ceph-csi/e2e/vendor/github.com/google/cel-go/cel/inlining.go
Niels de Vos f87d06ed85 build: move e2e dependencies into e2e/go.mod
Several packages are only used while running the e2e suite. These
packages are less important to update, as the they can not influence the
final executable that is part of the Ceph-CSI container-image.

By moving these dependencies out of the main Ceph-CSI go.mod, it is
easier to identify if a reported CVE affects Ceph-CSI, or only the
testing (like most of the Kubernetes CVEs).

Signed-off-by: Niels de Vos <ndevos@ibm.com>
2025-03-04 17:43:49 +01:00

229 lines
8.1 KiB
Go

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cel
import (
"github.com/google/cel-go/common/ast"
"github.com/google/cel-go/common/containers"
"github.com/google/cel-go/common/operators"
"github.com/google/cel-go/common/overloads"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/traits"
)
// InlineVariable holds a variable name to be matched and an AST representing
// the expression graph which should be used to replace it.
type InlineVariable struct {
name string
alias string
def *ast.AST
}
// Name returns the qualified variable or field selection to replace.
func (v *InlineVariable) Name() string {
return v.name
}
// Alias returns the alias to use when performing cel.bind() calls during inlining.
func (v *InlineVariable) Alias() string {
return v.alias
}
// Expr returns the inlined expression value.
func (v *InlineVariable) Expr() ast.Expr {
return v.def.Expr()
}
// Type indicates the inlined expression type.
func (v *InlineVariable) Type() *Type {
return v.def.GetType(v.def.Expr().ID())
}
// NewInlineVariable declares a variable name to be replaced by a checked expression.
func NewInlineVariable(name string, definition *Ast) *InlineVariable {
return NewInlineVariableWithAlias(name, name, definition)
}
// NewInlineVariableWithAlias declares a variable name to be replaced by a checked expression.
// If the variable occurs more than once, the provided alias will be used to replace the expressions
// where the variable name occurs.
func NewInlineVariableWithAlias(name, alias string, definition *Ast) *InlineVariable {
return &InlineVariable{name: name, alias: alias, def: definition.impl}
}
// NewInliningOptimizer creates and optimizer which replaces variables with expression definitions.
//
// If a variable occurs one time, the variable is replaced by the inline definition. If the
// variable occurs more than once, the variable occurences are replaced by a cel.bind() call.
func NewInliningOptimizer(inlineVars ...*InlineVariable) ASTOptimizer {
return &inliningOptimizer{variables: inlineVars}
}
type inliningOptimizer struct {
variables []*InlineVariable
}
func (opt *inliningOptimizer) Optimize(ctx *OptimizerContext, a *ast.AST) *ast.AST {
root := ast.NavigateAST(a)
for _, inlineVar := range opt.variables {
matches := ast.MatchDescendants(root, opt.matchVariable(inlineVar.Name()))
// Skip cases where the variable isn't in the expression graph
if len(matches) == 0 {
continue
}
// For a single match, do a direct replacement of the expression sub-graph.
if len(matches) == 1 || !isBindable(matches, inlineVar.Expr(), inlineVar.Type()) {
for _, match := range matches {
// Copy the inlined AST expr and source info.
copyExpr := ctx.CopyASTAndMetadata(inlineVar.def)
opt.inlineExpr(ctx, match, copyExpr, inlineVar.Type())
}
continue
}
// For multiple matches, find the least common ancestor (lca) and insert the
// variable as a cel.bind() macro.
var lca ast.NavigableExpr = root
lcaAncestorCount := 0
ancestors := map[int64]int{}
for _, match := range matches {
// Update the identifier matches with the provided alias.
parent, found := match, true
for found {
ancestorCount, hasAncestor := ancestors[parent.ID()]
if !hasAncestor {
ancestors[parent.ID()] = 1
parent, found = parent.Parent()
continue
}
if lcaAncestorCount < ancestorCount || (lcaAncestorCount == ancestorCount && lca.Depth() < parent.Depth()) {
lca = parent
lcaAncestorCount = ancestorCount
}
ancestors[parent.ID()] = ancestorCount + 1
parent, found = parent.Parent()
}
aliasExpr := ctx.NewIdent(inlineVar.Alias())
opt.inlineExpr(ctx, match, aliasExpr, inlineVar.Type())
}
// Copy the inlined AST expr and source info.
copyExpr := ctx.CopyASTAndMetadata(inlineVar.def)
// Update the least common ancestor by inserting a cel.bind() call to the alias.
inlined, bindMacro := ctx.NewBindMacro(lca.ID(), inlineVar.Alias(), copyExpr, lca)
opt.inlineExpr(ctx, lca, inlined, inlineVar.Type())
ctx.SetMacroCall(lca.ID(), bindMacro)
}
return a
}
// inlineExpr replaces the current expression with the inlined one, unless the location of the inlining
// happens within a presence test, e.g. has(a.b.c) -> inline alpha for a.b.c in which case an attempt is
// made to determine whether the inlined value can be presence or existence tested.
func (opt *inliningOptimizer) inlineExpr(ctx *OptimizerContext, prev ast.NavigableExpr, inlined ast.Expr, inlinedType *Type) {
switch prev.Kind() {
case ast.SelectKind:
sel := prev.AsSelect()
if !sel.IsTestOnly() {
ctx.UpdateExpr(prev, inlined)
return
}
opt.rewritePresenceExpr(ctx, prev, inlined, inlinedType)
default:
ctx.UpdateExpr(prev, inlined)
}
}
// rewritePresenceExpr converts the inlined expression, when it occurs within a has() macro, to type-safe
// expression appropriate for the inlined type, if possible.
//
// If the rewrite is not possible an error is reported at the inline expression site.
func (opt *inliningOptimizer) rewritePresenceExpr(ctx *OptimizerContext, prev, inlined ast.Expr, inlinedType *Type) {
// If the input inlined expression is not a select expression it won't work with the has()
// macro. Attempt to rewrite the presence test in terms of the typed input, otherwise error.
if inlined.Kind() == ast.SelectKind {
presenceTest, hasMacro := ctx.NewHasMacro(prev.ID(), inlined)
ctx.UpdateExpr(prev, presenceTest)
ctx.SetMacroCall(prev.ID(), hasMacro)
return
}
ctx.ClearMacroCall(prev.ID())
if inlinedType.IsAssignableType(NullType) {
ctx.UpdateExpr(prev,
ctx.NewCall(operators.NotEquals,
inlined,
ctx.NewLiteral(types.NullValue),
))
return
}
if inlinedType.HasTrait(traits.SizerType) {
ctx.UpdateExpr(prev,
ctx.NewCall(operators.NotEquals,
ctx.NewMemberCall(overloads.Size, inlined),
ctx.NewLiteral(types.IntZero),
))
return
}
ctx.ReportErrorAtID(prev.ID(), "unable to inline expression type %v into presence test", inlinedType)
}
// isBindable indicates whether the inlined type can be used within a cel.bind() if the expression
// being replaced occurs within a presence test. Value types with a size() method or field selection
// support can be bound.
//
// In future iterations, support may also be added for indexer types which can be rewritten as an `in`
// expression; however, this would imply a rewrite of the inlined expression that may not be necessary
// in most cases.
func isBindable(matches []ast.NavigableExpr, inlined ast.Expr, inlinedType *Type) bool {
if inlinedType.IsAssignableType(NullType) ||
inlinedType.HasTrait(traits.SizerType) {
return true
}
for _, m := range matches {
if m.Kind() != ast.SelectKind {
continue
}
sel := m.AsSelect()
if sel.IsTestOnly() {
return false
}
}
return true
}
// matchVariable matches simple identifiers, select expressions, and presence test expressions
// which match the (potentially) qualified variable name provided as input.
//
// Note, this function does not support inlining against select expressions which includes optional
// field selection. This may be a future refinement.
func (opt *inliningOptimizer) matchVariable(varName string) ast.ExprMatcher {
return func(e ast.NavigableExpr) bool {
if e.Kind() == ast.IdentKind && e.AsIdent() == varName {
return true
}
if e.Kind() == ast.SelectKind {
sel := e.AsSelect()
// While the `ToQualifiedName` call could take the select directly, this
// would skip presence tests from possible matches, which we would like
// to include.
qualName, found := containers.ToQualifiedName(sel.Operand())
return found && qualName+"."+sel.FieldName() == varName
}
return false
}
}