ceph-csi/vendor/github.com/google/cel-go/interpreter/attributes.go
Madhu Rajanna ff3e84ad67 rebase: update kubernetes to 1.28.0 in main
updating kubernetes to 1.28.0
in the main repo.

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
2023-08-17 13:43:15 +00:00

1340 lines
40 KiB
Go

// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package interpreter
import (
"fmt"
"strings"
"github.com/google/cel-go/common/containers"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
)
// AttributeFactory provides methods creating Attribute and Qualifier values.
type AttributeFactory interface {
// AbsoluteAttribute creates an attribute that refers to a top-level variable name.
//
// Checked expressions generate absolute attribute with a single name.
// Parse-only expressions may have more than one possible absolute identifier when the
// expression is created within a container, e.g. package or namespace.
//
// When there is more than one name supplied to the AbsoluteAttribute call, the names
// must be in CEL's namespace resolution order. The name arguments provided here are
// returned in the same order as they were provided by the NamespacedAttribute
// CandidateVariableNames method.
AbsoluteAttribute(id int64, names ...string) NamespacedAttribute
// ConditionalAttribute creates an attribute with two Attribute branches, where the Attribute
// that is resolved depends on the boolean evaluation of the input 'expr'.
ConditionalAttribute(id int64, expr Interpretable, t, f Attribute) Attribute
// MaybeAttribute creates an attribute that refers to either a field selection or a namespaced
// variable name.
//
// Only expressions which have not been type-checked may generate oneof attributes.
MaybeAttribute(id int64, name string) Attribute
// RelativeAttribute creates an attribute whose value is a qualification of a dynamic
// computation rather than a static variable reference.
RelativeAttribute(id int64, operand Interpretable) Attribute
// NewQualifier creates a qualifier on the target object with a given value.
//
// The 'val' may be an Attribute or any proto-supported map key type: bool, int, string, uint.
//
// The qualifier may consider the object type being qualified, if present. If absent, the
// qualification should be considered dynamic and the qualification should still work, though
// it may be sub-optimal.
NewQualifier(objType *exprpb.Type, qualID int64, val any, opt bool) (Qualifier, error)
}
// Qualifier marker interface for designating different qualifier values and where they appear
// within field selections and index call expressions (`_[_]`).
type Qualifier interface {
// ID where the qualifier appears within an expression.
ID() int64
// IsOptional specifies whether the qualifier is optional.
// Instead of a direct qualification, an optional qualifier will be resolved via QualifyIfPresent
// rather than Qualify. A non-optional qualifier may also be resolved through QualifyIfPresent if
// the object to qualify is itself optional.
IsOptional() bool
// Qualify performs a qualification, e.g. field selection, on the input object and returns
// the value of the access and whether the value was set. A non-nil value with a false presence
// test result indicates that the value being returned is the default value.
Qualify(vars Activation, obj any) (any, error)
// QualifyIfPresent qualifies the object if the qualifier is declared or defined on the object.
// The 'presenceOnly' flag indicates that the value is not necessary, just a boolean status as
// to whether the qualifier is present.
QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error)
}
// ConstantQualifier interface embeds the Qualifier interface and provides an option to inspect the
// qualifier's constant value.
//
// Non-constant qualifiers are of Attribute type.
type ConstantQualifier interface {
Qualifier
// Value returns the constant value associated with the qualifier.
Value() ref.Val
}
// Attribute values are a variable or value with an optional set of qualifiers, such as field, key,
// or index accesses.
type Attribute interface {
Qualifier
// AddQualifier adds a qualifier on the Attribute or error if the qualification is not a valid qualifier type.
AddQualifier(Qualifier) (Attribute, error)
// Resolve returns the value of the Attribute and whether it was present given an Activation.
// For objects which support safe traversal, the value may be non-nil and the presence flag be false.
//
// If an error is encountered during attribute resolution, it will be returned immediately.
// If the attribute cannot be resolved within the Activation, the result must be: `nil`, `error`
// with the error indicating which variable was missing.
Resolve(Activation) (any, error)
}
// NamespacedAttribute values are a variable within a namespace, and an optional set of qualifiers
// such as field, key, or index accesses.
type NamespacedAttribute interface {
Attribute
// CandidateVariableNames returns the possible namespaced variable names for this Attribute in
// the CEL namespace resolution order.
CandidateVariableNames() []string
// Qualifiers returns the list of qualifiers associated with the Attribute.
Qualifiers() []Qualifier
}
// NewAttributeFactory returns a default AttributeFactory which is produces Attribute values
// capable of resolving types by simple names and qualify the values using the supported qualifier
// types: bool, int, string, and uint.
func NewAttributeFactory(cont *containers.Container, a ref.TypeAdapter, p ref.TypeProvider) AttributeFactory {
return &attrFactory{
container: cont,
adapter: a,
provider: p,
}
}
type attrFactory struct {
container *containers.Container
adapter ref.TypeAdapter
provider ref.TypeProvider
}
// AbsoluteAttribute refers to a variable value and an optional qualifier path.
//
// The namespaceNames represent the names the variable could have based on namespace
// resolution rules.
func (r *attrFactory) AbsoluteAttribute(id int64, names ...string) NamespacedAttribute {
return &absoluteAttribute{
id: id,
namespaceNames: names,
qualifiers: []Qualifier{},
adapter: r.adapter,
provider: r.provider,
fac: r,
}
}
// ConditionalAttribute supports the case where an attribute selection may occur on a conditional
// expression, e.g. (cond ? a : b).c
func (r *attrFactory) ConditionalAttribute(id int64, expr Interpretable, t, f Attribute) Attribute {
return &conditionalAttribute{
id: id,
expr: expr,
truthy: t,
falsy: f,
adapter: r.adapter,
fac: r,
}
}
// MaybeAttribute collects variants of unchecked AbsoluteAttribute values which could either be
// direct variable accesses or some combination of variable access with qualification.
func (r *attrFactory) MaybeAttribute(id int64, name string) Attribute {
return &maybeAttribute{
id: id,
attrs: []NamespacedAttribute{
r.AbsoluteAttribute(id, r.container.ResolveCandidateNames(name)...),
},
adapter: r.adapter,
provider: r.provider,
fac: r,
}
}
// RelativeAttribute refers to an expression and an optional qualifier path.
func (r *attrFactory) RelativeAttribute(id int64, operand Interpretable) Attribute {
return &relativeAttribute{
id: id,
operand: operand,
qualifiers: []Qualifier{},
adapter: r.adapter,
fac: r,
}
}
// NewQualifier is an implementation of the AttributeFactory interface.
func (r *attrFactory) NewQualifier(objType *exprpb.Type, qualID int64, val any, opt bool) (Qualifier, error) {
// Before creating a new qualifier check to see if this is a protobuf message field access.
// If so, use the precomputed GetFrom qualification method rather than the standard
// stringQualifier.
str, isStr := val.(string)
if isStr && objType != nil && objType.GetMessageType() != "" {
ft, found := r.provider.FindFieldType(objType.GetMessageType(), str)
if found && ft.IsSet != nil && ft.GetFrom != nil {
return &fieldQualifier{
id: qualID,
Name: str,
FieldType: ft,
adapter: r.adapter,
optional: opt,
}, nil
}
}
return newQualifier(r.adapter, qualID, val, opt)
}
type absoluteAttribute struct {
id int64
// namespaceNames represent the names the variable could have based on declared container
// (package) of the expression.
namespaceNames []string
qualifiers []Qualifier
adapter ref.TypeAdapter
provider ref.TypeProvider
fac AttributeFactory
}
// ID implements the Attribute interface method.
func (a *absoluteAttribute) ID() int64 {
qualCount := len(a.qualifiers)
if qualCount == 0 {
return a.id
}
return a.qualifiers[qualCount-1].ID()
}
// IsOptional returns trivially false for an attribute as the attribute represents a fully
// qualified variable name. If the attribute is used in an optional manner, then an attrQualifier
// is created and marks the attribute as optional.
func (a *absoluteAttribute) IsOptional() bool {
return false
}
// AddQualifier implements the Attribute interface method.
func (a *absoluteAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
a.qualifiers = append(a.qualifiers, qual)
return a, nil
}
// CandidateVariableNames implements the NamespaceAttribute interface method.
func (a *absoluteAttribute) CandidateVariableNames() []string {
return a.namespaceNames
}
// Qualifiers returns the list of Qualifier instances associated with the namespaced attribute.
func (a *absoluteAttribute) Qualifiers() []Qualifier {
return a.qualifiers
}
// Qualify is an implementation of the Qualifier interface method.
func (a *absoluteAttribute) Qualify(vars Activation, obj any) (any, error) {
return attrQualify(a.fac, vars, obj, a)
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (a *absoluteAttribute) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return attrQualifyIfPresent(a.fac, vars, obj, a, presenceOnly)
}
// String implements the Stringer interface method.
func (a *absoluteAttribute) String() string {
return fmt.Sprintf("id: %v, names: %v", a.id, a.namespaceNames)
}
// Resolve returns the resolved Attribute value given the Activation, or error if the Attribute
// variable is not found, or if its Qualifiers cannot be applied successfully.
//
// If the variable name cannot be found as an Activation variable or in the TypeProvider as
// a type, then the result is `nil`, `error` with the error indicating the name of the first
// variable searched as missing.
func (a *absoluteAttribute) Resolve(vars Activation) (any, error) {
for _, nm := range a.namespaceNames {
// If the variable is found, process it. Otherwise, wait until the checks to
// determine whether the type is unknown before returning.
obj, found := vars.ResolveName(nm)
if found {
obj, isOpt, err := applyQualifiers(vars, obj, a.qualifiers)
if err != nil {
return nil, err
}
if isOpt {
val := a.adapter.NativeToValue(obj)
if types.IsUnknown(val) {
return val, nil
}
return types.OptionalOf(val), nil
}
return obj, nil
}
// Attempt to resolve the qualified type name if the name is not a variable identifier.
typ, found := a.provider.FindIdent(nm)
if found {
if len(a.qualifiers) == 0 {
return typ, nil
}
}
}
var attrNames strings.Builder
for i, nm := range a.namespaceNames {
if i != 0 {
attrNames.WriteString(", ")
}
attrNames.WriteString(nm)
}
return nil, missingAttribute(attrNames.String())
}
type conditionalAttribute struct {
id int64
expr Interpretable
truthy Attribute
falsy Attribute
adapter ref.TypeAdapter
fac AttributeFactory
}
// ID is an implementation of the Attribute interface method.
func (a *conditionalAttribute) ID() int64 {
// There's a field access after the conditional.
if a.truthy.ID() == a.falsy.ID() {
return a.truthy.ID()
}
// Otherwise return the conditional id as the consistent id being tracked.
return a.id
}
// IsOptional returns trivially false for an attribute as the attribute represents a fully
// qualified variable name. If the attribute is used in an optional manner, then an attrQualifier
// is created and marks the attribute as optional.
func (a *conditionalAttribute) IsOptional() bool {
return false
}
// AddQualifier appends the same qualifier to both sides of the conditional, in effect managing
// the qualification of alternate attributes.
func (a *conditionalAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
_, err := a.truthy.AddQualifier(qual)
if err != nil {
return nil, err
}
_, err = a.falsy.AddQualifier(qual)
if err != nil {
return nil, err
}
return a, nil
}
// Qualify is an implementation of the Qualifier interface method.
func (a *conditionalAttribute) Qualify(vars Activation, obj any) (any, error) {
return attrQualify(a.fac, vars, obj, a)
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (a *conditionalAttribute) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return attrQualifyIfPresent(a.fac, vars, obj, a, presenceOnly)
}
// Resolve evaluates the condition, and then resolves the truthy or falsy branch accordingly.
func (a *conditionalAttribute) Resolve(vars Activation) (any, error) {
val := a.expr.Eval(vars)
if val == types.True {
return a.truthy.Resolve(vars)
}
if val == types.False {
return a.falsy.Resolve(vars)
}
if types.IsUnknown(val) {
return val, nil
}
return nil, types.MaybeNoSuchOverloadErr(val).(*types.Err)
}
// String is an implementation of the Stringer interface method.
func (a *conditionalAttribute) String() string {
return fmt.Sprintf("id: %v, truthy attribute: %v, falsy attribute: %v", a.id, a.truthy, a.falsy)
}
type maybeAttribute struct {
id int64
attrs []NamespacedAttribute
adapter ref.TypeAdapter
provider ref.TypeProvider
fac AttributeFactory
}
// ID is an implementation of the Attribute interface method.
func (a *maybeAttribute) ID() int64 {
return a.attrs[0].ID()
}
// IsOptional returns trivially false for an attribute as the attribute represents a fully
// qualified variable name. If the attribute is used in an optional manner, then an attrQualifier
// is created and marks the attribute as optional.
func (a *maybeAttribute) IsOptional() bool {
return false
}
// AddQualifier adds a qualifier to each possible attribute variant, and also creates
// a new namespaced variable from the qualified value.
//
// The algorithm for building the maybe attribute is as follows:
//
// 1. Create a maybe attribute from a simple identifier when it occurs in a parsed-only expression
//
// mb = MaybeAttribute(<id>, "a")
//
// Initializing the maybe attribute creates an absolute attribute internally which includes the
// possible namespaced names of the attribute. In this example, let's assume we are in namespace
// 'ns', then the maybe is either one of the following variable names:
//
// possible variables names -- ns.a, a
//
// 2. Adding a qualifier to the maybe means that the variable name could be a longer qualified
// name, or a field selection on one of the possible variable names produced earlier:
//
// mb.AddQualifier("b")
//
// possible variables names -- ns.a.b, a.b
// possible field selection -- ns.a['b'], a['b']
//
// If none of the attributes within the maybe resolves a value, the result is an error.
func (a *maybeAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
str := ""
isStr := false
cq, isConst := qual.(ConstantQualifier)
if isConst {
str, isStr = cq.Value().Value().(string)
}
var augmentedNames []string
// First add the qualifier to all existing attributes in the oneof.
for _, attr := range a.attrs {
if isStr && len(attr.Qualifiers()) == 0 {
candidateVars := attr.CandidateVariableNames()
augmentedNames = make([]string, len(candidateVars))
for i, name := range candidateVars {
augmentedNames[i] = fmt.Sprintf("%s.%s", name, str)
}
}
_, err := attr.AddQualifier(qual)
if err != nil {
return nil, err
}
}
// Next, ensure the most specific variable / type reference is searched first.
if len(augmentedNames) != 0 {
a.attrs = append([]NamespacedAttribute{a.fac.AbsoluteAttribute(qual.ID(), augmentedNames...)}, a.attrs...)
}
return a, nil
}
// Qualify is an implementation of the Qualifier interface method.
func (a *maybeAttribute) Qualify(vars Activation, obj any) (any, error) {
return attrQualify(a.fac, vars, obj, a)
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (a *maybeAttribute) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return attrQualifyIfPresent(a.fac, vars, obj, a, presenceOnly)
}
// Resolve follows the variable resolution rules to determine whether the attribute is a variable
// or a field selection.
func (a *maybeAttribute) Resolve(vars Activation) (any, error) {
var maybeErr error
for _, attr := range a.attrs {
obj, err := attr.Resolve(vars)
// Return an error if one is encountered.
if err != nil {
resErr, ok := err.(*resolutionError)
if !ok {
return nil, err
}
// If this was not a missing variable error, return it.
if !resErr.isMissingAttribute() {
return nil, err
}
// When the variable is missing in a maybe attribute we defer erroring.
if maybeErr == nil {
maybeErr = resErr
}
// Continue attempting to resolve possible variables.
continue
}
return obj, nil
}
// Else, produce a no such attribute error.
return nil, maybeErr
}
// String is an implementation of the Stringer interface method.
func (a *maybeAttribute) String() string {
return fmt.Sprintf("id: %v, attributes: %v", a.id, a.attrs)
}
type relativeAttribute struct {
id int64
operand Interpretable
qualifiers []Qualifier
adapter ref.TypeAdapter
fac AttributeFactory
}
// ID is an implementation of the Attribute interface method.
func (a *relativeAttribute) ID() int64 {
qualCount := len(a.qualifiers)
if qualCount == 0 {
return a.id
}
return a.qualifiers[qualCount-1].ID()
}
// IsOptional returns trivially false for an attribute as the attribute represents a fully
// qualified variable name. If the attribute is used in an optional manner, then an attrQualifier
// is created and marks the attribute as optional.
func (a *relativeAttribute) IsOptional() bool {
return false
}
// AddQualifier implements the Attribute interface method.
func (a *relativeAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
a.qualifiers = append(a.qualifiers, qual)
return a, nil
}
// Qualify is an implementation of the Qualifier interface method.
func (a *relativeAttribute) Qualify(vars Activation, obj any) (any, error) {
return attrQualify(a.fac, vars, obj, a)
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (a *relativeAttribute) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return attrQualifyIfPresent(a.fac, vars, obj, a, presenceOnly)
}
// Resolve expression value and qualifier relative to the expression result.
func (a *relativeAttribute) Resolve(vars Activation) (any, error) {
// First, evaluate the operand.
v := a.operand.Eval(vars)
if types.IsError(v) {
return nil, v.(*types.Err)
}
if types.IsUnknown(v) {
return v, nil
}
obj, isOpt, err := applyQualifiers(vars, v, a.qualifiers)
if err != nil {
return nil, err
}
if isOpt {
val := a.adapter.NativeToValue(obj)
if types.IsUnknown(val) {
return val, nil
}
return types.OptionalOf(val), nil
}
return obj, nil
}
// String is an implementation of the Stringer interface method.
func (a *relativeAttribute) String() string {
return fmt.Sprintf("id: %v, operand: %v", a.id, a.operand)
}
func newQualifier(adapter ref.TypeAdapter, id int64, v any, opt bool) (Qualifier, error) {
var qual Qualifier
switch val := v.(type) {
case Attribute:
// Note, attributes are initially identified as non-optional since they represent a top-level
// field access; however, when used as a relative qualifier, e.g. a[?b.c], then an attrQualifier
// is created which intercepts the IsOptional check for the attribute in order to return the
// correct result.
return &attrQualifier{
id: id,
Attribute: val,
optional: opt,
}, nil
case string:
qual = &stringQualifier{
id: id,
value: val,
celValue: types.String(val),
adapter: adapter,
optional: opt,
}
case int:
qual = &intQualifier{
id: id, value: int64(val), celValue: types.Int(val), adapter: adapter, optional: opt,
}
case int32:
qual = &intQualifier{
id: id, value: int64(val), celValue: types.Int(val), adapter: adapter, optional: opt,
}
case int64:
qual = &intQualifier{
id: id, value: val, celValue: types.Int(val), adapter: adapter, optional: opt,
}
case uint:
qual = &uintQualifier{
id: id, value: uint64(val), celValue: types.Uint(val), adapter: adapter, optional: opt,
}
case uint32:
qual = &uintQualifier{
id: id, value: uint64(val), celValue: types.Uint(val), adapter: adapter, optional: opt,
}
case uint64:
qual = &uintQualifier{
id: id, value: val, celValue: types.Uint(val), adapter: adapter, optional: opt,
}
case bool:
qual = &boolQualifier{
id: id, value: val, celValue: types.Bool(val), adapter: adapter, optional: opt,
}
case float32:
qual = &doubleQualifier{
id: id,
value: float64(val),
celValue: types.Double(val),
adapter: adapter,
optional: opt,
}
case float64:
qual = &doubleQualifier{
id: id, value: val, celValue: types.Double(val), adapter: adapter, optional: opt,
}
case types.String:
qual = &stringQualifier{
id: id, value: string(val), celValue: val, adapter: adapter, optional: opt,
}
case types.Int:
qual = &intQualifier{
id: id, value: int64(val), celValue: val, adapter: adapter, optional: opt,
}
case types.Uint:
qual = &uintQualifier{
id: id, value: uint64(val), celValue: val, adapter: adapter, optional: opt,
}
case types.Bool:
qual = &boolQualifier{
id: id, value: bool(val), celValue: val, adapter: adapter, optional: opt,
}
case types.Double:
qual = &doubleQualifier{
id: id, value: float64(val), celValue: val, adapter: adapter, optional: opt,
}
case types.Unknown:
qual = &unknownQualifier{id: id, value: val}
default:
if q, ok := v.(Qualifier); ok {
return q, nil
}
return nil, fmt.Errorf("invalid qualifier type: %T", v)
}
return qual, nil
}
type attrQualifier struct {
id int64
Attribute
optional bool
}
// ID implements the Qualifier interface method and returns the qualification instruction id
// rather than the attribute id.
func (q *attrQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *attrQualifier) IsOptional() bool {
return q.optional
}
type stringQualifier struct {
id int64
value string
celValue ref.Val
adapter ref.TypeAdapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *stringQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *stringQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *stringQualifier) Qualify(vars Activation, obj any) (any, error) {
val, _, err := q.qualifyInternal(vars, obj, false, false)
return val, err
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *stringQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.qualifyInternal(vars, obj, true, presenceOnly)
}
func (q *stringQualifier) qualifyInternal(vars Activation, obj any, presenceTest, presenceOnly bool) (any, bool, error) {
s := q.value
switch o := obj.(type) {
case map[string]any:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]string:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]int:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]int32:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]int64:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]uint:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]uint32:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]uint64:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]float32:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]float64:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]bool:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
default:
return refQualify(q.adapter, obj, q.celValue, presenceTest, presenceOnly)
}
if presenceTest {
return nil, false, nil
}
return nil, false, missingKey(q.celValue)
}
// Value implements the ConstantQualifier interface
func (q *stringQualifier) Value() ref.Val {
return q.celValue
}
type intQualifier struct {
id int64
value int64
celValue ref.Val
adapter ref.TypeAdapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *intQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *intQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *intQualifier) Qualify(vars Activation, obj any) (any, error) {
val, _, err := q.qualifyInternal(vars, obj, false, false)
return val, err
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *intQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.qualifyInternal(vars, obj, true, presenceOnly)
}
func (q *intQualifier) qualifyInternal(vars Activation, obj any, presenceTest, presenceOnly bool) (any, bool, error) {
i := q.value
var isMap bool
switch o := obj.(type) {
// The specialized map types supported by an int qualifier are considerably fewer than the set
// of specialized map types supported by string qualifiers since they are less frequently used
// than string-based map keys. Additional specializations may be added in the future if
// desired.
case map[int]any:
isMap = true
obj, isKey := o[int(i)]
if isKey {
return obj, true, nil
}
case map[int32]any:
isMap = true
obj, isKey := o[int32(i)]
if isKey {
return obj, true, nil
}
case map[int64]any:
isMap = true
obj, isKey := o[i]
if isKey {
return obj, true, nil
}
case []any:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []string:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []int:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []int32:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []int64:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []uint:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []uint32:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []uint64:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []float32:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []float64:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []bool:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
default:
return refQualify(q.adapter, obj, q.celValue, presenceTest, presenceOnly)
}
if presenceTest {
return nil, false, nil
}
if isMap {
return nil, false, missingKey(q.celValue)
}
return nil, false, missingIndex(q.celValue)
}
// Value implements the ConstantQualifier interface
func (q *intQualifier) Value() ref.Val {
return q.celValue
}
type uintQualifier struct {
id int64
value uint64
celValue ref.Val
adapter ref.TypeAdapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *uintQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *uintQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *uintQualifier) Qualify(vars Activation, obj any) (any, error) {
val, _, err := q.qualifyInternal(vars, obj, false, false)
return val, err
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *uintQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.qualifyInternal(vars, obj, true, presenceOnly)
}
func (q *uintQualifier) qualifyInternal(vars Activation, obj any, presenceTest, presenceOnly bool) (any, bool, error) {
u := q.value
switch o := obj.(type) {
// The specialized map types supported by a uint qualifier are considerably fewer than the set
// of specialized map types supported by string qualifiers since they are less frequently used
// than string-based map keys. Additional specializations may be added in the future if
// desired.
case map[uint]any:
obj, isKey := o[uint(u)]
if isKey {
return obj, true, nil
}
case map[uint32]any:
obj, isKey := o[uint32(u)]
if isKey {
return obj, true, nil
}
case map[uint64]any:
obj, isKey := o[u]
if isKey {
return obj, true, nil
}
default:
return refQualify(q.adapter, obj, q.celValue, presenceTest, presenceOnly)
}
if presenceTest {
return nil, false, nil
}
return nil, false, missingKey(q.celValue)
}
// Value implements the ConstantQualifier interface
func (q *uintQualifier) Value() ref.Val {
return q.celValue
}
type boolQualifier struct {
id int64
value bool
celValue ref.Val
adapter ref.TypeAdapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *boolQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *boolQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *boolQualifier) Qualify(vars Activation, obj any) (any, error) {
val, _, err := q.qualifyInternal(vars, obj, false, false)
return val, err
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *boolQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.qualifyInternal(vars, obj, true, presenceOnly)
}
func (q *boolQualifier) qualifyInternal(vars Activation, obj any, presenceTest, presenceOnly bool) (any, bool, error) {
b := q.value
switch o := obj.(type) {
case map[bool]any:
obj, isKey := o[b]
if isKey {
return obj, true, nil
}
default:
return refQualify(q.adapter, obj, q.celValue, presenceTest, presenceOnly)
}
if presenceTest {
return nil, false, nil
}
return nil, false, missingKey(q.celValue)
}
// Value implements the ConstantQualifier interface
func (q *boolQualifier) Value() ref.Val {
return q.celValue
}
// fieldQualifier indicates that the qualification is a well-defined field with a known
// field type. When the field type is known this can be used to improve the speed and
// efficiency of field resolution.
type fieldQualifier struct {
id int64
Name string
FieldType *ref.FieldType
adapter ref.TypeAdapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *fieldQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *fieldQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *fieldQualifier) Qualify(vars Activation, obj any) (any, error) {
if rv, ok := obj.(ref.Val); ok {
obj = rv.Value()
}
val, err := q.FieldType.GetFrom(obj)
if err != nil {
return nil, err
}
return val, nil
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *fieldQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
if rv, ok := obj.(ref.Val); ok {
obj = rv.Value()
}
if !q.FieldType.IsSet(obj) {
return nil, false, nil
}
if presenceOnly {
return nil, true, nil
}
val, err := q.FieldType.GetFrom(obj)
if err != nil {
return nil, false, err
}
return val, true, nil
}
// Value implements the ConstantQualifier interface
func (q *fieldQualifier) Value() ref.Val {
return types.String(q.Name)
}
// doubleQualifier qualifies a CEL object, map, or list using a double value.
//
// This qualifier is used for working with dynamic data like JSON or protobuf.Any where the value
// type may not be known ahead of time and may not conform to the standard types supported as valid
// protobuf map key types.
type doubleQualifier struct {
id int64
value float64
celValue ref.Val
adapter ref.TypeAdapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *doubleQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *doubleQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *doubleQualifier) Qualify(vars Activation, obj any) (any, error) {
val, _, err := q.qualifyInternal(vars, obj, false, false)
return val, err
}
func (q *doubleQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.qualifyInternal(vars, obj, true, presenceOnly)
}
func (q *doubleQualifier) qualifyInternal(vars Activation, obj any, presenceTest, presenceOnly bool) (any, bool, error) {
return refQualify(q.adapter, obj, q.celValue, presenceTest, presenceOnly)
}
// Value implements the ConstantQualifier interface
func (q *doubleQualifier) Value() ref.Val {
return q.celValue
}
// unknownQualifier is a simple qualifier which always returns a preconfigured set of unknown values
// for any value subject to qualification. This is consistent with CEL's unknown handling elsewhere.
type unknownQualifier struct {
id int64
value types.Unknown
}
// ID is an implementation of the Qualifier interface method.
func (q *unknownQualifier) ID() int64 {
return q.id
}
// IsOptional returns trivially false as an the unknown value is always returned.
func (q *unknownQualifier) IsOptional() bool {
return false
}
// Qualify returns the unknown value associated with this qualifier.
func (q *unknownQualifier) Qualify(vars Activation, obj any) (any, error) {
return q.value, nil
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *unknownQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.value, true, nil
}
// Value implements the ConstantQualifier interface
func (q *unknownQualifier) Value() ref.Val {
return q.value
}
func applyQualifiers(vars Activation, obj any, qualifiers []Qualifier) (any, bool, error) {
optObj, isOpt := obj.(*types.Optional)
if isOpt {
if !optObj.HasValue() {
return optObj, false, nil
}
obj = optObj.GetValue().Value()
}
var err error
for _, qual := range qualifiers {
var qualObj any
isOpt = isOpt || qual.IsOptional()
if isOpt {
var present bool
qualObj, present, err = qual.QualifyIfPresent(vars, obj, false)
if err != nil {
return nil, false, err
}
if !present {
// We return optional none here with a presence of 'false' as the layers
// above will attempt to call types.OptionalOf() on a present value if any
// of the qualifiers is optional.
return types.OptionalNone, false, nil
}
} else {
qualObj, err = qual.Qualify(vars, obj)
if err != nil {
return nil, false, err
}
}
obj = qualObj
}
return obj, isOpt, nil
}
// attrQualify performs a qualification using the result of an attribute evaluation.
func attrQualify(fac AttributeFactory, vars Activation, obj any, qualAttr Attribute) (any, error) {
val, err := qualAttr.Resolve(vars)
if err != nil {
return nil, err
}
qual, err := fac.NewQualifier(nil, qualAttr.ID(), val, qualAttr.IsOptional())
if err != nil {
return nil, err
}
return qual.Qualify(vars, obj)
}
// attrQualifyIfPresent conditionally performs the qualification of the result of attribute is present
// on the target object.
func attrQualifyIfPresent(fac AttributeFactory, vars Activation, obj any, qualAttr Attribute,
presenceOnly bool) (any, bool, error) {
val, err := qualAttr.Resolve(vars)
if err != nil {
return nil, false, err
}
qual, err := fac.NewQualifier(nil, qualAttr.ID(), val, qualAttr.IsOptional())
if err != nil {
return nil, false, err
}
return qual.QualifyIfPresent(vars, obj, presenceOnly)
}
// refQualify attempts to convert the value to a CEL value and then uses reflection methods to try and
// apply the qualifier with the option to presence test field accesses before retrieving field values.
func refQualify(adapter ref.TypeAdapter, obj any, idx ref.Val, presenceTest, presenceOnly bool) (ref.Val, bool, error) {
celVal := adapter.NativeToValue(obj)
switch v := celVal.(type) {
case types.Unknown:
return v, true, nil
case *types.Err:
return nil, false, v
case traits.Mapper:
val, found := v.Find(idx)
// If the index is of the wrong type for the map, then it is possible
// for the Find call to produce an error.
if types.IsError(val) {
return nil, false, val.(*types.Err)
}
if found {
return val, true, nil
}
if presenceTest {
return nil, false, nil
}
return nil, false, missingKey(idx)
case traits.Lister:
// If the index argument is not a valid numeric type, then it is possible
// for the index operation to produce an error.
i, err := types.IndexOrError(idx)
if err != nil {
return nil, false, err
}
celIndex := types.Int(i)
if i >= 0 && celIndex < v.Size().(types.Int) {
return v.Get(idx), true, nil
}
if presenceTest {
return nil, false, nil
}
return nil, false, missingIndex(idx)
case traits.Indexer:
if presenceTest {
ft, ok := v.(traits.FieldTester)
if ok {
presence := ft.IsSet(idx)
if types.IsError(presence) {
return nil, false, presence.(*types.Err)
}
// If not found or presence only test, then return.
// Otherwise, if found, obtain the value later on.
if presenceOnly || presence == types.False {
return nil, presence == types.True, nil
}
}
}
val := v.Get(idx)
if types.IsError(val) {
return nil, false, val.(*types.Err)
}
return val, true, nil
default:
if presenceTest {
return nil, false, nil
}
return nil, false, missingKey(idx)
}
}
// resolutionError is a custom error type which encodes the different error states which may
// occur during attribute resolution.
type resolutionError struct {
missingAttribute string
missingIndex ref.Val
missingKey ref.Val
}
func (e *resolutionError) isMissingAttribute() bool {
return e.missingAttribute != ""
}
func missingIndex(missing ref.Val) *resolutionError {
return &resolutionError{
missingIndex: missing,
}
}
func missingKey(missing ref.Val) *resolutionError {
return &resolutionError{
missingKey: missing,
}
}
func missingAttribute(attr string) *resolutionError {
return &resolutionError{
missingAttribute: attr,
}
}
// Error implements the error interface method.
func (e *resolutionError) Error() string {
if e.missingKey != nil {
return fmt.Sprintf("no such key: %v", e.missingKey)
}
if e.missingIndex != nil {
return fmt.Sprintf("index out of bounds: %v", e.missingIndex)
}
if e.missingAttribute != "" {
return fmt.Sprintf("no such attribute(s): %s", e.missingAttribute)
}
return "invalid attribute"
}
// Is implements the errors.Is() method used by more recent versions of Go.
func (e *resolutionError) Is(err error) bool {
return err.Error() == e.Error()
}