'TACOCAT' 'TacoCÆt Xii'.upperAscii() // returns 'TACOCÆT XII'