ceph-csi/e2e/vendor/github.com/google/cel-go/cel/folding.go
Niels de Vos f87d06ed85 build: move e2e dependencies into e2e/go.mod
Several packages are only used while running the e2e suite. These
packages are less important to update, as the they can not influence the
final executable that is part of the Ceph-CSI container-image.

By moving these dependencies out of the main Ceph-CSI go.mod, it is
easier to identify if a reported CVE affects Ceph-CSI, or only the
testing (like most of the Kubernetes CVEs).

Signed-off-by: Niels de Vos <ndevos@ibm.com>
2025-03-04 17:43:49 +01:00

560 lines
17 KiB
Go

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cel
import (
"fmt"
"github.com/google/cel-go/common/ast"
"github.com/google/cel-go/common/operators"
"github.com/google/cel-go/common/overloads"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
)
// ConstantFoldingOption defines a functional option for configuring constant folding.
type ConstantFoldingOption func(opt *constantFoldingOptimizer) (*constantFoldingOptimizer, error)
// MaxConstantFoldIterations limits the number of times literals may be folding during optimization.
//
// Defaults to 100 if not set.
func MaxConstantFoldIterations(limit int) ConstantFoldingOption {
return func(opt *constantFoldingOptimizer) (*constantFoldingOptimizer, error) {
opt.maxFoldIterations = limit
return opt, nil
}
}
// NewConstantFoldingOptimizer creates an optimizer which inlines constant scalar an aggregate
// literal values within function calls and select statements with their evaluated result.
func NewConstantFoldingOptimizer(opts ...ConstantFoldingOption) (ASTOptimizer, error) {
folder := &constantFoldingOptimizer{
maxFoldIterations: defaultMaxConstantFoldIterations,
}
var err error
for _, o := range opts {
folder, err = o(folder)
if err != nil {
return nil, err
}
}
return folder, nil
}
type constantFoldingOptimizer struct {
maxFoldIterations int
}
// Optimize queries the expression graph for scalar and aggregate literal expressions within call and
// select statements and then evaluates them and replaces the call site with the literal result.
//
// Note: only values which can be represented as literals in CEL syntax are supported.
func (opt *constantFoldingOptimizer) Optimize(ctx *OptimizerContext, a *ast.AST) *ast.AST {
root := ast.NavigateAST(a)
// Walk the list of foldable expression and continue to fold until there are no more folds left.
// All of the fold candidates returned by the constantExprMatcher should succeed unless there's
// a logic bug with the selection of expressions.
foldableExprs := ast.MatchDescendants(root, constantExprMatcher)
foldCount := 0
for len(foldableExprs) != 0 && foldCount < opt.maxFoldIterations {
for _, fold := range foldableExprs {
// If the expression could be folded because it's a non-strict call, and the
// branches are pruned, continue to the next fold.
if fold.Kind() == ast.CallKind && maybePruneBranches(ctx, fold) {
continue
}
// Otherwise, assume all context is needed to evaluate the expression.
err := tryFold(ctx, a, fold)
if err != nil {
ctx.ReportErrorAtID(fold.ID(), "constant-folding evaluation failed: %v", err.Error())
return a
}
}
foldCount++
foldableExprs = ast.MatchDescendants(root, constantExprMatcher)
}
// Once all of the constants have been folded, try to run through the remaining comprehensions
// one last time. In this case, there's no guarantee they'll run, so we only update the
// target comprehension node with the literal value if the evaluation succeeds.
for _, compre := range ast.MatchDescendants(root, ast.KindMatcher(ast.ComprehensionKind)) {
tryFold(ctx, a, compre)
}
// If the output is a list, map, or struct which contains optional entries, then prune it
// to make sure that the optionals, if resolved, do not surface in the output literal.
pruneOptionalElements(ctx, root)
// Ensure that all intermediate values in the folded expression can be represented as valid
// CEL literals within the AST structure. Use `PostOrderVisit` rather than `MatchDescendents`
// to avoid extra allocations during this final pass through the AST.
ast.PostOrderVisit(root, ast.NewExprVisitor(func(e ast.Expr) {
if e.Kind() != ast.LiteralKind {
return
}
val := e.AsLiteral()
adapted, err := adaptLiteral(ctx, val)
if err != nil {
ctx.ReportErrorAtID(root.ID(), "constant-folding evaluation failed: %v", err.Error())
return
}
ctx.UpdateExpr(e, adapted)
}))
return a
}
// tryFold attempts to evaluate a sub-expression to a literal.
//
// If the evaluation succeeds, the input expr value will be modified to become a literal, otherwise
// the method will return an error.
func tryFold(ctx *OptimizerContext, a *ast.AST, expr ast.Expr) error {
// Assume all context is needed to evaluate the expression.
subAST := &Ast{
impl: ast.NewCheckedAST(ast.NewAST(expr, a.SourceInfo()), a.TypeMap(), a.ReferenceMap()),
}
prg, err := ctx.Program(subAST)
if err != nil {
return err
}
out, _, err := prg.Eval(NoVars())
if err != nil {
return err
}
// Update the fold expression to be a literal.
ctx.UpdateExpr(expr, ctx.NewLiteral(out))
return nil
}
// maybePruneBranches inspects the non-strict call expression to determine whether
// a branch can be removed. Evaluation will naturally prune logical and / or calls,
// but conditional will not be pruned cleanly, so this is one small area where the
// constant folding step reimplements a portion of the evaluator.
func maybePruneBranches(ctx *OptimizerContext, expr ast.NavigableExpr) bool {
call := expr.AsCall()
args := call.Args()
switch call.FunctionName() {
case operators.LogicalAnd, operators.LogicalOr:
return maybeShortcircuitLogic(ctx, call.FunctionName(), args, expr)
case operators.Conditional:
cond := args[0]
truthy := args[1]
falsy := args[2]
if cond.Kind() != ast.LiteralKind {
return false
}
if cond.AsLiteral() == types.True {
ctx.UpdateExpr(expr, truthy)
} else {
ctx.UpdateExpr(expr, falsy)
}
return true
case operators.In:
haystack := args[1]
if haystack.Kind() == ast.ListKind && haystack.AsList().Size() == 0 {
ctx.UpdateExpr(expr, ctx.NewLiteral(types.False))
return true
}
needle := args[0]
if needle.Kind() == ast.LiteralKind && haystack.Kind() == ast.ListKind {
needleValue := needle.AsLiteral()
list := haystack.AsList()
for _, e := range list.Elements() {
if e.Kind() == ast.LiteralKind && e.AsLiteral().Equal(needleValue) == types.True {
ctx.UpdateExpr(expr, ctx.NewLiteral(types.True))
return true
}
}
}
}
return false
}
func maybeShortcircuitLogic(ctx *OptimizerContext, function string, args []ast.Expr, expr ast.NavigableExpr) bool {
shortcircuit := types.False
skip := types.True
if function == operators.LogicalOr {
shortcircuit = types.True
skip = types.False
}
newArgs := []ast.Expr{}
for _, arg := range args {
if arg.Kind() != ast.LiteralKind {
newArgs = append(newArgs, arg)
continue
}
if arg.AsLiteral() == skip {
continue
}
if arg.AsLiteral() == shortcircuit {
ctx.UpdateExpr(expr, arg)
return true
}
}
if len(newArgs) == 0 {
newArgs = append(newArgs, args[0])
ctx.UpdateExpr(expr, newArgs[0])
return true
}
if len(newArgs) == 1 {
ctx.UpdateExpr(expr, newArgs[0])
return true
}
ctx.UpdateExpr(expr, ctx.NewCall(function, newArgs...))
return true
}
// pruneOptionalElements works from the bottom up to resolve optional elements within
// aggregate literals.
//
// Note, many aggregate literals will be resolved as arguments to functions or select
// statements, so this method exists to handle the case where the literal could not be
// fully resolved or exists outside of a call, select, or comprehension context.
func pruneOptionalElements(ctx *OptimizerContext, root ast.NavigableExpr) {
aggregateLiterals := ast.MatchDescendants(root, aggregateLiteralMatcher)
for _, lit := range aggregateLiterals {
switch lit.Kind() {
case ast.ListKind:
pruneOptionalListElements(ctx, lit)
case ast.MapKind:
pruneOptionalMapEntries(ctx, lit)
case ast.StructKind:
pruneOptionalStructFields(ctx, lit)
}
}
}
func pruneOptionalListElements(ctx *OptimizerContext, e ast.Expr) {
l := e.AsList()
elems := l.Elements()
optIndices := l.OptionalIndices()
if len(optIndices) == 0 {
return
}
updatedElems := []ast.Expr{}
updatedIndices := []int32{}
newOptIndex := -1
for _, e := range elems {
newOptIndex++
if !l.IsOptional(int32(newOptIndex)) {
updatedElems = append(updatedElems, e)
continue
}
if e.Kind() != ast.LiteralKind {
updatedElems = append(updatedElems, e)
updatedIndices = append(updatedIndices, int32(newOptIndex))
continue
}
optElemVal, ok := e.AsLiteral().(*types.Optional)
if !ok {
updatedElems = append(updatedElems, e)
updatedIndices = append(updatedIndices, int32(newOptIndex))
continue
}
if !optElemVal.HasValue() {
newOptIndex-- // Skipping causes the list to get smaller.
continue
}
ctx.UpdateExpr(e, ctx.NewLiteral(optElemVal.GetValue()))
updatedElems = append(updatedElems, e)
}
ctx.UpdateExpr(e, ctx.NewList(updatedElems, updatedIndices))
}
func pruneOptionalMapEntries(ctx *OptimizerContext, e ast.Expr) {
m := e.AsMap()
entries := m.Entries()
updatedEntries := []ast.EntryExpr{}
modified := false
for _, e := range entries {
entry := e.AsMapEntry()
key := entry.Key()
val := entry.Value()
// If the entry is not optional, or the value-side of the optional hasn't
// been resolved to a literal, then preserve the entry as-is.
if !entry.IsOptional() || val.Kind() != ast.LiteralKind {
updatedEntries = append(updatedEntries, e)
continue
}
optElemVal, ok := val.AsLiteral().(*types.Optional)
if !ok {
updatedEntries = append(updatedEntries, e)
continue
}
// When the key is not a literal, but the value is, then it needs to be
// restored to an optional value.
if key.Kind() != ast.LiteralKind {
undoOptVal, err := adaptLiteral(ctx, optElemVal)
if err != nil {
ctx.ReportErrorAtID(val.ID(), "invalid map value literal %v: %v", optElemVal, err)
}
ctx.UpdateExpr(val, undoOptVal)
updatedEntries = append(updatedEntries, e)
continue
}
modified = true
if !optElemVal.HasValue() {
continue
}
ctx.UpdateExpr(val, ctx.NewLiteral(optElemVal.GetValue()))
updatedEntry := ctx.NewMapEntry(key, val, false)
updatedEntries = append(updatedEntries, updatedEntry)
}
if modified {
ctx.UpdateExpr(e, ctx.NewMap(updatedEntries))
}
}
func pruneOptionalStructFields(ctx *OptimizerContext, e ast.Expr) {
s := e.AsStruct()
fields := s.Fields()
updatedFields := []ast.EntryExpr{}
modified := false
for _, f := range fields {
field := f.AsStructField()
val := field.Value()
if !field.IsOptional() || val.Kind() != ast.LiteralKind {
updatedFields = append(updatedFields, f)
continue
}
optElemVal, ok := val.AsLiteral().(*types.Optional)
if !ok {
updatedFields = append(updatedFields, f)
continue
}
modified = true
if !optElemVal.HasValue() {
continue
}
ctx.UpdateExpr(val, ctx.NewLiteral(optElemVal.GetValue()))
updatedField := ctx.NewStructField(field.Name(), val, false)
updatedFields = append(updatedFields, updatedField)
}
if modified {
ctx.UpdateExpr(e, ctx.NewStruct(s.TypeName(), updatedFields))
}
}
// adaptLiteral converts a runtime CEL value to its equivalent literal expression.
//
// For strongly typed values, the type-provider will be used to reconstruct the fields
// which are present in the literal and their equivalent initialization values.
func adaptLiteral(ctx *OptimizerContext, val ref.Val) (ast.Expr, error) {
switch t := val.Type().(type) {
case *types.Type:
switch t {
case types.BoolType, types.BytesType, types.DoubleType, types.IntType,
types.NullType, types.StringType, types.UintType:
return ctx.NewLiteral(val), nil
case types.DurationType:
return ctx.NewCall(
overloads.TypeConvertDuration,
ctx.NewLiteral(val.ConvertToType(types.StringType)),
), nil
case types.TimestampType:
return ctx.NewCall(
overloads.TypeConvertTimestamp,
ctx.NewLiteral(val.ConvertToType(types.StringType)),
), nil
case types.OptionalType:
opt := val.(*types.Optional)
if !opt.HasValue() {
return ctx.NewCall("optional.none"), nil
}
target, err := adaptLiteral(ctx, opt.GetValue())
if err != nil {
return nil, err
}
return ctx.NewCall("optional.of", target), nil
case types.TypeType:
return ctx.NewIdent(val.(*types.Type).TypeName()), nil
case types.ListType:
l, ok := val.(traits.Lister)
if !ok {
return nil, fmt.Errorf("failed to adapt %v to literal", val)
}
elems := make([]ast.Expr, l.Size().(types.Int))
idx := 0
it := l.Iterator()
for it.HasNext() == types.True {
elemVal := it.Next()
elemExpr, err := adaptLiteral(ctx, elemVal)
if err != nil {
return nil, err
}
elems[idx] = elemExpr
idx++
}
return ctx.NewList(elems, []int32{}), nil
case types.MapType:
m, ok := val.(traits.Mapper)
if !ok {
return nil, fmt.Errorf("failed to adapt %v to literal", val)
}
entries := make([]ast.EntryExpr, m.Size().(types.Int))
idx := 0
it := m.Iterator()
for it.HasNext() == types.True {
keyVal := it.Next()
keyExpr, err := adaptLiteral(ctx, keyVal)
if err != nil {
return nil, err
}
valVal := m.Get(keyVal)
valExpr, err := adaptLiteral(ctx, valVal)
if err != nil {
return nil, err
}
entries[idx] = ctx.NewMapEntry(keyExpr, valExpr, false)
idx++
}
return ctx.NewMap(entries), nil
default:
provider := ctx.CELTypeProvider()
fields, found := provider.FindStructFieldNames(t.TypeName())
if !found {
return nil, fmt.Errorf("failed to adapt %v to literal", val)
}
tester := val.(traits.FieldTester)
indexer := val.(traits.Indexer)
fieldInits := []ast.EntryExpr{}
for _, f := range fields {
field := types.String(f)
if tester.IsSet(field) != types.True {
continue
}
fieldVal := indexer.Get(field)
fieldExpr, err := adaptLiteral(ctx, fieldVal)
if err != nil {
return nil, err
}
fieldInits = append(fieldInits, ctx.NewStructField(f, fieldExpr, false))
}
return ctx.NewStruct(t.TypeName(), fieldInits), nil
}
}
return nil, fmt.Errorf("failed to adapt %v to literal", val)
}
// constantExprMatcher matches calls, select statements, and comprehensions whose arguments
// are all constant scalar or aggregate literal values.
//
// Only comprehensions which are not nested are included as possible constant folds, and only
// if all variables referenced in the comprehension stack exist are only iteration or
// accumulation variables.
func constantExprMatcher(e ast.NavigableExpr) bool {
switch e.Kind() {
case ast.CallKind:
return constantCallMatcher(e)
case ast.SelectKind:
sel := e.AsSelect() // guaranteed to be a navigable value
return constantMatcher(sel.Operand().(ast.NavigableExpr))
case ast.ComprehensionKind:
if isNestedComprehension(e) {
return false
}
vars := map[string]bool{}
constantExprs := true
visitor := ast.NewExprVisitor(func(e ast.Expr) {
if e.Kind() == ast.ComprehensionKind {
nested := e.AsComprehension()
vars[nested.AccuVar()] = true
vars[nested.IterVar()] = true
}
if e.Kind() == ast.IdentKind && !vars[e.AsIdent()] {
constantExprs = false
}
})
ast.PreOrderVisit(e, visitor)
return constantExprs
default:
return false
}
}
// constantCallMatcher identifies strict and non-strict calls which can be folded.
func constantCallMatcher(e ast.NavigableExpr) bool {
call := e.AsCall()
children := e.Children()
fnName := call.FunctionName()
if fnName == operators.LogicalAnd {
for _, child := range children {
if child.Kind() == ast.LiteralKind {
return true
}
}
}
if fnName == operators.LogicalOr {
for _, child := range children {
if child.Kind() == ast.LiteralKind {
return true
}
}
}
if fnName == operators.Conditional {
cond := children[0]
if cond.Kind() == ast.LiteralKind && cond.AsLiteral().Type() == types.BoolType {
return true
}
}
if fnName == operators.In {
haystack := children[1]
if haystack.Kind() == ast.ListKind && haystack.AsList().Size() == 0 {
return true
}
needle := children[0]
if needle.Kind() == ast.LiteralKind && haystack.Kind() == ast.ListKind {
needleValue := needle.AsLiteral()
list := haystack.AsList()
for _, e := range list.Elements() {
if e.Kind() == ast.LiteralKind && e.AsLiteral().Equal(needleValue) == types.True {
return true
}
}
}
}
// convert all other calls with constant arguments
for _, child := range children {
if !constantMatcher(child) {
return false
}
}
return true
}
func isNestedComprehension(e ast.NavigableExpr) bool {
parent, found := e.Parent()
for found {
if parent.Kind() == ast.ComprehensionKind {
return true
}
parent, found = parent.Parent()
}
return false
}
func aggregateLiteralMatcher(e ast.NavigableExpr) bool {
return e.Kind() == ast.ListKind || e.Kind() == ast.MapKind || e.Kind() == ast.StructKind
}
var (
constantMatcher = ast.ConstantValueMatcher()
)
const (
defaultMaxConstantFoldIterations = 100
)