1
0
mirror of https://github.com/ceph/ceph-csi.git synced 2025-01-09 21:39:29 +00:00
ceph-csi/vendor/github.com/google/fscrypt/filesystem/mountpoint.go
Marcel Lauhoff f8faffac89 vendor: vendor fscrypt integration dependencies
Signed-off-by: Marcel Lauhoff <marcel.lauhoff@suse.com>
2022-10-17 17:33:52 +00:00

579 lines
19 KiB
Go

/*
* mountpoint.go - Contains all the functionality for finding mountpoints and
* using UUIDs to refer to them. Specifically, we can find the mountpoint of a
* path, get info about a mountpoint, and find mountpoints with a specific UUID.
*
* Copyright 2017 Google Inc.
* Author: Joe Richey (joerichey@google.com)
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package filesystem
import (
"bufio"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"path/filepath"
"sort"
"strconv"
"strings"
"sync"
"github.com/pkg/errors"
)
var (
// These maps hold data about the state of the system's filesystems.
//
// They only contain one Mount per filesystem, even if there are
// additional bind mounts, since we want to store fscrypt metadata in
// only one place per filesystem. When it is ambiguous which Mount
// should be used for a filesystem, mountsByDevice will contain an
// explicit nil entry, and mountsByPath won't contain an entry.
mountsByDevice map[DeviceNumber]*Mount
mountsByPath map[string]*Mount
// Used to make the mount functions thread safe
mountMutex sync.Mutex
// True if the maps have been successfully initialized.
mountsInitialized bool
// Supported tokens for filesystem links
uuidToken = "UUID"
pathToken = "PATH"
// Location to perform UUID lookup
uuidDirectory = "/dev/disk/by-uuid"
)
// Unescape octal-encoded escape sequences in a string from the mountinfo file.
// The kernel encodes the ' ', '\t', '\n', and '\\' bytes this way. This
// function exactly inverts what the kernel does, including by preserving
// invalid UTF-8.
func unescapeString(str string) string {
var sb strings.Builder
for i := 0; i < len(str); i++ {
b := str[i]
if b == '\\' && i+3 < len(str) {
if parsed, err := strconv.ParseInt(str[i+1:i+4], 8, 8); err == nil {
b = uint8(parsed)
i += 3
}
}
sb.WriteByte(b)
}
return sb.String()
}
// EscapeString is the reverse of unescapeString. Use this to avoid injecting
// spaces or newlines into output that uses these characters as separators.
func EscapeString(str string) string {
var sb strings.Builder
for _, b := range []byte(str) {
switch b {
case ' ', '\t', '\n', '\\':
sb.WriteString(fmt.Sprintf("\\%03o", b))
default:
sb.WriteByte(b)
}
}
return sb.String()
}
// We get the device name via the device number rather than use the mount source
// field directly. This is necessary to handle a rootfs that was mounted via
// the kernel command line, since mountinfo always shows /dev/root for that.
// This assumes that the device nodes are in the standard location.
func getDeviceName(num DeviceNumber) string {
linkPath := fmt.Sprintf("/sys/dev/block/%v", num)
if target, err := os.Readlink(linkPath); err == nil {
return fmt.Sprintf("/dev/%s", filepath.Base(target))
}
return ""
}
// Parse one line of /proc/self/mountinfo.
//
// The line contains the following space-separated fields:
// [0] mount ID
// [1] parent ID
// [2] major:minor
// [3] root
// [4] mount point
// [5] mount options
// [6...n-1] optional field(s)
// [n] separator
// [n+1] filesystem type
// [n+2] mount source
// [n+3] super options
//
// For more details, see https://www.kernel.org/doc/Documentation/filesystems/proc.txt
func parseMountInfoLine(line string) *Mount {
fields := strings.Split(line, " ")
if len(fields) < 10 {
return nil
}
// Count the optional fields. In case new fields are appended later,
// don't simply assume that n == len(fields) - 4.
n := 6
for fields[n] != "-" {
n++
if n >= len(fields) {
return nil
}
}
if n+3 >= len(fields) {
return nil
}
var mnt *Mount = &Mount{}
var err error
mnt.DeviceNumber, err = newDeviceNumberFromString(fields[2])
if err != nil {
return nil
}
mnt.Subtree = unescapeString(fields[3])
mnt.Path = unescapeString(fields[4])
for _, opt := range strings.Split(fields[5], ",") {
if opt == "ro" {
mnt.ReadOnly = true
}
}
mnt.FilesystemType = unescapeString(fields[n+1])
mnt.Device = getDeviceName(mnt.DeviceNumber)
return mnt
}
type mountpointTreeNode struct {
mount *Mount
parent *mountpointTreeNode
children []*mountpointTreeNode
}
func addUncontainedSubtreesRecursive(dst map[string]bool,
node *mountpointTreeNode, allUncontainedSubtrees map[string]bool) {
if allUncontainedSubtrees[node.mount.Subtree] {
dst[node.mount.Subtree] = true
}
for _, child := range node.children {
addUncontainedSubtreesRecursive(dst, child, allUncontainedSubtrees)
}
}
// findMainMount finds the "main" Mount of a filesystem. The "main" Mount is
// where the filesystem's fscrypt metadata is stored.
//
// Normally, there is just one Mount and it's of the entire filesystem
// (mnt.Subtree == "/"). But in general, the filesystem might be mounted in
// multiple places, including "bind mounts" where mnt.Subtree != "/". Also, the
// filesystem might have a combination of read-write and read-only mounts.
//
// To handle most cases, we could just choose a mount with mnt.Subtree == "/",
// preferably a read-write mount. However, that doesn't work in containers
// where the "/" subtree might not be mounted. Here's a real-world example:
//
// mnt.Subtree mnt.Path
// ----------- --------
// /var/lib/lxc/base/rootfs /
// /var/cache/pacman/pkg /var/cache/pacman/pkg
// /srv/repo/x86_64 /srv/http/x86_64
//
// In this case, all mnt.Subtree are independent. To handle this case, we must
// choose the Mount whose mnt.Path contains the others, i.e. the first one.
// Note: the fscrypt metadata won't be usable from outside the container since
// it won't be at the real root of the filesystem, but that may be acceptable.
//
// However, we can't look *only* at mnt.Path, since in some cases mnt.Subtree is
// needed to correctly handle bind mounts. For example, in the following case,
// the first Mount should be chosen:
//
// mnt.Subtree mnt.Path
// ----------- --------
// /foo /foo
// /foo/dir /dir
//
// To solve this, we divide the mounts into non-overlapping trees of mnt.Path.
// Then, we choose one of these trees which contains (exactly or via path
// prefix) *all* mnt.Subtree. We then return the root of this tree. In both
// the above examples, this algorithm returns the first Mount.
func findMainMount(filesystemMounts []*Mount) *Mount {
// Index this filesystem's mounts by path. Note: paths are unique here,
// since non-last mounts were already excluded earlier.
//
// Also build the set of all mounted subtrees.
filesystemMountsByPath := make(map[string]*mountpointTreeNode)
allSubtrees := make(map[string]bool)
for _, mnt := range filesystemMounts {
filesystemMountsByPath[mnt.Path] = &mountpointTreeNode{mount: mnt}
allSubtrees[mnt.Subtree] = true
}
// Divide the mounts into non-overlapping trees of mountpoints.
for path, mntNode := range filesystemMountsByPath {
for path != "/" && mntNode.parent == nil {
path = filepath.Dir(path)
if parent := filesystemMountsByPath[path]; parent != nil {
mntNode.parent = parent
parent.children = append(parent.children, mntNode)
}
}
}
// Build the set of mounted subtrees that aren't contained in any other
// mounted subtree.
allUncontainedSubtrees := make(map[string]bool)
for subtree := range allSubtrees {
contained := false
for t := subtree; t != "/" && !contained; {
t = filepath.Dir(t)
contained = allSubtrees[t]
}
if !contained {
allUncontainedSubtrees[subtree] = true
}
}
// Select the root of a mountpoint tree whose mounted subtrees contain
// *all* mounted subtrees. Equivalently, select a mountpoint tree in
// which every uncontained subtree is mounted.
var mainMount *Mount
for _, mntNode := range filesystemMountsByPath {
mnt := mntNode.mount
if mntNode.parent != nil {
continue
}
uncontainedSubtrees := make(map[string]bool)
addUncontainedSubtreesRecursive(uncontainedSubtrees, mntNode, allUncontainedSubtrees)
if len(uncontainedSubtrees) != len(allUncontainedSubtrees) {
continue
}
// If there's more than one eligible mount, they should have the
// same Subtree. Otherwise it's ambiguous which one to use.
if mainMount != nil && mainMount.Subtree != mnt.Subtree {
log.Printf("Unsupported case: %q (%v) has multiple non-overlapping mounts. This filesystem will be ignored!",
mnt.Device, mnt.DeviceNumber)
return nil
}
// Prefer a read-write mount to a read-only one.
if mainMount == nil || mainMount.ReadOnly {
mainMount = mnt
}
}
return mainMount
}
// This is separate from loadMountInfo() only for unit testing.
func readMountInfo(r io.Reader) error {
mountsByDevice = make(map[DeviceNumber]*Mount)
mountsByPath = make(map[string]*Mount)
allMountsByDevice := make(map[DeviceNumber][]*Mount)
allMountsByPath := make(map[string]*Mount)
scanner := bufio.NewScanner(r)
for scanner.Scan() {
line := scanner.Text()
mnt := parseMountInfoLine(line)
if mnt == nil {
log.Printf("ignoring invalid mountinfo line %q", line)
continue
}
// We can only use mountpoints that are directories for fscrypt.
if !isDir(mnt.Path) {
log.Printf("ignoring mountpoint %q because it is not a directory", mnt.Path)
continue
}
// Note this overrides the info if we have seen the mountpoint
// earlier in the file. This is correct behavior because the
// mountpoints are listed in mount order.
allMountsByPath[mnt.Path] = mnt
}
// For each filesystem, choose a "main" Mount and discard any additional
// bind mounts. fscrypt only cares about the main Mount, since it's
// where the fscrypt metadata is stored. Store all the main Mounts in
// mountsByDevice and mountsByPath so that they can be found later.
for _, mnt := range allMountsByPath {
allMountsByDevice[mnt.DeviceNumber] =
append(allMountsByDevice[mnt.DeviceNumber], mnt)
}
for deviceNumber, filesystemMounts := range allMountsByDevice {
mnt := findMainMount(filesystemMounts)
mountsByDevice[deviceNumber] = mnt // may store an explicit nil entry
if mnt != nil {
mountsByPath[mnt.Path] = mnt
}
}
return nil
}
// loadMountInfo populates the Mount mappings by parsing /proc/self/mountinfo.
// It returns an error if the Mount mappings cannot be populated.
func loadMountInfo() error {
if !mountsInitialized {
file, err := os.Open("/proc/self/mountinfo")
if err != nil {
return err
}
defer file.Close()
if err := readMountInfo(file); err != nil {
return err
}
mountsInitialized = true
}
return nil
}
func filesystemLacksMainMountError(deviceNumber DeviceNumber) error {
return errors.Errorf("Device %q (%v) lacks a \"main\" mountpoint in the current mount namespace, so it's ambiguous where to store the fscrypt metadata.",
getDeviceName(deviceNumber), deviceNumber)
}
// AllFilesystems lists all mounted filesystems ordered by path to their "main"
// Mount. Use CheckSetup() to see if they are set up for use with fscrypt.
func AllFilesystems() ([]*Mount, error) {
mountMutex.Lock()
defer mountMutex.Unlock()
if err := loadMountInfo(); err != nil {
return nil, err
}
mounts := make([]*Mount, 0, len(mountsByPath))
for _, mount := range mountsByPath {
mounts = append(mounts, mount)
}
sort.Sort(PathSorter(mounts))
return mounts, nil
}
// UpdateMountInfo updates the filesystem mountpoint maps with the current state
// of the filesystem mountpoints. Returns error if the initialization fails.
func UpdateMountInfo() error {
mountMutex.Lock()
defer mountMutex.Unlock()
mountsInitialized = false
return loadMountInfo()
}
// FindMount returns the main Mount object for the filesystem which contains the
// file at the specified path. An error is returned if the path is invalid or if
// we cannot load the required mount data. If a mount has been updated since the
// last call to one of the mount functions, run UpdateMountInfo to see changes.
func FindMount(path string) (*Mount, error) {
mountMutex.Lock()
defer mountMutex.Unlock()
if err := loadMountInfo(); err != nil {
return nil, err
}
// First try to find the mount by the number of the containing device.
deviceNumber, err := getNumberOfContainingDevice(path)
if err != nil {
return nil, err
}
mnt, ok := mountsByDevice[deviceNumber]
if ok {
if mnt == nil {
return nil, filesystemLacksMainMountError(deviceNumber)
}
return mnt, nil
}
// The mount couldn't be found by the number of the containing device.
// Fall back to walking up the directory hierarchy and checking for a
// mount at each directory path. This is necessary for btrfs, where
// files report a different st_dev from the /proc/self/mountinfo entry.
curPath, err := canonicalizePath(path)
if err != nil {
return nil, err
}
for {
mnt := mountsByPath[curPath]
if mnt != nil {
return mnt, nil
}
// Move to the parent directory unless we have reached the root.
parent := filepath.Dir(curPath)
if parent == curPath {
return nil, errors.Errorf("couldn't find mountpoint containing %q", path)
}
curPath = parent
}
}
// GetMount is like FindMount, except GetMount also returns an error if the path
// doesn't name the same file as the filesystem's "main" Mount. For example, if
// a filesystem is fully mounted at "/mnt" and if "/mnt/a" exists, then
// FindMount("/mnt/a") will succeed whereas GetMount("/mnt/a") will fail. This
// is true even if "/mnt/a" is a bind mount of part of the same filesystem.
func GetMount(mountpoint string) (*Mount, error) {
mnt, err := FindMount(mountpoint)
if err != nil {
return nil, &ErrNotAMountpoint{mountpoint}
}
// Check whether 'mountpoint' names the same directory as 'mnt.Path'.
// Use os.SameFile() (i.e., compare inode numbers) rather than compare
// canonical paths, since filesystems may be mounted in multiple places.
fi1, err := os.Stat(mountpoint)
if err != nil {
return nil, err
}
fi2, err := os.Stat(mnt.Path)
if err != nil {
return nil, err
}
if !os.SameFile(fi1, fi2) {
return nil, &ErrNotAMountpoint{mountpoint}
}
return mnt, nil
}
func uuidToDeviceNumber(uuid string) (DeviceNumber, error) {
uuidSymlinkPath := filepath.Join(uuidDirectory, uuid)
return getDeviceNumber(uuidSymlinkPath)
}
func deviceNumberToMount(deviceNumber DeviceNumber) (*Mount, bool) {
mountMutex.Lock()
defer mountMutex.Unlock()
if err := loadMountInfo(); err != nil {
log.Print(err)
return nil, false
}
mnt, ok := mountsByDevice[deviceNumber]
return mnt, ok
}
// getMountFromLink returns the main Mount, if any, for the filesystem which the
// given link points to. The link should contain a series of token-value pairs
// (<token>=<value>), one per line. The supported tokens are "UUID" and "PATH".
// If the UUID is present and it works, then it is used; otherwise, PATH is used
// if it is present. (The fallback from UUID to PATH will keep the link working
// if the UUID of the target filesystem changes but its mountpoint doesn't.)
//
// If a mount has been updated since the last call to one of the mount
// functions, make sure to run UpdateMountInfo first.
func getMountFromLink(link string) (*Mount, error) {
// Parse the link.
uuid := ""
path := ""
lines := strings.Split(link, "\n")
for _, line := range lines {
line := strings.TrimSpace(line)
if line == "" {
continue
}
pair := strings.Split(line, "=")
if len(pair) != 2 {
log.Printf("ignoring invalid line in filesystem link file: %q", line)
continue
}
token := pair[0]
value := pair[1]
switch token {
case uuidToken:
uuid = value
case pathToken:
path = value
default:
log.Printf("ignoring unknown link token %q", token)
}
}
// At least one of UUID and PATH must be present.
if uuid == "" && path == "" {
return nil, &ErrFollowLink{link, errors.Errorf("invalid filesystem link file")}
}
// Try following the UUID.
errMsg := ""
if uuid != "" {
deviceNumber, err := uuidToDeviceNumber(uuid)
if err == nil {
mnt, ok := deviceNumberToMount(deviceNumber)
if mnt != nil {
log.Printf("resolved filesystem link using UUID %q", uuid)
return mnt, nil
}
if ok {
return nil, &ErrFollowLink{link, filesystemLacksMainMountError(deviceNumber)}
}
log.Printf("cannot find filesystem with UUID %q", uuid)
} else {
log.Printf("cannot find filesystem with UUID %q: %v", uuid, err)
}
errMsg += fmt.Sprintf("cannot find filesystem with UUID %q", uuid)
if path != "" {
log.Printf("falling back to using mountpoint path instead of UUID")
}
}
// UUID didn't work. As a fallback, try the mountpoint path.
if path != "" {
mnt, err := GetMount(path)
if mnt != nil {
log.Printf("resolved filesystem link using mountpoint path %q", path)
return mnt, nil
}
log.Print(err)
if errMsg == "" {
errMsg = fmt.Sprintf("cannot find filesystem with main mountpoint %q", path)
} else {
errMsg += fmt.Sprintf(" or main mountpoint %q", path)
}
}
// No method worked; return an error.
return nil, &ErrFollowLink{link, errors.New(errMsg)}
}
func (mnt *Mount) getFilesystemUUID() (string, error) {
dirContents, err := ioutil.ReadDir(uuidDirectory)
if err != nil {
return "", err
}
for _, fileInfo := range dirContents {
if fileInfo.Mode()&os.ModeSymlink == 0 {
continue // Only interested in UUID symlinks
}
uuid := fileInfo.Name()
deviceNumber, err := uuidToDeviceNumber(uuid)
if err != nil {
log.Print(err)
continue
}
if mnt.DeviceNumber == deviceNumber {
return uuid, nil
}
}
return "", errors.Errorf("cannot determine UUID of device %q (%v)",
mnt.Device, mnt.DeviceNumber)
}
// makeLink creates the contents of a link file which will point to the given
// filesystem. This will normally be a string of the form
// "UUID=<uuid>\nPATH=<path>\n". If the UUID cannot be determined, the UUID
// portion will be omitted.
func makeLink(mnt *Mount) (string, error) {
uuid, err := mnt.getFilesystemUUID()
if err != nil {
// The UUID could not be determined. This happens for btrfs
// filesystems, as the device number found via
// /dev/disk/by-uuid/* for btrfs filesystems differs from the
// actual device number of the mounted filesystem. Just rely
// entirely on the fallback to mountpoint path.
log.Print(err)
return fmt.Sprintf("%s=%s\n", pathToken, mnt.Path), nil
}
return fmt.Sprintf("%s=%s\n%s=%s\n", uuidToken, uuid, pathToken, mnt.Path), nil
}