mirror of
https://github.com/ceph/ceph-csi.git
synced 2024-12-27 15:30:23 +00:00
e5d9b68d36
Bumps the golang-dependencies group with 1 update: [golang.org/x/crypto](https://github.com/golang/crypto). Updates `golang.org/x/crypto` from 0.16.0 to 0.17.0 - [Commits](https://github.com/golang/crypto/compare/v0.16.0...v0.17.0) --- updated-dependencies: - dependency-name: golang.org/x/crypto dependency-type: direct:production update-type: version-update:semver-minor dependency-group: golang-dependencies ... Signed-off-by: dependabot[bot] <support@github.com>
425 lines
16 KiB
Go
425 lines
16 KiB
Go
// Copyright 2018 Google LLC
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package parser
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/google/cel-go/common"
|
|
"github.com/google/cel-go/common/operators"
|
|
|
|
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
|
|
)
|
|
|
|
// NewGlobalMacro creates a Macro for a global function with the specified arg count.
|
|
func NewGlobalMacro(function string, argCount int, expander MacroExpander) Macro {
|
|
return ¯o{
|
|
function: function,
|
|
argCount: argCount,
|
|
expander: expander}
|
|
}
|
|
|
|
// NewReceiverMacro creates a Macro for a receiver function matching the specified arg count.
|
|
func NewReceiverMacro(function string, argCount int, expander MacroExpander) Macro {
|
|
return ¯o{
|
|
function: function,
|
|
argCount: argCount,
|
|
expander: expander,
|
|
receiverStyle: true}
|
|
}
|
|
|
|
// NewGlobalVarArgMacro creates a Macro for a global function with a variable arg count.
|
|
func NewGlobalVarArgMacro(function string, expander MacroExpander) Macro {
|
|
return ¯o{
|
|
function: function,
|
|
expander: expander,
|
|
varArgStyle: true}
|
|
}
|
|
|
|
// NewReceiverVarArgMacro creates a Macro for a receiver function matching a variable arg count.
|
|
func NewReceiverVarArgMacro(function string, expander MacroExpander) Macro {
|
|
return ¯o{
|
|
function: function,
|
|
expander: expander,
|
|
receiverStyle: true,
|
|
varArgStyle: true}
|
|
}
|
|
|
|
// Macro interface for describing the function signature to match and the MacroExpander to apply.
|
|
//
|
|
// Note: when a Macro should apply to multiple overloads (based on arg count) of a given function,
|
|
// a Macro should be created per arg-count.
|
|
type Macro interface {
|
|
// Function name to match.
|
|
Function() string
|
|
|
|
// ArgCount for the function call.
|
|
//
|
|
// When the macro is a var-arg style macro, the return value will be zero, but the MacroKey
|
|
// will contain a `*` where the arg count would have been.
|
|
ArgCount() int
|
|
|
|
// IsReceiverStyle returns true if the macro matches a receiver style call.
|
|
IsReceiverStyle() bool
|
|
|
|
// MacroKey returns the macro signatures accepted by this macro.
|
|
//
|
|
// Format: `<function>:<arg-count>:<is-receiver>`.
|
|
//
|
|
// When the macros is a var-arg style macro, the `arg-count` value is represented as a `*`.
|
|
MacroKey() string
|
|
|
|
// Expander returns the MacroExpander to apply when the macro key matches the parsed call
|
|
// signature.
|
|
Expander() MacroExpander
|
|
}
|
|
|
|
// Macro type which declares the function name and arg count expected for the
|
|
// macro, as well as a macro expansion function.
|
|
type macro struct {
|
|
function string
|
|
receiverStyle bool
|
|
varArgStyle bool
|
|
argCount int
|
|
expander MacroExpander
|
|
}
|
|
|
|
// Function returns the macro's function name (i.e. the function whose syntax it mimics).
|
|
func (m *macro) Function() string {
|
|
return m.function
|
|
}
|
|
|
|
// ArgCount returns the number of arguments the macro expects.
|
|
func (m *macro) ArgCount() int {
|
|
return m.argCount
|
|
}
|
|
|
|
// IsReceiverStyle returns whether the macro is receiver style.
|
|
func (m *macro) IsReceiverStyle() bool {
|
|
return m.receiverStyle
|
|
}
|
|
|
|
// Expander implements the Macro interface method.
|
|
func (m *macro) Expander() MacroExpander {
|
|
return m.expander
|
|
}
|
|
|
|
// MacroKey implements the Macro interface method.
|
|
func (m *macro) MacroKey() string {
|
|
if m.varArgStyle {
|
|
return makeVarArgMacroKey(m.function, m.receiverStyle)
|
|
}
|
|
return makeMacroKey(m.function, m.argCount, m.receiverStyle)
|
|
}
|
|
|
|
func makeMacroKey(name string, args int, receiverStyle bool) string {
|
|
return fmt.Sprintf("%s:%d:%v", name, args, receiverStyle)
|
|
}
|
|
|
|
func makeVarArgMacroKey(name string, receiverStyle bool) string {
|
|
return fmt.Sprintf("%s:*:%v", name, receiverStyle)
|
|
}
|
|
|
|
// MacroExpander converts a call and its associated arguments into a new CEL abstract syntax tree.
|
|
//
|
|
// If the MacroExpander determines within the implementation that an expansion is not needed it may return
|
|
// a nil Expr value to indicate a non-match. However, if an expansion is to be performed, but the arguments
|
|
// are not well-formed, the result of the expansion will be an error.
|
|
//
|
|
// The MacroExpander accepts as arguments a MacroExprHelper as well as the arguments used in the function call
|
|
// and produces as output an Expr ast node.
|
|
//
|
|
// Note: when the Macro.IsReceiverStyle() method returns true, the target argument will be nil.
|
|
type MacroExpander func(eh ExprHelper,
|
|
target *exprpb.Expr,
|
|
args []*exprpb.Expr) (*exprpb.Expr, *common.Error)
|
|
|
|
// ExprHelper assists with the manipulation of proto-based Expr values in a manner which is
|
|
// consistent with the source position and expression id generation code leveraged by both
|
|
// the parser and type-checker.
|
|
type ExprHelper interface {
|
|
// Copy the input expression with a brand new set of identifiers.
|
|
Copy(*exprpb.Expr) *exprpb.Expr
|
|
|
|
// LiteralBool creates an Expr value for a bool literal.
|
|
LiteralBool(value bool) *exprpb.Expr
|
|
|
|
// LiteralBytes creates an Expr value for a byte literal.
|
|
LiteralBytes(value []byte) *exprpb.Expr
|
|
|
|
// LiteralDouble creates an Expr value for double literal.
|
|
LiteralDouble(value float64) *exprpb.Expr
|
|
|
|
// LiteralInt creates an Expr value for an int literal.
|
|
LiteralInt(value int64) *exprpb.Expr
|
|
|
|
// LiteralString creates am Expr value for a string literal.
|
|
LiteralString(value string) *exprpb.Expr
|
|
|
|
// LiteralUint creates an Expr value for a uint literal.
|
|
LiteralUint(value uint64) *exprpb.Expr
|
|
|
|
// NewList creates a CreateList instruction where the list is comprised of the optional set
|
|
// of elements provided as arguments.
|
|
NewList(elems ...*exprpb.Expr) *exprpb.Expr
|
|
|
|
// NewMap creates a CreateStruct instruction for a map where the map is comprised of the
|
|
// optional set of key, value entries.
|
|
NewMap(entries ...*exprpb.Expr_CreateStruct_Entry) *exprpb.Expr
|
|
|
|
// NewMapEntry creates a Map Entry for the key, value pair.
|
|
NewMapEntry(key *exprpb.Expr, val *exprpb.Expr, optional bool) *exprpb.Expr_CreateStruct_Entry
|
|
|
|
// NewObject creates a CreateStruct instruction for an object with a given type name and
|
|
// optional set of field initializers.
|
|
NewObject(typeName string, fieldInits ...*exprpb.Expr_CreateStruct_Entry) *exprpb.Expr
|
|
|
|
// NewObjectFieldInit creates a new Object field initializer from the field name and value.
|
|
NewObjectFieldInit(field string, init *exprpb.Expr, optional bool) *exprpb.Expr_CreateStruct_Entry
|
|
|
|
// Fold creates a fold comprehension instruction.
|
|
//
|
|
// - iterVar is the iteration variable name.
|
|
// - iterRange represents the expression that resolves to a list or map where the elements or
|
|
// keys (respectively) will be iterated over.
|
|
// - accuVar is the accumulation variable name, typically parser.AccumulatorName.
|
|
// - accuInit is the initial expression whose value will be set for the accuVar prior to
|
|
// folding.
|
|
// - condition is the expression to test to determine whether to continue folding.
|
|
// - step is the expression to evaluation at the conclusion of a single fold iteration.
|
|
// - result is the computation to evaluate at the conclusion of the fold.
|
|
//
|
|
// The accuVar should not shadow variable names that you would like to reference within the
|
|
// environment in the step and condition expressions. Presently, the name __result__ is commonly
|
|
// used by built-in macros but this may change in the future.
|
|
Fold(iterVar string,
|
|
iterRange *exprpb.Expr,
|
|
accuVar string,
|
|
accuInit *exprpb.Expr,
|
|
condition *exprpb.Expr,
|
|
step *exprpb.Expr,
|
|
result *exprpb.Expr) *exprpb.Expr
|
|
|
|
// Ident creates an identifier Expr value.
|
|
Ident(name string) *exprpb.Expr
|
|
|
|
// AccuIdent returns an accumulator identifier for use with comprehension results.
|
|
AccuIdent() *exprpb.Expr
|
|
|
|
// GlobalCall creates a function call Expr value for a global (free) function.
|
|
GlobalCall(function string, args ...*exprpb.Expr) *exprpb.Expr
|
|
|
|
// ReceiverCall creates a function call Expr value for a receiver-style function.
|
|
ReceiverCall(function string, target *exprpb.Expr, args ...*exprpb.Expr) *exprpb.Expr
|
|
|
|
// PresenceTest creates a Select TestOnly Expr value for modelling has() semantics.
|
|
PresenceTest(operand *exprpb.Expr, field string) *exprpb.Expr
|
|
|
|
// Select create a field traversal Expr value.
|
|
Select(operand *exprpb.Expr, field string) *exprpb.Expr
|
|
|
|
// OffsetLocation returns the Location of the expression identifier.
|
|
OffsetLocation(exprID int64) common.Location
|
|
|
|
// NewError associates an error message with a given expression id.
|
|
NewError(exprID int64, message string) *common.Error
|
|
}
|
|
|
|
var (
|
|
// HasMacro expands "has(m.f)" which tests the presence of a field, avoiding the need to
|
|
// specify the field as a string.
|
|
HasMacro = NewGlobalMacro(operators.Has, 1, MakeHas)
|
|
|
|
// AllMacro expands "range.all(var, predicate)" into a comprehension which ensures that all
|
|
// elements in the range satisfy the predicate.
|
|
AllMacro = NewReceiverMacro(operators.All, 2, MakeAll)
|
|
|
|
// ExistsMacro expands "range.exists(var, predicate)" into a comprehension which ensures that
|
|
// some element in the range satisfies the predicate.
|
|
ExistsMacro = NewReceiverMacro(operators.Exists, 2, MakeExists)
|
|
|
|
// ExistsOneMacro expands "range.exists_one(var, predicate)", which is true if for exactly one
|
|
// element in range the predicate holds.
|
|
ExistsOneMacro = NewReceiverMacro(operators.ExistsOne, 2, MakeExistsOne)
|
|
|
|
// MapMacro expands "range.map(var, function)" into a comprehension which applies the function
|
|
// to each element in the range to produce a new list.
|
|
MapMacro = NewReceiverMacro(operators.Map, 2, MakeMap)
|
|
|
|
// MapFilterMacro expands "range.map(var, predicate, function)" into a comprehension which
|
|
// first filters the elements in the range by the predicate, then applies the transform function
|
|
// to produce a new list.
|
|
MapFilterMacro = NewReceiverMacro(operators.Map, 3, MakeMap)
|
|
|
|
// FilterMacro expands "range.filter(var, predicate)" into a comprehension which filters
|
|
// elements in the range, producing a new list from the elements that satisfy the predicate.
|
|
FilterMacro = NewReceiverMacro(operators.Filter, 2, MakeFilter)
|
|
|
|
// AllMacros includes the list of all spec-supported macros.
|
|
AllMacros = []Macro{
|
|
HasMacro,
|
|
AllMacro,
|
|
ExistsMacro,
|
|
ExistsOneMacro,
|
|
MapMacro,
|
|
MapFilterMacro,
|
|
FilterMacro,
|
|
}
|
|
|
|
// NoMacros list.
|
|
NoMacros = []Macro{}
|
|
)
|
|
|
|
// AccumulatorName is the traditional variable name assigned to the fold accumulator variable.
|
|
const AccumulatorName = "__result__"
|
|
|
|
type quantifierKind int
|
|
|
|
const (
|
|
quantifierAll quantifierKind = iota
|
|
quantifierExists
|
|
quantifierExistsOne
|
|
)
|
|
|
|
// MakeAll expands the input call arguments into a comprehension that returns true if all of the
|
|
// elements in the range match the predicate expressions:
|
|
// <iterRange>.all(<iterVar>, <predicate>)
|
|
func MakeAll(eh ExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *common.Error) {
|
|
return makeQuantifier(quantifierAll, eh, target, args)
|
|
}
|
|
|
|
// MakeExists expands the input call arguments into a comprehension that returns true if any of the
|
|
// elements in the range match the predicate expressions:
|
|
// <iterRange>.exists(<iterVar>, <predicate>)
|
|
func MakeExists(eh ExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *common.Error) {
|
|
return makeQuantifier(quantifierExists, eh, target, args)
|
|
}
|
|
|
|
// MakeExistsOne expands the input call arguments into a comprehension that returns true if exactly
|
|
// one of the elements in the range match the predicate expressions:
|
|
// <iterRange>.exists_one(<iterVar>, <predicate>)
|
|
func MakeExistsOne(eh ExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *common.Error) {
|
|
return makeQuantifier(quantifierExistsOne, eh, target, args)
|
|
}
|
|
|
|
// MakeMap expands the input call arguments into a comprehension that transforms each element in the
|
|
// input to produce an output list.
|
|
//
|
|
// There are two call patterns supported by map:
|
|
//
|
|
// <iterRange>.map(<iterVar>, <transform>)
|
|
// <iterRange>.map(<iterVar>, <predicate>, <transform>)
|
|
//
|
|
// In the second form only iterVar values which return true when provided to the predicate expression
|
|
// are transformed.
|
|
func MakeMap(eh ExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *common.Error) {
|
|
v, found := extractIdent(args[0])
|
|
if !found {
|
|
return nil, eh.NewError(args[0].GetId(), "argument is not an identifier")
|
|
}
|
|
|
|
var fn *exprpb.Expr
|
|
var filter *exprpb.Expr
|
|
|
|
if len(args) == 3 {
|
|
filter = args[1]
|
|
fn = args[2]
|
|
} else {
|
|
filter = nil
|
|
fn = args[1]
|
|
}
|
|
|
|
accuExpr := eh.Ident(AccumulatorName)
|
|
init := eh.NewList()
|
|
condition := eh.LiteralBool(true)
|
|
step := eh.GlobalCall(operators.Add, accuExpr, eh.NewList(fn))
|
|
|
|
if filter != nil {
|
|
step = eh.GlobalCall(operators.Conditional, filter, step, accuExpr)
|
|
}
|
|
return eh.Fold(v, target, AccumulatorName, init, condition, step, accuExpr), nil
|
|
}
|
|
|
|
// MakeFilter expands the input call arguments into a comprehension which produces a list which contains
|
|
// only elements which match the provided predicate expression:
|
|
// <iterRange>.filter(<iterVar>, <predicate>)
|
|
func MakeFilter(eh ExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *common.Error) {
|
|
v, found := extractIdent(args[0])
|
|
if !found {
|
|
return nil, eh.NewError(args[0].GetId(), "argument is not an identifier")
|
|
}
|
|
|
|
filter := args[1]
|
|
accuExpr := eh.Ident(AccumulatorName)
|
|
init := eh.NewList()
|
|
condition := eh.LiteralBool(true)
|
|
step := eh.GlobalCall(operators.Add, accuExpr, eh.NewList(args[0]))
|
|
step = eh.GlobalCall(operators.Conditional, filter, step, accuExpr)
|
|
return eh.Fold(v, target, AccumulatorName, init, condition, step, accuExpr), nil
|
|
}
|
|
|
|
// MakeHas expands the input call arguments into a presence test, e.g. has(<operand>.field)
|
|
func MakeHas(eh ExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *common.Error) {
|
|
if s, ok := args[0].ExprKind.(*exprpb.Expr_SelectExpr); ok {
|
|
return eh.PresenceTest(s.SelectExpr.GetOperand(), s.SelectExpr.GetField()), nil
|
|
}
|
|
return nil, eh.NewError(args[0].GetId(), "invalid argument to has() macro")
|
|
}
|
|
|
|
func makeQuantifier(kind quantifierKind, eh ExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *common.Error) {
|
|
v, found := extractIdent(args[0])
|
|
if !found {
|
|
return nil, eh.NewError(args[0].GetId(), "argument must be a simple name")
|
|
}
|
|
|
|
var init *exprpb.Expr
|
|
var condition *exprpb.Expr
|
|
var step *exprpb.Expr
|
|
var result *exprpb.Expr
|
|
switch kind {
|
|
case quantifierAll:
|
|
init = eh.LiteralBool(true)
|
|
condition = eh.GlobalCall(operators.NotStrictlyFalse, eh.AccuIdent())
|
|
step = eh.GlobalCall(operators.LogicalAnd, eh.AccuIdent(), args[1])
|
|
result = eh.AccuIdent()
|
|
case quantifierExists:
|
|
init = eh.LiteralBool(false)
|
|
condition = eh.GlobalCall(
|
|
operators.NotStrictlyFalse,
|
|
eh.GlobalCall(operators.LogicalNot, eh.AccuIdent()))
|
|
step = eh.GlobalCall(operators.LogicalOr, eh.AccuIdent(), args[1])
|
|
result = eh.AccuIdent()
|
|
case quantifierExistsOne:
|
|
zeroExpr := eh.LiteralInt(0)
|
|
oneExpr := eh.LiteralInt(1)
|
|
init = zeroExpr
|
|
condition = eh.LiteralBool(true)
|
|
step = eh.GlobalCall(operators.Conditional, args[1],
|
|
eh.GlobalCall(operators.Add, eh.AccuIdent(), oneExpr), eh.AccuIdent())
|
|
result = eh.GlobalCall(operators.Equals, eh.AccuIdent(), oneExpr)
|
|
default:
|
|
return nil, eh.NewError(args[0].GetId(), fmt.Sprintf("unrecognized quantifier '%v'", kind))
|
|
}
|
|
return eh.Fold(v, target, AccumulatorName, init, condition, step, result), nil
|
|
}
|
|
|
|
func extractIdent(e *exprpb.Expr) (string, bool) {
|
|
switch e.ExprKind.(type) {
|
|
case *exprpb.Expr_IdentExpr:
|
|
return e.GetIdentExpr().GetName(), true
|
|
}
|
|
return "", false
|
|
}
|