This commit is contained in:
Mikaël Cluseau
2018-07-06 19:13:18 +11:00
parent d76b49b3c5
commit 21d3f45969
442 changed files with 75578 additions and 0 deletions

View File

@ -0,0 +1,181 @@
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hash
// CyclicPoly provides a cyclic polynomial rolling hash.
type CyclicPoly struct {
h uint64
p []uint64
i int
}
// ror rotates the unsigned 64-bit integer to right. The argument s must be
// less than 64.
func ror(x uint64, s uint) uint64 {
return (x >> s) | (x << (64 - s))
}
// NewCyclicPoly creates a new instance of the CyclicPoly structure. The
// argument n gives the number of bytes for which a hash will be executed.
// This number must be positive; the method panics if this isn't the case.
func NewCyclicPoly(n int) *CyclicPoly {
if n < 1 {
panic("argument n must be positive")
}
return &CyclicPoly{p: make([]uint64, 0, n)}
}
// Len returns the length of the byte sequence for which a hash is generated.
func (r *CyclicPoly) Len() int {
return cap(r.p)
}
// RollByte hashes the next byte and returns a hash value. The complete becomes
// available after at least Len() bytes have been hashed.
func (r *CyclicPoly) RollByte(x byte) uint64 {
y := hash[x]
if len(r.p) < cap(r.p) {
r.h = ror(r.h, 1) ^ y
r.p = append(r.p, y)
} else {
r.h ^= ror(r.p[r.i], uint(cap(r.p)-1))
r.h = ror(r.h, 1) ^ y
r.p[r.i] = y
r.i = (r.i + 1) % cap(r.p)
}
return r.h
}
// Stores the hash for the individual bytes.
var hash = [256]uint64{
0x2e4fc3f904065142, 0xc790984cfbc99527,
0x879f95eb8c62f187, 0x3b61be86b5021ef2,
0x65a896a04196f0a5, 0xc5b307b80470b59e,
0xd3bff376a70df14b, 0xc332f04f0b3f1701,
0x753b5f0e9abf3e0d, 0xb41538fdfe66ef53,
0x1906a10c2c1c0208, 0xfb0c712a03421c0d,
0x38be311a65c9552b, 0xfee7ee4ca6445c7e,
0x71aadeded184f21e, 0xd73426fccda23b2d,
0x29773fb5fb9600b5, 0xce410261cd32981a,
0xfe2848b3c62dbc2d, 0x459eaaff6e43e11c,
0xc13e35fc9c73a887, 0xf30ed5c201e76dbc,
0xa5f10b3910482cea, 0x2945d59be02dfaad,
0x06ee334ff70571b5, 0xbabf9d8070f44380,
0xee3e2e9912ffd27c, 0x2a7118d1ea6b8ea7,
0x26183cb9f7b1664c, 0xea71dac7da068f21,
0xea92eca5bd1d0bb7, 0x415595862defcd75,
0x248a386023c60648, 0x9cf021ab284b3c8a,
0xfc9372df02870f6c, 0x2b92d693eeb3b3fc,
0x73e799d139dc6975, 0x7b15ae312486363c,
0xb70e5454a2239c80, 0x208e3fb31d3b2263,
0x01f563cabb930f44, 0x2ac4533d2a3240d8,
0x84231ed1064f6f7c, 0xa9f020977c2a6d19,
0x213c227271c20122, 0x09fe8a9a0a03d07a,
0x4236dc75bcaf910c, 0x460a8b2bead8f17e,
0xd9b27be1aa07055f, 0xd202d5dc4b11c33e,
0x70adb010543bea12, 0xcdae938f7ea6f579,
0x3f3d870208672f4d, 0x8e6ccbce9d349536,
0xe4c0871a389095ae, 0xf5f2a49152bca080,
0x9a43f9b97269934e, 0xc17b3753cb6f475c,
0xd56d941e8e206bd4, 0xac0a4f3e525eda00,
0xa06d5a011912a550, 0x5537ed19537ad1df,
0xa32fe713d611449d, 0x2a1d05b47c3b579f,
0x991d02dbd30a2a52, 0x39e91e7e28f93eb0,
0x40d06adb3e92c9ac, 0x9b9d3afde1c77c97,
0x9a3f3f41c02c616f, 0x22ecd4ba00f60c44,
0x0b63d5d801708420, 0x8f227ca8f37ffaec,
0x0256278670887c24, 0x107e14877dbf540b,
0x32c19f2786ac1c05, 0x1df5b12bb4bc9c61,
0xc0cac129d0d4c4e2, 0x9fdb52ee9800b001,
0x31f601d5d31c48c4, 0x72ff3c0928bcaec7,
0xd99264421147eb03, 0x535a2d6d38aefcfe,
0x6ba8b4454a916237, 0xfa39366eaae4719c,
0x10f00fd7bbb24b6f, 0x5bd23185c76c84d4,
0xb22c3d7e1b00d33f, 0x3efc20aa6bc830a8,
0xd61c2503fe639144, 0x30ce625441eb92d3,
0xe5d34cf359e93100, 0xa8e5aa13f2b9f7a5,
0x5c2b8d851ca254a6, 0x68fb6c5e8b0d5fdf,
0xc7ea4872c96b83ae, 0x6dd5d376f4392382,
0x1be88681aaa9792f, 0xfef465ee1b6c10d9,
0x1f98b65ed43fcb2e, 0x4d1ca11eb6e9a9c9,
0x7808e902b3857d0b, 0x171c9c4ea4607972,
0x58d66274850146df, 0x42b311c10d3981d1,
0x647fa8c621c41a4c, 0xf472771c66ddfedc,
0x338d27e3f847b46b, 0x6402ce3da97545ce,
0x5162db616fc38638, 0x9c83be97bc22a50e,
0x2d3d7478a78d5e72, 0xe621a9b938fd5397,
0x9454614eb0f81c45, 0x395fb6e742ed39b6,
0x77dd9179d06037bf, 0xc478d0fee4d2656d,
0x35d9d6cb772007af, 0x83a56e92c883f0f6,
0x27937453250c00a1, 0x27bd6ebc3a46a97d,
0x9f543bf784342d51, 0xd158f38c48b0ed52,
0x8dd8537c045f66b4, 0x846a57230226f6d5,
0x6b13939e0c4e7cdf, 0xfca25425d8176758,
0x92e5fc6cd52788e6, 0x9992e13d7a739170,
0x518246f7a199e8ea, 0xf104c2a71b9979c7,
0x86b3ffaabea4768f, 0x6388061cf3e351ad,
0x09d9b5295de5bbb5, 0x38bf1638c2599e92,
0x1d759846499e148d, 0x4c0ff015e5f96ef4,
0xa41a94cfa270f565, 0x42d76f9cb2326c0b,
0x0cf385dd3c9c23ba, 0x0508a6c7508d6e7a,
0x337523aabbe6cf8d, 0x646bb14001d42b12,
0xc178729d138adc74, 0xf900ef4491f24086,
0xee1a90d334bb5ac4, 0x9755c92247301a50,
0xb999bf7c4ff1b610, 0x6aeeb2f3b21e8fc9,
0x0fa8084cf91ac6ff, 0x10d226cf136e6189,
0xd302057a07d4fb21, 0x5f03800e20a0fcc3,
0x80118d4ae46bd210, 0x58ab61a522843733,
0x51edd575c5432a4b, 0x94ee6ff67f9197f7,
0x765669e0e5e8157b, 0xa5347830737132f0,
0x3ba485a69f01510c, 0x0b247d7b957a01c3,
0x1b3d63449fd807dc, 0x0fdc4721c30ad743,
0x8b535ed3829b2b14, 0xee41d0cad65d232c,
0xe6a99ed97a6a982f, 0x65ac6194c202003d,
0x692accf3a70573eb, 0xcc3c02c3e200d5af,
0x0d419e8b325914a3, 0x320f160f42c25e40,
0x00710d647a51fe7a, 0x3c947692330aed60,
0x9288aa280d355a7a, 0xa1806a9b791d1696,
0x5d60e38496763da1, 0x6c69e22e613fd0f4,
0x977fc2a5aadffb17, 0xfb7bd063fc5a94ba,
0x460c17992cbaece1, 0xf7822c5444d3297f,
0x344a9790c69b74aa, 0xb80a42e6cae09dce,
0x1b1361eaf2b1e757, 0xd84c1e758e236f01,
0x88e0b7be347627cc, 0x45246009b7a99490,
0x8011c6dd3fe50472, 0xc341d682bffb99d7,
0x2511be93808e2d15, 0xd5bc13d7fd739840,
0x2a3cd030679ae1ec, 0x8ad9898a4b9ee157,
0x3245fef0a8eaf521, 0x3d6d8dbbb427d2b0,
0x1ed146d8968b3981, 0x0c6a28bf7d45f3fc,
0x4a1fd3dbcee3c561, 0x4210ff6a476bf67e,
0xa559cce0d9199aac, 0xde39d47ef3723380,
0xe5b69d848ce42e35, 0xefa24296f8e79f52,
0x70190b59db9a5afc, 0x26f166cdb211e7bf,
0x4deaf2df3c6b8ef5, 0xf171dbdd670f1017,
0xb9059b05e9420d90, 0x2f0da855c9388754,
0x611d5e9ab77949cc, 0x2912038ac01163f4,
0x0231df50402b2fba, 0x45660fc4f3245f58,
0xb91cc97c7c8dac50, 0xb72d2aafe4953427,
0xfa6463f87e813d6b, 0x4515f7ee95d5c6a2,
0x1310e1c1a48d21c3, 0xad48a7810cdd8544,
0x4d5bdfefd5c9e631, 0xa43ed43f1fdcb7de,
0xe70cfc8fe1ee9626, 0xef4711b0d8dda442,
0xb80dd9bd4dab6c93, 0xa23be08d31ba4d93,
0x9b37db9d0335a39c, 0x494b6f870f5cfebc,
0x6d1b3c1149dda943, 0x372c943a518c1093,
0xad27af45e77c09c4, 0x3b6f92b646044604,
0xac2917909f5fcf4f, 0x2069a60e977e5557,
0x353a469e71014de5, 0x24be356281f55c15,
0x2b6d710ba8e9adea, 0x404ad1751c749c29,
0xed7311bf23d7f185, 0xba4f6976b4acc43e,
0x32d7198d2bc39000, 0xee667019014d6e01,
0x494ef3e128d14c83, 0x1f95a152baecd6be,
0x201648dff1f483a5, 0x68c28550c8384af6,
0x5fc834a6824a7f48, 0x7cd06cb7365eaf28,
0xd82bbd95e9b30909, 0x234f0d1694c53f6d,
0xd2fb7f4a96d83f4a, 0xff0d5da83acac05e,
0xf8f6b97f5585080a, 0x74236084be57b95b,
0xa25e40c03bbc36ad, 0x6b6e5c14ce88465b,
0x4378ffe93e1528c5, 0x94ca92a17118e2d2,
}

View File

@ -0,0 +1,30 @@
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hash
import "testing"
func TestCyclicPolySimple(t *testing.T) {
p := []byte("abcde")
r := NewCyclicPoly(4)
h2 := Hashes(r, p)
for i, h := range h2 {
w := Hashes(r, p[i:i+4])[0]
t.Logf("%d h=%#016x w=%#016x", i, h, w)
if h != w {
t.Errorf("rolling hash %d: %#016x; want %#016x",
i, h, w)
}
}
}
func BenchmarkCyclicPoly(b *testing.B) {
p := makeBenchmarkBytes(4096)
r := NewCyclicPoly(4)
b.ResetTimer()
for i := 0; i < b.N; i++ {
Hashes(r, p)
}
}

14
vendor/github.com/ulikunitz/xz/internal/hash/doc.go generated vendored Normal file
View File

@ -0,0 +1,14 @@
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package hash provides rolling hashes.
Rolling hashes have to be used for maintaining the positions of n-byte
sequences in the dictionary buffer.
The package provides currently the Rabin-Karp rolling hash and a Cyclic
Polynomial hash. Both support the Hashes method to be used with an interface.
*/
package hash

View File

@ -0,0 +1,66 @@
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hash
// A is the default constant for Robin-Karp rolling hash. This is a random
// prime.
const A = 0x97b548add41d5da1
// RabinKarp supports the computation of a rolling hash.
type RabinKarp struct {
A uint64
// a^n
aOldest uint64
h uint64
p []byte
i int
}
// NewRabinKarp creates a new RabinKarp value. The argument n defines the
// length of the byte sequence to be hashed. The default constant will will be
// used.
func NewRabinKarp(n int) *RabinKarp {
return NewRabinKarpConst(n, A)
}
// NewRabinKarpConst creates a new RabinKarp value. The argument n defines the
// length of the byte sequence to be hashed. The argument a provides the
// constant used to compute the hash.
func NewRabinKarpConst(n int, a uint64) *RabinKarp {
if n <= 0 {
panic("number of bytes n must be positive")
}
aOldest := uint64(1)
// There are faster methods. For the small n required by the LZMA
// compressor O(n) is sufficient.
for i := 0; i < n; i++ {
aOldest *= a
}
return &RabinKarp{
A: a, aOldest: aOldest,
p: make([]byte, 0, n),
}
}
// Len returns the length of the byte sequence.
func (r *RabinKarp) Len() int {
return cap(r.p)
}
// RollByte computes the hash after x has been added.
func (r *RabinKarp) RollByte(x byte) uint64 {
if len(r.p) < cap(r.p) {
r.h += uint64(x)
r.h *= r.A
r.p = append(r.p, x)
} else {
r.h -= uint64(r.p[r.i]) * r.aOldest
r.h += uint64(x)
r.h *= r.A
r.p[r.i] = x
r.i = (r.i + 1) % cap(r.p)
}
return r.h
}

View File

@ -0,0 +1,42 @@
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hash
import (
"math/rand"
"testing"
)
func TestRabinKarpSimple(t *testing.T) {
p := []byte("abcde")
r := NewRabinKarp(4)
h2 := Hashes(r, p)
for i, h := range h2 {
w := Hashes(r, p[i:i+4])[0]
t.Logf("%d h=%#016x w=%#016x", i, h, w)
if h != w {
t.Errorf("rolling hash %d: %#016x; want %#016x",
i, h, w)
}
}
}
func makeBenchmarkBytes(n int) []byte {
rnd := rand.New(rand.NewSource(42))
p := make([]byte, n)
for i := range p {
p[i] = byte(rnd.Uint32())
}
return p
}
func BenchmarkRabinKarp(b *testing.B) {
p := makeBenchmarkBytes(4096)
r := NewRabinKarp(4)
b.ResetTimer()
for i := 0; i < b.N; i++ {
Hashes(r, p)
}
}

29
vendor/github.com/ulikunitz/xz/internal/hash/roller.go generated vendored Normal file
View File

@ -0,0 +1,29 @@
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hash
// Roller provides an interface for rolling hashes. The hash value will become
// valid after hash has been called Len times.
type Roller interface {
Len() int
RollByte(x byte) uint64
}
// Hashes computes all hash values for the array p. Note that the state of the
// roller is changed.
func Hashes(r Roller, p []byte) []uint64 {
n := r.Len()
if len(p) < n {
return nil
}
h := make([]uint64, len(p)-n+1)
for i := 0; i < n-1; i++ {
r.RollByte(p[i])
}
for i := range h {
h[i] = r.RollByte(p[i+n-1])
}
return h
}

17590
vendor/github.com/ulikunitz/xz/internal/randtxt/englm3.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,82 @@
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package randtxt
import (
"bufio"
"io"
"unicode"
)
// GroupReader groups the incoming text in groups of 5, whereby the
// number of groups per line can be controlled.
type GroupReader struct {
R io.ByteReader
GroupsPerLine int
off int64
eof bool
}
// NewGroupReader creates a new group reader.
func NewGroupReader(r io.Reader) *GroupReader {
return &GroupReader{R: bufio.NewReader(r)}
}
// Read formats the data provided by the internal reader in groups of 5
// characters. If GroupsPerLine hasn't been initialized 8 groups per
// line will be produced.
func (r *GroupReader) Read(p []byte) (n int, err error) {
if r.eof {
return 0, io.EOF
}
groupsPerLine := r.GroupsPerLine
if groupsPerLine < 1 {
groupsPerLine = 8
}
lineLen := int64(groupsPerLine * 6)
var c byte
for i := range p {
switch {
case r.off%lineLen == lineLen-1:
if i+1 == len(p) && len(p) > 1 {
return i, nil
}
c = '\n'
case r.off%6 == 5:
if i+1 == len(p) && len(p) > 1 {
return i, nil
}
c = ' '
default:
c, err = r.R.ReadByte()
if err == io.EOF {
r.eof = true
if i > 0 {
switch p[i-1] {
case ' ':
p[i-1] = '\n'
fallthrough
case '\n':
return i, io.EOF
}
}
p[i] = '\n'
return i + 1, io.EOF
}
if err != nil {
return i, err
}
switch {
case c == ' ':
c = '_'
case !unicode.IsPrint(rune(c)):
c = '-'
}
}
p[i] = c
r.off++
}
return len(p), nil
}

View File

@ -0,0 +1,185 @@
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package randtxt supports the generation of random text using a
// trigram model for the English language.
package randtxt
import (
"math"
"math/rand"
"sort"
)
// ngram stores an entry from the language model.
type ngram struct {
s string
lgP float64
lgQ float64
}
// ngrams represents a slice of ngram values and is used to represent a
// language model.
type ngrams []ngram
func (s ngrams) Len() int { return len(s) }
func (s ngrams) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s ngrams) Less(i, j int) bool { return s[i].s < s[j].s }
// Sorts the language model in the sequence of their ngrams.
func (s ngrams) Sort() { sort.Sort(s) }
// Search is looking for an ngram or the position where it would be
// inserted.
func (s ngrams) Search(g string) int {
return sort.Search(len(s), func(k int) bool { return s[k].s >= g })
}
// prob represents a string, usually an ngram, and a probability value.
type prob struct {
s string
p float64
}
// probs is a slice of prob values that can be sorted and searched.
type probs []prob
func (s probs) Len() int { return len(s) }
func (s probs) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s probs) Less(i, j int) bool { return s[i].s < s[j].s }
// SortByNgram sorts the probs slice by ngram, field s.
func (s probs) SortByNgram() { sort.Sort(s) }
// SortsByProb sorts the probs slice by probability, field p.
func (s probs) SortByProb() { sort.Sort(byProb{s}) }
// SearchNgram searches for an ngram or the position where it would be
// inserted.
func (s probs) SearchNgram(g string) int {
return sort.Search(len(s), func(k int) bool { return s[k].s >= g })
}
// SearchProb searches ngrams for a specific probability or where it
// would be inserted.
func (s probs) SearchProb(p float64) int {
return sort.Search(len(s), func(k int) bool { return s[k].p >= p })
}
// byProb is used to sort probs slice by probability, field p.
type byProb struct {
probs
}
func (s byProb) Less(i, j int) bool {
return s.probs[i].p < s.probs[j].p
}
// cdf can be used to setup a cumulative distribution function
// represented by a probs slice. We should have returned an actual
// function.
func cdf(n int, p func(i int) prob) probs {
prs := make(probs, n)
sum := 0.0
for i := range prs {
pr := p(i)
sum += pr.p
prs[i] = pr
}
q := 1.0 / sum
x := 0.0
for i, pr := range prs {
x += pr.p * q
if x > 1.0 {
x = 1.0
}
prs[i].p = x
}
if !sort.IsSorted(byProb{prs}) {
panic("cdf not sorted")
}
return prs
}
// pCDFOfLM converts a language model into a cumulative distribution
// function represented by probs.
func pCDFOfLM(lm ngrams) probs {
return cdf(len(lm), func(i int) prob {
return prob{lm[i].s, math.Exp2(lm[i].lgP)}
})
}
// cCDF converts a ngrams slice into a cumulative distribution function
// using the conditional probability lgQ.
func cCDF(s ngrams) probs {
return cdf(len(s), func(i int) prob {
return prob{s[i].s, math.Exp2(s[i].lgQ)}
})
}
// comap contains a map of conditional distribution function for the
// last character.
type comap map[string]probs
// comapOfLM converts a language model in a map of conditional
// distribution functions.
func comapOfLM(lm ngrams) comap {
if !sort.IsSorted(lm) {
panic("lm is not sorted")
}
m := make(comap, 26*26)
for i := 0; i < len(lm); {
j := i
g := lm[i].s
g2 := g[:2]
z := g2 + "Z"
i = lm.Search(z)
if i >= len(lm) || lm[i].s != z {
panic("unexpected search result")
}
i++
m[g2] = cCDF(lm[j:i])
}
return m
}
// trigram returns the trigram with prefix g2 using a probability value
// in the range [0.0,1.0).
func (c comap) trigram(g2 string, p float64) string {
prs := c[g2]
i := prs.SearchProb(p)
return prs[i].s
}
var (
// CDF for normal probabilities
pcdf = pCDFOfLM(englm3)
// map of two letter conditionals
cmap = comapOfLM(englm3)
)
// Reader generates a stream of text of uppercase letters with trigrams
// distributed according to a language model of the English language.
type Reader struct {
rnd *rand.Rand
g3 string
}
// NewReader creates a new reader. The argument src must create a uniformly
// distributed stream of random values.
func NewReader(src rand.Source) *Reader {
rnd := rand.New(src)
i := pcdf.SearchProb(rnd.Float64())
return &Reader{rnd, pcdf[i].s}
}
// Read reads random text. The Read function will always return len(p)
// bytes and will never return an error.
func (r *Reader) Read(p []byte) (n int, err error) {
for i := range p {
r.g3 = cmap.trigram(r.g3[1:], r.rnd.Float64())
p[i] = r.g3[2]
}
return len(p), nil
}

View File

@ -0,0 +1,37 @@
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package randtxt
import (
"bufio"
"io"
"math/rand"
"testing"
)
func TestReader(t *testing.T) {
lr := io.LimitReader(NewReader(rand.NewSource(13)), 195)
pretty := NewGroupReader(lr)
scanner := bufio.NewScanner(pretty)
for scanner.Scan() {
t.Log(scanner.Text())
}
if err := scanner.Err(); err != nil {
t.Fatalf("scanner error %s", err)
}
}
func TestComap(t *testing.T) {
prs := cmap["TH"]
for _, p := range prs[3:6] {
t.Logf("%v", p)
}
p := 0.2
x := cmap.trigram("TH", p)
if x != "THE" {
t.Fatalf("cmap.trigram(%q, %.1f) returned %q; want %q",
"TH", p, x, "THE")
}
}

457
vendor/github.com/ulikunitz/xz/internal/xlog/xlog.go generated vendored Normal file
View File

@ -0,0 +1,457 @@
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package xlog provides a simple logging package that allows to disable
// certain message categories. It defines a type, Logger, with multiple
// methods for formatting output. The package has also a predefined
// 'standard' Logger accessible through helper function Print[f|ln],
// Fatal[f|ln], Panic[f|ln], Warn[f|ln], Print[f|ln] and Debug[f|ln]
// that are easier to use then creating a Logger manually. That logger
// writes to standard error and prints the date and time of each logged
// message, which can be configured using the function SetFlags.
//
// The Fatal functions call os.Exit(1) after the message is output
// unless not suppressed by the flags. The Panic functions call panic
// after the writing the log message unless suppressed.
package xlog
import (
"fmt"
"io"
"os"
"runtime"
"sync"
"time"
)
// The flags define what information is prefixed to each log entry
// generated by the Logger. The Lno* versions allow the suppression of
// specific output. The bits are or'ed together to control what will be
// printed. There is no control over the order of the items printed and
// the format. The full format is:
//
// 2009-01-23 01:23:23.123123 /a/b/c/d.go:23: message
//
const (
Ldate = 1 << iota // the date: 2009-01-23
Ltime // the time: 01:23:23
Lmicroseconds // microsecond resolution: 01:23:23.123123
Llongfile // full file name and line number: /a/b/c/d.go:23
Lshortfile // final file name element and line number: d.go:23
Lnopanic // suppresses output from Panic[f|ln] but not the panic call
Lnofatal // suppresses output from Fatal[f|ln] but not the exit
Lnowarn // suppresses output from Warn[f|ln]
Lnoprint // suppresses output from Print[f|ln]
Lnodebug // suppresses output from Debug[f|ln]
// initial values for the standard logger
Lstdflags = Ldate | Ltime | Lnodebug
)
// A Logger represents an active logging object that generates lines of
// output to an io.Writer. Each logging operation if not suppressed
// makes a single call to the Writer's Write method. A Logger can be
// used simultaneously from multiple goroutines; it guarantees to
// serialize access to the Writer.
type Logger struct {
mu sync.Mutex // ensures atomic writes; and protects the following
// fields
prefix string // prefix to write at beginning of each line
flag int // properties
out io.Writer // destination for output
buf []byte // for accumulating text to write
}
// New creates a new Logger. The out argument sets the destination to
// which the log output will be written. The prefix appears at the
// beginning of each log line. The flag argument defines the logging
// properties.
func New(out io.Writer, prefix string, flag int) *Logger {
return &Logger{out: out, prefix: prefix, flag: flag}
}
// std is the standard logger used by the package scope functions.
var std = New(os.Stderr, "", Lstdflags)
// itoa converts the integer to ASCII. A negative widths will avoid
// zero-padding. The function supports only non-negative integers.
func itoa(buf *[]byte, i int, wid int) {
var u = uint(i)
if u == 0 && wid <= 1 {
*buf = append(*buf, '0')
return
}
var b [32]byte
bp := len(b)
for ; u > 0 || wid > 0; u /= 10 {
bp--
wid--
b[bp] = byte(u%10) + '0'
}
*buf = append(*buf, b[bp:]...)
}
// formatHeader puts the header into the buf field of the buffer.
func (l *Logger) formatHeader(t time.Time, file string, line int) {
l.buf = append(l.buf, l.prefix...)
if l.flag&(Ldate|Ltime|Lmicroseconds) != 0 {
if l.flag&Ldate != 0 {
year, month, day := t.Date()
itoa(&l.buf, year, 4)
l.buf = append(l.buf, '-')
itoa(&l.buf, int(month), 2)
l.buf = append(l.buf, '-')
itoa(&l.buf, day, 2)
l.buf = append(l.buf, ' ')
}
if l.flag&(Ltime|Lmicroseconds) != 0 {
hour, min, sec := t.Clock()
itoa(&l.buf, hour, 2)
l.buf = append(l.buf, ':')
itoa(&l.buf, min, 2)
l.buf = append(l.buf, ':')
itoa(&l.buf, sec, 2)
if l.flag&Lmicroseconds != 0 {
l.buf = append(l.buf, '.')
itoa(&l.buf, t.Nanosecond()/1e3, 6)
}
l.buf = append(l.buf, ' ')
}
}
if l.flag&(Lshortfile|Llongfile) != 0 {
if l.flag&Lshortfile != 0 {
short := file
for i := len(file) - 1; i > 0; i-- {
if file[i] == '/' {
short = file[i+1:]
break
}
}
file = short
}
l.buf = append(l.buf, file...)
l.buf = append(l.buf, ':')
itoa(&l.buf, line, -1)
l.buf = append(l.buf, ": "...)
}
}
func (l *Logger) output(calldepth int, now time.Time, s string) error {
var file string
var line int
if l.flag&(Lshortfile|Llongfile) != 0 {
l.mu.Unlock()
var ok bool
_, file, line, ok = runtime.Caller(calldepth)
if !ok {
file = "???"
line = 0
}
l.mu.Lock()
}
l.buf = l.buf[:0]
l.formatHeader(now, file, line)
l.buf = append(l.buf, s...)
if len(s) == 0 || s[len(s)-1] != '\n' {
l.buf = append(l.buf, '\n')
}
_, err := l.out.Write(l.buf)
return err
}
// Output writes the string s with the header controlled by the flags to
// the l.out writer. A newline will be appended if s doesn't end in a
// newline. Calldepth is used to recover the PC, although all current
// calls of Output use the call depth 2. Access to the function is serialized.
func (l *Logger) Output(calldepth, noflag int, v ...interface{}) error {
now := time.Now()
l.mu.Lock()
defer l.mu.Unlock()
if l.flag&noflag != 0 {
return nil
}
s := fmt.Sprint(v...)
return l.output(calldepth+1, now, s)
}
// Outputf works like output but formats the output like Printf.
func (l *Logger) Outputf(calldepth int, noflag int, format string, v ...interface{}) error {
now := time.Now()
l.mu.Lock()
defer l.mu.Unlock()
if l.flag&noflag != 0 {
return nil
}
s := fmt.Sprintf(format, v...)
return l.output(calldepth+1, now, s)
}
// Outputln works like output but formats the output like Println.
func (l *Logger) Outputln(calldepth int, noflag int, v ...interface{}) error {
now := time.Now()
l.mu.Lock()
defer l.mu.Unlock()
if l.flag&noflag != 0 {
return nil
}
s := fmt.Sprintln(v...)
return l.output(calldepth+1, now, s)
}
// Panic prints the message like Print and calls panic. The printing
// might be suppressed by the flag Lnopanic.
func (l *Logger) Panic(v ...interface{}) {
l.Output(2, Lnopanic, v...)
s := fmt.Sprint(v...)
panic(s)
}
// Panic prints the message like Print and calls panic. The printing
// might be suppressed by the flag Lnopanic.
func Panic(v ...interface{}) {
std.Output(2, Lnopanic, v...)
s := fmt.Sprint(v...)
panic(s)
}
// Panicf prints the message like Printf and calls panic. The printing
// might be suppressed by the flag Lnopanic.
func (l *Logger) Panicf(format string, v ...interface{}) {
l.Outputf(2, Lnopanic, format, v...)
s := fmt.Sprintf(format, v...)
panic(s)
}
// Panicf prints the message like Printf and calls panic. The printing
// might be suppressed by the flag Lnopanic.
func Panicf(format string, v ...interface{}) {
std.Outputf(2, Lnopanic, format, v...)
s := fmt.Sprintf(format, v...)
panic(s)
}
// Panicln prints the message like Println and calls panic. The printing
// might be suppressed by the flag Lnopanic.
func (l *Logger) Panicln(v ...interface{}) {
l.Outputln(2, Lnopanic, v...)
s := fmt.Sprintln(v...)
panic(s)
}
// Panicln prints the message like Println and calls panic. The printing
// might be suppressed by the flag Lnopanic.
func Panicln(v ...interface{}) {
std.Outputln(2, Lnopanic, v...)
s := fmt.Sprintln(v...)
panic(s)
}
// Fatal prints the message like Print and calls os.Exit(1). The
// printing might be suppressed by the flag Lnofatal.
func (l *Logger) Fatal(v ...interface{}) {
l.Output(2, Lnofatal, v...)
os.Exit(1)
}
// Fatal prints the message like Print and calls os.Exit(1). The
// printing might be suppressed by the flag Lnofatal.
func Fatal(v ...interface{}) {
std.Output(2, Lnofatal, v...)
os.Exit(1)
}
// Fatalf prints the message like Printf and calls os.Exit(1). The
// printing might be suppressed by the flag Lnofatal.
func (l *Logger) Fatalf(format string, v ...interface{}) {
l.Outputf(2, Lnofatal, format, v...)
os.Exit(1)
}
// Fatalf prints the message like Printf and calls os.Exit(1). The
// printing might be suppressed by the flag Lnofatal.
func Fatalf(format string, v ...interface{}) {
std.Outputf(2, Lnofatal, format, v...)
os.Exit(1)
}
// Fatalln prints the message like Println and calls os.Exit(1). The
// printing might be suppressed by the flag Lnofatal.
func (l *Logger) Fatalln(format string, v ...interface{}) {
l.Outputln(2, Lnofatal, v...)
os.Exit(1)
}
// Fatalln prints the message like Println and calls os.Exit(1). The
// printing might be suppressed by the flag Lnofatal.
func Fatalln(format string, v ...interface{}) {
std.Outputln(2, Lnofatal, v...)
os.Exit(1)
}
// Warn prints the message like Print. The printing might be suppressed
// by the flag Lnowarn.
func (l *Logger) Warn(v ...interface{}) {
l.Output(2, Lnowarn, v...)
}
// Warn prints the message like Print. The printing might be suppressed
// by the flag Lnowarn.
func Warn(v ...interface{}) {
std.Output(2, Lnowarn, v...)
}
// Warnf prints the message like Printf. The printing might be suppressed
// by the flag Lnowarn.
func (l *Logger) Warnf(format string, v ...interface{}) {
l.Outputf(2, Lnowarn, format, v...)
}
// Warnf prints the message like Printf. The printing might be suppressed
// by the flag Lnowarn.
func Warnf(format string, v ...interface{}) {
std.Outputf(2, Lnowarn, format, v...)
}
// Warnln prints the message like Println. The printing might be suppressed
// by the flag Lnowarn.
func (l *Logger) Warnln(v ...interface{}) {
l.Outputln(2, Lnowarn, v...)
}
// Warnln prints the message like Println. The printing might be suppressed
// by the flag Lnowarn.
func Warnln(v ...interface{}) {
std.Outputln(2, Lnowarn, v...)
}
// Print prints the message like fmt.Print. The printing might be suppressed
// by the flag Lnoprint.
func (l *Logger) Print(v ...interface{}) {
l.Output(2, Lnoprint, v...)
}
// Print prints the message like fmt.Print. The printing might be suppressed
// by the flag Lnoprint.
func Print(v ...interface{}) {
std.Output(2, Lnoprint, v...)
}
// Printf prints the message like fmt.Printf. The printing might be suppressed
// by the flag Lnoprint.
func (l *Logger) Printf(format string, v ...interface{}) {
l.Outputf(2, Lnoprint, format, v...)
}
// Printf prints the message like fmt.Printf. The printing might be suppressed
// by the flag Lnoprint.
func Printf(format string, v ...interface{}) {
std.Outputf(2, Lnoprint, format, v...)
}
// Println prints the message like fmt.Println. The printing might be
// suppressed by the flag Lnoprint.
func (l *Logger) Println(v ...interface{}) {
l.Outputln(2, Lnoprint, v...)
}
// Println prints the message like fmt.Println. The printing might be
// suppressed by the flag Lnoprint.
func Println(v ...interface{}) {
std.Outputln(2, Lnoprint, v...)
}
// Debug prints the message like Print. The printing might be suppressed
// by the flag Lnodebug.
func (l *Logger) Debug(v ...interface{}) {
l.Output(2, Lnodebug, v...)
}
// Debug prints the message like Print. The printing might be suppressed
// by the flag Lnodebug.
func Debug(v ...interface{}) {
std.Output(2, Lnodebug, v...)
}
// Debugf prints the message like Printf. The printing might be suppressed
// by the flag Lnodebug.
func (l *Logger) Debugf(format string, v ...interface{}) {
l.Outputf(2, Lnodebug, format, v...)
}
// Debugf prints the message like Printf. The printing might be suppressed
// by the flag Lnodebug.
func Debugf(format string, v ...interface{}) {
std.Outputf(2, Lnodebug, format, v...)
}
// Debugln prints the message like Println. The printing might be suppressed
// by the flag Lnodebug.
func (l *Logger) Debugln(v ...interface{}) {
l.Outputln(2, Lnodebug, v...)
}
// Debugln prints the message like Println. The printing might be suppressed
// by the flag Lnodebug.
func Debugln(v ...interface{}) {
std.Outputln(2, Lnodebug, v...)
}
// Flags returns the current flags used by the logger.
func (l *Logger) Flags() int {
l.mu.Lock()
defer l.mu.Unlock()
return l.flag
}
// Flags returns the current flags used by the standard logger.
func Flags() int {
return std.Flags()
}
// SetFlags sets the flags of the logger.
func (l *Logger) SetFlags(flag int) {
l.mu.Lock()
defer l.mu.Unlock()
l.flag = flag
}
// SetFlags sets the flags for the standard logger.
func SetFlags(flag int) {
std.SetFlags(flag)
}
// Prefix returns the prefix used by the logger.
func (l *Logger) Prefix() string {
l.mu.Lock()
defer l.mu.Unlock()
return l.prefix
}
// Prefix returns the prefix used by the standard logger of the package.
func Prefix() string {
return std.Prefix()
}
// SetPrefix sets the prefix for the logger.
func (l *Logger) SetPrefix(prefix string) {
l.mu.Lock()
defer l.mu.Unlock()
l.prefix = prefix
}
// SetPrefix sets the prefix of the standard logger of the package.
func SetPrefix(prefix string) {
std.SetPrefix(prefix)
}
// SetOutput sets the output of the logger.
func (l *Logger) SetOutput(w io.Writer) {
l.mu.Lock()
defer l.mu.Unlock()
l.out = w
}
// SetOutput sets the output for the standard logger of the package.
func SetOutput(w io.Writer) {
std.SetOutput(w)
}