mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-01-11 22:39:31 +00:00
f4f6b7ae60
Bumps [k8s.io/klog/v2](https://github.com/kubernetes/klog) from 2.90.0 to 2.100.1. - [Release notes](https://github.com/kubernetes/klog/releases) - [Changelog](https://github.com/kubernetes/klog/blob/main/RELEASE.md) - [Commits](https://github.com/kubernetes/klog/compare/v2.90.0...v2.100.1) --- updated-dependencies: - dependency-name: k8s.io/klog/v2 dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] <support@github.com>
356 lines
10 KiB
Go
356 lines
10 KiB
Go
/*
|
|
Copyright 2021 The Kubernetes Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package serialize
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/json"
|
|
"fmt"
|
|
"strconv"
|
|
|
|
"github.com/go-logr/logr"
|
|
)
|
|
|
|
type textWriter interface {
|
|
WriteText(*bytes.Buffer)
|
|
}
|
|
|
|
// WithValues implements LogSink.WithValues. The old key/value pairs are
|
|
// assumed to be well-formed, the new ones are checked and padded if
|
|
// necessary. It returns a new slice.
|
|
func WithValues(oldKV, newKV []interface{}) []interface{} {
|
|
if len(newKV) == 0 {
|
|
return oldKV
|
|
}
|
|
newLen := len(oldKV) + len(newKV)
|
|
hasMissingValue := newLen%2 != 0
|
|
if hasMissingValue {
|
|
newLen++
|
|
}
|
|
// The new LogSink must have its own slice.
|
|
kv := make([]interface{}, 0, newLen)
|
|
kv = append(kv, oldKV...)
|
|
kv = append(kv, newKV...)
|
|
if hasMissingValue {
|
|
kv = append(kv, missingValue)
|
|
}
|
|
return kv
|
|
}
|
|
|
|
// MergeKVs deduplicates elements provided in two key/value slices.
|
|
//
|
|
// Keys in each slice are expected to be unique, so duplicates can only occur
|
|
// when the first and second slice contain the same key. When that happens, the
|
|
// key/value pair from the second slice is used. The first slice must be well-formed
|
|
// (= even key/value pairs). The second one may have a missing value, in which
|
|
// case the special "missing value" is added to the result.
|
|
func MergeKVs(first, second []interface{}) []interface{} {
|
|
maxLength := len(first) + (len(second)+1)/2*2
|
|
if maxLength == 0 {
|
|
// Nothing to do at all.
|
|
return nil
|
|
}
|
|
|
|
if len(first) == 0 && len(second)%2 == 0 {
|
|
// Nothing to be overridden, second slice is well-formed
|
|
// and can be used directly.
|
|
return second
|
|
}
|
|
|
|
// Determine which keys are in the second slice so that we can skip
|
|
// them when iterating over the first one. The code intentionally
|
|
// favors performance over completeness: we assume that keys are string
|
|
// constants and thus compare equal when the string values are equal. A
|
|
// string constant being overridden by, for example, a fmt.Stringer is
|
|
// not handled.
|
|
overrides := map[interface{}]bool{}
|
|
for i := 0; i < len(second); i += 2 {
|
|
overrides[second[i]] = true
|
|
}
|
|
merged := make([]interface{}, 0, maxLength)
|
|
for i := 0; i+1 < len(first); i += 2 {
|
|
key := first[i]
|
|
if overrides[key] {
|
|
continue
|
|
}
|
|
merged = append(merged, key, first[i+1])
|
|
}
|
|
merged = append(merged, second...)
|
|
if len(merged)%2 != 0 {
|
|
merged = append(merged, missingValue)
|
|
}
|
|
return merged
|
|
}
|
|
|
|
type Formatter struct {
|
|
AnyToStringHook AnyToStringFunc
|
|
}
|
|
|
|
type AnyToStringFunc func(v interface{}) string
|
|
|
|
// MergeKVsInto is a variant of MergeKVs which directly formats the key/value
|
|
// pairs into a buffer.
|
|
func (f Formatter) MergeAndFormatKVs(b *bytes.Buffer, first, second []interface{}) {
|
|
if len(first) == 0 && len(second) == 0 {
|
|
// Nothing to do at all.
|
|
return
|
|
}
|
|
|
|
if len(first) == 0 && len(second)%2 == 0 {
|
|
// Nothing to be overridden, second slice is well-formed
|
|
// and can be used directly.
|
|
for i := 0; i < len(second); i += 2 {
|
|
f.KVFormat(b, second[i], second[i+1])
|
|
}
|
|
return
|
|
}
|
|
|
|
// Determine which keys are in the second slice so that we can skip
|
|
// them when iterating over the first one. The code intentionally
|
|
// favors performance over completeness: we assume that keys are string
|
|
// constants and thus compare equal when the string values are equal. A
|
|
// string constant being overridden by, for example, a fmt.Stringer is
|
|
// not handled.
|
|
overrides := map[interface{}]bool{}
|
|
for i := 0; i < len(second); i += 2 {
|
|
overrides[second[i]] = true
|
|
}
|
|
for i := 0; i < len(first); i += 2 {
|
|
key := first[i]
|
|
if overrides[key] {
|
|
continue
|
|
}
|
|
f.KVFormat(b, key, first[i+1])
|
|
}
|
|
// Round down.
|
|
l := len(second)
|
|
l = l / 2 * 2
|
|
for i := 1; i < l; i += 2 {
|
|
f.KVFormat(b, second[i-1], second[i])
|
|
}
|
|
if len(second)%2 == 1 {
|
|
f.KVFormat(b, second[len(second)-1], missingValue)
|
|
}
|
|
}
|
|
|
|
func MergeAndFormatKVs(b *bytes.Buffer, first, second []interface{}) {
|
|
Formatter{}.MergeAndFormatKVs(b, first, second)
|
|
}
|
|
|
|
const missingValue = "(MISSING)"
|
|
|
|
// KVListFormat serializes all key/value pairs into the provided buffer.
|
|
// A space gets inserted before the first pair and between each pair.
|
|
func (f Formatter) KVListFormat(b *bytes.Buffer, keysAndValues ...interface{}) {
|
|
for i := 0; i < len(keysAndValues); i += 2 {
|
|
var v interface{}
|
|
k := keysAndValues[i]
|
|
if i+1 < len(keysAndValues) {
|
|
v = keysAndValues[i+1]
|
|
} else {
|
|
v = missingValue
|
|
}
|
|
f.KVFormat(b, k, v)
|
|
}
|
|
}
|
|
|
|
func KVListFormat(b *bytes.Buffer, keysAndValues ...interface{}) {
|
|
Formatter{}.KVListFormat(b, keysAndValues...)
|
|
}
|
|
|
|
// KVFormat serializes one key/value pair into the provided buffer.
|
|
// A space gets inserted before the pair.
|
|
func (f Formatter) KVFormat(b *bytes.Buffer, k, v interface{}) {
|
|
b.WriteByte(' ')
|
|
// Keys are assumed to be well-formed according to
|
|
// https://github.com/kubernetes/community/blob/master/contributors/devel/sig-instrumentation/migration-to-structured-logging.md#name-arguments
|
|
// for the sake of performance. Keys with spaces,
|
|
// special characters, etc. will break parsing.
|
|
if sK, ok := k.(string); ok {
|
|
// Avoid one allocation when the key is a string, which
|
|
// normally it should be.
|
|
b.WriteString(sK)
|
|
} else {
|
|
b.WriteString(fmt.Sprintf("%s", k))
|
|
}
|
|
|
|
// The type checks are sorted so that more frequently used ones
|
|
// come first because that is then faster in the common
|
|
// cases. In Kubernetes, ObjectRef (a Stringer) is more common
|
|
// than plain strings
|
|
// (https://github.com/kubernetes/kubernetes/pull/106594#issuecomment-975526235).
|
|
switch v := v.(type) {
|
|
case textWriter:
|
|
writeTextWriterValue(b, v)
|
|
case fmt.Stringer:
|
|
writeStringValue(b, StringerToString(v))
|
|
case string:
|
|
writeStringValue(b, v)
|
|
case error:
|
|
writeStringValue(b, ErrorToString(v))
|
|
case logr.Marshaler:
|
|
value := MarshalerToValue(v)
|
|
// A marshaler that returns a string is useful for
|
|
// delayed formatting of complex values. We treat this
|
|
// case like a normal string. This is useful for
|
|
// multi-line support.
|
|
//
|
|
// We could do this by recursively formatting a value,
|
|
// but that comes with the risk of infinite recursion
|
|
// if a marshaler returns itself. Instead we call it
|
|
// only once and rely on it returning the intended
|
|
// value directly.
|
|
switch value := value.(type) {
|
|
case string:
|
|
writeStringValue(b, value)
|
|
default:
|
|
f.formatAny(b, value)
|
|
}
|
|
case []byte:
|
|
// In https://github.com/kubernetes/klog/pull/237 it was decided
|
|
// to format byte slices with "%+q". The advantages of that are:
|
|
// - readable output if the bytes happen to be printable
|
|
// - non-printable bytes get represented as unicode escape
|
|
// sequences (\uxxxx)
|
|
//
|
|
// The downsides are that we cannot use the faster
|
|
// strconv.Quote here and that multi-line output is not
|
|
// supported. If developers know that a byte array is
|
|
// printable and they want multi-line output, they can
|
|
// convert the value to string before logging it.
|
|
b.WriteByte('=')
|
|
b.WriteString(fmt.Sprintf("%+q", v))
|
|
default:
|
|
f.formatAny(b, v)
|
|
}
|
|
}
|
|
|
|
func KVFormat(b *bytes.Buffer, k, v interface{}) {
|
|
Formatter{}.KVFormat(b, k, v)
|
|
}
|
|
|
|
// formatAny is the fallback formatter for a value. It supports a hook (for
|
|
// example, for YAML encoding) and itself uses JSON encoding.
|
|
func (f Formatter) formatAny(b *bytes.Buffer, v interface{}) {
|
|
b.WriteRune('=')
|
|
if f.AnyToStringHook != nil {
|
|
b.WriteString(f.AnyToStringHook(v))
|
|
return
|
|
}
|
|
encoder := json.NewEncoder(b)
|
|
l := b.Len()
|
|
if err := encoder.Encode(v); err != nil {
|
|
// This shouldn't happen. We discard whatever the encoder
|
|
// wrote and instead dump an error string.
|
|
b.Truncate(l)
|
|
b.WriteString(fmt.Sprintf(`"<internal error: %v>"`, err))
|
|
return
|
|
}
|
|
// Remove trailing newline.
|
|
b.Truncate(b.Len() - 1)
|
|
}
|
|
|
|
// StringerToString converts a Stringer to a string,
|
|
// handling panics if they occur.
|
|
func StringerToString(s fmt.Stringer) (ret string) {
|
|
defer func() {
|
|
if err := recover(); err != nil {
|
|
ret = fmt.Sprintf("<panic: %s>", err)
|
|
}
|
|
}()
|
|
ret = s.String()
|
|
return
|
|
}
|
|
|
|
// MarshalerToValue invokes a marshaler and catches
|
|
// panics.
|
|
func MarshalerToValue(m logr.Marshaler) (ret interface{}) {
|
|
defer func() {
|
|
if err := recover(); err != nil {
|
|
ret = fmt.Sprintf("<panic: %s>", err)
|
|
}
|
|
}()
|
|
ret = m.MarshalLog()
|
|
return
|
|
}
|
|
|
|
// ErrorToString converts an error to a string,
|
|
// handling panics if they occur.
|
|
func ErrorToString(err error) (ret string) {
|
|
defer func() {
|
|
if err := recover(); err != nil {
|
|
ret = fmt.Sprintf("<panic: %s>", err)
|
|
}
|
|
}()
|
|
ret = err.Error()
|
|
return
|
|
}
|
|
|
|
func writeTextWriterValue(b *bytes.Buffer, v textWriter) {
|
|
b.WriteByte('=')
|
|
defer func() {
|
|
if err := recover(); err != nil {
|
|
fmt.Fprintf(b, `"<panic: %s>"`, err)
|
|
}
|
|
}()
|
|
v.WriteText(b)
|
|
}
|
|
|
|
func writeStringValue(b *bytes.Buffer, v string) {
|
|
data := []byte(v)
|
|
index := bytes.IndexByte(data, '\n')
|
|
if index == -1 {
|
|
b.WriteByte('=')
|
|
// Simple string, quote quotation marks and non-printable characters.
|
|
b.WriteString(strconv.Quote(v))
|
|
return
|
|
}
|
|
|
|
// Complex multi-line string, show as-is with indention like this:
|
|
// I... "hello world" key=<
|
|
// <tab>line 1
|
|
// <tab>line 2
|
|
// >
|
|
//
|
|
// Tabs indent the lines of the value while the end of string delimiter
|
|
// is indented with a space. That has two purposes:
|
|
// - visual difference between the two for a human reader because indention
|
|
// will be different
|
|
// - no ambiguity when some value line starts with the end delimiter
|
|
//
|
|
// One downside is that the output cannot distinguish between strings that
|
|
// end with a line break and those that don't because the end delimiter
|
|
// will always be on the next line.
|
|
b.WriteString("=<\n")
|
|
for index != -1 {
|
|
b.WriteByte('\t')
|
|
b.Write(data[0 : index+1])
|
|
data = data[index+1:]
|
|
index = bytes.IndexByte(data, '\n')
|
|
}
|
|
if len(data) == 0 {
|
|
// String ended with line break, don't add another.
|
|
b.WriteString(" >")
|
|
} else {
|
|
// No line break at end of last line, write rest of string and
|
|
// add one.
|
|
b.WriteByte('\t')
|
|
b.Write(data)
|
|
b.WriteString("\n >")
|
|
}
|
|
}
|