ceph-csi/vendor/github.com/google/cel-go/interpreter/prune.go
Madhu Rajanna ff3e84ad67 rebase: update kubernetes to 1.28.0 in main
updating kubernetes to 1.28.0
in the main repo.

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
2023-08-17 13:43:15 +00:00

579 lines
16 KiB
Go

// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package interpreter
import (
"github.com/google/cel-go/common/operators"
"github.com/google/cel-go/common/overloads"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
structpb "google.golang.org/protobuf/types/known/structpb"
)
type astPruner struct {
expr *exprpb.Expr
macroCalls map[int64]*exprpb.Expr
state EvalState
nextExprID int64
}
// TODO Consider having a separate walk of the AST that finds common
// subexpressions. This can be called before or after constant folding to find
// common subexpressions.
// PruneAst prunes the given AST based on the given EvalState and generates a new AST.
// Given AST is copied on write and a new AST is returned.
// Couple of typical use cases this interface would be:
//
// A)
// 1) Evaluate expr with some unknowns,
// 2) If result is unknown:
//
// a) PruneAst
// b) Goto 1
//
// Functional call results which are known would be effectively cached across
// iterations.
//
// B)
// 1) Compile the expression (maybe via a service and maybe after checking a
//
// compiled expression does not exists in local cache)
//
// 2) Prepare the environment and the interpreter. Activation might be empty.
// 3) Eval the expression. This might return unknown or error or a concrete
//
// value.
//
// 4) PruneAst
// 4) Maybe cache the expression
// This is effectively constant folding the expression. How the environment is
// prepared in step 2 is flexible. For example, If the caller caches the
// compiled and constant folded expressions, but is not willing to constant
// fold(and thus cache results of) some external calls, then they can prepare
// the overloads accordingly.
func PruneAst(expr *exprpb.Expr, macroCalls map[int64]*exprpb.Expr, state EvalState) *exprpb.ParsedExpr {
pruneState := NewEvalState()
for _, id := range state.IDs() {
v, _ := state.Value(id)
pruneState.SetValue(id, v)
}
pruner := &astPruner{
expr: expr,
macroCalls: macroCalls,
state: pruneState,
nextExprID: getMaxID(expr)}
newExpr, _ := pruner.maybePrune(expr)
return &exprpb.ParsedExpr{
Expr: newExpr,
SourceInfo: &exprpb.SourceInfo{MacroCalls: pruner.macroCalls},
}
}
func (p *astPruner) createLiteral(id int64, val *exprpb.Constant) *exprpb.Expr {
return &exprpb.Expr{
Id: id,
ExprKind: &exprpb.Expr_ConstExpr{
ConstExpr: val,
},
}
}
func (p *astPruner) maybeCreateLiteral(id int64, val ref.Val) (*exprpb.Expr, bool) {
switch v := val.(type) {
case types.Bool:
p.state.SetValue(id, val)
return p.createLiteral(id,
&exprpb.Constant{ConstantKind: &exprpb.Constant_BoolValue{BoolValue: bool(v)}}), true
case types.Bytes:
p.state.SetValue(id, val)
return p.createLiteral(id,
&exprpb.Constant{ConstantKind: &exprpb.Constant_BytesValue{BytesValue: []byte(v)}}), true
case types.Double:
p.state.SetValue(id, val)
return p.createLiteral(id,
&exprpb.Constant{ConstantKind: &exprpb.Constant_DoubleValue{DoubleValue: float64(v)}}), true
case types.Duration:
p.state.SetValue(id, val)
durationString := string(v.ConvertToType(types.StringType).(types.String))
return &exprpb.Expr{
Id: id,
ExprKind: &exprpb.Expr_CallExpr{
CallExpr: &exprpb.Expr_Call{
Function: overloads.TypeConvertDuration,
Args: []*exprpb.Expr{
p.createLiteral(p.nextID(),
&exprpb.Constant{ConstantKind: &exprpb.Constant_StringValue{StringValue: durationString}}),
},
},
},
}, true
case types.Int:
p.state.SetValue(id, val)
return p.createLiteral(id,
&exprpb.Constant{ConstantKind: &exprpb.Constant_Int64Value{Int64Value: int64(v)}}), true
case types.Uint:
p.state.SetValue(id, val)
return p.createLiteral(id,
&exprpb.Constant{ConstantKind: &exprpb.Constant_Uint64Value{Uint64Value: uint64(v)}}), true
case types.String:
p.state.SetValue(id, val)
return p.createLiteral(id,
&exprpb.Constant{ConstantKind: &exprpb.Constant_StringValue{StringValue: string(v)}}), true
case types.Null:
p.state.SetValue(id, val)
return p.createLiteral(id,
&exprpb.Constant{ConstantKind: &exprpb.Constant_NullValue{NullValue: v.Value().(structpb.NullValue)}}), true
}
// Attempt to build a list literal.
if list, isList := val.(traits.Lister); isList {
sz := list.Size().(types.Int)
elemExprs := make([]*exprpb.Expr, sz)
for i := types.Int(0); i < sz; i++ {
elem := list.Get(i)
if types.IsUnknownOrError(elem) {
return nil, false
}
elemExpr, ok := p.maybeCreateLiteral(p.nextID(), elem)
if !ok {
return nil, false
}
elemExprs[i] = elemExpr
}
p.state.SetValue(id, val)
return &exprpb.Expr{
Id: id,
ExprKind: &exprpb.Expr_ListExpr{
ListExpr: &exprpb.Expr_CreateList{
Elements: elemExprs,
},
},
}, true
}
// Create a map literal if possible.
if mp, isMap := val.(traits.Mapper); isMap {
it := mp.Iterator()
entries := make([]*exprpb.Expr_CreateStruct_Entry, mp.Size().(types.Int))
i := 0
for it.HasNext() != types.False {
key := it.Next()
val := mp.Get(key)
if types.IsUnknownOrError(key) || types.IsUnknownOrError(val) {
return nil, false
}
keyExpr, ok := p.maybeCreateLiteral(p.nextID(), key)
if !ok {
return nil, false
}
valExpr, ok := p.maybeCreateLiteral(p.nextID(), val)
if !ok {
return nil, false
}
entry := &exprpb.Expr_CreateStruct_Entry{
Id: p.nextID(),
KeyKind: &exprpb.Expr_CreateStruct_Entry_MapKey{
MapKey: keyExpr,
},
Value: valExpr,
}
entries[i] = entry
i++
}
p.state.SetValue(id, val)
return &exprpb.Expr{
Id: id,
ExprKind: &exprpb.Expr_StructExpr{
StructExpr: &exprpb.Expr_CreateStruct{
Entries: entries,
},
},
}, true
}
// TODO(issues/377) To construct message literals, the type provider will need to support
// the enumeration the fields for a given message.
return nil, false
}
func (p *astPruner) maybePruneOptional(elem *exprpb.Expr) (*exprpb.Expr, bool) {
elemVal, found := p.value(elem.GetId())
if found && elemVal.Type() == types.OptionalType {
opt := elemVal.(*types.Optional)
if !opt.HasValue() {
return nil, true
}
if newElem, pruned := p.maybeCreateLiteral(elem.GetId(), opt.GetValue()); pruned {
return newElem, true
}
}
return elem, false
}
func (p *astPruner) maybePruneIn(node *exprpb.Expr) (*exprpb.Expr, bool) {
// elem in list
call := node.GetCallExpr()
val, exists := p.maybeValue(call.GetArgs()[1].GetId())
if !exists {
return nil, false
}
if sz, ok := val.(traits.Sizer); ok && sz.Size() == types.IntZero {
return p.maybeCreateLiteral(node.GetId(), types.False)
}
return nil, false
}
func (p *astPruner) maybePruneLogicalNot(node *exprpb.Expr) (*exprpb.Expr, bool) {
call := node.GetCallExpr()
arg := call.GetArgs()[0]
val, exists := p.maybeValue(arg.GetId())
if !exists {
return nil, false
}
if b, ok := val.(types.Bool); ok {
return p.maybeCreateLiteral(node.GetId(), !b)
}
return nil, false
}
func (p *astPruner) maybePruneOr(node *exprpb.Expr) (*exprpb.Expr, bool) {
call := node.GetCallExpr()
// We know result is unknown, so we have at least one unknown arg
// and if one side is a known value, we know we can ignore it.
if v, exists := p.maybeValue(call.GetArgs()[0].GetId()); exists {
if v == types.True {
return p.maybeCreateLiteral(node.GetId(), types.True)
}
return call.GetArgs()[1], true
}
if v, exists := p.maybeValue(call.GetArgs()[1].GetId()); exists {
if v == types.True {
return p.maybeCreateLiteral(node.GetId(), types.True)
}
return call.GetArgs()[0], true
}
return nil, false
}
func (p *astPruner) maybePruneAnd(node *exprpb.Expr) (*exprpb.Expr, bool) {
call := node.GetCallExpr()
// We know result is unknown, so we have at least one unknown arg
// and if one side is a known value, we know we can ignore it.
if v, exists := p.maybeValue(call.GetArgs()[0].GetId()); exists {
if v == types.False {
return p.maybeCreateLiteral(node.GetId(), types.False)
}
return call.GetArgs()[1], true
}
if v, exists := p.maybeValue(call.GetArgs()[1].GetId()); exists {
if v == types.False {
return p.maybeCreateLiteral(node.GetId(), types.False)
}
return call.GetArgs()[0], true
}
return nil, false
}
func (p *astPruner) maybePruneConditional(node *exprpb.Expr) (*exprpb.Expr, bool) {
call := node.GetCallExpr()
cond, exists := p.maybeValue(call.GetArgs()[0].GetId())
if !exists {
return nil, false
}
if cond.Value().(bool) {
return call.GetArgs()[1], true
}
return call.GetArgs()[2], true
}
func (p *astPruner) maybePruneFunction(node *exprpb.Expr) (*exprpb.Expr, bool) {
if _, exists := p.value(node.GetId()); !exists {
return nil, false
}
call := node.GetCallExpr()
if call.Function == operators.LogicalOr {
return p.maybePruneOr(node)
}
if call.Function == operators.LogicalAnd {
return p.maybePruneAnd(node)
}
if call.Function == operators.Conditional {
return p.maybePruneConditional(node)
}
if call.Function == operators.In {
return p.maybePruneIn(node)
}
if call.Function == operators.LogicalNot {
return p.maybePruneLogicalNot(node)
}
return nil, false
}
func (p *astPruner) maybePrune(node *exprpb.Expr) (*exprpb.Expr, bool) {
return p.prune(node)
}
func (p *astPruner) prune(node *exprpb.Expr) (*exprpb.Expr, bool) {
if node == nil {
return node, false
}
val, valueExists := p.maybeValue(node.GetId())
if valueExists {
if newNode, ok := p.maybeCreateLiteral(node.GetId(), val); ok {
delete(p.macroCalls, node.GetId())
return newNode, true
}
}
if macro, found := p.macroCalls[node.GetId()]; found {
// prune the expression in terms of the macro call instead of the expanded form.
if newMacro, pruned := p.prune(macro); pruned {
p.macroCalls[node.GetId()] = newMacro
}
}
// We have either an unknown/error value, or something we don't want to
// transform, or expression was not evaluated. If possible, drill down
// more.
switch node.GetExprKind().(type) {
case *exprpb.Expr_SelectExpr:
if operand, pruned := p.maybePrune(node.GetSelectExpr().GetOperand()); pruned {
return &exprpb.Expr{
Id: node.GetId(),
ExprKind: &exprpb.Expr_SelectExpr{
SelectExpr: &exprpb.Expr_Select{
Operand: operand,
Field: node.GetSelectExpr().GetField(),
TestOnly: node.GetSelectExpr().GetTestOnly(),
},
},
}, true
}
case *exprpb.Expr_CallExpr:
var prunedCall bool
call := node.GetCallExpr()
args := call.GetArgs()
newArgs := make([]*exprpb.Expr, len(args))
newCall := &exprpb.Expr_Call{
Function: call.GetFunction(),
Target: call.GetTarget(),
Args: newArgs,
}
for i, arg := range args {
newArgs[i] = arg
if newArg, prunedArg := p.maybePrune(arg); prunedArg {
prunedCall = true
newArgs[i] = newArg
}
}
if newTarget, prunedTarget := p.maybePrune(call.GetTarget()); prunedTarget {
prunedCall = true
newCall.Target = newTarget
}
newNode := &exprpb.Expr{
Id: node.GetId(),
ExprKind: &exprpb.Expr_CallExpr{
CallExpr: newCall,
},
}
if newExpr, pruned := p.maybePruneFunction(newNode); pruned {
newExpr, _ = p.maybePrune(newExpr)
return newExpr, true
}
if prunedCall {
return newNode, true
}
case *exprpb.Expr_ListExpr:
elems := node.GetListExpr().GetElements()
optIndices := node.GetListExpr().GetOptionalIndices()
optIndexMap := map[int32]bool{}
for _, i := range optIndices {
optIndexMap[i] = true
}
newOptIndexMap := make(map[int32]bool, len(optIndexMap))
newElems := make([]*exprpb.Expr, 0, len(elems))
var prunedList bool
prunedIdx := 0
for i, elem := range elems {
_, isOpt := optIndexMap[int32(i)]
if isOpt {
newElem, pruned := p.maybePruneOptional(elem)
if pruned {
prunedList = true
if newElem != nil {
newElems = append(newElems, newElem)
prunedIdx++
}
continue
}
newOptIndexMap[int32(prunedIdx)] = true
}
if newElem, prunedElem := p.maybePrune(elem); prunedElem {
newElems = append(newElems, newElem)
prunedList = true
} else {
newElems = append(newElems, elem)
}
prunedIdx++
}
optIndices = make([]int32, len(newOptIndexMap))
idx := 0
for i := range newOptIndexMap {
optIndices[idx] = i
idx++
}
if prunedList {
return &exprpb.Expr{
Id: node.GetId(),
ExprKind: &exprpb.Expr_ListExpr{
ListExpr: &exprpb.Expr_CreateList{
Elements: newElems,
OptionalIndices: optIndices,
},
},
}, true
}
case *exprpb.Expr_StructExpr:
var prunedStruct bool
entries := node.GetStructExpr().GetEntries()
messageType := node.GetStructExpr().GetMessageName()
newEntries := make([]*exprpb.Expr_CreateStruct_Entry, len(entries))
for i, entry := range entries {
newEntries[i] = entry
newKey, prunedKey := p.maybePrune(entry.GetMapKey())
newValue, prunedValue := p.maybePrune(entry.GetValue())
if !prunedKey && !prunedValue {
continue
}
prunedStruct = true
newEntry := &exprpb.Expr_CreateStruct_Entry{
Value: newValue,
}
if messageType != "" {
newEntry.KeyKind = &exprpb.Expr_CreateStruct_Entry_FieldKey{
FieldKey: entry.GetFieldKey(),
}
} else {
newEntry.KeyKind = &exprpb.Expr_CreateStruct_Entry_MapKey{
MapKey: newKey,
}
}
newEntry.OptionalEntry = entry.GetOptionalEntry()
newEntries[i] = newEntry
}
if prunedStruct {
return &exprpb.Expr{
Id: node.GetId(),
ExprKind: &exprpb.Expr_StructExpr{
StructExpr: &exprpb.Expr_CreateStruct{
MessageName: messageType,
Entries: newEntries,
},
},
}, true
}
}
return node, false
}
func (p *astPruner) value(id int64) (ref.Val, bool) {
val, found := p.state.Value(id)
return val, (found && val != nil)
}
func (p *astPruner) maybeValue(id int64) (ref.Val, bool) {
val, found := p.value(id)
if !found || types.IsUnknownOrError(val) {
return nil, false
}
return val, true
}
func (p *astPruner) nextID() int64 {
next := p.nextExprID
p.nextExprID++
return next
}
type astVisitor struct {
// visitEntry is called on every expr node, including those within a map/struct entry.
visitExpr func(expr *exprpb.Expr)
// visitEntry is called before entering the key, value of a map/struct entry.
visitEntry func(entry *exprpb.Expr_CreateStruct_Entry)
}
func getMaxID(expr *exprpb.Expr) int64 {
maxID := int64(1)
visit(expr, maxIDVisitor(&maxID))
return maxID
}
func maxIDVisitor(maxID *int64) astVisitor {
return astVisitor{
visitExpr: func(e *exprpb.Expr) {
if e.GetId() >= *maxID {
*maxID = e.GetId() + 1
}
},
visitEntry: func(e *exprpb.Expr_CreateStruct_Entry) {
if e.GetId() >= *maxID {
*maxID = e.GetId() + 1
}
},
}
}
func visit(expr *exprpb.Expr, visitor astVisitor) {
exprs := []*exprpb.Expr{expr}
for len(exprs) != 0 {
e := exprs[0]
visitor.visitExpr(e)
exprs = exprs[1:]
switch e.GetExprKind().(type) {
case *exprpb.Expr_SelectExpr:
exprs = append(exprs, e.GetSelectExpr().GetOperand())
case *exprpb.Expr_CallExpr:
call := e.GetCallExpr()
if call.GetTarget() != nil {
exprs = append(exprs, call.GetTarget())
}
exprs = append(exprs, call.GetArgs()...)
case *exprpb.Expr_ComprehensionExpr:
compre := e.GetComprehensionExpr()
exprs = append(exprs,
compre.GetIterRange(),
compre.GetAccuInit(),
compre.GetLoopCondition(),
compre.GetLoopStep(),
compre.GetResult())
case *exprpb.Expr_ListExpr:
list := e.GetListExpr()
exprs = append(exprs, list.GetElements()...)
case *exprpb.Expr_StructExpr:
for _, entry := range e.GetStructExpr().GetEntries() {
visitor.visitEntry(entry)
if entry.GetMapKey() != nil {
exprs = append(exprs, entry.GetMapKey())
}
exprs = append(exprs, entry.GetValue())
}
}
}
}