ceph-csi/vendor/github.com/google/cel-go/cel/decls.go
dependabot[bot] e5d9b68d36 rebase: bump the golang-dependencies group with 1 update
Bumps the golang-dependencies group with 1 update: [golang.org/x/crypto](https://github.com/golang/crypto).


Updates `golang.org/x/crypto` from 0.16.0 to 0.17.0
- [Commits](https://github.com/golang/crypto/compare/v0.16.0...v0.17.0)

---
updated-dependencies:
- dependency-name: golang.org/x/crypto
  dependency-type: direct:production
  update-type: version-update:semver-minor
  dependency-group: golang-dependencies
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-12-21 13:34:39 +00:00

396 lines
15 KiB
Go

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cel
import (
"fmt"
"github.com/google/cel-go/common/ast"
"github.com/google/cel-go/common/decls"
"github.com/google/cel-go/common/functions"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
)
// Kind indicates a CEL type's kind which is used to differentiate quickly between simple and complex types.
type Kind = types.Kind
const (
// DynKind represents a dynamic type. This kind only exists at type-check time.
DynKind Kind = types.DynKind
// AnyKind represents a google.protobuf.Any type. This kind only exists at type-check time.
AnyKind = types.AnyKind
// BoolKind represents a boolean type.
BoolKind = types.BoolKind
// BytesKind represents a bytes type.
BytesKind = types.BytesKind
// DoubleKind represents a double type.
DoubleKind = types.DoubleKind
// DurationKind represents a CEL duration type.
DurationKind = types.DurationKind
// IntKind represents an integer type.
IntKind = types.IntKind
// ListKind represents a list type.
ListKind = types.ListKind
// MapKind represents a map type.
MapKind = types.MapKind
// NullTypeKind represents a null type.
NullTypeKind = types.NullTypeKind
// OpaqueKind represents an abstract type which has no accessible fields.
OpaqueKind = types.OpaqueKind
// StringKind represents a string type.
StringKind = types.StringKind
// StructKind represents a structured object with typed fields.
StructKind = types.StructKind
// TimestampKind represents a a CEL time type.
TimestampKind = types.TimestampKind
// TypeKind represents the CEL type.
TypeKind = types.TypeKind
// TypeParamKind represents a parameterized type whose type name will be resolved at type-check time, if possible.
TypeParamKind = types.TypeParamKind
// UintKind represents a uint type.
UintKind = types.UintKind
)
var (
// AnyType represents the google.protobuf.Any type.
AnyType = types.AnyType
// BoolType represents the bool type.
BoolType = types.BoolType
// BytesType represents the bytes type.
BytesType = types.BytesType
// DoubleType represents the double type.
DoubleType = types.DoubleType
// DurationType represents the CEL duration type.
DurationType = types.DurationType
// DynType represents a dynamic CEL type whose type will be determined at runtime from context.
DynType = types.DynType
// IntType represents the int type.
IntType = types.IntType
// NullType represents the type of a null value.
NullType = types.NullType
// StringType represents the string type.
StringType = types.StringType
// TimestampType represents the time type.
TimestampType = types.TimestampType
// TypeType represents a CEL type
TypeType = types.TypeType
// UintType represents a uint type.
UintType = types.UintType
// function references for instantiating new types.
// ListType creates an instances of a list type value with the provided element type.
ListType = types.NewListType
// MapType creates an instance of a map type value with the provided key and value types.
MapType = types.NewMapType
// NullableType creates an instance of a nullable type with the provided wrapped type.
//
// Note: only primitive types are supported as wrapped types.
NullableType = types.NewNullableType
// OptionalType creates an abstract parameterized type instance corresponding to CEL's notion of optional.
OptionalType = types.NewOptionalType
// OpaqueType creates an abstract parameterized type with a given name.
OpaqueType = types.NewOpaqueType
// ObjectType creates a type references to an externally defined type, e.g. a protobuf message type.
ObjectType = types.NewObjectType
// TypeParamType creates a parameterized type instance.
TypeParamType = types.NewTypeParamType
)
// Type holds a reference to a runtime type with an optional type-checked set of type parameters.
type Type = types.Type
// Constant creates an instances of an identifier declaration with a variable name, type, and value.
func Constant(name string, t *Type, v ref.Val) EnvOption {
return func(e *Env) (*Env, error) {
e.variables = append(e.variables, decls.NewConstant(name, t, v))
return e, nil
}
}
// Variable creates an instance of a variable declaration with a variable name and type.
func Variable(name string, t *Type) EnvOption {
return func(e *Env) (*Env, error) {
e.variables = append(e.variables, decls.NewVariable(name, t))
return e, nil
}
}
// Function defines a function and overloads with optional singleton or per-overload bindings.
//
// Using Function is roughly equivalent to calling Declarations() to declare the function signatures
// and Functions() to define the function bindings, if they have been defined. Specifying the
// same function name more than once will result in the aggregation of the function overloads. If any
// signatures conflict between the existing and new function definition an error will be raised.
// However, if the signatures are identical and the overload ids are the same, the redefinition will
// be considered a no-op.
//
// One key difference with using Function() is that each FunctionDecl provided will handle dynamic
// dispatch based on the type-signatures of the overloads provided which means overload resolution at
// runtime is handled out of the box rather than via a custom binding for overload resolution via
// Functions():
//
// - Overloads are searched in the order they are declared
// - Dynamic dispatch for lists and maps is limited by inspection of the list and map contents
//
// at runtime. Empty lists and maps will result in a 'default dispatch'
//
// - In the event that a default dispatch occurs, the first overload provided is the one invoked
//
// If you intend to use overloads which differentiate based on the key or element type of a list or
// map, consider using a generic function instead: e.g. func(list(T)) or func(map(K, V)) as this
// will allow your implementation to determine how best to handle dispatch and the default behavior
// for empty lists and maps whose contents cannot be inspected.
//
// For functions which use parameterized opaque types (abstract types), consider using a singleton
// function which is capable of inspecting the contents of the type and resolving the appropriate
// overload as CEL can only make inferences by type-name regarding such types.
func Function(name string, opts ...FunctionOpt) EnvOption {
return func(e *Env) (*Env, error) {
fn, err := decls.NewFunction(name, opts...)
if err != nil {
return nil, err
}
if existing, found := e.functions[fn.Name()]; found {
fn, err = existing.Merge(fn)
if err != nil {
return nil, err
}
}
e.functions[fn.Name()] = fn
return e, nil
}
}
// FunctionOpt defines a functional option for configuring a function declaration.
type FunctionOpt = decls.FunctionOpt
// SingletonUnaryBinding creates a singleton function definition to be used for all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
func SingletonUnaryBinding(fn functions.UnaryOp, traits ...int) FunctionOpt {
return decls.SingletonUnaryBinding(fn, traits...)
}
// SingletonBinaryImpl creates a singleton function definition to be used with all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
//
// Deprecated: use SingletonBinaryBinding
func SingletonBinaryImpl(fn functions.BinaryOp, traits ...int) FunctionOpt {
return decls.SingletonBinaryBinding(fn, traits...)
}
// SingletonBinaryBinding creates a singleton function definition to be used with all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
func SingletonBinaryBinding(fn functions.BinaryOp, traits ...int) FunctionOpt {
return decls.SingletonBinaryBinding(fn, traits...)
}
// SingletonFunctionImpl creates a singleton function definition to be used with all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
//
// Deprecated: use SingletonFunctionBinding
func SingletonFunctionImpl(fn functions.FunctionOp, traits ...int) FunctionOpt {
return decls.SingletonFunctionBinding(fn, traits...)
}
// SingletonFunctionBinding creates a singleton function definition to be used with all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
func SingletonFunctionBinding(fn functions.FunctionOp, traits ...int) FunctionOpt {
return decls.SingletonFunctionBinding(fn, traits...)
}
// DisableDeclaration disables the function signatures, effectively removing them from the type-check
// environment while preserving the runtime bindings.
func DisableDeclaration(value bool) FunctionOpt {
return decls.DisableDeclaration(value)
}
// Overload defines a new global overload with an overload id, argument types, and result type. Through the
// use of OverloadOpt options, the overload may also be configured with a binding, an operand trait, and to
// be non-strict.
//
// Note: function bindings should be commonly configured with Overload instances whereas operand traits and
// strict-ness should be rare occurrences.
func Overload(overloadID string, args []*Type, resultType *Type, opts ...OverloadOpt) FunctionOpt {
return decls.Overload(overloadID, args, resultType, opts...)
}
// MemberOverload defines a new receiver-style overload (or member function) with an overload id, argument types,
// and result type. Through the use of OverloadOpt options, the overload may also be configured with a binding,
// an operand trait, and to be non-strict.
//
// Note: function bindings should be commonly configured with Overload instances whereas operand traits and
// strict-ness should be rare occurrences.
func MemberOverload(overloadID string, args []*Type, resultType *Type, opts ...OverloadOpt) FunctionOpt {
return decls.MemberOverload(overloadID, args, resultType, opts...)
}
// OverloadOpt is a functional option for configuring a function overload.
type OverloadOpt = decls.OverloadOpt
// UnaryBinding provides the implementation of a unary overload. The provided function is protected by a runtime
// type-guard which ensures runtime type agreement between the overload signature and runtime argument types.
func UnaryBinding(binding functions.UnaryOp) OverloadOpt {
return decls.UnaryBinding(binding)
}
// BinaryBinding provides the implementation of a binary overload. The provided function is protected by a runtime
// type-guard which ensures runtime type agreement between the overload signature and runtime argument types.
func BinaryBinding(binding functions.BinaryOp) OverloadOpt {
return decls.BinaryBinding(binding)
}
// FunctionBinding provides the implementation of a variadic overload. The provided function is protected by a runtime
// type-guard which ensures runtime type agreement between the overload signature and runtime argument types.
func FunctionBinding(binding functions.FunctionOp) OverloadOpt {
return decls.FunctionBinding(binding)
}
// OverloadIsNonStrict enables the function to be called with error and unknown argument values.
//
// Note: do not use this option unless absoluately necessary as it should be an uncommon feature.
func OverloadIsNonStrict() OverloadOpt {
return decls.OverloadIsNonStrict()
}
// OverloadOperandTrait configures a set of traits which the first argument to the overload must implement in order to be
// successfully invoked.
func OverloadOperandTrait(trait int) OverloadOpt {
return decls.OverloadOperandTrait(trait)
}
// TypeToExprType converts a CEL-native type representation to a protobuf CEL Type representation.
func TypeToExprType(t *Type) (*exprpb.Type, error) {
return types.TypeToExprType(t)
}
// ExprTypeToType converts a protobuf CEL type representation to a CEL-native type representation.
func ExprTypeToType(t *exprpb.Type) (*Type, error) {
return types.ExprTypeToType(t)
}
// ExprDeclToDeclaration converts a protobuf CEL declaration to a CEL-native declaration, either a Variable or Function.
func ExprDeclToDeclaration(d *exprpb.Decl) (EnvOption, error) {
switch d.GetDeclKind().(type) {
case *exprpb.Decl_Function:
overloads := d.GetFunction().GetOverloads()
opts := make([]FunctionOpt, len(overloads))
for i, o := range overloads {
args := make([]*Type, len(o.GetParams()))
for j, p := range o.GetParams() {
a, err := types.ExprTypeToType(p)
if err != nil {
return nil, err
}
args[j] = a
}
res, err := types.ExprTypeToType(o.GetResultType())
if err != nil {
return nil, err
}
if o.IsInstanceFunction {
opts[i] = decls.MemberOverload(o.GetOverloadId(), args, res)
} else {
opts[i] = decls.Overload(o.GetOverloadId(), args, res)
}
}
return Function(d.GetName(), opts...), nil
case *exprpb.Decl_Ident:
t, err := types.ExprTypeToType(d.GetIdent().GetType())
if err != nil {
return nil, err
}
if d.GetIdent().GetValue() == nil {
return Variable(d.GetName(), t), nil
}
val, err := ast.ConstantToVal(d.GetIdent().GetValue())
if err != nil {
return nil, err
}
return Constant(d.GetName(), t, val), nil
default:
return nil, fmt.Errorf("unsupported decl: %v", d)
}
}
func typeValueToKind(tv ref.Type) (Kind, error) {
switch tv {
case types.BoolType:
return BoolKind, nil
case types.DoubleType:
return DoubleKind, nil
case types.IntType:
return IntKind, nil
case types.UintType:
return UintKind, nil
case types.ListType:
return ListKind, nil
case types.MapType:
return MapKind, nil
case types.StringType:
return StringKind, nil
case types.BytesType:
return BytesKind, nil
case types.DurationType:
return DurationKind, nil
case types.TimestampType:
return TimestampKind, nil
case types.NullType:
return NullTypeKind, nil
case types.TypeType:
return TypeKind, nil
default:
switch tv.TypeName() {
case "dyn":
return DynKind, nil
case "google.protobuf.Any":
return AnyKind, nil
case "optional":
return OpaqueKind, nil
default:
return 0, fmt.Errorf("no known conversion for type of %s", tv.TypeName())
}
}
}