mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-01-11 22:39:31 +00:00
256 lines
7.3 KiB
Go
256 lines
7.3 KiB
Go
// Go support for Protocol Buffers - Google's data interchange format
|
|
//
|
|
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// https://github.com/golang/protobuf
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// +build go1.7
|
|
|
|
package proto_test
|
|
|
|
import (
|
|
"fmt"
|
|
"testing"
|
|
|
|
"github.com/golang/protobuf/proto"
|
|
tpb "github.com/golang/protobuf/proto/proto3_proto"
|
|
)
|
|
|
|
var msgBlackhole = new(tpb.Message)
|
|
|
|
// BenchmarkVarint32ArraySmall shows the performance on an array of small int32 fields (1 and
|
|
// 2 bytes long).
|
|
func BenchmarkVarint32ArraySmall(b *testing.B) {
|
|
for i := uint(1); i <= 10; i++ {
|
|
dist := genInt32Dist([7]int{0, 3, 1}, 1<<i)
|
|
raw, err := proto.Marshal(&tpb.Message{
|
|
ShortKey: dist,
|
|
})
|
|
if err != nil {
|
|
b.Error("wrong encode", err)
|
|
}
|
|
b.Run(fmt.Sprintf("Len%v", len(dist)), func(b *testing.B) {
|
|
scratchBuf := proto.NewBuffer(nil)
|
|
b.ResetTimer()
|
|
for k := 0; k < b.N; k++ {
|
|
scratchBuf.SetBuf(raw)
|
|
msgBlackhole.Reset()
|
|
if err := scratchBuf.Unmarshal(msgBlackhole); err != nil {
|
|
b.Error("wrong decode", err)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
// BenchmarkVarint32ArrayLarge shows the performance on an array of large int32 fields (3 and
|
|
// 4 bytes long, with a small number of 1, 2, 5 and 10 byte long versions).
|
|
func BenchmarkVarint32ArrayLarge(b *testing.B) {
|
|
for i := uint(1); i <= 10; i++ {
|
|
dist := genInt32Dist([7]int{0, 1, 2, 4, 8, 1, 1}, 1<<i)
|
|
raw, err := proto.Marshal(&tpb.Message{
|
|
ShortKey: dist,
|
|
})
|
|
if err != nil {
|
|
b.Error("wrong encode", err)
|
|
}
|
|
b.Run(fmt.Sprintf("Len%v", len(dist)), func(b *testing.B) {
|
|
scratchBuf := proto.NewBuffer(nil)
|
|
b.ResetTimer()
|
|
for k := 0; k < b.N; k++ {
|
|
scratchBuf.SetBuf(raw)
|
|
msgBlackhole.Reset()
|
|
if err := scratchBuf.Unmarshal(msgBlackhole); err != nil {
|
|
b.Error("wrong decode", err)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
// BenchmarkVarint64ArraySmall shows the performance on an array of small int64 fields (1 and
|
|
// 2 bytes long).
|
|
func BenchmarkVarint64ArraySmall(b *testing.B) {
|
|
for i := uint(1); i <= 10; i++ {
|
|
dist := genUint64Dist([11]int{0, 3, 1}, 1<<i)
|
|
raw, err := proto.Marshal(&tpb.Message{
|
|
Key: dist,
|
|
})
|
|
if err != nil {
|
|
b.Error("wrong encode", err)
|
|
}
|
|
b.Run(fmt.Sprintf("Len%v", len(dist)), func(b *testing.B) {
|
|
scratchBuf := proto.NewBuffer(nil)
|
|
b.ResetTimer()
|
|
for k := 0; k < b.N; k++ {
|
|
scratchBuf.SetBuf(raw)
|
|
msgBlackhole.Reset()
|
|
if err := scratchBuf.Unmarshal(msgBlackhole); err != nil {
|
|
b.Error("wrong decode", err)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
// BenchmarkVarint64ArrayLarge shows the performance on an array of large int64 fields (6, 7,
|
|
// and 8 bytes long with a small number of the other sizes).
|
|
func BenchmarkVarint64ArrayLarge(b *testing.B) {
|
|
for i := uint(1); i <= 10; i++ {
|
|
dist := genUint64Dist([11]int{0, 1, 1, 2, 4, 8, 16, 32, 16, 1, 1}, 1<<i)
|
|
raw, err := proto.Marshal(&tpb.Message{
|
|
Key: dist,
|
|
})
|
|
if err != nil {
|
|
b.Error("wrong encode", err)
|
|
}
|
|
b.Run(fmt.Sprintf("Len%v", len(dist)), func(b *testing.B) {
|
|
scratchBuf := proto.NewBuffer(nil)
|
|
b.ResetTimer()
|
|
for k := 0; k < b.N; k++ {
|
|
scratchBuf.SetBuf(raw)
|
|
msgBlackhole.Reset()
|
|
if err := scratchBuf.Unmarshal(msgBlackhole); err != nil {
|
|
b.Error("wrong decode", err)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
// BenchmarkVarint64ArrayMixed shows the performance of lots of small messages, each
|
|
// containing a small number of large (3, 4, and 5 byte) repeated int64s.
|
|
func BenchmarkVarint64ArrayMixed(b *testing.B) {
|
|
for i := uint(1); i <= 1<<5; i <<= 1 {
|
|
dist := genUint64Dist([11]int{0, 0, 0, 4, 6, 4, 0, 0, 0, 0, 0}, int(i))
|
|
// number of sub fields
|
|
for k := uint(1); k <= 1<<10; k <<= 2 {
|
|
msg := &tpb.Message{}
|
|
for m := uint(0); m < k; m++ {
|
|
msg.Children = append(msg.Children, &tpb.Message{
|
|
Key: dist,
|
|
})
|
|
}
|
|
raw, err := proto.Marshal(msg)
|
|
if err != nil {
|
|
b.Error("wrong encode", err)
|
|
}
|
|
b.Run(fmt.Sprintf("Fields%vLen%v", k, i), func(b *testing.B) {
|
|
scratchBuf := proto.NewBuffer(nil)
|
|
b.ResetTimer()
|
|
for k := 0; k < b.N; k++ {
|
|
scratchBuf.SetBuf(raw)
|
|
msgBlackhole.Reset()
|
|
if err := scratchBuf.Unmarshal(msgBlackhole); err != nil {
|
|
b.Error("wrong decode", err)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
// genInt32Dist generates a slice of ints that will match the size distribution of dist.
|
|
// A size of 6 corresponds to a max length varint32, which is 10 bytes. The distribution
|
|
// is 1-indexed. (i.e. the value at index 1 is how many 1 byte ints to create).
|
|
func genInt32Dist(dist [7]int, count int) (dest []int32) {
|
|
for i := 0; i < count; i++ {
|
|
for k := 0; k < len(dist); k++ {
|
|
var num int32
|
|
switch k {
|
|
case 1:
|
|
num = 1<<7 - 1
|
|
case 2:
|
|
num = 1<<14 - 1
|
|
case 3:
|
|
num = 1<<21 - 1
|
|
case 4:
|
|
num = 1<<28 - 1
|
|
case 5:
|
|
num = 1<<29 - 1
|
|
case 6:
|
|
num = -1
|
|
}
|
|
for m := 0; m < dist[k]; m++ {
|
|
dest = append(dest, num)
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// genUint64Dist generates a slice of ints that will match the size distribution of dist.
|
|
// The distribution is 1-indexed. (i.e. the value at index 1 is how many 1 byte ints to create).
|
|
func genUint64Dist(dist [11]int, count int) (dest []uint64) {
|
|
for i := 0; i < count; i++ {
|
|
for k := 0; k < len(dist); k++ {
|
|
var num uint64
|
|
switch k {
|
|
case 1:
|
|
num = 1<<7 - 1
|
|
case 2:
|
|
num = 1<<14 - 1
|
|
case 3:
|
|
num = 1<<21 - 1
|
|
case 4:
|
|
num = 1<<28 - 1
|
|
case 5:
|
|
num = 1<<35 - 1
|
|
case 6:
|
|
num = 1<<42 - 1
|
|
case 7:
|
|
num = 1<<49 - 1
|
|
case 8:
|
|
num = 1<<56 - 1
|
|
case 9:
|
|
num = 1<<63 - 1
|
|
case 10:
|
|
num = 1<<64 - 1
|
|
}
|
|
for m := 0; m < dist[k]; m++ {
|
|
dest = append(dest, num)
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// BenchmarkDecodeEmpty measures the overhead of doing the minimal possible decode.
|
|
func BenchmarkDecodeEmpty(b *testing.B) {
|
|
raw, err := proto.Marshal(&tpb.Message{})
|
|
if err != nil {
|
|
b.Error("wrong encode", err)
|
|
}
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
if err := proto.Unmarshal(raw, msgBlackhole); err != nil {
|
|
b.Error("wrong decode", err)
|
|
}
|
|
}
|
|
}
|