mirror of
https://github.com/ceph/ceph-csi.git
synced 2024-11-18 04:10:22 +00:00
91774fc936
Uses github.com/libopenstorage/secrets to communicate with Vault. This removes the need for maintaining our own limited Vault APIs. By adding the new dependency, several other packages got updated in the process. Unused indirect dependencies have been removed from go.mod. Signed-off-by: Niels de Vos <ndevos@redhat.com>
782 lines
21 KiB
Go
782 lines
21 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssh
|
|
|
|
import (
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/des"
|
|
"crypto/rc4"
|
|
"crypto/subtle"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"hash"
|
|
"io"
|
|
"io/ioutil"
|
|
|
|
"golang.org/x/crypto/chacha20"
|
|
"golang.org/x/crypto/poly1305"
|
|
)
|
|
|
|
const (
|
|
packetSizeMultiple = 16 // TODO(huin) this should be determined by the cipher.
|
|
|
|
// RFC 4253 section 6.1 defines a minimum packet size of 32768 that implementations
|
|
// MUST be able to process (plus a few more kilobytes for padding and mac). The RFC
|
|
// indicates implementations SHOULD be able to handle larger packet sizes, but then
|
|
// waffles on about reasonable limits.
|
|
//
|
|
// OpenSSH caps their maxPacket at 256kB so we choose to do
|
|
// the same. maxPacket is also used to ensure that uint32
|
|
// length fields do not overflow, so it should remain well
|
|
// below 4G.
|
|
maxPacket = 256 * 1024
|
|
)
|
|
|
|
// noneCipher implements cipher.Stream and provides no encryption. It is used
|
|
// by the transport before the first key-exchange.
|
|
type noneCipher struct{}
|
|
|
|
func (c noneCipher) XORKeyStream(dst, src []byte) {
|
|
copy(dst, src)
|
|
}
|
|
|
|
func newAESCTR(key, iv []byte) (cipher.Stream, error) {
|
|
c, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return cipher.NewCTR(c, iv), nil
|
|
}
|
|
|
|
func newRC4(key, iv []byte) (cipher.Stream, error) {
|
|
return rc4.NewCipher(key)
|
|
}
|
|
|
|
type cipherMode struct {
|
|
keySize int
|
|
ivSize int
|
|
create func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error)
|
|
}
|
|
|
|
func streamCipherMode(skip int, createFunc func(key, iv []byte) (cipher.Stream, error)) func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
|
|
return func(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
|
|
stream, err := createFunc(key, iv)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var streamDump []byte
|
|
if skip > 0 {
|
|
streamDump = make([]byte, 512)
|
|
}
|
|
|
|
for remainingToDump := skip; remainingToDump > 0; {
|
|
dumpThisTime := remainingToDump
|
|
if dumpThisTime > len(streamDump) {
|
|
dumpThisTime = len(streamDump)
|
|
}
|
|
stream.XORKeyStream(streamDump[:dumpThisTime], streamDump[:dumpThisTime])
|
|
remainingToDump -= dumpThisTime
|
|
}
|
|
|
|
mac := macModes[algs.MAC].new(macKey)
|
|
return &streamPacketCipher{
|
|
mac: mac,
|
|
etm: macModes[algs.MAC].etm,
|
|
macResult: make([]byte, mac.Size()),
|
|
cipher: stream,
|
|
}, nil
|
|
}
|
|
}
|
|
|
|
// cipherModes documents properties of supported ciphers. Ciphers not included
|
|
// are not supported and will not be negotiated, even if explicitly requested in
|
|
// ClientConfig.Crypto.Ciphers.
|
|
var cipherModes = map[string]*cipherMode{
|
|
// Ciphers from RFC4344, which introduced many CTR-based ciphers. Algorithms
|
|
// are defined in the order specified in the RFC.
|
|
"aes128-ctr": {16, aes.BlockSize, streamCipherMode(0, newAESCTR)},
|
|
"aes192-ctr": {24, aes.BlockSize, streamCipherMode(0, newAESCTR)},
|
|
"aes256-ctr": {32, aes.BlockSize, streamCipherMode(0, newAESCTR)},
|
|
|
|
// Ciphers from RFC4345, which introduces security-improved arcfour ciphers.
|
|
// They are defined in the order specified in the RFC.
|
|
"arcfour128": {16, 0, streamCipherMode(1536, newRC4)},
|
|
"arcfour256": {32, 0, streamCipherMode(1536, newRC4)},
|
|
|
|
// Cipher defined in RFC 4253, which describes SSH Transport Layer Protocol.
|
|
// Note that this cipher is not safe, as stated in RFC 4253: "Arcfour (and
|
|
// RC4) has problems with weak keys, and should be used with caution."
|
|
// RFC4345 introduces improved versions of Arcfour.
|
|
"arcfour": {16, 0, streamCipherMode(0, newRC4)},
|
|
|
|
// AEAD ciphers
|
|
gcmCipherID: {16, 12, newGCMCipher},
|
|
chacha20Poly1305ID: {64, 0, newChaCha20Cipher},
|
|
|
|
// CBC mode is insecure and so is not included in the default config.
|
|
// (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely
|
|
// needed, it's possible to specify a custom Config to enable it.
|
|
// You should expect that an active attacker can recover plaintext if
|
|
// you do.
|
|
aes128cbcID: {16, aes.BlockSize, newAESCBCCipher},
|
|
|
|
// 3des-cbc is insecure and is not included in the default
|
|
// config.
|
|
tripledescbcID: {24, des.BlockSize, newTripleDESCBCCipher},
|
|
}
|
|
|
|
// prefixLen is the length of the packet prefix that contains the packet length
|
|
// and number of padding bytes.
|
|
const prefixLen = 5
|
|
|
|
// streamPacketCipher is a packetCipher using a stream cipher.
|
|
type streamPacketCipher struct {
|
|
mac hash.Hash
|
|
cipher cipher.Stream
|
|
etm bool
|
|
|
|
// The following members are to avoid per-packet allocations.
|
|
prefix [prefixLen]byte
|
|
seqNumBytes [4]byte
|
|
padding [2 * packetSizeMultiple]byte
|
|
packetData []byte
|
|
macResult []byte
|
|
}
|
|
|
|
// readCipherPacket reads and decrypt a single packet from the reader argument.
|
|
func (s *streamPacketCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
|
|
if _, err := io.ReadFull(r, s.prefix[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var encryptedPaddingLength [1]byte
|
|
if s.mac != nil && s.etm {
|
|
copy(encryptedPaddingLength[:], s.prefix[4:5])
|
|
s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5])
|
|
} else {
|
|
s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
|
|
}
|
|
|
|
length := binary.BigEndian.Uint32(s.prefix[0:4])
|
|
paddingLength := uint32(s.prefix[4])
|
|
|
|
var macSize uint32
|
|
if s.mac != nil {
|
|
s.mac.Reset()
|
|
binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum)
|
|
s.mac.Write(s.seqNumBytes[:])
|
|
if s.etm {
|
|
s.mac.Write(s.prefix[:4])
|
|
s.mac.Write(encryptedPaddingLength[:])
|
|
} else {
|
|
s.mac.Write(s.prefix[:])
|
|
}
|
|
macSize = uint32(s.mac.Size())
|
|
}
|
|
|
|
if length <= paddingLength+1 {
|
|
return nil, errors.New("ssh: invalid packet length, packet too small")
|
|
}
|
|
|
|
if length > maxPacket {
|
|
return nil, errors.New("ssh: invalid packet length, packet too large")
|
|
}
|
|
|
|
// the maxPacket check above ensures that length-1+macSize
|
|
// does not overflow.
|
|
if uint32(cap(s.packetData)) < length-1+macSize {
|
|
s.packetData = make([]byte, length-1+macSize)
|
|
} else {
|
|
s.packetData = s.packetData[:length-1+macSize]
|
|
}
|
|
|
|
if _, err := io.ReadFull(r, s.packetData); err != nil {
|
|
return nil, err
|
|
}
|
|
mac := s.packetData[length-1:]
|
|
data := s.packetData[:length-1]
|
|
|
|
if s.mac != nil && s.etm {
|
|
s.mac.Write(data)
|
|
}
|
|
|
|
s.cipher.XORKeyStream(data, data)
|
|
|
|
if s.mac != nil {
|
|
if !s.etm {
|
|
s.mac.Write(data)
|
|
}
|
|
s.macResult = s.mac.Sum(s.macResult[:0])
|
|
if subtle.ConstantTimeCompare(s.macResult, mac) != 1 {
|
|
return nil, errors.New("ssh: MAC failure")
|
|
}
|
|
}
|
|
|
|
return s.packetData[:length-paddingLength-1], nil
|
|
}
|
|
|
|
// writeCipherPacket encrypts and sends a packet of data to the writer argument
|
|
func (s *streamPacketCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
|
|
if len(packet) > maxPacket {
|
|
return errors.New("ssh: packet too large")
|
|
}
|
|
|
|
aadlen := 0
|
|
if s.mac != nil && s.etm {
|
|
// packet length is not encrypted for EtM modes
|
|
aadlen = 4
|
|
}
|
|
|
|
paddingLength := packetSizeMultiple - (prefixLen+len(packet)-aadlen)%packetSizeMultiple
|
|
if paddingLength < 4 {
|
|
paddingLength += packetSizeMultiple
|
|
}
|
|
|
|
length := len(packet) + 1 + paddingLength
|
|
binary.BigEndian.PutUint32(s.prefix[:], uint32(length))
|
|
s.prefix[4] = byte(paddingLength)
|
|
padding := s.padding[:paddingLength]
|
|
if _, err := io.ReadFull(rand, padding); err != nil {
|
|
return err
|
|
}
|
|
|
|
if s.mac != nil {
|
|
s.mac.Reset()
|
|
binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum)
|
|
s.mac.Write(s.seqNumBytes[:])
|
|
|
|
if s.etm {
|
|
// For EtM algorithms, the packet length must stay unencrypted,
|
|
// but the following data (padding length) must be encrypted
|
|
s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5])
|
|
}
|
|
|
|
s.mac.Write(s.prefix[:])
|
|
|
|
if !s.etm {
|
|
// For non-EtM algorithms, the algorithm is applied on unencrypted data
|
|
s.mac.Write(packet)
|
|
s.mac.Write(padding)
|
|
}
|
|
}
|
|
|
|
if !(s.mac != nil && s.etm) {
|
|
// For EtM algorithms, the padding length has already been encrypted
|
|
// and the packet length must remain unencrypted
|
|
s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
|
|
}
|
|
|
|
s.cipher.XORKeyStream(packet, packet)
|
|
s.cipher.XORKeyStream(padding, padding)
|
|
|
|
if s.mac != nil && s.etm {
|
|
// For EtM algorithms, packet and padding must be encrypted
|
|
s.mac.Write(packet)
|
|
s.mac.Write(padding)
|
|
}
|
|
|
|
if _, err := w.Write(s.prefix[:]); err != nil {
|
|
return err
|
|
}
|
|
if _, err := w.Write(packet); err != nil {
|
|
return err
|
|
}
|
|
if _, err := w.Write(padding); err != nil {
|
|
return err
|
|
}
|
|
|
|
if s.mac != nil {
|
|
s.macResult = s.mac.Sum(s.macResult[:0])
|
|
if _, err := w.Write(s.macResult); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
type gcmCipher struct {
|
|
aead cipher.AEAD
|
|
prefix [4]byte
|
|
iv []byte
|
|
buf []byte
|
|
}
|
|
|
|
func newGCMCipher(key, iv, unusedMacKey []byte, unusedAlgs directionAlgorithms) (packetCipher, error) {
|
|
c, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
aead, err := cipher.NewGCM(c)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &gcmCipher{
|
|
aead: aead,
|
|
iv: iv,
|
|
}, nil
|
|
}
|
|
|
|
const gcmTagSize = 16
|
|
|
|
func (c *gcmCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
|
|
// Pad out to multiple of 16 bytes. This is different from the
|
|
// stream cipher because that encrypts the length too.
|
|
padding := byte(packetSizeMultiple - (1+len(packet))%packetSizeMultiple)
|
|
if padding < 4 {
|
|
padding += packetSizeMultiple
|
|
}
|
|
|
|
length := uint32(len(packet) + int(padding) + 1)
|
|
binary.BigEndian.PutUint32(c.prefix[:], length)
|
|
if _, err := w.Write(c.prefix[:]); err != nil {
|
|
return err
|
|
}
|
|
|
|
if cap(c.buf) < int(length) {
|
|
c.buf = make([]byte, length)
|
|
} else {
|
|
c.buf = c.buf[:length]
|
|
}
|
|
|
|
c.buf[0] = padding
|
|
copy(c.buf[1:], packet)
|
|
if _, err := io.ReadFull(rand, c.buf[1+len(packet):]); err != nil {
|
|
return err
|
|
}
|
|
c.buf = c.aead.Seal(c.buf[:0], c.iv, c.buf, c.prefix[:])
|
|
if _, err := w.Write(c.buf); err != nil {
|
|
return err
|
|
}
|
|
c.incIV()
|
|
|
|
return nil
|
|
}
|
|
|
|
func (c *gcmCipher) incIV() {
|
|
for i := 4 + 7; i >= 4; i-- {
|
|
c.iv[i]++
|
|
if c.iv[i] != 0 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *gcmCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
|
|
if _, err := io.ReadFull(r, c.prefix[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
length := binary.BigEndian.Uint32(c.prefix[:])
|
|
if length > maxPacket {
|
|
return nil, errors.New("ssh: max packet length exceeded")
|
|
}
|
|
|
|
if cap(c.buf) < int(length+gcmTagSize) {
|
|
c.buf = make([]byte, length+gcmTagSize)
|
|
} else {
|
|
c.buf = c.buf[:length+gcmTagSize]
|
|
}
|
|
|
|
if _, err := io.ReadFull(r, c.buf); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
plain, err := c.aead.Open(c.buf[:0], c.iv, c.buf, c.prefix[:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
c.incIV()
|
|
|
|
padding := plain[0]
|
|
if padding < 4 {
|
|
// padding is a byte, so it automatically satisfies
|
|
// the maximum size, which is 255.
|
|
return nil, fmt.Errorf("ssh: illegal padding %d", padding)
|
|
}
|
|
|
|
if int(padding+1) >= len(plain) {
|
|
return nil, fmt.Errorf("ssh: padding %d too large", padding)
|
|
}
|
|
plain = plain[1 : length-uint32(padding)]
|
|
return plain, nil
|
|
}
|
|
|
|
// cbcCipher implements aes128-cbc cipher defined in RFC 4253 section 6.1
|
|
type cbcCipher struct {
|
|
mac hash.Hash
|
|
macSize uint32
|
|
decrypter cipher.BlockMode
|
|
encrypter cipher.BlockMode
|
|
|
|
// The following members are to avoid per-packet allocations.
|
|
seqNumBytes [4]byte
|
|
packetData []byte
|
|
macResult []byte
|
|
|
|
// Amount of data we should still read to hide which
|
|
// verification error triggered.
|
|
oracleCamouflage uint32
|
|
}
|
|
|
|
func newCBCCipher(c cipher.Block, key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
|
|
cbc := &cbcCipher{
|
|
mac: macModes[algs.MAC].new(macKey),
|
|
decrypter: cipher.NewCBCDecrypter(c, iv),
|
|
encrypter: cipher.NewCBCEncrypter(c, iv),
|
|
packetData: make([]byte, 1024),
|
|
}
|
|
if cbc.mac != nil {
|
|
cbc.macSize = uint32(cbc.mac.Size())
|
|
}
|
|
|
|
return cbc, nil
|
|
}
|
|
|
|
func newAESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
|
|
c, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
cbc, err := newCBCCipher(c, key, iv, macKey, algs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return cbc, nil
|
|
}
|
|
|
|
func newTripleDESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
|
|
c, err := des.NewTripleDESCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
cbc, err := newCBCCipher(c, key, iv, macKey, algs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return cbc, nil
|
|
}
|
|
|
|
func maxUInt32(a, b int) uint32 {
|
|
if a > b {
|
|
return uint32(a)
|
|
}
|
|
return uint32(b)
|
|
}
|
|
|
|
const (
|
|
cbcMinPacketSizeMultiple = 8
|
|
cbcMinPacketSize = 16
|
|
cbcMinPaddingSize = 4
|
|
)
|
|
|
|
// cbcError represents a verification error that may leak information.
|
|
type cbcError string
|
|
|
|
func (e cbcError) Error() string { return string(e) }
|
|
|
|
func (c *cbcCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
|
|
p, err := c.readCipherPacketLeaky(seqNum, r)
|
|
if err != nil {
|
|
if _, ok := err.(cbcError); ok {
|
|
// Verification error: read a fixed amount of
|
|
// data, to make distinguishing between
|
|
// failing MAC and failing length check more
|
|
// difficult.
|
|
io.CopyN(ioutil.Discard, r, int64(c.oracleCamouflage))
|
|
}
|
|
}
|
|
return p, err
|
|
}
|
|
|
|
func (c *cbcCipher) readCipherPacketLeaky(seqNum uint32, r io.Reader) ([]byte, error) {
|
|
blockSize := c.decrypter.BlockSize()
|
|
|
|
// Read the header, which will include some of the subsequent data in the
|
|
// case of block ciphers - this is copied back to the payload later.
|
|
// How many bytes of payload/padding will be read with this first read.
|
|
firstBlockLength := uint32((prefixLen + blockSize - 1) / blockSize * blockSize)
|
|
firstBlock := c.packetData[:firstBlockLength]
|
|
if _, err := io.ReadFull(r, firstBlock); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
c.oracleCamouflage = maxPacket + 4 + c.macSize - firstBlockLength
|
|
|
|
c.decrypter.CryptBlocks(firstBlock, firstBlock)
|
|
length := binary.BigEndian.Uint32(firstBlock[:4])
|
|
if length > maxPacket {
|
|
return nil, cbcError("ssh: packet too large")
|
|
}
|
|
if length+4 < maxUInt32(cbcMinPacketSize, blockSize) {
|
|
// The minimum size of a packet is 16 (or the cipher block size, whichever
|
|
// is larger) bytes.
|
|
return nil, cbcError("ssh: packet too small")
|
|
}
|
|
// The length of the packet (including the length field but not the MAC) must
|
|
// be a multiple of the block size or 8, whichever is larger.
|
|
if (length+4)%maxUInt32(cbcMinPacketSizeMultiple, blockSize) != 0 {
|
|
return nil, cbcError("ssh: invalid packet length multiple")
|
|
}
|
|
|
|
paddingLength := uint32(firstBlock[4])
|
|
if paddingLength < cbcMinPaddingSize || length <= paddingLength+1 {
|
|
return nil, cbcError("ssh: invalid packet length")
|
|
}
|
|
|
|
// Positions within the c.packetData buffer:
|
|
macStart := 4 + length
|
|
paddingStart := macStart - paddingLength
|
|
|
|
// Entire packet size, starting before length, ending at end of mac.
|
|
entirePacketSize := macStart + c.macSize
|
|
|
|
// Ensure c.packetData is large enough for the entire packet data.
|
|
if uint32(cap(c.packetData)) < entirePacketSize {
|
|
// Still need to upsize and copy, but this should be rare at runtime, only
|
|
// on upsizing the packetData buffer.
|
|
c.packetData = make([]byte, entirePacketSize)
|
|
copy(c.packetData, firstBlock)
|
|
} else {
|
|
c.packetData = c.packetData[:entirePacketSize]
|
|
}
|
|
|
|
n, err := io.ReadFull(r, c.packetData[firstBlockLength:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
c.oracleCamouflage -= uint32(n)
|
|
|
|
remainingCrypted := c.packetData[firstBlockLength:macStart]
|
|
c.decrypter.CryptBlocks(remainingCrypted, remainingCrypted)
|
|
|
|
mac := c.packetData[macStart:]
|
|
if c.mac != nil {
|
|
c.mac.Reset()
|
|
binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum)
|
|
c.mac.Write(c.seqNumBytes[:])
|
|
c.mac.Write(c.packetData[:macStart])
|
|
c.macResult = c.mac.Sum(c.macResult[:0])
|
|
if subtle.ConstantTimeCompare(c.macResult, mac) != 1 {
|
|
return nil, cbcError("ssh: MAC failure")
|
|
}
|
|
}
|
|
|
|
return c.packetData[prefixLen:paddingStart], nil
|
|
}
|
|
|
|
func (c *cbcCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
|
|
effectiveBlockSize := maxUInt32(cbcMinPacketSizeMultiple, c.encrypter.BlockSize())
|
|
|
|
// Length of encrypted portion of the packet (header, payload, padding).
|
|
// Enforce minimum padding and packet size.
|
|
encLength := maxUInt32(prefixLen+len(packet)+cbcMinPaddingSize, cbcMinPaddingSize)
|
|
// Enforce block size.
|
|
encLength = (encLength + effectiveBlockSize - 1) / effectiveBlockSize * effectiveBlockSize
|
|
|
|
length := encLength - 4
|
|
paddingLength := int(length) - (1 + len(packet))
|
|
|
|
// Overall buffer contains: header, payload, padding, mac.
|
|
// Space for the MAC is reserved in the capacity but not the slice length.
|
|
bufferSize := encLength + c.macSize
|
|
if uint32(cap(c.packetData)) < bufferSize {
|
|
c.packetData = make([]byte, encLength, bufferSize)
|
|
} else {
|
|
c.packetData = c.packetData[:encLength]
|
|
}
|
|
|
|
p := c.packetData
|
|
|
|
// Packet header.
|
|
binary.BigEndian.PutUint32(p, length)
|
|
p = p[4:]
|
|
p[0] = byte(paddingLength)
|
|
|
|
// Payload.
|
|
p = p[1:]
|
|
copy(p, packet)
|
|
|
|
// Padding.
|
|
p = p[len(packet):]
|
|
if _, err := io.ReadFull(rand, p); err != nil {
|
|
return err
|
|
}
|
|
|
|
if c.mac != nil {
|
|
c.mac.Reset()
|
|
binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum)
|
|
c.mac.Write(c.seqNumBytes[:])
|
|
c.mac.Write(c.packetData)
|
|
// The MAC is now appended into the capacity reserved for it earlier.
|
|
c.packetData = c.mac.Sum(c.packetData)
|
|
}
|
|
|
|
c.encrypter.CryptBlocks(c.packetData[:encLength], c.packetData[:encLength])
|
|
|
|
if _, err := w.Write(c.packetData); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
const chacha20Poly1305ID = "chacha20-poly1305@openssh.com"
|
|
|
|
// chacha20Poly1305Cipher implements the chacha20-poly1305@openssh.com
|
|
// AEAD, which is described here:
|
|
//
|
|
// https://tools.ietf.org/html/draft-josefsson-ssh-chacha20-poly1305-openssh-00
|
|
//
|
|
// the methods here also implement padding, which RFC4253 Section 6
|
|
// also requires of stream ciphers.
|
|
type chacha20Poly1305Cipher struct {
|
|
lengthKey [32]byte
|
|
contentKey [32]byte
|
|
buf []byte
|
|
}
|
|
|
|
func newChaCha20Cipher(key, unusedIV, unusedMACKey []byte, unusedAlgs directionAlgorithms) (packetCipher, error) {
|
|
if len(key) != 64 {
|
|
panic(len(key))
|
|
}
|
|
|
|
c := &chacha20Poly1305Cipher{
|
|
buf: make([]byte, 256),
|
|
}
|
|
|
|
copy(c.contentKey[:], key[:32])
|
|
copy(c.lengthKey[:], key[32:])
|
|
return c, nil
|
|
}
|
|
|
|
func (c *chacha20Poly1305Cipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
|
|
nonce := make([]byte, 12)
|
|
binary.BigEndian.PutUint32(nonce[8:], seqNum)
|
|
s, err := chacha20.NewUnauthenticatedCipher(c.contentKey[:], nonce)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var polyKey, discardBuf [32]byte
|
|
s.XORKeyStream(polyKey[:], polyKey[:])
|
|
s.XORKeyStream(discardBuf[:], discardBuf[:]) // skip the next 32 bytes
|
|
|
|
encryptedLength := c.buf[:4]
|
|
if _, err := io.ReadFull(r, encryptedLength); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var lenBytes [4]byte
|
|
ls, err := chacha20.NewUnauthenticatedCipher(c.lengthKey[:], nonce)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
ls.XORKeyStream(lenBytes[:], encryptedLength)
|
|
|
|
length := binary.BigEndian.Uint32(lenBytes[:])
|
|
if length > maxPacket {
|
|
return nil, errors.New("ssh: invalid packet length, packet too large")
|
|
}
|
|
|
|
contentEnd := 4 + length
|
|
packetEnd := contentEnd + poly1305.TagSize
|
|
if uint32(cap(c.buf)) < packetEnd {
|
|
c.buf = make([]byte, packetEnd)
|
|
copy(c.buf[:], encryptedLength)
|
|
} else {
|
|
c.buf = c.buf[:packetEnd]
|
|
}
|
|
|
|
if _, err := io.ReadFull(r, c.buf[4:packetEnd]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var mac [poly1305.TagSize]byte
|
|
copy(mac[:], c.buf[contentEnd:packetEnd])
|
|
if !poly1305.Verify(&mac, c.buf[:contentEnd], &polyKey) {
|
|
return nil, errors.New("ssh: MAC failure")
|
|
}
|
|
|
|
plain := c.buf[4:contentEnd]
|
|
s.XORKeyStream(plain, plain)
|
|
|
|
padding := plain[0]
|
|
if padding < 4 {
|
|
// padding is a byte, so it automatically satisfies
|
|
// the maximum size, which is 255.
|
|
return nil, fmt.Errorf("ssh: illegal padding %d", padding)
|
|
}
|
|
|
|
if int(padding)+1 >= len(plain) {
|
|
return nil, fmt.Errorf("ssh: padding %d too large", padding)
|
|
}
|
|
|
|
plain = plain[1 : len(plain)-int(padding)]
|
|
|
|
return plain, nil
|
|
}
|
|
|
|
func (c *chacha20Poly1305Cipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, payload []byte) error {
|
|
nonce := make([]byte, 12)
|
|
binary.BigEndian.PutUint32(nonce[8:], seqNum)
|
|
s, err := chacha20.NewUnauthenticatedCipher(c.contentKey[:], nonce)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
var polyKey, discardBuf [32]byte
|
|
s.XORKeyStream(polyKey[:], polyKey[:])
|
|
s.XORKeyStream(discardBuf[:], discardBuf[:]) // skip the next 32 bytes
|
|
|
|
// There is no blocksize, so fall back to multiple of 8 byte
|
|
// padding, as described in RFC 4253, Sec 6.
|
|
const packetSizeMultiple = 8
|
|
|
|
padding := packetSizeMultiple - (1+len(payload))%packetSizeMultiple
|
|
if padding < 4 {
|
|
padding += packetSizeMultiple
|
|
}
|
|
|
|
// size (4 bytes), padding (1), payload, padding, tag.
|
|
totalLength := 4 + 1 + len(payload) + padding + poly1305.TagSize
|
|
if cap(c.buf) < totalLength {
|
|
c.buf = make([]byte, totalLength)
|
|
} else {
|
|
c.buf = c.buf[:totalLength]
|
|
}
|
|
|
|
binary.BigEndian.PutUint32(c.buf, uint32(1+len(payload)+padding))
|
|
ls, err := chacha20.NewUnauthenticatedCipher(c.lengthKey[:], nonce)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
ls.XORKeyStream(c.buf, c.buf[:4])
|
|
c.buf[4] = byte(padding)
|
|
copy(c.buf[5:], payload)
|
|
packetEnd := 5 + len(payload) + padding
|
|
if _, err := io.ReadFull(rand, c.buf[5+len(payload):packetEnd]); err != nil {
|
|
return err
|
|
}
|
|
|
|
s.XORKeyStream(c.buf[4:], c.buf[4:packetEnd])
|
|
|
|
var mac [poly1305.TagSize]byte
|
|
poly1305.Sum(&mac, c.buf[:packetEnd], &polyKey)
|
|
|
|
copy(c.buf[packetEnd:], mac[:])
|
|
|
|
if _, err := w.Write(c.buf); err != nil {
|
|
return err
|
|
}
|
|
return nil
|
|
}
|