mirror of
https://github.com/ceph/ceph-csi.git
synced 2024-11-30 02:00:19 +00:00
7b663279bf
Bumps [k8s.io/kubernetes](https://github.com/kubernetes/kubernetes) from 1.25.0 to 1.25.3. - [Release notes](https://github.com/kubernetes/kubernetes/releases) - [Commits](https://github.com/kubernetes/kubernetes/compare/v1.25.0...v1.25.3) --- updated-dependencies: - dependency-name: k8s.io/kubernetes dependency-type: direct:production update-type: version-update:semver-patch ... Signed-off-by: dependabot[bot] <support@github.com>
213 lines
5.6 KiB
Go
213 lines
5.6 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package scrypt implements the scrypt key derivation function as defined in
|
|
// Colin Percival's paper "Stronger Key Derivation via Sequential Memory-Hard
|
|
// Functions" (https://www.tarsnap.com/scrypt/scrypt.pdf).
|
|
package scrypt // import "golang.org/x/crypto/scrypt"
|
|
|
|
import (
|
|
"crypto/sha256"
|
|
"encoding/binary"
|
|
"errors"
|
|
"math/bits"
|
|
|
|
"golang.org/x/crypto/pbkdf2"
|
|
)
|
|
|
|
const maxInt = int(^uint(0) >> 1)
|
|
|
|
// blockCopy copies n numbers from src into dst.
|
|
func blockCopy(dst, src []uint32, n int) {
|
|
copy(dst, src[:n])
|
|
}
|
|
|
|
// blockXOR XORs numbers from dst with n numbers from src.
|
|
func blockXOR(dst, src []uint32, n int) {
|
|
for i, v := range src[:n] {
|
|
dst[i] ^= v
|
|
}
|
|
}
|
|
|
|
// salsaXOR applies Salsa20/8 to the XOR of 16 numbers from tmp and in,
|
|
// and puts the result into both tmp and out.
|
|
func salsaXOR(tmp *[16]uint32, in, out []uint32) {
|
|
w0 := tmp[0] ^ in[0]
|
|
w1 := tmp[1] ^ in[1]
|
|
w2 := tmp[2] ^ in[2]
|
|
w3 := tmp[3] ^ in[3]
|
|
w4 := tmp[4] ^ in[4]
|
|
w5 := tmp[5] ^ in[5]
|
|
w6 := tmp[6] ^ in[6]
|
|
w7 := tmp[7] ^ in[7]
|
|
w8 := tmp[8] ^ in[8]
|
|
w9 := tmp[9] ^ in[9]
|
|
w10 := tmp[10] ^ in[10]
|
|
w11 := tmp[11] ^ in[11]
|
|
w12 := tmp[12] ^ in[12]
|
|
w13 := tmp[13] ^ in[13]
|
|
w14 := tmp[14] ^ in[14]
|
|
w15 := tmp[15] ^ in[15]
|
|
|
|
x0, x1, x2, x3, x4, x5, x6, x7, x8 := w0, w1, w2, w3, w4, w5, w6, w7, w8
|
|
x9, x10, x11, x12, x13, x14, x15 := w9, w10, w11, w12, w13, w14, w15
|
|
|
|
for i := 0; i < 8; i += 2 {
|
|
x4 ^= bits.RotateLeft32(x0+x12, 7)
|
|
x8 ^= bits.RotateLeft32(x4+x0, 9)
|
|
x12 ^= bits.RotateLeft32(x8+x4, 13)
|
|
x0 ^= bits.RotateLeft32(x12+x8, 18)
|
|
|
|
x9 ^= bits.RotateLeft32(x5+x1, 7)
|
|
x13 ^= bits.RotateLeft32(x9+x5, 9)
|
|
x1 ^= bits.RotateLeft32(x13+x9, 13)
|
|
x5 ^= bits.RotateLeft32(x1+x13, 18)
|
|
|
|
x14 ^= bits.RotateLeft32(x10+x6, 7)
|
|
x2 ^= bits.RotateLeft32(x14+x10, 9)
|
|
x6 ^= bits.RotateLeft32(x2+x14, 13)
|
|
x10 ^= bits.RotateLeft32(x6+x2, 18)
|
|
|
|
x3 ^= bits.RotateLeft32(x15+x11, 7)
|
|
x7 ^= bits.RotateLeft32(x3+x15, 9)
|
|
x11 ^= bits.RotateLeft32(x7+x3, 13)
|
|
x15 ^= bits.RotateLeft32(x11+x7, 18)
|
|
|
|
x1 ^= bits.RotateLeft32(x0+x3, 7)
|
|
x2 ^= bits.RotateLeft32(x1+x0, 9)
|
|
x3 ^= bits.RotateLeft32(x2+x1, 13)
|
|
x0 ^= bits.RotateLeft32(x3+x2, 18)
|
|
|
|
x6 ^= bits.RotateLeft32(x5+x4, 7)
|
|
x7 ^= bits.RotateLeft32(x6+x5, 9)
|
|
x4 ^= bits.RotateLeft32(x7+x6, 13)
|
|
x5 ^= bits.RotateLeft32(x4+x7, 18)
|
|
|
|
x11 ^= bits.RotateLeft32(x10+x9, 7)
|
|
x8 ^= bits.RotateLeft32(x11+x10, 9)
|
|
x9 ^= bits.RotateLeft32(x8+x11, 13)
|
|
x10 ^= bits.RotateLeft32(x9+x8, 18)
|
|
|
|
x12 ^= bits.RotateLeft32(x15+x14, 7)
|
|
x13 ^= bits.RotateLeft32(x12+x15, 9)
|
|
x14 ^= bits.RotateLeft32(x13+x12, 13)
|
|
x15 ^= bits.RotateLeft32(x14+x13, 18)
|
|
}
|
|
x0 += w0
|
|
x1 += w1
|
|
x2 += w2
|
|
x3 += w3
|
|
x4 += w4
|
|
x5 += w5
|
|
x6 += w6
|
|
x7 += w7
|
|
x8 += w8
|
|
x9 += w9
|
|
x10 += w10
|
|
x11 += w11
|
|
x12 += w12
|
|
x13 += w13
|
|
x14 += w14
|
|
x15 += w15
|
|
|
|
out[0], tmp[0] = x0, x0
|
|
out[1], tmp[1] = x1, x1
|
|
out[2], tmp[2] = x2, x2
|
|
out[3], tmp[3] = x3, x3
|
|
out[4], tmp[4] = x4, x4
|
|
out[5], tmp[5] = x5, x5
|
|
out[6], tmp[6] = x6, x6
|
|
out[7], tmp[7] = x7, x7
|
|
out[8], tmp[8] = x8, x8
|
|
out[9], tmp[9] = x9, x9
|
|
out[10], tmp[10] = x10, x10
|
|
out[11], tmp[11] = x11, x11
|
|
out[12], tmp[12] = x12, x12
|
|
out[13], tmp[13] = x13, x13
|
|
out[14], tmp[14] = x14, x14
|
|
out[15], tmp[15] = x15, x15
|
|
}
|
|
|
|
func blockMix(tmp *[16]uint32, in, out []uint32, r int) {
|
|
blockCopy(tmp[:], in[(2*r-1)*16:], 16)
|
|
for i := 0; i < 2*r; i += 2 {
|
|
salsaXOR(tmp, in[i*16:], out[i*8:])
|
|
salsaXOR(tmp, in[i*16+16:], out[i*8+r*16:])
|
|
}
|
|
}
|
|
|
|
func integer(b []uint32, r int) uint64 {
|
|
j := (2*r - 1) * 16
|
|
return uint64(b[j]) | uint64(b[j+1])<<32
|
|
}
|
|
|
|
func smix(b []byte, r, N int, v, xy []uint32) {
|
|
var tmp [16]uint32
|
|
R := 32 * r
|
|
x := xy
|
|
y := xy[R:]
|
|
|
|
j := 0
|
|
for i := 0; i < R; i++ {
|
|
x[i] = binary.LittleEndian.Uint32(b[j:])
|
|
j += 4
|
|
}
|
|
for i := 0; i < N; i += 2 {
|
|
blockCopy(v[i*R:], x, R)
|
|
blockMix(&tmp, x, y, r)
|
|
|
|
blockCopy(v[(i+1)*R:], y, R)
|
|
blockMix(&tmp, y, x, r)
|
|
}
|
|
for i := 0; i < N; i += 2 {
|
|
j := int(integer(x, r) & uint64(N-1))
|
|
blockXOR(x, v[j*R:], R)
|
|
blockMix(&tmp, x, y, r)
|
|
|
|
j = int(integer(y, r) & uint64(N-1))
|
|
blockXOR(y, v[j*R:], R)
|
|
blockMix(&tmp, y, x, r)
|
|
}
|
|
j = 0
|
|
for _, v := range x[:R] {
|
|
binary.LittleEndian.PutUint32(b[j:], v)
|
|
j += 4
|
|
}
|
|
}
|
|
|
|
// Key derives a key from the password, salt, and cost parameters, returning
|
|
// a byte slice of length keyLen that can be used as cryptographic key.
|
|
//
|
|
// N is a CPU/memory cost parameter, which must be a power of two greater than 1.
|
|
// r and p must satisfy r * p < 2³⁰. If the parameters do not satisfy the
|
|
// limits, the function returns a nil byte slice and an error.
|
|
//
|
|
// For example, you can get a derived key for e.g. AES-256 (which needs a
|
|
// 32-byte key) by doing:
|
|
//
|
|
// dk, err := scrypt.Key([]byte("some password"), salt, 32768, 8, 1, 32)
|
|
//
|
|
// The recommended parameters for interactive logins as of 2017 are N=32768, r=8
|
|
// and p=1. The parameters N, r, and p should be increased as memory latency and
|
|
// CPU parallelism increases; consider setting N to the highest power of 2 you
|
|
// can derive within 100 milliseconds. Remember to get a good random salt.
|
|
func Key(password, salt []byte, N, r, p, keyLen int) ([]byte, error) {
|
|
if N <= 1 || N&(N-1) != 0 {
|
|
return nil, errors.New("scrypt: N must be > 1 and a power of 2")
|
|
}
|
|
if uint64(r)*uint64(p) >= 1<<30 || r > maxInt/128/p || r > maxInt/256 || N > maxInt/128/r {
|
|
return nil, errors.New("scrypt: parameters are too large")
|
|
}
|
|
|
|
xy := make([]uint32, 64*r)
|
|
v := make([]uint32, 32*N*r)
|
|
b := pbkdf2.Key(password, salt, 1, p*128*r, sha256.New)
|
|
|
|
for i := 0; i < p; i++ {
|
|
smix(b[i*128*r:], r, N, v, xy)
|
|
}
|
|
|
|
return pbkdf2.Key(password, b, 1, keyLen, sha256.New), nil
|
|
}
|