ceph-csi/vendor/google.golang.org/protobuf/internal/impl/legacy_message.go
Niels de Vos 91774fc936 rebase: vendor dependencies for Vault API
Uses github.com/libopenstorage/secrets to communicate with Vault. This
removes the need for maintaining our own limited Vault APIs.

By adding the new dependency, several other packages got updated in the
process. Unused indirect dependencies have been removed from go.mod.

Signed-off-by: Niels de Vos <ndevos@redhat.com>
2020-11-29 04:03:59 +00:00

503 lines
16 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"fmt"
"reflect"
"strings"
"sync"
"google.golang.org/protobuf/internal/descopts"
ptag "google.golang.org/protobuf/internal/encoding/tag"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/internal/filedesc"
"google.golang.org/protobuf/internal/strs"
"google.golang.org/protobuf/reflect/protoreflect"
pref "google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/runtime/protoiface"
piface "google.golang.org/protobuf/runtime/protoiface"
)
// legacyWrapMessage wraps v as a protoreflect.Message,
// where v must be a *struct kind and not implement the v2 API already.
func legacyWrapMessage(v reflect.Value) pref.Message {
typ := v.Type()
if typ.Kind() != reflect.Ptr || typ.Elem().Kind() != reflect.Struct {
return aberrantMessage{v: v}
}
mt := legacyLoadMessageInfo(typ, "")
return mt.MessageOf(v.Interface())
}
var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo
// legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
// where t must be a *struct kind and not implement the v2 API already.
// The provided name is used if it cannot be determined from the message.
func legacyLoadMessageInfo(t reflect.Type, name pref.FullName) *MessageInfo {
// Fast-path: check if a MessageInfo is cached for this concrete type.
if mt, ok := legacyMessageTypeCache.Load(t); ok {
return mt.(*MessageInfo)
}
// Slow-path: derive message descriptor and initialize MessageInfo.
mi := &MessageInfo{
Desc: legacyLoadMessageDesc(t, name),
GoReflectType: t,
}
v := reflect.Zero(t).Interface()
if _, ok := v.(legacyMarshaler); ok {
mi.methods.Marshal = legacyMarshal
// We have no way to tell whether the type's Marshal method
// supports deterministic serialization or not, but this
// preserves the v1 implementation's behavior of always
// calling Marshal methods when present.
mi.methods.Flags |= piface.SupportMarshalDeterministic
}
if _, ok := v.(legacyUnmarshaler); ok {
mi.methods.Unmarshal = legacyUnmarshal
}
if _, ok := v.(legacyMerger); ok {
mi.methods.Merge = legacyMerge
}
if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
return mi.(*MessageInfo)
}
return mi
}
var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor
// LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
// which must be a *struct kind and not implement the v2 API already.
//
// This is exported for testing purposes.
func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor {
return legacyLoadMessageDesc(t, "")
}
func legacyLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
// Fast-path: check if a MessageDescriptor is cached for this concrete type.
if mi, ok := legacyMessageDescCache.Load(t); ok {
return mi.(pref.MessageDescriptor)
}
// Slow-path: initialize MessageDescriptor from the raw descriptor.
mv := reflect.Zero(t).Interface()
if _, ok := mv.(pref.ProtoMessage); ok {
panic(fmt.Sprintf("%v already implements proto.Message", t))
}
mdV1, ok := mv.(messageV1)
if !ok {
return aberrantLoadMessageDesc(t, name)
}
// If this is a dynamic message type where there isn't a 1-1 mapping between
// Go and protobuf types, calling the Descriptor method on the zero value of
// the message type isn't likely to work. If it panics, swallow the panic and
// continue as if the Descriptor method wasn't present.
b, idxs := func() ([]byte, []int) {
defer func() {
recover()
}()
return mdV1.Descriptor()
}()
if b == nil {
return aberrantLoadMessageDesc(t, name)
}
// If the Go type has no fields, then this might be a proto3 empty message
// from before the size cache was added. If there are any fields, check to
// see that at least one of them looks like something we generated.
if nfield := t.Elem().NumField(); nfield > 0 {
hasProtoField := false
for i := 0; i < nfield; i++ {
f := t.Elem().Field(i)
if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") {
hasProtoField = true
break
}
}
if !hasProtoField {
return aberrantLoadMessageDesc(t, name)
}
}
md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
for _, i := range idxs[1:] {
md = md.Messages().Get(i)
}
if name != "" && md.FullName() != name {
panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
}
if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
return md.(protoreflect.MessageDescriptor)
}
return md
}
var (
aberrantMessageDescLock sync.Mutex
aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
)
// aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type,
// which must not implement protoreflect.ProtoMessage or messageV1.
//
// This is a best-effort derivation of the message descriptor using the protobuf
// tags on the struct fields.
func aberrantLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
aberrantMessageDescLock.Lock()
defer aberrantMessageDescLock.Unlock()
if aberrantMessageDescCache == nil {
aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
}
return aberrantLoadMessageDescReentrant(t, name)
}
func aberrantLoadMessageDescReentrant(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
// Fast-path: check if an MessageDescriptor is cached for this concrete type.
if md, ok := aberrantMessageDescCache[t]; ok {
return md
}
// Slow-path: construct a descriptor from the Go struct type (best-effort).
// Cache the MessageDescriptor early on so that we can resolve internal
// cyclic references.
md := &filedesc.Message{L2: new(filedesc.MessageL2)}
md.L0.FullName = aberrantDeriveMessageName(t, name)
md.L0.ParentFile = filedesc.SurrogateProto2
aberrantMessageDescCache[t] = md
if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
return md
}
// Try to determine if the message is using proto3 by checking scalars.
for i := 0; i < t.Elem().NumField(); i++ {
f := t.Elem().Field(i)
if tag := f.Tag.Get("protobuf"); tag != "" {
switch f.Type.Kind() {
case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
md.L0.ParentFile = filedesc.SurrogateProto3
}
for _, s := range strings.Split(tag, ",") {
if s == "proto3" {
md.L0.ParentFile = filedesc.SurrogateProto3
}
}
}
}
// Obtain a list of oneof wrapper types.
var oneofWrappers []reflect.Type
for _, method := range []string{"XXX_OneofFuncs", "XXX_OneofWrappers"} {
if fn, ok := t.MethodByName(method); ok {
for _, v := range fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))}) {
if vs, ok := v.Interface().([]interface{}); ok {
for _, v := range vs {
oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
}
}
}
}
}
// Obtain a list of the extension ranges.
if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
for i := 0; i < vs.Len(); i++ {
v := vs.Index(i)
md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{
pref.FieldNumber(v.FieldByName("Start").Int()),
pref.FieldNumber(v.FieldByName("End").Int() + 1),
})
md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
}
}
// Derive the message fields by inspecting the struct fields.
for i := 0; i < t.Elem().NumField(); i++ {
f := t.Elem().Field(i)
if tag := f.Tag.Get("protobuf"); tag != "" {
tagKey := f.Tag.Get("protobuf_key")
tagVal := f.Tag.Get("protobuf_val")
aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
}
if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
n := len(md.L2.Oneofs.List)
md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
od := &md.L2.Oneofs.List[n]
od.L0.FullName = md.FullName().Append(pref.Name(tag))
od.L0.ParentFile = md.L0.ParentFile
od.L0.Parent = md
od.L0.Index = n
for _, t := range oneofWrappers {
if t.Implements(f.Type) {
f := t.Elem().Field(0)
if tag := f.Tag.Get("protobuf"); tag != "" {
aberrantAppendField(md, f.Type, tag, "", "")
fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
fd.L1.ContainingOneof = od
od.L1.Fields.List = append(od.L1.Fields.List, fd)
}
}
}
}
}
return md
}
func aberrantDeriveMessageName(t reflect.Type, name pref.FullName) pref.FullName {
if name.IsValid() {
return name
}
func() {
defer func() { recover() }() // swallow possible nil panics
if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok {
name = pref.FullName(m.XXX_MessageName())
}
}()
if name.IsValid() {
return name
}
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
return AberrantDeriveFullName(t)
}
func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
t := goType
isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
if isOptional || isRepeated {
t = t.Elem()
}
fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)
// Append field descriptor to the message.
n := len(md.L2.Fields.List)
md.L2.Fields.List = append(md.L2.Fields.List, *fd)
fd = &md.L2.Fields.List[n]
fd.L0.FullName = md.FullName().Append(fd.Name())
fd.L0.ParentFile = md.L0.ParentFile
fd.L0.Parent = md
fd.L0.Index = n
if fd.L1.IsWeak || fd.L1.HasPacked {
fd.L1.Options = func() pref.ProtoMessage {
opts := descopts.Field.ProtoReflect().New()
if fd.L1.IsWeak {
opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true))
}
if fd.L1.HasPacked {
opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked))
}
return opts.Interface()
}
}
// Populate Enum and Message.
if fd.Enum() == nil && fd.Kind() == pref.EnumKind {
switch v := reflect.Zero(t).Interface().(type) {
case pref.Enum:
fd.L1.Enum = v.Descriptor()
default:
fd.L1.Enum = LegacyLoadEnumDesc(t)
}
}
if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) {
switch v := reflect.Zero(t).Interface().(type) {
case pref.ProtoMessage:
fd.L1.Message = v.ProtoReflect().Descriptor()
case messageV1:
fd.L1.Message = LegacyLoadMessageDesc(t)
default:
if t.Kind() == reflect.Map {
n := len(md.L1.Messages.List)
md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
md2 := &md.L1.Messages.List[n]
md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name()))))
md2.L0.ParentFile = md.L0.ParentFile
md2.L0.Parent = md
md2.L0.Index = n
md2.L1.IsMapEntry = true
md2.L2.Options = func() pref.ProtoMessage {
opts := descopts.Message.ProtoReflect().New()
opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true))
return opts.Interface()
}
aberrantAppendField(md2, t.Key(), tagKey, "", "")
aberrantAppendField(md2, t.Elem(), tagVal, "", "")
fd.L1.Message = md2
break
}
fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
}
}
}
type placeholderEnumValues struct {
protoreflect.EnumValueDescriptors
}
func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor {
return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
}
// legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder.
type legacyMarshaler interface {
Marshal() ([]byte, error)
}
// legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder.
type legacyUnmarshaler interface {
Unmarshal([]byte) error
}
// legacyMerger is the proto.Merger interface superseded by protoiface.Methoder.
type legacyMerger interface {
Merge(protoiface.MessageV1)
}
var legacyProtoMethods = &piface.Methods{
Marshal: legacyMarshal,
Unmarshal: legacyUnmarshal,
Merge: legacyMerge,
// We have no way to tell whether the type's Marshal method
// supports deterministic serialization or not, but this
// preserves the v1 implementation's behavior of always
// calling Marshal methods when present.
Flags: piface.SupportMarshalDeterministic,
}
func legacyMarshal(in piface.MarshalInput) (piface.MarshalOutput, error) {
v := in.Message.(unwrapper).protoUnwrap()
marshaler, ok := v.(legacyMarshaler)
if !ok {
return piface.MarshalOutput{}, errors.New("%T does not implement Marshal", v)
}
out, err := marshaler.Marshal()
if in.Buf != nil {
out = append(in.Buf, out...)
}
return piface.MarshalOutput{
Buf: out,
}, err
}
func legacyUnmarshal(in piface.UnmarshalInput) (piface.UnmarshalOutput, error) {
v := in.Message.(unwrapper).protoUnwrap()
unmarshaler, ok := v.(legacyUnmarshaler)
if !ok {
return piface.UnmarshalOutput{}, errors.New("%T does not implement Marshal", v)
}
return piface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf)
}
func legacyMerge(in piface.MergeInput) piface.MergeOutput {
dstv := in.Destination.(unwrapper).protoUnwrap()
merger, ok := dstv.(legacyMerger)
if !ok {
return piface.MergeOutput{}
}
merger.Merge(Export{}.ProtoMessageV1Of(in.Source))
return piface.MergeOutput{Flags: piface.MergeComplete}
}
// aberrantMessageType implements MessageType for all types other than pointer-to-struct.
type aberrantMessageType struct {
t reflect.Type
}
func (mt aberrantMessageType) New() pref.Message {
return aberrantMessage{reflect.Zero(mt.t)}
}
func (mt aberrantMessageType) Zero() pref.Message {
return aberrantMessage{reflect.Zero(mt.t)}
}
func (mt aberrantMessageType) GoType() reflect.Type {
return mt.t
}
func (mt aberrantMessageType) Descriptor() pref.MessageDescriptor {
return LegacyLoadMessageDesc(mt.t)
}
// aberrantMessage implements Message for all types other than pointer-to-struct.
//
// When the underlying type implements legacyMarshaler or legacyUnmarshaler,
// the aberrant Message can be marshaled or unmarshaled. Otherwise, there is
// not much that can be done with values of this type.
type aberrantMessage struct {
v reflect.Value
}
func (m aberrantMessage) ProtoReflect() pref.Message {
return m
}
func (m aberrantMessage) Descriptor() pref.MessageDescriptor {
return LegacyLoadMessageDesc(m.v.Type())
}
func (m aberrantMessage) Type() pref.MessageType {
return aberrantMessageType{m.v.Type()}
}
func (m aberrantMessage) New() pref.Message {
return aberrantMessage{reflect.Zero(m.v.Type())}
}
func (m aberrantMessage) Interface() pref.ProtoMessage {
return m
}
func (m aberrantMessage) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
}
func (m aberrantMessage) Has(pref.FieldDescriptor) bool {
panic("invalid field descriptor")
}
func (m aberrantMessage) Clear(pref.FieldDescriptor) {
panic("invalid field descriptor")
}
func (m aberrantMessage) Get(pref.FieldDescriptor) pref.Value {
panic("invalid field descriptor")
}
func (m aberrantMessage) Set(pref.FieldDescriptor, pref.Value) {
panic("invalid field descriptor")
}
func (m aberrantMessage) Mutable(pref.FieldDescriptor) pref.Value {
panic("invalid field descriptor")
}
func (m aberrantMessage) NewField(pref.FieldDescriptor) pref.Value {
panic("invalid field descriptor")
}
func (m aberrantMessage) WhichOneof(pref.OneofDescriptor) pref.FieldDescriptor {
panic("invalid oneof descriptor")
}
func (m aberrantMessage) GetUnknown() pref.RawFields {
return nil
}
func (m aberrantMessage) SetUnknown(pref.RawFields) {
// SetUnknown discards its input on messages which don't support unknown field storage.
}
func (m aberrantMessage) IsValid() bool {
// An invalid message is a read-only, empty message. Since we don't know anything
// about the alleged contents of this message, we can't say with confidence that
// it is invalid in this sense. Therefore, report it as valid.
return true
}
func (m aberrantMessage) ProtoMethods() *piface.Methods {
return legacyProtoMethods
}
func (m aberrantMessage) protoUnwrap() interface{} {
return m.v.Interface()
}