mirror of
https://github.com/ceph/ceph-csi.git
synced 2024-12-18 19:10:21 +00:00
3af1e26d7c
Signed-off-by: Humble Chirammal <hchiramm@redhat.com>
1746 lines
56 KiB
Go
1746 lines
56 KiB
Go
// Copyright 2013 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package ssa
|
||
|
||
// This package defines a high-level intermediate representation for
|
||
// Go programs using static single-assignment (SSA) form.
|
||
|
||
import (
|
||
"fmt"
|
||
"go/ast"
|
||
"go/constant"
|
||
"go/token"
|
||
"go/types"
|
||
"sync"
|
||
|
||
"golang.org/x/tools/go/types/typeutil"
|
||
)
|
||
|
||
// A Program is a partial or complete Go program converted to SSA form.
|
||
type Program struct {
|
||
Fset *token.FileSet // position information for the files of this Program
|
||
imported map[string]*Package // all importable Packages, keyed by import path
|
||
packages map[*types.Package]*Package // all loaded Packages, keyed by object
|
||
mode BuilderMode // set of mode bits for SSA construction
|
||
MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets
|
||
|
||
methodsMu sync.Mutex // guards the following maps:
|
||
methodSets typeutil.Map // maps type to its concrete methodSet
|
||
runtimeTypes typeutil.Map // types for which rtypes are needed
|
||
canon typeutil.Map // type canonicalization map
|
||
bounds map[*types.Func]*Function // bounds for curried x.Method closures
|
||
thunks map[selectionKey]*Function // thunks for T.Method expressions
|
||
}
|
||
|
||
// A Package is a single analyzed Go package containing Members for
|
||
// all package-level functions, variables, constants and types it
|
||
// declares. These may be accessed directly via Members, or via the
|
||
// type-specific accessor methods Func, Type, Var and Const.
|
||
//
|
||
// Members also contains entries for "init" (the synthetic package
|
||
// initializer) and "init#%d", the nth declared init function,
|
||
// and unspecified other things too.
|
||
//
|
||
type Package struct {
|
||
Prog *Program // the owning program
|
||
Pkg *types.Package // the corresponding go/types.Package
|
||
Members map[string]Member // all package members keyed by name (incl. init and init#%d)
|
||
values map[types.Object]Value // package members (incl. types and methods), keyed by object
|
||
init *Function // Func("init"); the package's init function
|
||
debug bool // include full debug info in this package
|
||
|
||
// The following fields are set transiently, then cleared
|
||
// after building.
|
||
buildOnce sync.Once // ensures package building occurs once
|
||
ninit int32 // number of init functions
|
||
info *types.Info // package type information
|
||
files []*ast.File // package ASTs
|
||
}
|
||
|
||
// A Member is a member of a Go package, implemented by *NamedConst,
|
||
// *Global, *Function, or *Type; they are created by package-level
|
||
// const, var, func and type declarations respectively.
|
||
//
|
||
type Member interface {
|
||
Name() string // declared name of the package member
|
||
String() string // package-qualified name of the package member
|
||
RelString(*types.Package) string // like String, but relative refs are unqualified
|
||
Object() types.Object // typechecker's object for this member, if any
|
||
Pos() token.Pos // position of member's declaration, if known
|
||
Type() types.Type // type of the package member
|
||
Token() token.Token // token.{VAR,FUNC,CONST,TYPE}
|
||
Package() *Package // the containing package
|
||
}
|
||
|
||
// A Type is a Member of a Package representing a package-level named type.
|
||
type Type struct {
|
||
object *types.TypeName
|
||
pkg *Package
|
||
}
|
||
|
||
// A NamedConst is a Member of a Package representing a package-level
|
||
// named constant.
|
||
//
|
||
// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
|
||
// identifier.
|
||
//
|
||
// NB: a NamedConst is not a Value; it contains a constant Value, which
|
||
// it augments with the name and position of its 'const' declaration.
|
||
//
|
||
type NamedConst struct {
|
||
object *types.Const
|
||
Value *Const
|
||
pkg *Package
|
||
}
|
||
|
||
// A Value is an SSA value that can be referenced by an instruction.
|
||
type Value interface {
|
||
// Name returns the name of this value, and determines how
|
||
// this Value appears when used as an operand of an
|
||
// Instruction.
|
||
//
|
||
// This is the same as the source name for Parameters,
|
||
// Builtins, Functions, FreeVars, Globals.
|
||
// For constants, it is a representation of the constant's value
|
||
// and type. For all other Values this is the name of the
|
||
// virtual register defined by the instruction.
|
||
//
|
||
// The name of an SSA Value is not semantically significant,
|
||
// and may not even be unique within a function.
|
||
Name() string
|
||
|
||
// If this value is an Instruction, String returns its
|
||
// disassembled form; otherwise it returns unspecified
|
||
// human-readable information about the Value, such as its
|
||
// kind, name and type.
|
||
String() string
|
||
|
||
// Type returns the type of this value. Many instructions
|
||
// (e.g. IndexAddr) change their behaviour depending on the
|
||
// types of their operands.
|
||
Type() types.Type
|
||
|
||
// Parent returns the function to which this Value belongs.
|
||
// It returns nil for named Functions, Builtin, Const and Global.
|
||
Parent() *Function
|
||
|
||
// Referrers returns the list of instructions that have this
|
||
// value as one of their operands; it may contain duplicates
|
||
// if an instruction has a repeated operand.
|
||
//
|
||
// Referrers actually returns a pointer through which the
|
||
// caller may perform mutations to the object's state.
|
||
//
|
||
// Referrers is currently only defined if Parent()!=nil,
|
||
// i.e. for the function-local values FreeVar, Parameter,
|
||
// Functions (iff anonymous) and all value-defining instructions.
|
||
// It returns nil for named Functions, Builtin, Const and Global.
|
||
//
|
||
// Instruction.Operands contains the inverse of this relation.
|
||
Referrers() *[]Instruction
|
||
|
||
// Pos returns the location of the AST token most closely
|
||
// associated with the operation that gave rise to this value,
|
||
// or token.NoPos if it was not explicit in the source.
|
||
//
|
||
// For each ast.Node type, a particular token is designated as
|
||
// the closest location for the expression, e.g. the Lparen
|
||
// for an *ast.CallExpr. This permits a compact but
|
||
// approximate mapping from Values to source positions for use
|
||
// in diagnostic messages, for example.
|
||
//
|
||
// (Do not use this position to determine which Value
|
||
// corresponds to an ast.Expr; use Function.ValueForExpr
|
||
// instead. NB: it requires that the function was built with
|
||
// debug information.)
|
||
Pos() token.Pos
|
||
}
|
||
|
||
// An Instruction is an SSA instruction that computes a new Value or
|
||
// has some effect.
|
||
//
|
||
// An Instruction that defines a value (e.g. BinOp) also implements
|
||
// the Value interface; an Instruction that only has an effect (e.g. Store)
|
||
// does not.
|
||
//
|
||
type Instruction interface {
|
||
// String returns the disassembled form of this value.
|
||
//
|
||
// Examples of Instructions that are Values:
|
||
// "x + y" (BinOp)
|
||
// "len([])" (Call)
|
||
// Note that the name of the Value is not printed.
|
||
//
|
||
// Examples of Instructions that are not Values:
|
||
// "return x" (Return)
|
||
// "*y = x" (Store)
|
||
//
|
||
// (The separation Value.Name() from Value.String() is useful
|
||
// for some analyses which distinguish the operation from the
|
||
// value it defines, e.g., 'y = local int' is both an allocation
|
||
// of memory 'local int' and a definition of a pointer y.)
|
||
String() string
|
||
|
||
// Parent returns the function to which this instruction
|
||
// belongs.
|
||
Parent() *Function
|
||
|
||
// Block returns the basic block to which this instruction
|
||
// belongs.
|
||
Block() *BasicBlock
|
||
|
||
// setBlock sets the basic block to which this instruction belongs.
|
||
setBlock(*BasicBlock)
|
||
|
||
// Operands returns the operands of this instruction: the
|
||
// set of Values it references.
|
||
//
|
||
// Specifically, it appends their addresses to rands, a
|
||
// user-provided slice, and returns the resulting slice,
|
||
// permitting avoidance of memory allocation.
|
||
//
|
||
// The operands are appended in undefined order, but the order
|
||
// is consistent for a given Instruction; the addresses are
|
||
// always non-nil but may point to a nil Value. Clients may
|
||
// store through the pointers, e.g. to effect a value
|
||
// renaming.
|
||
//
|
||
// Value.Referrers is a subset of the inverse of this
|
||
// relation. (Referrers are not tracked for all types of
|
||
// Values.)
|
||
Operands(rands []*Value) []*Value
|
||
|
||
// Pos returns the location of the AST token most closely
|
||
// associated with the operation that gave rise to this
|
||
// instruction, or token.NoPos if it was not explicit in the
|
||
// source.
|
||
//
|
||
// For each ast.Node type, a particular token is designated as
|
||
// the closest location for the expression, e.g. the Go token
|
||
// for an *ast.GoStmt. This permits a compact but approximate
|
||
// mapping from Instructions to source positions for use in
|
||
// diagnostic messages, for example.
|
||
//
|
||
// (Do not use this position to determine which Instruction
|
||
// corresponds to an ast.Expr; see the notes for Value.Pos.
|
||
// This position may be used to determine which non-Value
|
||
// Instruction corresponds to some ast.Stmts, but not all: If
|
||
// and Jump instructions have no Pos(), for example.)
|
||
Pos() token.Pos
|
||
}
|
||
|
||
// A Node is a node in the SSA value graph. Every concrete type that
|
||
// implements Node is also either a Value, an Instruction, or both.
|
||
//
|
||
// Node contains the methods common to Value and Instruction, plus the
|
||
// Operands and Referrers methods generalized to return nil for
|
||
// non-Instructions and non-Values, respectively.
|
||
//
|
||
// Node is provided to simplify SSA graph algorithms. Clients should
|
||
// use the more specific and informative Value or Instruction
|
||
// interfaces where appropriate.
|
||
//
|
||
type Node interface {
|
||
// Common methods:
|
||
String() string
|
||
Pos() token.Pos
|
||
Parent() *Function
|
||
|
||
// Partial methods:
|
||
Operands(rands []*Value) []*Value // nil for non-Instructions
|
||
Referrers() *[]Instruction // nil for non-Values
|
||
}
|
||
|
||
// Function represents the parameters, results, and code of a function
|
||
// or method.
|
||
//
|
||
// If Blocks is nil, this indicates an external function for which no
|
||
// Go source code is available. In this case, FreeVars and Locals
|
||
// are nil too. Clients performing whole-program analysis must
|
||
// handle external functions specially.
|
||
//
|
||
// Blocks contains the function's control-flow graph (CFG).
|
||
// Blocks[0] is the function entry point; block order is not otherwise
|
||
// semantically significant, though it may affect the readability of
|
||
// the disassembly.
|
||
// To iterate over the blocks in dominance order, use DomPreorder().
|
||
//
|
||
// Recover is an optional second entry point to which control resumes
|
||
// after a recovered panic. The Recover block may contain only a return
|
||
// statement, preceded by a load of the function's named return
|
||
// parameters, if any.
|
||
//
|
||
// A nested function (Parent()!=nil) that refers to one or more
|
||
// lexically enclosing local variables ("free variables") has FreeVars.
|
||
// Such functions cannot be called directly but require a
|
||
// value created by MakeClosure which, via its Bindings, supplies
|
||
// values for these parameters.
|
||
//
|
||
// If the function is a method (Signature.Recv() != nil) then the first
|
||
// element of Params is the receiver parameter.
|
||
//
|
||
// A Go package may declare many functions called "init".
|
||
// For each one, Object().Name() returns "init" but Name() returns
|
||
// "init#1", etc, in declaration order.
|
||
//
|
||
// Pos() returns the declaring ast.FuncLit.Type.Func or the position
|
||
// of the ast.FuncDecl.Name, if the function was explicit in the
|
||
// source. Synthetic wrappers, for which Synthetic != "", may share
|
||
// the same position as the function they wrap.
|
||
// Syntax.Pos() always returns the position of the declaring "func" token.
|
||
//
|
||
// Type() returns the function's Signature.
|
||
//
|
||
type Function struct {
|
||
name string
|
||
object types.Object // a declared *types.Func or one of its wrappers
|
||
method *types.Selection // info about provenance of synthetic methods
|
||
Signature *types.Signature
|
||
pos token.Pos
|
||
|
||
Synthetic string // provenance of synthetic function; "" for true source functions
|
||
syntax ast.Node // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode
|
||
parent *Function // enclosing function if anon; nil if global
|
||
Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error)
|
||
Prog *Program // enclosing program
|
||
Params []*Parameter // function parameters; for methods, includes receiver
|
||
FreeVars []*FreeVar // free variables whose values must be supplied by closure
|
||
Locals []*Alloc // local variables of this function
|
||
Blocks []*BasicBlock // basic blocks of the function; nil => external
|
||
Recover *BasicBlock // optional; control transfers here after recovered panic
|
||
AnonFuncs []*Function // anonymous functions directly beneath this one
|
||
referrers []Instruction // referring instructions (iff Parent() != nil)
|
||
|
||
// The following fields are set transiently during building,
|
||
// then cleared.
|
||
currentBlock *BasicBlock // where to emit code
|
||
objects map[types.Object]Value // addresses of local variables
|
||
namedResults []*Alloc // tuple of named results
|
||
targets *targets // linked stack of branch targets
|
||
lblocks map[*ast.Object]*lblock // labelled blocks
|
||
}
|
||
|
||
// BasicBlock represents an SSA basic block.
|
||
//
|
||
// The final element of Instrs is always an explicit transfer of
|
||
// control (If, Jump, Return, or Panic).
|
||
//
|
||
// A block may contain no Instructions only if it is unreachable,
|
||
// i.e., Preds is nil. Empty blocks are typically pruned.
|
||
//
|
||
// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
|
||
// graph independent of the SSA Value graph: the control-flow graph or
|
||
// CFG. It is illegal for multiple edges to exist between the same
|
||
// pair of blocks.
|
||
//
|
||
// Each BasicBlock is also a node in the dominator tree of the CFG.
|
||
// The tree may be navigated using Idom()/Dominees() and queried using
|
||
// Dominates().
|
||
//
|
||
// The order of Preds and Succs is significant (to Phi and If
|
||
// instructions, respectively).
|
||
//
|
||
type BasicBlock struct {
|
||
Index int // index of this block within Parent().Blocks
|
||
Comment string // optional label; no semantic significance
|
||
parent *Function // parent function
|
||
Instrs []Instruction // instructions in order
|
||
Preds, Succs []*BasicBlock // predecessors and successors
|
||
succs2 [2]*BasicBlock // initial space for Succs
|
||
dom domInfo // dominator tree info
|
||
gaps int // number of nil Instrs (transient)
|
||
rundefers int // number of rundefers (transient)
|
||
}
|
||
|
||
// Pure values ----------------------------------------
|
||
|
||
// A FreeVar represents a free variable of the function to which it
|
||
// belongs.
|
||
//
|
||
// FreeVars are used to implement anonymous functions, whose free
|
||
// variables are lexically captured in a closure formed by
|
||
// MakeClosure. The value of such a free var is an Alloc or another
|
||
// FreeVar and is considered a potentially escaping heap address, with
|
||
// pointer type.
|
||
//
|
||
// FreeVars are also used to implement bound method closures. Such a
|
||
// free var represents the receiver value and may be of any type that
|
||
// has concrete methods.
|
||
//
|
||
// Pos() returns the position of the value that was captured, which
|
||
// belongs to an enclosing function.
|
||
//
|
||
type FreeVar struct {
|
||
name string
|
||
typ types.Type
|
||
pos token.Pos
|
||
parent *Function
|
||
referrers []Instruction
|
||
|
||
// Transiently needed during building.
|
||
outer Value // the Value captured from the enclosing context.
|
||
}
|
||
|
||
// A Parameter represents an input parameter of a function.
|
||
//
|
||
type Parameter struct {
|
||
name string
|
||
object types.Object // a *types.Var; nil for non-source locals
|
||
typ types.Type
|
||
pos token.Pos
|
||
parent *Function
|
||
referrers []Instruction
|
||
}
|
||
|
||
// A Const represents the value of a constant expression.
|
||
//
|
||
// The underlying type of a constant may be any boolean, numeric, or
|
||
// string type. In addition, a Const may represent the nil value of
|
||
// any reference type---interface, map, channel, pointer, slice, or
|
||
// function---but not "untyped nil".
|
||
//
|
||
// All source-level constant expressions are represented by a Const
|
||
// of the same type and value.
|
||
//
|
||
// Value holds the exact value of the constant, independent of its
|
||
// Type(), using the same representation as package go/constant uses for
|
||
// constants, or nil for a typed nil value.
|
||
//
|
||
// Pos() returns token.NoPos.
|
||
//
|
||
// Example printed form:
|
||
// 42:int
|
||
// "hello":untyped string
|
||
// 3+4i:MyComplex
|
||
//
|
||
type Const struct {
|
||
typ types.Type
|
||
Value constant.Value
|
||
}
|
||
|
||
// A Global is a named Value holding the address of a package-level
|
||
// variable.
|
||
//
|
||
// Pos() returns the position of the ast.ValueSpec.Names[*]
|
||
// identifier.
|
||
//
|
||
type Global struct {
|
||
name string
|
||
object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
|
||
typ types.Type
|
||
pos token.Pos
|
||
|
||
Pkg *Package
|
||
}
|
||
|
||
// A Builtin represents a specific use of a built-in function, e.g. len.
|
||
//
|
||
// Builtins are immutable values. Builtins do not have addresses.
|
||
// Builtins can only appear in CallCommon.Func.
|
||
//
|
||
// Name() indicates the function: one of the built-in functions from the
|
||
// Go spec (excluding "make" and "new") or one of these ssa-defined
|
||
// intrinsics:
|
||
//
|
||
// // wrapnilchk returns ptr if non-nil, panics otherwise.
|
||
// // (For use in indirection wrappers.)
|
||
// func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
|
||
//
|
||
// Object() returns a *types.Builtin for built-ins defined by the spec,
|
||
// nil for others.
|
||
//
|
||
// Type() returns a *types.Signature representing the effective
|
||
// signature of the built-in for this call.
|
||
//
|
||
type Builtin struct {
|
||
name string
|
||
sig *types.Signature
|
||
}
|
||
|
||
// Value-defining instructions ----------------------------------------
|
||
|
||
// The Alloc instruction reserves space for a variable of the given type,
|
||
// zero-initializes it, and yields its address.
|
||
//
|
||
// Alloc values are always addresses, and have pointer types, so the
|
||
// type of the allocated variable is actually
|
||
// Type().Underlying().(*types.Pointer).Elem().
|
||
//
|
||
// If Heap is false, Alloc allocates space in the function's
|
||
// activation record (frame); we refer to an Alloc(Heap=false) as a
|
||
// "local" alloc. Each local Alloc returns the same address each time
|
||
// it is executed within the same activation; the space is
|
||
// re-initialized to zero.
|
||
//
|
||
// If Heap is true, Alloc allocates space in the heap; we
|
||
// refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc
|
||
// returns a different address each time it is executed.
|
||
//
|
||
// When Alloc is applied to a channel, map or slice type, it returns
|
||
// the address of an uninitialized (nil) reference of that kind; store
|
||
// the result of MakeSlice, MakeMap or MakeChan in that location to
|
||
// instantiate these types.
|
||
//
|
||
// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
|
||
// or the ast.CallExpr.Rparen for a call to new() or for a call that
|
||
// allocates a varargs slice.
|
||
//
|
||
// Example printed form:
|
||
// t0 = local int
|
||
// t1 = new int
|
||
//
|
||
type Alloc struct {
|
||
register
|
||
Comment string
|
||
Heap bool
|
||
index int // dense numbering; for lifting
|
||
}
|
||
|
||
var _ Instruction = (*Sigma)(nil)
|
||
var _ Value = (*Sigma)(nil)
|
||
|
||
type Sigma struct {
|
||
register
|
||
X Value
|
||
Branch bool
|
||
}
|
||
|
||
func (p *Sigma) Value() Value {
|
||
v := p.X
|
||
for {
|
||
sigma, ok := v.(*Sigma)
|
||
if !ok {
|
||
break
|
||
}
|
||
v = sigma
|
||
}
|
||
return v
|
||
}
|
||
|
||
func (p *Sigma) String() string {
|
||
return fmt.Sprintf("σ [%s.%t]", relName(p.X, p), p.Branch)
|
||
}
|
||
|
||
// The Phi instruction represents an SSA φ-node, which combines values
|
||
// that differ across incoming control-flow edges and yields a new
|
||
// value. Within a block, all φ-nodes must appear before all non-φ
|
||
// nodes.
|
||
//
|
||
// Pos() returns the position of the && or || for short-circuit
|
||
// control-flow joins, or that of the *Alloc for φ-nodes inserted
|
||
// during SSA renaming.
|
||
//
|
||
// Example printed form:
|
||
// t2 = phi [0: t0, 1: t1]
|
||
//
|
||
type Phi struct {
|
||
register
|
||
Comment string // a hint as to its purpose
|
||
Edges []Value // Edges[i] is value for Block().Preds[i]
|
||
}
|
||
|
||
// The Call instruction represents a function or method call.
|
||
//
|
||
// The Call instruction yields the function result if there is exactly
|
||
// one. Otherwise it returns a tuple, the components of which are
|
||
// accessed via Extract.
|
||
//
|
||
// See CallCommon for generic function call documentation.
|
||
//
|
||
// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
|
||
//
|
||
// Example printed form:
|
||
// t2 = println(t0, t1)
|
||
// t4 = t3()
|
||
// t7 = invoke t5.Println(...t6)
|
||
//
|
||
type Call struct {
|
||
register
|
||
Call CallCommon
|
||
}
|
||
|
||
// The BinOp instruction yields the result of binary operation X Op Y.
|
||
//
|
||
// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
|
||
//
|
||
// Example printed form:
|
||
// t1 = t0 + 1:int
|
||
//
|
||
type BinOp struct {
|
||
register
|
||
// One of:
|
||
// ADD SUB MUL QUO REM + - * / %
|
||
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
|
||
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
|
||
Op token.Token
|
||
X, Y Value
|
||
}
|
||
|
||
// The UnOp instruction yields the result of Op X.
|
||
// ARROW is channel receive.
|
||
// MUL is pointer indirection (load).
|
||
// XOR is bitwise complement.
|
||
// SUB is negation.
|
||
// NOT is logical negation.
|
||
//
|
||
// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
|
||
// and a boolean indicating the success of the receive. The
|
||
// components of the tuple are accessed using Extract.
|
||
//
|
||
// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
|
||
// For receive operations (ARROW) implicit in ranging over a channel,
|
||
// Pos() returns the ast.RangeStmt.For.
|
||
// For implicit memory loads (STAR), Pos() returns the position of the
|
||
// most closely associated source-level construct; the details are not
|
||
// specified.
|
||
//
|
||
// Example printed form:
|
||
// t0 = *x
|
||
// t2 = <-t1,ok
|
||
//
|
||
type UnOp struct {
|
||
register
|
||
Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
|
||
X Value
|
||
CommaOk bool
|
||
}
|
||
|
||
// The ChangeType instruction applies to X a value-preserving type
|
||
// change to Type().
|
||
//
|
||
// Type changes are permitted:
|
||
// - between a named type and its underlying type.
|
||
// - between two named types of the same underlying type.
|
||
// - between (possibly named) pointers to identical base types.
|
||
// - from a bidirectional channel to a read- or write-channel,
|
||
// optionally adding/removing a name.
|
||
//
|
||
// This operation cannot fail dynamically.
|
||
//
|
||
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
|
||
// from an explicit conversion in the source.
|
||
//
|
||
// Example printed form:
|
||
// t1 = changetype *int <- IntPtr (t0)
|
||
//
|
||
type ChangeType struct {
|
||
register
|
||
X Value
|
||
}
|
||
|
||
// The Convert instruction yields the conversion of value X to type
|
||
// Type(). One or both of those types is basic (but possibly named).
|
||
//
|
||
// A conversion may change the value and representation of its operand.
|
||
// Conversions are permitted:
|
||
// - between real numeric types.
|
||
// - between complex numeric types.
|
||
// - between string and []byte or []rune.
|
||
// - between pointers and unsafe.Pointer.
|
||
// - between unsafe.Pointer and uintptr.
|
||
// - from (Unicode) integer to (UTF-8) string.
|
||
// A conversion may imply a type name change also.
|
||
//
|
||
// This operation cannot fail dynamically.
|
||
//
|
||
// Conversions of untyped string/number/bool constants to a specific
|
||
// representation are eliminated during SSA construction.
|
||
//
|
||
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
|
||
// from an explicit conversion in the source.
|
||
//
|
||
// Example printed form:
|
||
// t1 = convert []byte <- string (t0)
|
||
//
|
||
type Convert struct {
|
||
register
|
||
X Value
|
||
}
|
||
|
||
// ChangeInterface constructs a value of one interface type from a
|
||
// value of another interface type known to be assignable to it.
|
||
// This operation cannot fail.
|
||
//
|
||
// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
|
||
// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
|
||
// instruction arose from an explicit e.(T) operation; or token.NoPos
|
||
// otherwise.
|
||
//
|
||
// Example printed form:
|
||
// t1 = change interface interface{} <- I (t0)
|
||
//
|
||
type ChangeInterface struct {
|
||
register
|
||
X Value
|
||
}
|
||
|
||
// MakeInterface constructs an instance of an interface type from a
|
||
// value of a concrete type.
|
||
//
|
||
// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
|
||
// of X, and Program.MethodValue(m) to find the implementation of a method.
|
||
//
|
||
// To construct the zero value of an interface type T, use:
|
||
// NewConst(constant.MakeNil(), T, pos)
|
||
//
|
||
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
|
||
// from an explicit conversion in the source.
|
||
//
|
||
// Example printed form:
|
||
// t1 = make interface{} <- int (42:int)
|
||
// t2 = make Stringer <- t0
|
||
//
|
||
type MakeInterface struct {
|
||
register
|
||
X Value
|
||
}
|
||
|
||
// The MakeClosure instruction yields a closure value whose code is
|
||
// Fn and whose free variables' values are supplied by Bindings.
|
||
//
|
||
// Type() returns a (possibly named) *types.Signature.
|
||
//
|
||
// Pos() returns the ast.FuncLit.Type.Func for a function literal
|
||
// closure or the ast.SelectorExpr.Sel for a bound method closure.
|
||
//
|
||
// Example printed form:
|
||
// t0 = make closure anon@1.2 [x y z]
|
||
// t1 = make closure bound$(main.I).add [i]
|
||
//
|
||
type MakeClosure struct {
|
||
register
|
||
Fn Value // always a *Function
|
||
Bindings []Value // values for each free variable in Fn.FreeVars
|
||
}
|
||
|
||
// The MakeMap instruction creates a new hash-table-based map object
|
||
// and yields a value of kind map.
|
||
//
|
||
// Type() returns a (possibly named) *types.Map.
|
||
//
|
||
// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
|
||
// the ast.CompositeLit.Lbrack if created by a literal.
|
||
//
|
||
// Example printed form:
|
||
// t1 = make map[string]int t0
|
||
// t1 = make StringIntMap t0
|
||
//
|
||
type MakeMap struct {
|
||
register
|
||
Reserve Value // initial space reservation; nil => default
|
||
}
|
||
|
||
// The MakeChan instruction creates a new channel object and yields a
|
||
// value of kind chan.
|
||
//
|
||
// Type() returns a (possibly named) *types.Chan.
|
||
//
|
||
// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
|
||
// created it.
|
||
//
|
||
// Example printed form:
|
||
// t0 = make chan int 0
|
||
// t0 = make IntChan 0
|
||
//
|
||
type MakeChan struct {
|
||
register
|
||
Size Value // int; size of buffer; zero => synchronous.
|
||
}
|
||
|
||
// The MakeSlice instruction yields a slice of length Len backed by a
|
||
// newly allocated array of length Cap.
|
||
//
|
||
// Both Len and Cap must be non-nil Values of integer type.
|
||
//
|
||
// (Alloc(types.Array) followed by Slice will not suffice because
|
||
// Alloc can only create arrays of constant length.)
|
||
//
|
||
// Type() returns a (possibly named) *types.Slice.
|
||
//
|
||
// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
|
||
// created it.
|
||
//
|
||
// Example printed form:
|
||
// t1 = make []string 1:int t0
|
||
// t1 = make StringSlice 1:int t0
|
||
//
|
||
type MakeSlice struct {
|
||
register
|
||
Len Value
|
||
Cap Value
|
||
}
|
||
|
||
// The Slice instruction yields a slice of an existing string, slice
|
||
// or *array X between optional integer bounds Low and High.
|
||
//
|
||
// Dynamically, this instruction panics if X evaluates to a nil *array
|
||
// pointer.
|
||
//
|
||
// Type() returns string if the type of X was string, otherwise a
|
||
// *types.Slice with the same element type as X.
|
||
//
|
||
// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
|
||
// operation, the ast.CompositeLit.Lbrace if created by a literal, or
|
||
// NoPos if not explicit in the source (e.g. a variadic argument slice).
|
||
//
|
||
// Example printed form:
|
||
// t1 = slice t0[1:]
|
||
//
|
||
type Slice struct {
|
||
register
|
||
X Value // slice, string, or *array
|
||
Low, High, Max Value // each may be nil
|
||
}
|
||
|
||
// The FieldAddr instruction yields the address of Field of *struct X.
|
||
//
|
||
// The field is identified by its index within the field list of the
|
||
// struct type of X.
|
||
//
|
||
// Dynamically, this instruction panics if X evaluates to a nil
|
||
// pointer.
|
||
//
|
||
// Type() returns a (possibly named) *types.Pointer.
|
||
//
|
||
// Pos() returns the position of the ast.SelectorExpr.Sel for the
|
||
// field, if explicit in the source.
|
||
//
|
||
// Example printed form:
|
||
// t1 = &t0.name [#1]
|
||
//
|
||
type FieldAddr struct {
|
||
register
|
||
X Value // *struct
|
||
Field int // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field)
|
||
}
|
||
|
||
// The Field instruction yields the Field of struct X.
|
||
//
|
||
// The field is identified by its index within the field list of the
|
||
// struct type of X; by using numeric indices we avoid ambiguity of
|
||
// package-local identifiers and permit compact representations.
|
||
//
|
||
// Pos() returns the position of the ast.SelectorExpr.Sel for the
|
||
// field, if explicit in the source.
|
||
//
|
||
// Example printed form:
|
||
// t1 = t0.name [#1]
|
||
//
|
||
type Field struct {
|
||
register
|
||
X Value // struct
|
||
Field int // index into X.Type().(*types.Struct).Fields
|
||
}
|
||
|
||
// The IndexAddr instruction yields the address of the element at
|
||
// index Index of collection X. Index is an integer expression.
|
||
//
|
||
// The elements of maps and strings are not addressable; use Lookup or
|
||
// MapUpdate instead.
|
||
//
|
||
// Dynamically, this instruction panics if X evaluates to a nil *array
|
||
// pointer.
|
||
//
|
||
// Type() returns a (possibly named) *types.Pointer.
|
||
//
|
||
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
|
||
// explicit in the source.
|
||
//
|
||
// Example printed form:
|
||
// t2 = &t0[t1]
|
||
//
|
||
type IndexAddr struct {
|
||
register
|
||
X Value // slice or *array,
|
||
Index Value // numeric index
|
||
}
|
||
|
||
// The Index instruction yields element Index of array X.
|
||
//
|
||
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
|
||
// explicit in the source.
|
||
//
|
||
// Example printed form:
|
||
// t2 = t0[t1]
|
||
//
|
||
type Index struct {
|
||
register
|
||
X Value // array
|
||
Index Value // integer index
|
||
}
|
||
|
||
// The Lookup instruction yields element Index of collection X, a map
|
||
// or string. Index is an integer expression if X is a string or the
|
||
// appropriate key type if X is a map.
|
||
//
|
||
// If CommaOk, the result is a 2-tuple of the value above and a
|
||
// boolean indicating the result of a map membership test for the key.
|
||
// The components of the tuple are accessed using Extract.
|
||
//
|
||
// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
|
||
//
|
||
// Example printed form:
|
||
// t2 = t0[t1]
|
||
// t5 = t3[t4],ok
|
||
//
|
||
type Lookup struct {
|
||
register
|
||
X Value // string or map
|
||
Index Value // numeric or key-typed index
|
||
CommaOk bool // return a value,ok pair
|
||
}
|
||
|
||
// SelectState is a helper for Select.
|
||
// It represents one goal state and its corresponding communication.
|
||
//
|
||
type SelectState struct {
|
||
Dir types.ChanDir // direction of case (SendOnly or RecvOnly)
|
||
Chan Value // channel to use (for send or receive)
|
||
Send Value // value to send (for send)
|
||
Pos token.Pos // position of token.ARROW
|
||
DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
|
||
}
|
||
|
||
// The Select instruction tests whether (or blocks until) one
|
||
// of the specified sent or received states is entered.
|
||
//
|
||
// Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
|
||
// be the element type of each such state's Chan.
|
||
// Select returns an n+2-tuple
|
||
// (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
|
||
// The tuple's components, described below, must be accessed via the
|
||
// Extract instruction.
|
||
//
|
||
// If Blocking, select waits until exactly one state holds, i.e. a
|
||
// channel becomes ready for the designated operation of sending or
|
||
// receiving; select chooses one among the ready states
|
||
// pseudorandomly, performs the send or receive operation, and sets
|
||
// 'index' to the index of the chosen channel.
|
||
//
|
||
// If !Blocking, select doesn't block if no states hold; instead it
|
||
// returns immediately with index equal to -1.
|
||
//
|
||
// If the chosen channel was used for a receive, the r_i component is
|
||
// set to the received value, where i is the index of that state among
|
||
// all n receive states; otherwise r_i has the zero value of type T_i.
|
||
// Note that the receive index i is not the same as the state
|
||
// index index.
|
||
//
|
||
// The second component of the triple, recvOk, is a boolean whose value
|
||
// is true iff the selected operation was a receive and the receive
|
||
// successfully yielded a value.
|
||
//
|
||
// Pos() returns the ast.SelectStmt.Select.
|
||
//
|
||
// Example printed form:
|
||
// t3 = select nonblocking [<-t0, t1<-t2]
|
||
// t4 = select blocking []
|
||
//
|
||
type Select struct {
|
||
register
|
||
States []*SelectState
|
||
Blocking bool
|
||
}
|
||
|
||
// The Range instruction yields an iterator over the domain and range
|
||
// of X, which must be a string or map.
|
||
//
|
||
// Elements are accessed via Next.
|
||
//
|
||
// Type() returns an opaque and degenerate "rangeIter" type.
|
||
//
|
||
// Pos() returns the ast.RangeStmt.For.
|
||
//
|
||
// Example printed form:
|
||
// t0 = range "hello":string
|
||
//
|
||
type Range struct {
|
||
register
|
||
X Value // string or map
|
||
}
|
||
|
||
// The Next instruction reads and advances the (map or string)
|
||
// iterator Iter and returns a 3-tuple value (ok, k, v). If the
|
||
// iterator is not exhausted, ok is true and k and v are the next
|
||
// elements of the domain and range, respectively. Otherwise ok is
|
||
// false and k and v are undefined.
|
||
//
|
||
// Components of the tuple are accessed using Extract.
|
||
//
|
||
// The IsString field distinguishes iterators over strings from those
|
||
// over maps, as the Type() alone is insufficient: consider
|
||
// map[int]rune.
|
||
//
|
||
// Type() returns a *types.Tuple for the triple (ok, k, v).
|
||
// The types of k and/or v may be types.Invalid.
|
||
//
|
||
// Example printed form:
|
||
// t1 = next t0
|
||
//
|
||
type Next struct {
|
||
register
|
||
Iter Value
|
||
IsString bool // true => string iterator; false => map iterator.
|
||
}
|
||
|
||
// The TypeAssert instruction tests whether interface value X has type
|
||
// AssertedType.
|
||
//
|
||
// If !CommaOk, on success it returns v, the result of the conversion
|
||
// (defined below); on failure it panics.
|
||
//
|
||
// If CommaOk: on success it returns a pair (v, true) where v is the
|
||
// result of the conversion; on failure it returns (z, false) where z
|
||
// is AssertedType's zero value. The components of the pair must be
|
||
// accessed using the Extract instruction.
|
||
//
|
||
// If AssertedType is a concrete type, TypeAssert checks whether the
|
||
// dynamic type in interface X is equal to it, and if so, the result
|
||
// of the conversion is a copy of the value in the interface.
|
||
//
|
||
// If AssertedType is an interface, TypeAssert checks whether the
|
||
// dynamic type of the interface is assignable to it, and if so, the
|
||
// result of the conversion is a copy of the interface value X.
|
||
// If AssertedType is a superinterface of X.Type(), the operation will
|
||
// fail iff the operand is nil. (Contrast with ChangeInterface, which
|
||
// performs no nil-check.)
|
||
//
|
||
// Type() reflects the actual type of the result, possibly a
|
||
// 2-types.Tuple; AssertedType is the asserted type.
|
||
//
|
||
// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
|
||
// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
|
||
// instruction arose from an explicit e.(T) operation; or the
|
||
// ast.CaseClause.Case if the instruction arose from a case of a
|
||
// type-switch statement.
|
||
//
|
||
// Example printed form:
|
||
// t1 = typeassert t0.(int)
|
||
// t3 = typeassert,ok t2.(T)
|
||
//
|
||
type TypeAssert struct {
|
||
register
|
||
X Value
|
||
AssertedType types.Type
|
||
CommaOk bool
|
||
}
|
||
|
||
// The Extract instruction yields component Index of Tuple.
|
||
//
|
||
// This is used to access the results of instructions with multiple
|
||
// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
|
||
// IndexExpr(Map).
|
||
//
|
||
// Example printed form:
|
||
// t1 = extract t0 #1
|
||
//
|
||
type Extract struct {
|
||
register
|
||
Tuple Value
|
||
Index int
|
||
}
|
||
|
||
// Instructions executed for effect. They do not yield a value. --------------------
|
||
|
||
// The Jump instruction transfers control to the sole successor of its
|
||
// owning block.
|
||
//
|
||
// A Jump must be the last instruction of its containing BasicBlock.
|
||
//
|
||
// Pos() returns NoPos.
|
||
//
|
||
// Example printed form:
|
||
// jump done
|
||
//
|
||
type Jump struct {
|
||
anInstruction
|
||
}
|
||
|
||
// The If instruction transfers control to one of the two successors
|
||
// of its owning block, depending on the boolean Cond: the first if
|
||
// true, the second if false.
|
||
//
|
||
// An If instruction must be the last instruction of its containing
|
||
// BasicBlock.
|
||
//
|
||
// Pos() returns NoPos.
|
||
//
|
||
// Example printed form:
|
||
// if t0 goto done else body
|
||
//
|
||
type If struct {
|
||
anInstruction
|
||
Cond Value
|
||
}
|
||
|
||
// The Return instruction returns values and control back to the calling
|
||
// function.
|
||
//
|
||
// len(Results) is always equal to the number of results in the
|
||
// function's signature.
|
||
//
|
||
// If len(Results) > 1, Return returns a tuple value with the specified
|
||
// components which the caller must access using Extract instructions.
|
||
//
|
||
// There is no instruction to return a ready-made tuple like those
|
||
// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
|
||
// a tail-call to a function with multiple result parameters.
|
||
//
|
||
// Return must be the last instruction of its containing BasicBlock.
|
||
// Such a block has no successors.
|
||
//
|
||
// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
|
||
//
|
||
// Example printed form:
|
||
// return
|
||
// return nil:I, 2:int
|
||
//
|
||
type Return struct {
|
||
anInstruction
|
||
Results []Value
|
||
pos token.Pos
|
||
}
|
||
|
||
// The RunDefers instruction pops and invokes the entire stack of
|
||
// procedure calls pushed by Defer instructions in this function.
|
||
//
|
||
// It is legal to encounter multiple 'rundefers' instructions in a
|
||
// single control-flow path through a function; this is useful in
|
||
// the combined init() function, for example.
|
||
//
|
||
// Pos() returns NoPos.
|
||
//
|
||
// Example printed form:
|
||
// rundefers
|
||
//
|
||
type RunDefers struct {
|
||
anInstruction
|
||
}
|
||
|
||
// The Panic instruction initiates a panic with value X.
|
||
//
|
||
// A Panic instruction must be the last instruction of its containing
|
||
// BasicBlock, which must have no successors.
|
||
//
|
||
// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
|
||
// they are treated as calls to a built-in function.
|
||
//
|
||
// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
|
||
// in the source.
|
||
//
|
||
// Example printed form:
|
||
// panic t0
|
||
//
|
||
type Panic struct {
|
||
anInstruction
|
||
X Value // an interface{}
|
||
pos token.Pos
|
||
}
|
||
|
||
// The Go instruction creates a new goroutine and calls the specified
|
||
// function within it.
|
||
//
|
||
// See CallCommon for generic function call documentation.
|
||
//
|
||
// Pos() returns the ast.GoStmt.Go.
|
||
//
|
||
// Example printed form:
|
||
// go println(t0, t1)
|
||
// go t3()
|
||
// go invoke t5.Println(...t6)
|
||
//
|
||
type Go struct {
|
||
anInstruction
|
||
Call CallCommon
|
||
pos token.Pos
|
||
}
|
||
|
||
// The Defer instruction pushes the specified call onto a stack of
|
||
// functions to be called by a RunDefers instruction or by a panic.
|
||
//
|
||
// See CallCommon for generic function call documentation.
|
||
//
|
||
// Pos() returns the ast.DeferStmt.Defer.
|
||
//
|
||
// Example printed form:
|
||
// defer println(t0, t1)
|
||
// defer t3()
|
||
// defer invoke t5.Println(...t6)
|
||
//
|
||
type Defer struct {
|
||
anInstruction
|
||
Call CallCommon
|
||
pos token.Pos
|
||
}
|
||
|
||
// The Send instruction sends X on channel Chan.
|
||
//
|
||
// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
|
||
//
|
||
// Example printed form:
|
||
// send t0 <- t1
|
||
//
|
||
type Send struct {
|
||
anInstruction
|
||
Chan, X Value
|
||
pos token.Pos
|
||
}
|
||
|
||
// The Store instruction stores Val at address Addr.
|
||
// Stores can be of arbitrary types.
|
||
//
|
||
// Pos() returns the position of the source-level construct most closely
|
||
// associated with the memory store operation.
|
||
// Since implicit memory stores are numerous and varied and depend upon
|
||
// implementation choices, the details are not specified.
|
||
//
|
||
// Example printed form:
|
||
// *x = y
|
||
//
|
||
type Store struct {
|
||
anInstruction
|
||
Addr Value
|
||
Val Value
|
||
pos token.Pos
|
||
}
|
||
|
||
// The BlankStore instruction is emitted for assignments to the blank
|
||
// identifier.
|
||
//
|
||
// BlankStore is a pseudo-instruction: it has no dynamic effect.
|
||
//
|
||
// Pos() returns NoPos.
|
||
//
|
||
// Example printed form:
|
||
// _ = t0
|
||
//
|
||
type BlankStore struct {
|
||
anInstruction
|
||
Val Value
|
||
}
|
||
|
||
// The MapUpdate instruction updates the association of Map[Key] to
|
||
// Value.
|
||
//
|
||
// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
|
||
// if explicit in the source.
|
||
//
|
||
// Example printed form:
|
||
// t0[t1] = t2
|
||
//
|
||
type MapUpdate struct {
|
||
anInstruction
|
||
Map Value
|
||
Key Value
|
||
Value Value
|
||
pos token.Pos
|
||
}
|
||
|
||
// A DebugRef instruction maps a source-level expression Expr to the
|
||
// SSA value X that represents the value (!IsAddr) or address (IsAddr)
|
||
// of that expression.
|
||
//
|
||
// DebugRef is a pseudo-instruction: it has no dynamic effect.
|
||
//
|
||
// Pos() returns Expr.Pos(), the start position of the source-level
|
||
// expression. This is not the same as the "designated" token as
|
||
// documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
|
||
// position of the ("designated") Lparen token.
|
||
//
|
||
// If Expr is an *ast.Ident denoting a var or func, Object() returns
|
||
// the object; though this information can be obtained from the type
|
||
// checker, including it here greatly facilitates debugging.
|
||
// For non-Ident expressions, Object() returns nil.
|
||
//
|
||
// DebugRefs are generated only for functions built with debugging
|
||
// enabled; see Package.SetDebugMode() and the GlobalDebug builder
|
||
// mode flag.
|
||
//
|
||
// DebugRefs are not emitted for ast.Idents referring to constants or
|
||
// predeclared identifiers, since they are trivial and numerous.
|
||
// Nor are they emitted for ast.ParenExprs.
|
||
//
|
||
// (By representing these as instructions, rather than out-of-band,
|
||
// consistency is maintained during transformation passes by the
|
||
// ordinary SSA renaming machinery.)
|
||
//
|
||
// Example printed form:
|
||
// ; *ast.CallExpr @ 102:9 is t5
|
||
// ; var x float64 @ 109:72 is x
|
||
// ; address of *ast.CompositeLit @ 216:10 is t0
|
||
//
|
||
type DebugRef struct {
|
||
anInstruction
|
||
Expr ast.Expr // the referring expression (never *ast.ParenExpr)
|
||
object types.Object // the identity of the source var/func
|
||
IsAddr bool // Expr is addressable and X is the address it denotes
|
||
X Value // the value or address of Expr
|
||
}
|
||
|
||
// Embeddable mix-ins and helpers for common parts of other structs. -----------
|
||
|
||
// register is a mix-in embedded by all SSA values that are also
|
||
// instructions, i.e. virtual registers, and provides a uniform
|
||
// implementation of most of the Value interface: Value.Name() is a
|
||
// numbered register (e.g. "t0"); the other methods are field accessors.
|
||
//
|
||
// Temporary names are automatically assigned to each register on
|
||
// completion of building a function in SSA form.
|
||
//
|
||
// Clients must not assume that the 'id' value (and the Name() derived
|
||
// from it) is unique within a function. As always in this API,
|
||
// semantics are determined only by identity; names exist only to
|
||
// facilitate debugging.
|
||
//
|
||
type register struct {
|
||
anInstruction
|
||
num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
|
||
typ types.Type // type of virtual register
|
||
pos token.Pos // position of source expression, or NoPos
|
||
referrers []Instruction
|
||
}
|
||
|
||
// anInstruction is a mix-in embedded by all Instructions.
|
||
// It provides the implementations of the Block and setBlock methods.
|
||
type anInstruction struct {
|
||
block *BasicBlock // the basic block of this instruction
|
||
}
|
||
|
||
// CallCommon is contained by Go, Defer and Call to hold the
|
||
// common parts of a function or method call.
|
||
//
|
||
// Each CallCommon exists in one of two modes, function call and
|
||
// interface method invocation, or "call" and "invoke" for short.
|
||
//
|
||
// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
|
||
// represents an ordinary function call of the value in Value,
|
||
// which may be a *Builtin, a *Function or any other value of kind
|
||
// 'func'.
|
||
//
|
||
// Value may be one of:
|
||
// (a) a *Function, indicating a statically dispatched call
|
||
// to a package-level function, an anonymous function, or
|
||
// a method of a named type.
|
||
// (b) a *MakeClosure, indicating an immediately applied
|
||
// function literal with free variables.
|
||
// (c) a *Builtin, indicating a statically dispatched call
|
||
// to a built-in function.
|
||
// (d) any other value, indicating a dynamically dispatched
|
||
// function call.
|
||
// StaticCallee returns the identity of the callee in cases
|
||
// (a) and (b), nil otherwise.
|
||
//
|
||
// Args contains the arguments to the call. If Value is a method,
|
||
// Args[0] contains the receiver parameter.
|
||
//
|
||
// Example printed form:
|
||
// t2 = println(t0, t1)
|
||
// go t3()
|
||
// defer t5(...t6)
|
||
//
|
||
// 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
|
||
// represents a dynamically dispatched call to an interface method.
|
||
// In this mode, Value is the interface value and Method is the
|
||
// interface's abstract method. Note: an abstract method may be
|
||
// shared by multiple interfaces due to embedding; Value.Type()
|
||
// provides the specific interface used for this call.
|
||
//
|
||
// Value is implicitly supplied to the concrete method implementation
|
||
// as the receiver parameter; in other words, Args[0] holds not the
|
||
// receiver but the first true argument.
|
||
//
|
||
// Example printed form:
|
||
// t1 = invoke t0.String()
|
||
// go invoke t3.Run(t2)
|
||
// defer invoke t4.Handle(...t5)
|
||
//
|
||
// For all calls to variadic functions (Signature().Variadic()),
|
||
// the last element of Args is a slice.
|
||
//
|
||
type CallCommon struct {
|
||
Value Value // receiver (invoke mode) or func value (call mode)
|
||
Method *types.Func // abstract method (invoke mode)
|
||
Args []Value // actual parameters (in static method call, includes receiver)
|
||
pos token.Pos // position of CallExpr.Lparen, iff explicit in source
|
||
}
|
||
|
||
// IsInvoke returns true if this call has "invoke" (not "call") mode.
|
||
func (c *CallCommon) IsInvoke() bool {
|
||
return c.Method != nil
|
||
}
|
||
|
||
func (c *CallCommon) Pos() token.Pos { return c.pos }
|
||
|
||
// Signature returns the signature of the called function.
|
||
//
|
||
// For an "invoke"-mode call, the signature of the interface method is
|
||
// returned.
|
||
//
|
||
// In either "call" or "invoke" mode, if the callee is a method, its
|
||
// receiver is represented by sig.Recv, not sig.Params().At(0).
|
||
//
|
||
func (c *CallCommon) Signature() *types.Signature {
|
||
if c.Method != nil {
|
||
return c.Method.Type().(*types.Signature)
|
||
}
|
||
return c.Value.Type().Underlying().(*types.Signature)
|
||
}
|
||
|
||
// StaticCallee returns the callee if this is a trivially static
|
||
// "call"-mode call to a function.
|
||
func (c *CallCommon) StaticCallee() *Function {
|
||
switch fn := c.Value.(type) {
|
||
case *Function:
|
||
return fn
|
||
case *MakeClosure:
|
||
return fn.Fn.(*Function)
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// Description returns a description of the mode of this call suitable
|
||
// for a user interface, e.g., "static method call".
|
||
func (c *CallCommon) Description() string {
|
||
switch fn := c.Value.(type) {
|
||
case *Builtin:
|
||
return "built-in function call"
|
||
case *MakeClosure:
|
||
return "static function closure call"
|
||
case *Function:
|
||
if fn.Signature.Recv() != nil {
|
||
return "static method call"
|
||
}
|
||
return "static function call"
|
||
}
|
||
if c.IsInvoke() {
|
||
return "dynamic method call" // ("invoke" mode)
|
||
}
|
||
return "dynamic function call"
|
||
}
|
||
|
||
// The CallInstruction interface, implemented by *Go, *Defer and *Call,
|
||
// exposes the common parts of function-calling instructions,
|
||
// yet provides a way back to the Value defined by *Call alone.
|
||
//
|
||
type CallInstruction interface {
|
||
Instruction
|
||
Common() *CallCommon // returns the common parts of the call
|
||
Value() *Call // returns the result value of the call (*Call) or nil (*Go, *Defer)
|
||
}
|
||
|
||
func (s *Call) Common() *CallCommon { return &s.Call }
|
||
func (s *Defer) Common() *CallCommon { return &s.Call }
|
||
func (s *Go) Common() *CallCommon { return &s.Call }
|
||
|
||
func (s *Call) Value() *Call { return s }
|
||
func (s *Defer) Value() *Call { return nil }
|
||
func (s *Go) Value() *Call { return nil }
|
||
|
||
func (v *Builtin) Type() types.Type { return v.sig }
|
||
func (v *Builtin) Name() string { return v.name }
|
||
func (*Builtin) Referrers() *[]Instruction { return nil }
|
||
func (v *Builtin) Pos() token.Pos { return token.NoPos }
|
||
func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) }
|
||
func (v *Builtin) Parent() *Function { return nil }
|
||
|
||
func (v *FreeVar) Type() types.Type { return v.typ }
|
||
func (v *FreeVar) Name() string { return v.name }
|
||
func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
|
||
func (v *FreeVar) Pos() token.Pos { return v.pos }
|
||
func (v *FreeVar) Parent() *Function { return v.parent }
|
||
|
||
func (v *Global) Type() types.Type { return v.typ }
|
||
func (v *Global) Name() string { return v.name }
|
||
func (v *Global) Parent() *Function { return nil }
|
||
func (v *Global) Pos() token.Pos { return v.pos }
|
||
func (v *Global) Referrers() *[]Instruction { return nil }
|
||
func (v *Global) Token() token.Token { return token.VAR }
|
||
func (v *Global) Object() types.Object { return v.object }
|
||
func (v *Global) String() string { return v.RelString(nil) }
|
||
func (v *Global) Package() *Package { return v.Pkg }
|
||
func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
|
||
|
||
func (v *Function) Name() string { return v.name }
|
||
func (v *Function) Type() types.Type { return v.Signature }
|
||
func (v *Function) Pos() token.Pos { return v.pos }
|
||
func (v *Function) Token() token.Token { return token.FUNC }
|
||
func (v *Function) Object() types.Object { return v.object }
|
||
func (v *Function) String() string { return v.RelString(nil) }
|
||
func (v *Function) Package() *Package { return v.Pkg }
|
||
func (v *Function) Parent() *Function { return v.parent }
|
||
func (v *Function) Referrers() *[]Instruction {
|
||
if v.parent != nil {
|
||
return &v.referrers
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func (v *Parameter) Type() types.Type { return v.typ }
|
||
func (v *Parameter) Name() string { return v.name }
|
||
func (v *Parameter) Object() types.Object { return v.object }
|
||
func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
|
||
func (v *Parameter) Pos() token.Pos { return v.pos }
|
||
func (v *Parameter) Parent() *Function { return v.parent }
|
||
|
||
func (v *Alloc) Type() types.Type { return v.typ }
|
||
func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
|
||
func (v *Alloc) Pos() token.Pos { return v.pos }
|
||
|
||
func (v *register) Type() types.Type { return v.typ }
|
||
func (v *register) setType(typ types.Type) { v.typ = typ }
|
||
func (v *register) Name() string { return fmt.Sprintf("t%d", v.num) }
|
||
func (v *register) setNum(num int) { v.num = num }
|
||
func (v *register) Referrers() *[]Instruction { return &v.referrers }
|
||
func (v *register) Pos() token.Pos { return v.pos }
|
||
func (v *register) setPos(pos token.Pos) { v.pos = pos }
|
||
|
||
func (v *anInstruction) Parent() *Function { return v.block.parent }
|
||
func (v *anInstruction) Block() *BasicBlock { return v.block }
|
||
func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
|
||
func (v *anInstruction) Referrers() *[]Instruction { return nil }
|
||
|
||
func (t *Type) Name() string { return t.object.Name() }
|
||
func (t *Type) Pos() token.Pos { return t.object.Pos() }
|
||
func (t *Type) Type() types.Type { return t.object.Type() }
|
||
func (t *Type) Token() token.Token { return token.TYPE }
|
||
func (t *Type) Object() types.Object { return t.object }
|
||
func (t *Type) String() string { return t.RelString(nil) }
|
||
func (t *Type) Package() *Package { return t.pkg }
|
||
func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
|
||
|
||
func (c *NamedConst) Name() string { return c.object.Name() }
|
||
func (c *NamedConst) Pos() token.Pos { return c.object.Pos() }
|
||
func (c *NamedConst) String() string { return c.RelString(nil) }
|
||
func (c *NamedConst) Type() types.Type { return c.object.Type() }
|
||
func (c *NamedConst) Token() token.Token { return token.CONST }
|
||
func (c *NamedConst) Object() types.Object { return c.object }
|
||
func (c *NamedConst) Package() *Package { return c.pkg }
|
||
func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
|
||
|
||
// Func returns the package-level function of the specified name,
|
||
// or nil if not found.
|
||
//
|
||
func (p *Package) Func(name string) (f *Function) {
|
||
f, _ = p.Members[name].(*Function)
|
||
return
|
||
}
|
||
|
||
// Var returns the package-level variable of the specified name,
|
||
// or nil if not found.
|
||
//
|
||
func (p *Package) Var(name string) (g *Global) {
|
||
g, _ = p.Members[name].(*Global)
|
||
return
|
||
}
|
||
|
||
// Const returns the package-level constant of the specified name,
|
||
// or nil if not found.
|
||
//
|
||
func (p *Package) Const(name string) (c *NamedConst) {
|
||
c, _ = p.Members[name].(*NamedConst)
|
||
return
|
||
}
|
||
|
||
// Type returns the package-level type of the specified name,
|
||
// or nil if not found.
|
||
//
|
||
func (p *Package) Type(name string) (t *Type) {
|
||
t, _ = p.Members[name].(*Type)
|
||
return
|
||
}
|
||
|
||
func (v *Call) Pos() token.Pos { return v.Call.pos }
|
||
func (s *Defer) Pos() token.Pos { return s.pos }
|
||
func (s *Go) Pos() token.Pos { return s.pos }
|
||
func (s *MapUpdate) Pos() token.Pos { return s.pos }
|
||
func (s *Panic) Pos() token.Pos { return s.pos }
|
||
func (s *Return) Pos() token.Pos { return s.pos }
|
||
func (s *Send) Pos() token.Pos { return s.pos }
|
||
func (s *Store) Pos() token.Pos { return s.pos }
|
||
func (s *BlankStore) Pos() token.Pos { return token.NoPos }
|
||
func (s *If) Pos() token.Pos { return token.NoPos }
|
||
func (s *Jump) Pos() token.Pos { return token.NoPos }
|
||
func (s *RunDefers) Pos() token.Pos { return token.NoPos }
|
||
func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() }
|
||
|
||
// Operands.
|
||
|
||
func (v *Alloc) Operands(rands []*Value) []*Value {
|
||
return rands
|
||
}
|
||
|
||
func (v *BinOp) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X, &v.Y)
|
||
}
|
||
|
||
func (c *CallCommon) Operands(rands []*Value) []*Value {
|
||
rands = append(rands, &c.Value)
|
||
for i := range c.Args {
|
||
rands = append(rands, &c.Args[i])
|
||
}
|
||
return rands
|
||
}
|
||
|
||
func (s *Go) Operands(rands []*Value) []*Value {
|
||
return s.Call.Operands(rands)
|
||
}
|
||
|
||
func (s *Call) Operands(rands []*Value) []*Value {
|
||
return s.Call.Operands(rands)
|
||
}
|
||
|
||
func (s *Defer) Operands(rands []*Value) []*Value {
|
||
return s.Call.Operands(rands)
|
||
}
|
||
|
||
func (v *ChangeInterface) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X)
|
||
}
|
||
|
||
func (v *ChangeType) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X)
|
||
}
|
||
|
||
func (v *Convert) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X)
|
||
}
|
||
|
||
func (s *DebugRef) Operands(rands []*Value) []*Value {
|
||
return append(rands, &s.X)
|
||
}
|
||
|
||
func (v *Extract) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.Tuple)
|
||
}
|
||
|
||
func (v *Field) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X)
|
||
}
|
||
|
||
func (v *FieldAddr) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X)
|
||
}
|
||
|
||
func (s *If) Operands(rands []*Value) []*Value {
|
||
return append(rands, &s.Cond)
|
||
}
|
||
|
||
func (v *Index) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X, &v.Index)
|
||
}
|
||
|
||
func (v *IndexAddr) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X, &v.Index)
|
||
}
|
||
|
||
func (*Jump) Operands(rands []*Value) []*Value {
|
||
return rands
|
||
}
|
||
|
||
func (v *Lookup) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X, &v.Index)
|
||
}
|
||
|
||
func (v *MakeChan) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.Size)
|
||
}
|
||
|
||
func (v *MakeClosure) Operands(rands []*Value) []*Value {
|
||
rands = append(rands, &v.Fn)
|
||
for i := range v.Bindings {
|
||
rands = append(rands, &v.Bindings[i])
|
||
}
|
||
return rands
|
||
}
|
||
|
||
func (v *MakeInterface) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X)
|
||
}
|
||
|
||
func (v *MakeMap) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.Reserve)
|
||
}
|
||
|
||
func (v *MakeSlice) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.Len, &v.Cap)
|
||
}
|
||
|
||
func (v *MapUpdate) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.Map, &v.Key, &v.Value)
|
||
}
|
||
|
||
func (v *Next) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.Iter)
|
||
}
|
||
|
||
func (s *Panic) Operands(rands []*Value) []*Value {
|
||
return append(rands, &s.X)
|
||
}
|
||
|
||
func (v *Sigma) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X)
|
||
}
|
||
|
||
func (v *Phi) Operands(rands []*Value) []*Value {
|
||
for i := range v.Edges {
|
||
rands = append(rands, &v.Edges[i])
|
||
}
|
||
return rands
|
||
}
|
||
|
||
func (v *Range) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X)
|
||
}
|
||
|
||
func (s *Return) Operands(rands []*Value) []*Value {
|
||
for i := range s.Results {
|
||
rands = append(rands, &s.Results[i])
|
||
}
|
||
return rands
|
||
}
|
||
|
||
func (*RunDefers) Operands(rands []*Value) []*Value {
|
||
return rands
|
||
}
|
||
|
||
func (v *Select) Operands(rands []*Value) []*Value {
|
||
for i := range v.States {
|
||
rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
|
||
}
|
||
return rands
|
||
}
|
||
|
||
func (s *Send) Operands(rands []*Value) []*Value {
|
||
return append(rands, &s.Chan, &s.X)
|
||
}
|
||
|
||
func (v *Slice) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X, &v.Low, &v.High, &v.Max)
|
||
}
|
||
|
||
func (s *Store) Operands(rands []*Value) []*Value {
|
||
return append(rands, &s.Addr, &s.Val)
|
||
}
|
||
|
||
func (s *BlankStore) Operands(rands []*Value) []*Value {
|
||
return append(rands, &s.Val)
|
||
}
|
||
|
||
func (v *TypeAssert) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X)
|
||
}
|
||
|
||
func (v *UnOp) Operands(rands []*Value) []*Value {
|
||
return append(rands, &v.X)
|
||
}
|
||
|
||
// Non-Instruction Values:
|
||
func (v *Builtin) Operands(rands []*Value) []*Value { return rands }
|
||
func (v *FreeVar) Operands(rands []*Value) []*Value { return rands }
|
||
func (v *Const) Operands(rands []*Value) []*Value { return rands }
|
||
func (v *Function) Operands(rands []*Value) []*Value { return rands }
|
||
func (v *Global) Operands(rands []*Value) []*Value { return rands }
|
||
func (v *Parameter) Operands(rands []*Value) []*Value { return rands }
|